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A B S T R A C T

In the research of solid-state drive (SSD) performance enhancement, constructing an efficient garbage collection
(GC) mechanism is crucial for accelerating device operations and extending their service life, especially in
large data processing applications like databases and file systems. Therefore, this paper conducts an in-depth
study on the impact of cache management strategies on GC performance and proposes an innovative GC
algorithm called Cache Data Allocation GC (CDA-GC). By optimizing data allocation and management within
the cache, this algorithm reduces unnecessary data migration during the GC process, thereby improving data
processing efficiency and reducing the impact of GC operations on device performance. The core of CDA-GC lies
in its innovative cache data management strategy, which can significantly reduce the data migration demands
during the GC process. This method not only improves the overall processing performance of SSDs but also
reduces the adverse impact of GC activities on device performance by optimizing data access patterns. We
implemented and validated the algorithm on the Cosmos+ OpenSSD platform and compared it with existing
advanced SSD caching strategies in real-world scenarios. Experimental results show that in database and file
system applications, the CDA-GC algorithm can effectively improve performance.
1. Introduction

NAND flash memory has attracted significant attention from
academia and industry due to its advantages such as compact size, no
mechanical noise, impact resistance, light weight, and low power con-
sumption [1,2]. With the advancement of semiconductor technology,
flash-based solid-state drives (SSDs) have gradually replaced traditional
hard disk drives (HDDs) as mainstream storage devices. Flash-based
SSDs are not only widely used in consumer electronics, such as desktops
and laptops, due to their high performance and reliability, but also play
a critical role in high-performance computing (HPC) and enterprise
data centers [3–5].

A flash-based SSD consists of multiple flash memory chips, each
comprising numerous blocks and pages. The erase-before-write mech-
anism of flash memory makes erase operations significantly slower
compared to read/write operations. To mitigate this impact, SSDs
adopt a remote update strategy [6]. Additionally, a GC mechanism is
introduced to reclaim invalid pages generated during flash memory
update operations by releasing block space [7]. The goal of GC is to
consolidate valid data and reclaim blocks occupied by invalid data,
thereby making them available for future writes.
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However, the garbage collection process often involves moving
valid data to new locations before erasing blocks, and this data migra-
tion process is a key factor in GC-induced performance degradation.
During GC, valid data must be read from blocks targeted for erasure
and rewritten to other blocks, which results in additional read and write
operations that consume valuable I/O bandwidth. This data movement
not only increases data access latency but also competes with nor-
mal I/O operations for system resources, which can lead to severe
performance bottlenecks. The impact of GC is especially pronounced
in high-load environments, such as databases and file systems, where
large amounts of data migration lead to increased latency and reduced
system throughput. Therefore, performance degradation due to GC is a
primary concern affecting SSD efficiency [8,9].

A major challenge introduced by garbage collection is the significant
performance overhead associated with data migration during the GC
process. During GC, valid data must be relocated from blocks marked
for erasure to new blocks, requiring frequent read and write operations
that further impact SSD performance. The frequency of GC operations
and the amount of data migration depend largely on how data is
managed internally—specifically, how data is organized in the cache
and subsequently written to flash blocks. Inefficient data management
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during this process can lead to excessive GC operations, resulting in
increased I/O overhead, higher latency, and reduced overall system
performance.

Integrating DRAM as a buffer cache within SSDs effectively mit-
igates long access delays, significantly enhancing user I/O perfor-
mance [10]. Nonetheless, Garbage Collection remains a critical com-
ponent of SSD maintenance, directly impacting overall system perfor-
mance. Existing research on GC has primarily focused on optimizing its
implementation within various Flash Translation Layer (FTL) schemes.
This includes strategies such as victim block selection [11,12], lever-
aging workload characteristics and internal parallelism [13–15], and
refining the FTL layer for improved efficiency [16–18]. However,
these studies often overlook the substantial impact that internal data
distribution within SSDs has on GC efficiency.

The distribution of data in the cache and the process of writing it
to flash memory are particularly critical to GC efficiency, especially
in high-load or data-intensive scenarios. The use of cache, such as
DRAM, helps buffer write operations and accelerates data retrieval.
However, traditional cache replacement strategies, like LRU (Least
Recently Used), are typically designed for general I/O workloads and
do not consider the specific demands imposed by garbage collection.
During GC, the cache often becomes polluted with data that needs to be
temporarily moved, which can displace other valuable cached data and
reduce cache hit rates. This ineffective utilization of cache resources
increases the likelihood of cache misses and adds further overhead
to the GC process. Such cache inefficiencies during GC contribute
to increased I/O overhead, prolonging access times, and ultimately
degrading system performance.

Additionally, traditional GC optimization methods tend to focus
on block-level management strategies, such as victim block selection
and maximizing internal parallelism, while overlooking the importance
of optimizing data flow from cache to flash during GC. This over-
sight can lead to redundant cache operations and unnecessary data
movement, which further exacerbates the performance issues faced by
SSDs, especially under high I/O load conditions. For example, without
careful cache management, the frequent eviction and reloading of data
during GC operations result in suboptimal performance and increased
latency. Therefore, there is a pressing need for strategies that not only
optimize GC at the block level but also manage the cache in a manner
that reduces the cost associated with frequent data migration during
garbage collection.

To address the performance challenges caused by GC in SSDs, this
paper proposes a new GC optimization strategy called Cache Data
Allocation Garbage Collection (CDA-GC). CDA-GC focuses on the dis-
tribution of cache data and its writing process to flash memory. By
effectively managing the distribution of data in the cache and optimiz-
ing the dispatch strategy, CDA-GC reduces unnecessary data migration,
enhances processing efficiency, and mitigates the negative impact of
GC on SSD performance. CDA-GC consists of two main components: the
Cache GC Page Stager and the Cold and Hot Data Dispatcher. The Cache
GC Page Stager temporarily holds GC-related pages in the cache to
enhance scheduling efficiency and reduce unnecessary read and write
operations. The Cold and Hot Data Dispatcher segregates data based
on its temperature, optimizing cache dispatch, reducing data migration
within flash blocks, and ultimately improving GC efficiency. We evalu-
ated CDA-GC on the Cosmos+ FPGA OpenSSD platform and compared
it with existing advanced cache management strategies. The results
demonstrate that CDA-GC significantly enhances GC performance, of-
fering a new perspective that breaks through the limitations of existing
GC optimization methods and provides significant improvements in
SSD efficiency.

