L)

Check for
updates

Simplicity as the Ultimate Principle: The Art of Garbage
Collection Management in SSDs Inspired by Natural Data
Behavior

KEYU WANG, College of Computer Science and Electronic Engineering, Hunan University, Changsha,
China

HUAILIANG TAN, College of Computer Science and Electronic Engineering, Hunan University, Chang-
sha, China

KEQIN LI, Department of Computer, State University of New York, New Paltz, United States

As solid-state drives (SSDs) are increasingly used in various computing environments, effective garbage
collection (GC) management is crucial for enhancing performance and extending lifespan. Existing GC
strategies rely on complex data categorization techniques to distinguish between hot and cold data. This
process is not only computationally expensive but also inefficient. This article introduces a revolutionary
simplified GC management method, which we call SUP-GC, based on the core design principle that simplicity
is the ultimate principle. SUP-GC requires almost no computation and naturally redefines the data storage
pattern. All newly written data is defaulted as hot data and stored directly in hot data blocks; data that needs
to be moved during the GC process is considered cold data and uniformly migrated to cold data blocks.
Our strategy eliminates the need for precise but resource-intensive real-time analysis of data states and
instead adopts a storage strategy that is highly consistent with the natural properties of data. This intuitive
partitioning significantly reduces the need for complex judgments about data states, thereby optimizing the
storage management process. Experiments and designs on real SSDs have shown that our SUP-GC strategy
significantly outperforms existing mainstream GC methods.

CCS Concepts: « Computer systems organization — Firmware; Embedded software; Embedded hardware;

Additional Key Words and Phrases: Computational efficiency, flash translation layer (FTL), flash storage,
garbage collection (GC), solid state drive (SSD)

ACM Reference Format:

Keyu Wang, Huailiang Tan, and Keqin Li. 2025. Simplicity as the Ultimate Principle: The Art of Garbage
Collection Management in SSDs Inspired by Natural Data Behavior. ACM Trans. Storage 21, 4, Article 36
(November 2025), 34 pages. https://doi.org/10.1145/3725219

1 Introduction

NAND flash memory, with its compact size, lack of mechanical noise, shock resistance, light weight,
and low energy consumption, has garnered extensive attention in both academia and industry

Authors’ Contact Information: Keyu Wang, College of Computer Science and Electronic Engineering, Hunan University,
Changsha, Hunan, China; e-mail: 274100667@qq.com; Huailiang Tan (Corresponding author), College of Computer Sci-
ence and Electronic Engineering, Hunan University, Changsha, Hunan, China; e-mail: tanhuailiang@hnu.edu.cn; Kegin Li,
Department of Computer, State University of New York, New Paltz, New York, United States; e-mail: lik@newpaltz.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1553-3077/2025/11-ART36

https://doi.org/10.1145/3725219

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

HTTPS://ORCID.ORG/0009-0000-2942-4411
HTTPS://ORCID.ORG/0000-0001-9980-8015
HTTPS://ORCID.ORG/0000-0001-5224-4048
https://doi.org/10.1145/3725219
mailto:permissions@acm.org
https://doi.org/10.1145/3725219
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3725219&domain=pdf&date_stamp=2025-11-03

36:2 K. Wang et al.

[1-3]. As semiconductor technology continues to advance, solid-state drives (SSDs) based on
flash memory have gradually replaced traditional hard disk drives (HDDs) as the mainstream
storage solution. These SSDs, known for their excellent performance and reliability, are widely
used not only in consumer electronics such as desktops and laptops but also play a crucial role in
high-performance computing (HPC) and enterprise data centers [4-9].

An SSD consists of multiple flash memory chips, each divided into numerous blocks and pages.
In flash memory, data operations are performed on a per-page basis, while erasure occurs at the
block level. Due to the necessity to erase before new data can be written, and the much slower
speed of erasure compared to reading and writing, this becomes a performance bottleneck. To
mitigate this, SSDs employ an out-of-place updating strategy, where new data is written to new
locations and old data is marked as invalid, thus optimizing the overall write efficiency [10-14].
To manage the invalid pages that accumulate during updates, the Flash Translation Layer (FTL)
implements a garbage collection (GC) mechanism responsible for reclaiming these pages to free
up block space. Although this process is crucial for maintaining storage efficiency, the execution
of GC is resource-intensive and time-consuming, especially under high system loads, significantly
impacting system performance. Therefore, optimizing the GC process to minimize its impact on
performance is a key challenge in enhancing SSD performance [15-19].