The main contributions of this paper are:
(1) Exploration of the impact of cache data allocation on GC effi-

ciency in SSDs, highlighting the importance of optimized data manage-
ment strategies in enhancing system performance;
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Fig. 1. A typical architecture diagram of an SSD.

(2) Proposal of the novel CDA-GC data management strategy, de-
signed to optimize GC by improving the allocation of cache data,
minimizing unnecessary data migration, and enhancing processing ef-
ficiency;

(3) Evaluation of the CDA-GC strategy on the Cosmos+ FPGA
OpenSSD platform, demonstrating its effectiveness in enhancing GC
performance compared to existing strategies, serving as a foundation
for future SSD performance optimization research.

The remainder of this paper is organized as follows: Section 2
provides background and motivation for this study. Section 3 details the
CDA-GC scheme. Section 4 discusses performance evaluation results.
Section 5 compares related work, and Section 6 concludes the paper
with directions for future research

2. Background and motivation

In this section, we first introduce the key features of SSDs related to
this research. Then, we discuss the motivation of the CDA-GC scheme.

2.1. SSD architecture

Unlike traditional mechanical HHDs, flash-based SSDs are composed
of semiconductor materials and contain no mechanical moving parts.
This design eliminates the addressing overhead associated with HDD
head movement. Additionally, SSDs exploit various forms of internal
parallelism within flash memory, resulting in superior random read
and write performance. Fig. 1 illustrates a typical SSD architecture,
comprising components such as the host interface, microprocessor,
onboard RAM, flash memory interface circuit, and flash memory chips.

The host interface connects the SSD to the host system at both
logical and physical levels. While traditional SSDs use the Serial ATA
(SATA) interface, its throughput limitations have led to the adoption
of the Non-Volatile Memory Express (NVMe) protocol. NVMe has at-
tracted significant attention from storage designers due to its high
bandwidth and multi-queue technology. Interfaces based on this pro-
tocol offer bandwidths of dozens of gigabits per second, sufficiently
meeting the parallelism requirements of SSD internal components.
Consequently, PCIe interfaces based on the NVMe protocol are widely
employed in high-performance SSDs.

The microprocessor acts as the execution unit for SSD firmware,
which includes host interface logic, the FTL, and operations related to
storage media management. The FTL is crucial in the storage system,
performing operations such as address mapping, garbage collection,
wear leveling, and bad block management. These microprocessors typi-
cally utilize low-power embedded CPUs, which constrains the firmware
from implementing highly complex algorithms.

Onboard RAM serves a dual purpose: it forms an embedded system
with the microprocessor to execute SSD firmware operations and acts
as a data buffer cache (referred to as cache in this paper). The data
cache bridges the performance gap between the host interface and the
flash memory device, facilitating smoother data transfer processes. Par-
ticularly for write operations, it effectively conceals the write latency of
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Fig. 2. Traditional GC Data Distribution.

flash memory. Similarly, during garbage collection, the cache provides
temporary storage for valid data until it is relocated.

A flash chip is the fundamental data storage unit, with read and
write operations performed on page units and erase operations on
block units. Currently, there are four mainstream types of NAND flash
memory cells: Single-Level Cell (SLC), Multi-Level Cell (MLC), Triple-
Level Cell (TLC), and Quad-Level Cell (QLC). SLC stores one bit per cell,
MLC stores two bits, TLC stores three bits, and QLC stores four bits per
cell.

2.2. Motivation

With the growing advantages of solid-state drives in terms of perfor-
mance, reliability, and durability, SSDs have become the main solution
for modern storage systems. However, one of the key challenges faced
by SSDs is the garbage collection mechanism, which is essential for
maintaining the long-term efficiency and extending the lifespan of the
device. Flash memory, as the core storage medium of SSDs, uses a
‘‘write-before-erase’’ mechanism. When data is updated, new data is
written to a new location, and the old data becomes invalid. Over time,
these invalid data accumulate, and while no longer in use, they occupy
storage space and degrade performance. The goal of garbage collection
is to reclaim this space by erasing blocks containing invalid data and
consolidating valid data into other blocks to free up space.

However, the garbage collection process often comes with signifi-
cant performance overhead, especially in high-load environments such
as database and file system applications. GC requires migrating valid
data to new blocks, and this data migration operation involves fre-
quent read and write operations, occupying substantial I/O bandwidth,
increasing data access latency, and impacting normal I/O operations.
Particularly when GC involves large amounts of data, excessive data
migration and repeated writing exacerbate performance bottlenecks.
Therefore, reducing unnecessary data migration during GC and opti-
mizing the garbage collection operation is a key issue for improving
SSD performance.

Traditional GC optimization methods often focus on block selection
strategies or memory management layer optimization. However, they
rarely consider the distribution of data within the cache, especially the
overhead associated with data migration during the process of reading
data from flash to cache, which is often overlooked. Traditional solu-
tions tend to concentrate on block-level memory management while
ignoring the cost of reading data from flash into the cache during
GC, leading to unnecessary performance degradation. This situation
is depicted in Fig. 2, which illustrates the state of data distribution
during the traditional GC process. As shown in Fig. 2, data migration
between flash blocks and the cache is performed without considering
the associated overhead. The cache is filled with data from different
blocks, resulting in increased I/O load and additional system overhead.
In the figure, a large number of valid and invalid pages are present
within the blocks, demonstrating the inefficiency of traditional GC
methods, leading to frequent data movement that significantly impacts
overall system performance.
3 
Fig. 3. CDA-GC Data Distribution.

To address this issue, this paper proposes the CDA-GC algorithm.
The core idea of CDA-GC is to reduce unnecessary data migration
during GC by optimizing cache management and data distribution.
Specifically, CDA-GC stores GC-related data in the cache in advance,
thereby effectively reducing the frequent migration of hot and cold data
from flash to cache during GC, improving cache utilization, lowering
I/O bandwidth consumption, and reducing data access latency for each
GC operation. This strategy is effectively illustrated in Fig. 3, which
represents the state of data distribution in the CDA-GC approach. As
shown in Fig. 3, the cache already contains GC-related pages, and the
distribution of valid and invalid data within the flash blocks is more
efficient, resulting in fewer valid pages remaining within the blocks.
This optimized layout ensures that data migration during GC has as
little impact as possible on normal I/O operations. By reducing the
overhead associated with cache data migration, CDA-GC is able to
enhance overall system performance, improve cache efficiency, and
mitigate the adverse effects of GC on system I/O flows.