In the literature, the enhancement of GC performance has been extensively researched, either
directly or indirectly, across various flash translation layer schemes. These studies encompass the
use of different FTL address mapping strategies [20-22], the selection of appropriate victim blocks
[23-25], and leveraging workload characteristics along with internal parallelism to boost perfor-
mance [26-28]. Among these, the pure page mapping mechanism is one of the most advanced
mapping methods adopted by modern high-performance SSDs. The greedy algorithm, as a highly
rational choice for selecting victim blocks, has been adopted by various SSD architectures. Internal
parallelism is commonly implemented through channel-level parallelism, which is both the most
common and effective method.

Despite significant advancements in GC for SSDs, severe performance challenges remain. Hot
and cold data separation strategies have been extensively researched and are considered among the
most promising optimization approaches for enhancing GC efficiency. By categorizing data into
hot and cold based on access frequency, recency, or other characteristics, and combining internal
parallelism with optimizations tailored to specific workloads, these strategies effectively improve
system performance and reduce write amplification effects [26, 29, 30].

The specific methods for hot and cold data separation primarily include strategies based
on Bloom filters, linked lists, and machine learning. Bloom filter-based methods identify hot
data by tracking data access frequency, providing high space efficiency and fast query speed.
However, they suffer from a certain false positive rate, necessitating design tradeoffs [29, 30].
Linked list-based methods (e.g., two-level LRU lists) identify hot data by managing the access
order, but they have several drawbacks, including high computational overhead, large memory
consumption, and high implementation complexity. Furthermore, these methods exhibit poor per-
formance under dynamic access patterns, especially in high-concurrency environments, where
these limitations significantly impact system performance [27, 31]. Machine learning-based
methods predict data heat using historical access patterns, offering higher prediction accuracy
and adaptability, but the high implementation complexity and computational overhead limit their
applicability in resource-constrained environments [42, 43].

The advantages of hot and cold data separation strategies lie in their ability to reduce the
volume of data migration during GC, thereby enhancing GC efficiency. Additionally, by leveraging
the parallel processing capabilities of SSDs, these strategies further optimize overall system per-
formance. However, there are two major limitations associated with these strategies. First, under

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior 36:3

dynamic and unpredictable access patterns, the accuracy of data classification poses a significant
challenge, potentially resulting in performance degradation or increased write amplification.
Second, maintaining complex data structures and executing predictive algorithms entail high
overheads, which can offset the benefits gained from improved GC efficiency. Consequently,
despite the significant advantages of hot and cold data separation strategies, their complexity and
associated system overheads limit their effectiveness in practical applications. Future work should
focus on developing accurate, effective, and simplified solutions to fully leverage the benefits of
hot and cold data separation while minimizing additional system overhead.

This article presents a novel perspective based on the inherent natural behavioral attributes
of data, categorizing data into hot and cold states. By combining minimalist design principles
with these natural behavioral characteristics, we propose a new GC management strategy named
SUP-GC, aimed at enhancing performance during GC operations and improving the durability
of SSDs. The core idea of this approach lies in leveraging the natural temporal locality of data
along with its aging characteristics in storage systems. All newly written data in SSDs is classified
as hot data and stored in hot blocks, while, over time, the valid data retained during GC is
classified as cold data and migrated to designated cold blocks. Unlike existing research, which
focuses on determining the classification of written data as hot or cold, our strategy directly
classifies data based on its natural behavior. The advantage of this approach is that it effectively
addresses the tradeoff between precise data classification and the associated computational
and spatial overheads observed in previous studies. We have embedded the SUP-GC strategy
into actual SSD devices utilizing mainstream and advanced FTL strategies, and extensive ex-
periments and comparisons have validated the correctness and effectiveness of the proposed
strategy.

To the best of our knowledge, SUP-GC represents a novel and disruptive GC architecture. It
utilizes a minimalist approach, managing data based on its natural behavioral characteristics. This
design not only simplifies the data processing workflow but also enhances the overall efficiency
and responsiveness of the system. The main contributions of this article are as follows:

(1) This study conducted an in-depth analysis of mainstream high-performance SSD archi-
tectures, identifying key performance bottlenecks during the GC process. We also extensively
reviewed existing hot and cold data partitioning schemes, highlighting their complexity and inef-
ficiencies in data identification. These findings underscore the urgent need for the development
of more effective data classification technologies to enhance GC efficiency.

(2) We propose a novel GC management strategy, named SUP-GC. This strategy is based on the
inherent behavioral characteristics of data and employs minimalist design principles for hot and
cold data state classification, aimed at optimizing system performance during GC operations and
enhancing the durability of SSDs. By precisely managing data storage and migration within flash
blocks, this strategy significantly improves data handling efficiency.

(3) We integrated the SUP-GC strategy into actual SSDs and conducted extensive experimen-
tal validation using current mainstream and advanced FTL strategies. The experimental results
not only confirmed the effectiveness of the SUP-GC strategy but also demonstrated its significant
enhancement of system responsiveness during the GC process and its effective reduction in the
number of flash erasures, thereby validating the performance advantages and technical feasibility
of the strategy in practical applications.

The remainder of this article is structured as follows: Section 2 provides the background and
motivation underlying our study. Section 3 elaborates on the details of the SUP-GC scheme.
Implementation and comparative schemes are discussed in Section 4. Section 5 details the results
of our performance evaluation. Section 6 reviews work related to our study. Finally, Section 7
concludes the article.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:4 K. Wang et al.

Flash Chip Flash Chip -—
s | Cache Buffer [« Channel 0 T T
&
-
,“é é\ A Flash Chip Flash Chip —
% = FCC Channel 1 T T
st Y
Processor €& i
Flash Chip Flash Chip -—
Channel n T T

Fig. 1. A typical architecture diagram of SSD.

2 Background and Motivation

In this section, we first introduce the device organizational architecture of NVMe SSDs relevant to
this research. We then explore the primary limiting factors of SSD performance, focusing on GC
and the impact of existing hot and cold data classification strategies on the GC process. Building
on this foundation, we clearly articulate the motivation for our research and provide a detailed
description of the design rationale behind our proposed SUP-GC scheme.

2.1 SSD Architecture

Figure 1 shows a typical SSD architecture diagram. SSDs consist of key components: the host
interface, microprocessor, on-board RAM, and flash memory. Traditionally, SSDs used the
SATA interface, but its limited throughput has been outpaced by the NVMe protocol over PCle
interfaces, offering higher bandwidth (BW) and better support for internal operations. The
microprocessor handles the firmware, including the FTL which manages tasks like address
mapping and GC. These processors are generally low-power, limiting their capacity for complex
algorithms. On-board RAM supports firmware processes and acts as a buffer to smooth data
transfers and minimize delays, particularly useful during operations like GC. Lastly, flash memory
stores data, operating in various capacities from SLC to QLC, which store one to four bits per cell
respectively, enhancing the storage density and performance of SSDs.

SSDs exhibit substantial advantages in parallel processing compared to traditional HDDs,
with their architecture enabling channel-level, plane-level, die-level, and block-level parallelism.
This extensive parallelism, particularly at the channel-level, is utilized in high-performance
SSDs to maximize flash memory BW, essential for accelerated data processing. In managing
storage, these devices employ a GC mechanism due to the inability of flash memory to overwrite
existing data. To reclaim space, old blocks must be erased before new data can be written, a
process managed through strategies such as sequential, random, and primarily, greedy collection
methods, which are favored for their efficiency. Additionally, the FTL of SSDs involves complex
address translation mechanisms to map logical addresses from the host to physical addresses
on the flash memory. These translations occur at block-level, hybrid-level, and page-level, each
offering different balances of performance and memory space overhead. Previously, the high
cost of RAM limited SSD design options, but recent advancements in semiconductor technol-
ogy have mitigated these cost issues, allowing the integration of large-capacity RAM. This
development supports advanced page-level address translation, which is critical for achieving
optimal performance in today’s high-performance SSDs by optimizing access and storage
efficiency.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior 36:5