At the flash memory level, CDA-GC applies a hot/cold data parti-
tioning strategy, ensuring that hot and cold data are written to different
flash blocks or regions, preventing them from being mixed during GC.
This separation strategy further reduces the amount of data migration
from flash to cache during GC, reducing the impact of GC on normal I/O
operations, minimizing unnecessary erase operations, reducing write
amplification, and extending the lifespan of the SSD.

By optimizing the data path from flash to cache during GC, CDA-
GC effectively reduces the data migration burden during GC, improves
GC efficiency, and minimizes the impact on normal I/O operations,
ensuring that the system can maintain high performance while per-
forming garbage collection. This approach provides a novel method for
SSD performance optimization, particularly in high-load applications
like databases and file systems, where it can significantly enhance SSD
response speed and stability.

3. Architecture of CDA-GC

In the previous section, we explored the significance of the garbage
collection issue in SSDs and reviewed existing GC strategies. These
strategies do not fully leverage DRAM to address the impact of data
distribution on GC efficiency. In this section, we introduce a new
approach named CDA-GC, which thoroughly considers the use of DRAM
to manage the impact of data distribution on GC. The design principles
and framework of CDA-GC will be presented herein.

3.1. Design principles

In designing the CDA-GC scheme, our objective is to comprehen-
sively enhance the performance and efficiency of SSDs in the garbage
collection process. The core design principles focus on optimizing data
read/write speeds, reducing operational latency, and enhancing overall
system processing capability through meticulous data management and
the application of efficient algorithms in the GC process. CDA-GC
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Fig. 4. Overview of CDA-GC.

endeavors to minimize unnecessary data migration and rewrite opera-
tions during GC by analyzing data distribution, thereby improving data
processing speed and system responsiveness. Simultaneously, CDA-GC
places importance on lightweight system design for practical applica-
tion. Algorithm implementation emphasizes reducing reliance on com-
putational resources and memory, ensuring that optimization measures
do not impose excessive burdens on system resources. A lightweight
design approach aims to mitigate potential overconsumption issues
in real SSD environments. These design principles not only reflect
our comprehensive considerations for improving SSD performance and
efficiency but also underscore the importance of algorithm practicality
and adaptability. Through such design considerations, CDA-GC aims to
provide a highly efficient and flexible garbage collection optimization
solution for SSDs, capable of demonstrating its performance advantages
across various application environments.

3.2. CDA-GC architecture and abstractions

Fig. 4 illustrates the comprehensive system architecture of our pro-
posed CDA-GC. Positioned within the FTL of flash-based SSDs, CDA-GC
interfaces with the host system, which comprises three layers: applica-
tion, file system, and block device. Through the PCIe interface, the SSD
device connects to the host system. The FTL facilitates communication
between host-side data and flash-side data. During read and write
operations, the onboard cache serves as an intermediary, facilitating
data transfer between the flash memory and the host system.

When the host performs read and write operations, the system first
searches for the relevant data in the cache. If the data is in the cache,
the system directly performs read and write operations. If the data
is not in the cache, the SSD triggers cache replacement. During the
cache replacement process, CDA-GC retains a certain amount of data
related to GC and prioritizes the replacement of data unrelated to GC.
Additionally, CDA-GC divides the data requests in the cache into hot
data and cold data, and stores the divided data in isolation blocks when
writing back to the flash memory. Unlike the traditional LRU strategy,
CDA-GC maintains a certain proportion of data related to GC in the
cache. When the SSD executes GC, CDA-GC effectively reduces the
movement overhead of GC-related data in the cache. On the other hand,
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the traditional FTL strategy directly writes data to the flash memory
without segregating hot and cold data. To reduce unnecessary data mi-
gration in erase blocks during GC, CDA-GC segregates hot and cold data
in the cache and sends them to the flash memory separately. Compared
to other advanced cache management and GC strategies, CDA-GC fully
utilizes the cache to consider the impact of data distribution on GC.

The structure of CDA-GC comprises two components: Cache GC
Page Stager and Cold and Hot Data Dispatcher. In the following two
sections, we will elaborate and explain the contents of Cache Stager
and Dispatcher in detail.

3.2.1. Cache GC page stager
In modern SSDs, the effectiveness of cache management is crucial

for enhancing overall system performance. The SSD cache, serving as
an important intermediary layer between the CPU and flash memory,
can significantly reduce system read and write latency and improve I/O
efficiency through efficient data allocation and management. However,
one key challenge in cache management is how to effectively allocate
and retain data during garbage collection. During the GC process,
SSDs need to frequently move valid data to free up storage blocks,
which leads to frequent changes in cache data and poses a significant
burden on traditional cache management strategies. Currently, the most
commonly used cache replacement strategy is the LRU strategy, which
can effectively boost system read and write efficiency under normal,
non-GC conditions. However, under GC conditions, due to significant
changes in data access patterns and priorities, the traditional LRU
strategy often fails to adapt flexibly to the requirements of GC, resulting
in decreased cache efficiency. Therefore, it is necessary to reassess how
to manage data in the cache during GC in order to reduce the negative
impact of GC on system performance.

To address this issue, we propose the Cache GC Page Stager mecha-
nism. The Cache GC Page Stager aims to enhance system performance
by optimizing cache management strategies during the GC process.
Fig. 5 shows the schematic representation of the Cache Stager. Cache
Stager partitions the LRU linked list into two regions: a normal region
and a GC region. Data in the normal region continues to follow the orig-
inal LRU strategy, thus benefiting from a higher cache hit rate, while
the GC region contains pages that are subject to eviction during GC,
primarily managing GC-related data to enable more efficient handling.
Within the GC region, Cache Stager increases the proportion of GC-
related data in the cache by prioritizing the eviction of non-GC-related
data. For example, as illustrated in Fig. 5, although E7 is at the tail
of the LRU list and would typically be evicted first according to the
traditional LRU strategy, the system refrains from immediately evicting
it due to its association with GC. Instead, the system first evaluates
whether the next node, E6, meets the eviction criteria. If E6 meets the
criteria, the system proceeds with its eviction. In this way, Cache Stager
effectively adjusts the eviction order, changing it from the traditional
(E7, E6, E5, E4) to (E6, E4, E7, E5). This adjustment helps increase
the utilization rate of GC data in the cache, reducing unnecessary data
migration and mitigating the performance degradation caused by GC.