104 A——a 1.0 A\

N

A

\

e
3
|
»
L

=
S
|

ot
ES
L

Normalized Bandwidth

Normalized Bandwidth

A-\
0.4 —~— \
\A 0.2 ——a
0.2 T T T T T T T | 0.0 T T T T T T T |
125 25.0 37.5 50.0 625 75.0 87.5 100.0 125 250 375 50.0 625 75.0 87.5 100.0
Storage Utilization (%) Storage Utilization (%)
(a) Intel SSD DC P3520 (b) Western Digital Black SN750

Fig. 2. Impact of GC on commercial SSDs.

2.2 Performance Bottlenecks and Challenges of Related GC Strategies

This section begins by examining the primary performance bottlenecks affecting SSDs, with a
particular focus on the challenges encountered during GC processes. Subsequently, we analyze ex-
isting GC strategies, evaluating their effectiveness and limitations in mitigating these performance
bottlenecks.

In SSDs, the primary bottlenecks to performance are rooted in the physical limitations of the
storage media and the design of the storage system architecture. One of the most critical processes
affecting SSD performance is GC, which is necessitated by the non-overwrite characteristics of
NAND flash memory. This process involves identifying blocks that contain invalid pages and
migrating the remaining valid data to new blocks, a procedure that not only consumes substantial
system resources but also exacerbates the write amplification effect, significantly reducing the
lifespan of the SSD. Moreover, as the SSD’s storage space nears capacity, the reduced availability
of free blocks necessitates more frequent GC operations, particularly impacting performance in
environments requiring high-speed data processing, such as HPC and enterprise data centers.

We conducted experiments using the FIO tool on two commercial SSD models (Intel SSD DC
P3520 and Western Digital Black SN750) to evaluate the impact of GC on SSD performance.
Figure 2(a) and (b) presents the performance results for the Intel and Western Digital SSDs, respec-
tively. During the experiments, we observed that as storage space gradually became occupied, the
write pressure on the SSD increased, leading to a significant rise in the frequency of garbage collec-
tion operations. These frequent GC processes had a noticeable negative impact on SSD throughput,
further demonstrating the limiting effect of GC on overall SSD performance.

In recent years, hot-cold data classification strategies have become an important research
focus in the field of SSD data management, due to their significant advantages in optimizing
the GC process. Hot-cold data classification is based on data access frequency, dividing data into
frequently accessed “hot data” and less frequently accessed “cold data” to reduce the frequent
data migrations, as well as the associated write and erase cycles, during GC. Device-side FTL
often use traditional methods such as linked lists [27, 31] and Bloom filters [29, 30] to support
dynamic data classification and rapid identification. Linked lists are used to dynamically reorder
data pages based on access frequency, while Bloom filters are used to record the access status of
data pages to assist in quickly identifying their hot or cold attributes.

However, these major research directions face numerous challenges in practical applications. For
example, traversing linked lists can significantly impact performance when handling large-scale
data, and the memory overhead for node management can be burdensome in resource-constrained
environments. Additionally, the false positive tendency of Bloom filters may lead to cold data

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:6 K. Wang et al.

being misclassified as hot data, thereby increasing the frequency of GC operations and negatively
impacting overall performance. Furthermore, both linked lists and Bloom filters can only classify
data based on short-term access frequency, which presents limitations when applied over broader
time frames, meaning they fail to accurately identify long-term hot or cold data changes. As data
access frequency may vary over time, this short-term classification approach can lead to severe
hot-cold data misclassification, ultimately reducing the efficiency of GC and storage management.
Therefore, although linked lists and Bloom filters have significant theoretical value for device-side
FTLs, their widespread application in real-world environments is limited by tradeoffs in com-
plexity and performance, as well as difficulties in maintaining accurate data classification on a
global scale.