When searching for cached data that meets the replacement condi-
tion in a traditional LRU linked list, typical lookup algorithms (such
as CF-LRU and GCaR) start the search from the tail node and proceed
towards the head node, as shown in Fig. 6. This method can effectively
find the qualifying data in a single search, but its drawback is that each
search may require traversing the entire cache space. In some scenarios,
for example, if D1 is the data that meets the replacement condition
while D2 to D3072 do not, the system has to traverse the entire cache to
identify D1 as the replacement target. Such traditional lookup methods
incur unacceptable time overheads in embedded devices, such as SSDs.

To address this issue, Cache Stager proposes an improved cache
lookup strategy, as illustrated in Fig. 7. Cache Stager uses an inter-
mediate value, test_entry, to record the starting position for the next
lookup. Initially, test_entry starts searching from the tail node of the
LRU linked list. If no suitable entry is found after inspecting test_num
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Fig. 5. Cache Stager data distribution status.

Fig. 6. Schematic diagram of traditional cache lookup mode.

Fig. 7. Schematic diagram of Cache Stager’s lookup mode.

entries, test_entry stops moving and designates the tail node of the
list as the replacement entry. For instance, upon finding a suitable
replacement entry like D2929, the system replaces D2929 and shifts
test_entry to the subsequent node, D2928, and subsequent searches
will begin from D2928. After the specified number of lookup cycles
(cycle_num) is completed, the system will reset test_entry back to the
tail node of the LRU linked list.

Algorithm 1 is designed to efficiently manage cache operations
within the Cache Stager mechanism. The algorithm starts by deter-
mining whether the requested data (Req_i) is present in the LRU list
(Lru_List). If the data is found (cache hit), the algorithm processes the
request directly: for read requests, it retrieves the data from the cache,
and for write requests, it writes the data into the cache. If the data
is not found (cache miss) and the cache is full, the algorithm selects
a cache entry (L_x) for replacement based on the test_entry parameter.
The replacement process involves iterating through candidates over a
specified number of iterations (test_num). If L_x is categorized as GC-
Die or High-probability-GC-Die, the Loop_Lookup function is invoked
to assess its suitability for eviction. Otherwise, if L_x corresponds
to a write request, its data is written back to flash memory. After
determining the replacement, L_x is evicted, and the new request (Req_i)
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is added to the cache, with the Lru_List updated accordingly. For read
requests, the data is loaded from flash memory and returned, while for
write requests, the data is written directly to the cache. At the end of
the operation, the algorithm resets the parameters (cycle_num, test_num,
and test_entry) to prepare for subsequent requests. By combining flex-
ible replacement strategies with efficient handling of cache hits and
misses, this algorithm ensures optimal cache utilization and reliable
data management.

Algorithm 1 Simplified Cache Management in Cache Stager
Require: User request Req_i, parameters cycle_num, test_num, test_entry
Ensure: Efficient handling of Req_i in cache
1: if Req_i exists in Lru_List then
2: /* Cache Hit */
3: Handle read/write request directly in cache
4: else
5: /* Cache Miss */
6: if Cache is full then
7: Select L_x for eviction based on test_entry
8: end if
9: for each iteration in test_num do

10: if L_x is in GC-Die or High-probability-GC-Die then
11: Evaluate eviction using Loop_Lookup
12: else
13: if L_x is a write request then
14: Write L_x back to flash
15: end if
16: end if
17: Replace L_x in cache with Req_i and update Lru_List
18: end for
19: end if
20: Reset cycle_num, test_num, test_entry
21: End Procedure

3.2.2. Cold and Hot Data Dispatcher
To further optimize the GC process and reduce unnecessary data

migration, CDA-GC introduces a Hot and Cold Data Dispatcher (Dis-
patcher) at the cache level. This dispatcher categorizes data into hot
and cold groups within the cache and processes them separately when
writing to flash memory, thereby reducing GC overhead and enhancing
system performance.

The Dispatcher first divides data in the cache based on access
frequency. Data that is frequently accessed or modified is labeled as
hot data, while less frequently accessed data is labeled as cold data.
When data needs to be written back to flash memory, the Dispatcher
stores hot and cold data into separate flash blocks. Because hot data is
updated frequently, the flash blocks storing hot data are more likely to
accumulate invalid pages; conversely, cold data is updated less often,
so the blocks storing cold data accumulate invalid pages more slowly.

According to the greedy algorithm, the GC process prefers to recycle
blocks with a higher number of invalid pages, as these blocks contain
less valid data and thus incur lower migration costs. By storing hot
and cold data separately, blocks containing hot data accumulate more
invalid pages due to frequent updates, while blocks containing cold
data see a slower growth of invalid pages, thereby optimizing GC
efficiency.

Fig. 8 illustrates the differences between the traditional data alloca-
tion approach and our improved hot and cold data separation method.
As shown in Fig. 8(a), the traditional approach stores hot and cold data
mixed together within the same flash block. This mixed storage strategy
introduces several issues during the GC process, significantly increasing
system overhead. When a GC operation is required, the system must
first migrate all valid data within the block to a new physical block
before the original block can be erased. This frequent migration of
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Fig. 8. Dispatcher schematic diagram.

data not only consumes substantial I/O bandwidth but also results in a
noticeable decline in performance. For instance, when Block 0 contains
both hot and cold data, the migration of valid pages during GC becomes
a considerable burden, reducing the efficiency of the GC operation and
negatively impacting overall system response time.

In Fig. 8(b), our improved method involves storing hot and cold
data in separate blocks. This data separation storage strategy allows
for better optimization based on the distinct characteristics of the data.
In this arrangement, hot and cold data are no longer mixed in the same
block, which leads to more efficient GC operations. Taking Block 0 as
an example, when the system performs GC on a block storing hot data,
the high update frequency of these pages means that many of them may
already be invalid during the GC process. Consequently, the system can
directly erase these blocks without the need to migrate a large number
of valid pages, thereby simplifying the GC process. Furthermore, since
cold data has a relatively low update frequency, storing it in separate
blocks results in fewer valid pages requiring migration, thus making GC
more efficient. By separating hot and cold data into distinct blocks, our
approach effectively reduces data migration and significantly enhances
the overall efficiency of GC operations.

To achieve efficient hot and cold data division while ensuring query
accuracy, we employ a Bloom filter as the data classification mech-
anism. Rapid and accurate data classification is crucial for reducing
unnecessary data migration during GC. However, in SSD research, al-
gorithm design focuses more on optimizing time and space complexity
rather than achieving absolute accuracy.

A Bloom filter is a probabilistic data structure with high space effi-
ciency and fast query speed, suitable for quickly determining whether
an element belongs to a set. Its core structure consists of multiple hash
functions and a bitmap. When data is written to the cache, multiple
hash functions generate hash values for the data, and the corresponding
bits in the bitmap are set to 1. To query whether data belongs to the
hot data set, the same hash functions compute hash values, and the
corresponding bits in the bitmap are checked. If any bit is 0, it can be
determined that the data is not in the set; if all bits are 1, the data is
possibly in the set.

To reduce the false positive rate and improve query accuracy,
we set the number of hash functions to 8. Using 8 hash functions
effectively lowers the false positive rate for a given bitmap size. We
also set the bitmap size to occupy approximately 5% of the cache
space, keeping the false positive rate around 5%. This bitmap size is
acceptable within the memory resources of modern SSD controllers and
effectively enhances query accuracy.

Furthermore, we utilize the system’s built-in memory function mem-
set for resetting. This approach significantly reduces the system’s reset
time, avoiding unnecessary time overhead. By quickly clearing the
bitmap, the system can efficiently update the Bloom filter’s state, ensur-
ing the accuracy of hot and cold data determination without impacting
overall system performance. This optimization makes the hot and cold
6 
data dispatcher more efficient and reliable in practical applications.
The Dispatcher in an SSD system uses a Bloom filter to categorize

logical addresses of write requests into hot and cold data segments.
When a logical address is mapped, the Bloom filter determines its
activity: hot data (status set to 1) is frequently accessed, whereas cold
data (status set to 0) is less active. The Dispatcher dynamically tracks
hot data, resetting its status to cold if not accessed within a set time
frame. During data writing, hot data is placed into hot blocks, and cold
data into cold blocks, which enhances garbage collection efficiency. By
optimizing data placement based on activity levels, the system reduces
GC workload, improves resource utilization, and maintains a balance
between computational overhead and performance needs.

The operational algorithm, described in Algorithm 2, is triggered
during write operations performed by the SSD. Dispatcher employs a
Bloom filter to map the logical slice address associated with the write
request. If the logical slice address is present in the Bloom filter’s hash
table, its status is set to 1, indicating hot data; otherwise, its status is
set to 0, indicating cold data. Additionally, the Bloom filter monitors
the temporal activity of hot data, identifying any data that remains
unaccessed within a predefined timeframe. If hot data surpasses the
maximum duration without access, Dispatcher reclassifies it as cold.
Ultimately, when data associated with a particular logical slice address
is written to flash memory, Dispatcher assesses its status as hot or cold.
Hot data is allocated to hot data blocks, while cold data is assigned to
cold data blocks, thus optimizing data placement according to activity
levels. This approach significantly enhances the efficiency of garbage
collection and overall SSD performance.

Algorithm 2 Description of Dispatcher Algorithm
Require: Logical slice address requests Lsa_1, Lsa_2, . . .Lsa_i stored in

cache
Ensure: Write cached data Lsa_i to appropriate flash block (hot or cold)

1: State = Bloom_filter(Lsa_i)
2: if Bloom_filter_reset_time(Lsa_i) is triggered then
3: Reset Bloom_filter_time(Lsa_i)
4: end if
5: if State == 1 then
6: Write cached Lsa_i data to hot flash block
7: else
8: Write cached Lsa_i data to cold flash block
9: end if

10: End Procedure

4. Performance evaluation

In this section, we first describe the experimental setup and test
benchmarks. Then we use the three test benchmarks of Sysbench
combined with MySQL, FIO, and TPC-H to evaluate the performance
of CDA-GC.

4.1. Experimental setup

The Cosmos+ FPGA OpenSSD development platform is equipped
with HYNIX H27Q1T8YEB9R flash memory chips. These flash memory
chips are of MLC NAND type with 16 KB pages and 128 pages per
block. The number of effective blocks in each die is 8192, and there
are a total of 64 dies. The flash memory module adopts 8 channels
and 8 ways. The microcontroller of Cosmos+ OpenSSD uses Xilinx’s
ZYNQ-7000 series chip which contains two ARM Cortex-A9 embedded
CPUs, and the controller has 1 GB DRAM to store the metadata like
FTL mapping Table and the buffer cache data.Cosmos+ FPGA OpenSSD
uses the PCIe interface with NVMe protocol to connect to the host. The
NVMe protocol is version 1.2, and the PCIe interface uses Xilinx 7 series
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IP cores (PCIe 2.0 version).
The host machine is an Intel Core i7-4790K 4.4 GHz processor with

6 GB DRAM and 256 GB SSD. The operating system is Ubuntu 16.04
ased on Linux kernel 4.15 with ext4 file system.

4.2. Benchmark

In order to conduct a comprehensive test of the system, we used
hree types of benchmarks.

Sysbench [19] is an open source, modular, cross-platform multi-
hreaded performance testing tool that can be used to perform perfor-
ance testing of CPU, memory, disk I/O, threads, and databases. We
se Sysbench combined with MySQL database for testing. In addition,

all the data of pre-warming SSD through block device in the experiment
are generated by Sysbench.

FIO-flexible I/O tester [20] is a tool used to generate a large number
f threads or processes that perform specific types of I/O operations

specified by users. The FIO benchmark test is usually used to test the
performance of files and storage systems. We use FIO to evaluate the
effect of each scheme on the random read and write performance of the
file system.