With the development of host-side FTLs, researchers have begun exploring new device architec-
tures, such as Zone Namespace (ZNS) SSDs and Open-Channel SSDs [7, 44-47], while extensively
incorporating machine learning techniques to improve data classification accuracy in hot-cold data
segregation. ZNS SSDs divide storage into multiple zones, enabling the host to write data sequen-
tially, which reduces the need for internal data management and GC. Open-Channel SSDs, on
the other hand, provide greater flexibility to the host, allowing optimization of data placement
and GC strategies based on workload characteristics. However, this flexibility also introduces new
complexities, requiring the host to have precise flash management capabilities. Although machine
learning has significant advantages in improving the accuracy of hot-cold data identification, it
also presents limitations in practice. First, machine learning methods require specific software and
hardware support, making it difficult to popularize in most current device-side FTL SSD scenarios.
Second, machine learning involves substantial training and runtime requirements, especially in
large-scale, write-intensive scenarios, where the computational overhead becomes a critical bottle-
neck, significantly affecting its feasibility and widespread applicability in real-world applications
[19, 42, 43].

In summary, research on hot-cold data classification has evolved from traditional device-side
FTL methods to host-side FTLs with machine learning-driven new architectures, aiming to en-
hance the efficiency of SSD data management and GC. However, these methods face various chal-
lenges in practical applications. Balancing classification accuracy, hardware resources, and system
overhead remains a crucial direction for future research.

Apart from hot and cold data classification, other advanced GC strategies have also been
evolving. Techniques such as suspend GC and idle-time GC aim at optimizing the timing of
GC operations, thereby minimizing their impact on foreground I/O performance [11, 48, 49].
These methods attempt to reduce GC interference with I/O operations by executing GC tasks
during system idle periods. However, these approaches do not fundamentally improve GC
efficiency; rather, they optimize resource scheduling in terms of timing. Furthermore, in scenarios
characterized by large-scale intensive write operations, the system often lacks sufficient idle time,
making these GC strategies less effective, which may further affect overall system performance.

Furthermore, cache technologies play a crucial role in improving SSD performance. Through
a series of cache replacement strategies, the data access patterns can be effectively optimized,
thereby enhancing SSD read and write performance and improving the overall system respon-
siveness [2, 50, 51]. However, these strategies are not specifically designed for GC optimization,
and their impact on the extensive data migration and erase operations during GC is limited,
showing constraints in specific application scenarios. Cache strategies specifically optimized
for GC, such as GCaR [17], aim at reducing the impact of the data flow during GC processes
by temporarily caching GC-related data. However, GCaR faces practical challenges: it does not
adequately consider the effects of algorithmic complexity on SSD performance, which may lead
to performance degradation during high-load conditions, and its effectiveness is constrained by

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior 36:7

Data Queue

[)
o - i

Flash

Block 0 Block 1 Block 2

Cold DWarm Hot Invalid

Fig. 3. A typical data dispatch process diagram of existing SSD.

limited cache capacity. Overall, although cache strategies theoretically contribute to improving
GC efficiency, their practical effectiveness is often limited due to limited cache capacity and the
computational overhead of the algorithms.

2.3 Motivation

Despite significant progress in GC research, SSDs still face severe performance challenges in
write-intensive environments, such as HPC and enterprise data centers. Current GC strategies,
particularly those involving dynamic hot and cold data classification, though theoretically
effective, suffer from various limitations. The classification of hot and cold data is particularly
challenging in mainstream device-side FTL SSDs, where computational and memory overheads
are difficult to control effectively. Moreover, improper data classification can lead to complex
internal I/O blocking issues, which makes these methods less effective under high-load conditions.
Therefore, while existing GC methods show some potential for improving SSD performance, their
complexity and resource demands limit their effectiveness in practical applications. Developing
a more efficient, scalable GC scheme that can adapt to diverse SSD usage scenarios, thereby
better balancing the tradeoff between performance improvement and system resource overhead,
remains a critical research direction.

In the existing SSD data dispatch process, as illustrated in Figure 3, data is written to flash
memory without specific differentiation between hot and cold data. Data in the queue, whether it
is cold data (C), warm data (W), or hot data (H), is written to different blocks in the flash memory
in a first-in, first-out manner. This lack of specialized handling results in inefficient GC because all
types of data are treated equally during the GC process. Consequently, frequent data migrations
and write-erase operations occur, inevitably accelerating flash memory wear and reducing overall
system performance.