TPC-H [21] is one of the benchmark programs developed by the
Transaction Processing Performance Council. The main purpose of TPC-
H is to evaluate the decision support capabilities of specific queries and
emphasize the capabilities of the server in data mining, analysis and
processing. The benchmark simulates the database operations in the
decision support system, tests the response time of complex queries in
he database system, and uses the number of queries executed per hour

as a metric. The TPC-H test revolves around 22 SELECT statements.
ach SELECT is strictly defined, complies with SQL-92 syntax, and does
ot allow users to modify it. We use TPC-H combined with Postgresql
or testing.

4.3. Comparison

Cosmos+ FPGA OpenSSD. Cosmos+ FPGA OpenSSD is an open
source SSD development platform. The platform is designed to support
the research and education of flash-based solid-state drive technology.
The strategy algorithm adopted by its internal firmware is currently the
most mainstream and also the most advanced solution.

GCaR implemented in Cosmos+ FPGA OpenSSD. GCaR is pro-
osed by research [22] to improve the performance of SSD systems

in garbage collection. The algorithm was initially implemented in the
simulator Disksim, and we implement GCaR on OpenSSD. By modifying
the data buffer of Cosmos+ FPGA OpenSSD, when the system performs
cache replacement, the cache entries related to garbage collection will
be temporarily stored to improve the response speed of the system
during garbage collection. We embed GCaR into the firmware part of
Cosmos+.

Co-Active implemented in Cosmos+ FPGA OpenSSD. Co-Active is
proposed by research [23] to improve the response performance of SSD.
The algorithm was initially implemented in the MQSIM simulator [24],
and we implement Co-Active on Cosmos+ FPGA OpenSSD. Two linked
lists are used to store different types of data by setting up two linked
lists in the data buffer of Cosmos+ FPGA OpenSSD. The clean linked
list is used to store read request type data or free entries, and the
dirty linked list is used to store write request type data. Co-Active uses

loom filters to classify hot and cold data, and uses active write-back
to preferentially write the cold data in the data buffer under the free
hannel to the flash memory particles. We embed Co-Active into the
irmware part of Cosmos+.

4.4. Run-time performance

In this part, we will compare the performance of each strategy in
he actual test. Including Sysbench test on MySQL performance, FIO
est on ext4 file system, and TPC-H test on Postgresql database.
 i
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4.4.1. Sysbench benchmark
The text outlines the significant benefits of the CDA-GC strategy for

enhancing MySQL database performance, particularly in the context of
Sysbench testing. This strategy not only improves the transaction and
query processing capabilities of the MySQL database but also effectively
reduces system latency, internal data migration within SSDs, and the
number of block erasures. By taking into account the distribution of
GC-related data in the cache and the state of data movement from
the cache to flash memory, the CDA-GC method significantly mitigates
the impact of GC data streams on normal I/O data flows, thereby
enhancing transaction processing and query performance. Additionally,
the reduction in GC data flow decreases internal data migration within
the SSD, thus reducing write amplification and the number of block
erasures. Moreover, the lightweight design of the algorithm minimizes
latency impacts on I/O performance, avoiding unnecessary overhead
and achieving excellent results on actual physical SSDs.

Fig. 9 illustrates the performance of the database in the context
of Sysbench and MySQL. In Fig. 9(a), compared to OpenSSDs em-
ploying other schemes, the OpenSSD utilizing the CDA-GC scheme
improved the database transaction processing capacity by 27%, 25%,
and 28%, respectively. Similarly, Fig. 9(b) demonstrates that CDA-

C achieved comparable advantages in database querying capability.
he number of transactions and queries executed per second directly

reflects the performance of the database, and the OpenSSD based on
the CDA-GC scheme achieved the best results in both metrics. The
reason behind this phenomenon is that data migration during GC can
severely affect the normal read and write operations of the database.
By reasonably allocating data between the cache and flash memory,
CDA-GC effectively reduces the overhead of migrating invalid data
during GC, minimizing the impact of GC data streams on normal data
flows. It is noteworthy that the OpenSSD based on GCaR did not
achieve the expected advantage in this test. Although GCaR considered
the impact of data distribution in the cache on GC performance, it
overlooked the importance of lightweight algorithm design, resulting
in performance gains being offset by increased algorithm latency. In
Fig. 9(c), the OpenSSD employing the CDA-GC scheme achieved the
est results in terms of average database latency compared to other
chemes, reducing latency by 21.2%, 20%, and 21.4%, respectively,
ompared to Cosmos+, GCaR, and Co-Active’s CDA-GC.

Fig. 10 depicts the performance of the OpenSSD side under the com-
ination of Sysbench and MySQL. In Fig. 10(a), there is little difference

in cache hit counts among the various schemes, as they are all based
on the LRU design. However, CDA-GC improved the cache hit count by
6%, 4.6%, and 15.7% compared with Cosmos+, GCaR, and Co-Active,
respectively. In Fig. 10(b), due to the rational allocation of hot and cold
data, CDA-GC reduced the number of block erasures by 10.5%, 8.3%,
and 10.9%, respectively, compared with other schemes. Fig. 10(c)
reflects the number of page migrations associated with GC within the

penSSD, which effectively measures the efficiency of data migration
or each algorithm during GC. Compared with Cosmos+, GCaR, and Co-
ctive, the CDA-GC scheme reduced this metric by 25.5%, 21%, and
5%, respectively. This clearly reflects the advantage of the rational
ata distribution and allocation method employed by CDA-GC. A well-
esigned data distribution mechanism can indeed reduce unnecessary
ata migration during GC, thereby enhancing normal read and write

performance.

4.4.2. FIO benchmark
In the FIO workload testing, we evaluated the performance of

various schemes by setting read and write ratios to 25%, 35%, 50%,
65%, and 75%. Prior to the testing, the initialized SSD was preheated
with 1TB of data. During the testing process, FIO utilized 100 GB of
data. We recorded the total read and write response time of the SSD
during runtime, as well as the IOPS and bandwidth statistics obtained
from the FIO testing program. At the file system level, the tested metrics

ncluded IOPS and bandwidth, while at the SSD level, the tested metrics
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Fig. 9. The performance of the database side under Sysbench combined with MySQL.
Fig. 10. The performance of OpenSSD side under Sysbench combined with MySQL.
included read and write response times.
Fig. 11 shows the read response times of each scheme under dif-

ferent read and write ratios. From Fig. 11, it is evident that CDA-GC
outperforms Cosmos+, GCaR, and Co-Active in terms of read response
times across all read and write ratios. Specifically, the average read
response time of CDA-GC is 31.3% lower compared to Cosmos+, 37.9%
lower compared to GCaR, and 52.5% lower compared to Co-Active.
Particularly in scenarios with a higher proportion of writes, CDA-
GC’s advantage becomes even more pronounced. When the write ratio
reaches 75%, the read response time of CDA-GC is reduced by 41.9%,
48.3%, and 48.6% compared to Cosmos+, GCaR, and Co-Active, respec-
tively. These results indicate that CDA-GC has a significant performance
advantage in high write ratio scenarios, especially in terms of read
request response.

Fig. 12 presents the write response times of each scheme under
different read and write ratios. From Fig. 12, it can be observed that
CDA-GC also exhibits better write response times compared to Cos-
mos+, GCaR, and Co-Active across different read and write ratios. The
average write response time of CDA-GC is reduced by 10% compared
to Cosmos+, by 48.1% compared to GCaR, and by 19.3% compared to
Co-Active. Specifically, when the write ratio is 75%, the write response
time of CDA-GC is reduced by 12.5%, 50%, and 21.2% compared to
Cosmos+, GCaR, and Co-Active, respectively. These data demonstrate
that in high write ratio scenarios, CDA-GC can significantly reduce
write response times, resulting in better performance under strong GC
triggering conditions.

Fig. 13 illustrates the read IOPS of each scheme under different
read and write ratios. Fig. 13 clearly shows that CDA-GC demonstrates
superior read IOPS performance compared to Cosmos+, GCaR, and Co-
Active. At a 75% write ratio, CDA-GC’s read IOPS are 79.6% higher
than Cosmos+, 89% higher than GCaR, and 103.9% higher than Co-
Active. This indicates that CDA-GC has a significant advantage in
maintaining high read throughput, particularly in write-intensive sce-
narios. Fig. 14 shows the write IOPS of each scheme under different
read and write ratios. Fig. 14 shows that CDA-GC also exhibits excellent
performance in write IOPS. At a 75% write ratio, CDA-GC’s write IOPS
are 79.6% higher than Cosmos+, 89% higher than GCaR, and 103.9%
8 
Fig. 11. Read response time under FIO.

Fig. 12. Write response time under FIO.

higher than Co-Active. This demonstrates that CDA-GC is highly effec-
tive in managing write operations, especially in scenarios with a high
write ratio

Fig. 15 shows the read bandwidth of each scheme under different
read and write ratios. CDA-GC outperforms Cosmos+, GCaR, and Co-
Active in terms of average read bandwidth. At a 75% write ratio,
CDA-GC’s read bandwidth is 76.2%, 89%, and 103.8% higher compared
to Cosmos+, GCaR, and Co-Active, respectively. Fig. 16 presents the
write bandwidth of each scheme. CDA-GC’s average write bandwidth
is significantly higher than the other algorithms. At a 75% write
ratio, CDA-GC’s write bandwidth is 79.6%, 89%, and 103.9% higher
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Fig. 13. Read IOPS under FIO.

Fig. 14. Write IOPS under FIO.

Fig. 15. Read bandwidth under FIO.

Fig. 16. Write bandwidth under FIO.

than Cosmos+, GCaR, and Co-Active. The performance of SSD directly
determines the bandwidth, and OpenSSD employing CDA-GC exhibits
superior performance, leading to an enhancement in bandwidth. The
CDA-GC approach effectively boosts the read and write bandwidth of
the SSD system during garbage collection.

CDA-GC demonstrates superior performance across key metrics such
as read and write response time, IOPS, and bandwidth, particularly ex-
celling in high write ratio scenarios. As the write ratio decreases, CDA-
GC’s advantage diminishes gradually, yet it consistently outperforms
other solutions. This is largely because CDA-GC effectively manages GC
by considering data distribution at the cache level, thereby minimizing
conflicts between user I/O and GC processes, enhancing SSD read
and write performance, and improving data migration efficiency. In
9 
Fig. 17. TPC-H 22 query statements execution time.

the FIO test, despite weaker data correlation compared to the MySQL
database test, the strong GC-triggered scenario still highlighted CDA-
GC’s effectiveness. By optimizing caching and reducing interference
from invalid data streams, CDA-GC maintains significant performance
advantages. In contrast, GCaR’s lack of lightweight design and its com-
plex algorithms resulted in a decline in performance, while Co-Active,
although incorporating I/O optimizations at the cache level, lacked
specific enhancements for GC scenarios and thus demonstrated average
results. Overall, CDA-GC excels in file system testing, particularly under
high write ratios and strong GC conditions, showcasing its superiority
in optimizing I/O performance and reducing system response time
compared to other existing schemes.

4.4.3. TPC-H benchmark
In the TPC-H test, to verify the generality of the CDA-GC scheme,

we evaluated the performance of each algorithm under low GC trigger
conditions. In the TPC-H workload, we deployed a PostgreSQL database
on the Cosmos+ FPGA OpenSSD to execute TPC-H queries. Similarly,
TPC-H used 1TB of data for preheating and 100 GB of data for testing.
During the TPC-H test, we recorded the execution times of the 22 query
statements in TPC-H.

Fig. 17 shows the read response time and write response time of
each scheme running TPC-H. From Fig. 17, it can be observed that the
read response times of CDA-GC, Cosmos+, and Co-Active are almost
identical, while the write response time of CDA-GC is reduced by 6.1%,
10.2%, and 20.1%, respectively, compared to Cosmos+, GCaR, and
Co-Active. The reason why the performance of CDA-GC in TPC-H is
not as strong as in other test scenarios lies in the fact that the TPC-H
workload exhibits a much higher read ratio compared to the write ratio.
Applications with a relatively high read ratio tend to modify less data,
resulting in a lower proportion of garbage collection triggered by the
system. Consequently, when the system triggers less garbage collection,
CDA-GC cannot fully leverage its advantages.

Furthermore, the performance of Cosmos+, GCaR, and Co-Active
is closely related to their respective complexities. In the TPC-H ap-
plication, characterized by a high read ratio, the benefits of each
algorithm cannot compensate for the performance degradation caused
by their inherent complexities. Despite the improvements in database
performance not being as significant as in other tests, CDA-GC still
achieved the best results in terms of performance.

5. Related work

In modern computer systems, storage has become a serious short-
coming of computer systems. The emergence of SSD has effectively
alleviated this gap. Usually, simulators are used to evaluate their de-
signs in SSD research. Commonly used simulators are SSDModel [5],
DISKSim [22], SSDSim [25], WiscSim [26], FlashSim [27]. With the
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popularity of NVMe SSDs, the existing SSD emulators have fallen
ehind and have several shortcomings. Recently, the first simulator
QSim [24] supporting the NVMe protocol was proposed. Although
QSim has greatly improved compared with previous simulators, there

re still some errors compared with real SSDs. However, these models
have certain limitations, and they are not open source to the public,
so they cannot be used by other research teams. Recently, the first
pen source SSD named Cosmos+ that supports the NVMe protocol
as designed. Cosmos+ OpenSSD can freely modify its software and
ardware parts and open its source code to the public [28].

In order to improve the performance of the SSD, the buffer cache
s introduced into the SSD. However, common cache replacement al-
orithms are proposed for disks and cannot fully adapt to flash-based
SDs. Flash memory has asymmetric read and write characteristics. To
ptimize SSD cache performance, CFLRU [29] splits the LRU into two
reas to store clean and dirty pages respectively, and preferentially
elect clean pages when selecting eviction pages. However, because
he frequency of accessing buffer pages is not considered, CFLRU tends

to retain older dirty pages when replacing eviction pages, but evokes
hot clean pages, which will reduce the cache hit rate. In order to
reduce the number of write operations, LRU-WSR [30] adopts a method
of delaying eviction of a dirty page with higher access frequency to
effectively reduce the number of write operations and erase operations.
However, LRU-WSR does not consider the access frequency of clean
pages. Compared with expelling cold clean pages, expelling hot clean
pages is more expensive. AD-LRU [31] divides the buffer into a cold
one and a hot zone. The cold zone stores pages that have been

accessed only once, and the hot zone stores pages that have been
accessed at least twice. CASA [32] proposes a cost-based adaptive
buffer replacement scheme, which can be applied to flash memory
devices with different read and write cost ratios. GC-ARM [33] dynam-
ically destroys consecutive pages in the entire block or a single page
from the write buffer to improve GC efficiency. In order to improve
the performance of random writes, BPLRU [34] proposes a block-
level page filling technology based on the FTL layer to minimize the
buffer refresh cost, but it will increase unnecessary read and write
operations. Although the above caching strategies can improve the
performance of SSD in certain situations, however, these strategies lack
the consideration of the impact of GC. GC-Cache [35] introduces a
ovel approach of incorporating additional cache to address GC issues,
et this cache management strategy may encounter performance bottle-
ecks under extreme load conditions, increases system complexity, and
elies heavily on a larger RAM cache. GFTL [36] uses a group-level

mapping to reduce the mapping table size while maintaining flexi-
bility similar to page-level mapping, thus improving cache hit ratios
and performance. However, the additional computation for group-level
address translation and the need for garbage collection in low-space
scenarios can result in performance overheads. DL-FTL [37] employs
 dual-locality approach to exploit both temporal and spatial locality,
ignificantly improving cache hit ratios and reducing average response
imes, especially for small sequential requests. However, managing
he sequential mapping tables introduces additional data structures
nd overhead, which can complicate the implementation and lead to
pace inefficiencies in certain cases. CRFTL [38] employs a dynamic
ache reallocation strategy that adapts to different I/O request types
ased on their life cycles. This approach combines heuristics with
einforcement learning to effectively optimize cache usage and en-
ance overall performance for smartphones. However, this strategy
ntroduces additional complexity to the cache reallocation process, and
ay lead to significant computational overhead, especially in scenarios
ith frequent state changes. GCaR [22] considers the impact of data

distribution in the cache on GC and gives higher priority to the cached
data blocks belonging to the flash memory chip in the GC state to
reduce the conflict between user input I/O operations and GC-induced
I/O operations. However, GCaR uses a sequential method to search for

GC-related data in the cache. This sequential search scheme will add

10 
additional time overhead and cause performance degradation. Caching-
aware GC [39] while enhancing SSD performance, introduces increased
ystem complexity and a heavy dependence on large RAM caches. Co-
ctive [23] adopts an active write-back strategy to preferentially write

the cold and dirty cache data in the idle channel in the cache back to
the Flash. However, Co-Active also lacks the consideration of GC and
performs generally in GC-triggered scenarios. In addition, most of the
above algorithms have not been designed and verified on real SSDs,
and their practicability needs to be verified.

6. Conclusion

Garbage collection is the most crucial factor affecting the perfor-
mance of SSDs. As flash-based SSDs increasingly replace HDDs in the
market, enhancing garbage collection performance has become an im-
mediate and critical challenge. In SSDs, the use of cache to intelligently
distribute data greatly impacts garbage collection efficiency. Our CDA-
GC strategy effectively leverages cache to account for the internal
data distribution within SSDs, optimally allocating data across both
cache and flash memory to improve garbage collection efficiency. We
have implemented CDA-GC on a real device, the Cosmos+ OpenSSD,
and extensive testing on real file systems and databases has shown
that our CDA-GC approach significantly boosts SSD performance. By
focusing on cache optimization, this research not only deepens our
understanding of garbage collection mechanism optimization in SSDs
but also introduces a new avenue for enhancing SSD performance.

Despite the significant progress our CDA-GC strategy has made
nder current experimental loads, several key factors must be con-
idered for its application in actual products. Future work will focus
n simplifying parameter adjustments to ensure the algorithm can
daptively adjust based on different usage scenarios, while also paying
ttention to long-term performance stability. This will ensure that the
DA-GC strategy can continue to provide optimized performance in
eal-world environments, including conducting long-term stability tests
o evaluate efficiency under various workloads and data distribution
onditions. Through these efforts, we aim to make CDA-GC not only
heoretically effective but also a reliable and sustainable improvement
n actual products, offering users a superior SSD experience.
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