To address the aforementioned issues, researchers have extensively explored hot and cold data
separation strategies, which have been applied to various storage systems, including SSDs [26—
30, 42, 52]. These strategies typically improve efficiency by classifying data at the time of writing.
As shown in Figure 4, data in the queue is categorized based on access frequency into cold data,
warm data, and hot data, and then stored in different blocks accordingly. For instance, cold data is
written to Block 0, warm data to Block 1, and hot data to Block 2. This approach aims at reducing
unnecessary data migrations and enhance GC efficiency.

However, existing hot and cold data separation strategies face significant challenges in practical
applications. These strategies often rely on real-time data access pattern analysis and complex

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:8 K. Wang et al.

Data Queue

Le e}
ccll B

Flash

Block 0 Block 1 Block 2

Cold D Warm Hot Invalid

Fig. 4. A typical data dispatch process diagram of an SSD with hot and cold data separation.

classification algorithms. Bloom filter-based methods identify hot data by tracking data access
frequency, offering high efficiency and low memory usage, but they may suffer from false positives,
necessitating a tradeoff between accuracy and overhead [29, 30]. Linked list-based methods (e.g.,
two-level LRU lists) determine data heat by managing the order of data access, but due to frequent
operations on list nodes, they incur high computational overhead and memory usage, and their
performance is unstable under high concurrency and dynamic workloads [27, 31]. Machine
learning—based methods predict data heat by analyzing historical access patterns, offering strong
adaptability and high prediction accuracy, but the complexity of model training and inference re-
quires considerable computational resources and memory, limiting their applicability in resource-
constrained environments [42, 43]. These methods often require the continuous maintenance of
numerous counters or complex data structures, which not only increases the computational and
memory burden on SSD controllers but may also lead to increased system latency. Moreover, due
to the diversity and dynamic nature of workloads, accurately distinguishing between hot and cold
data is challenging, and incorrect classification may reduce the effectiveness of these strategies.

To quantify the overhead and impact on system performance of existing hot and cold data
separation strategies, we conducted experiments on OpenSSD. We implemented a typical
frequency-based hot and cold data classification algorithm in the OpenSSD firmware targeting
cache data. We measured the relationship between the execution time of data classification during
GC and the volume of data, as well as its impact on system performance. Figure 5 presents the
relationship between data classification workload and SSD performance, illustrating that as the
volume of data requiring classification increases, SSD throughput and efficiency significantly
decline. This outcome demonstrates that complex algorithms indeed affect SSD I/O performance
and suggests that complex machine learning algorithms, due to their high computational com-
plexity, are more suitable for execution on the host side rather than on the device side. Machine
learning-based hot and cold data classification strategies have complexities far exceeding the
typical classification strategy used in this experiment. Another scheme based on Bloom filters,
although having lower computational overhead, still introduces a certain degree of computational
burden (this will be further explained in the experiments). These results further confirm the
significant impact of the GC process on SSD performance, indicating that complex hot and cold
data classification strategies introduce substantial system overhead in practical applications,
potentially offsetting their theoretical advantages in optimizing GC.

Given these challenges, we recognize the urgent need for a novel GC management strategy
that can achieve the benefits of hot and cold data separation without introducing significant

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior 36:9

1.0
A
= 0.8
o
o
=
o
g
2 0.6
o
[¢]
N \
o
S 0.4
g \
o
e}
=z —_
0.2 A
A\A“A‘A .
0.0 T T T T T
0 20 40 60 30 100

Data Volume (%) (Hot—Cold Partitioning)

Fig. 5. Impact of data classification volume on SSD performance.

system overhead, thereby improving GC efficiency and the overall performance of SSDs. However,
achieving both minimal computational overhead and avoiding complex I/O blocking while
perfectly separating hot and cold data seems to be an unattainable goal. Therefore, we approached
this problem from an entirely new perspective. Previous studies have often artificially pursued
an ideal separation of hot and cold data, neglecting the natural distribution properties inherent
within SSDs. Is it possible that hot and cold data within SSDs could inherently exist in a state
of natural separation? Fortunately, we found such a state. Based on this insight, we proposed a
minimalist SUP-GC strategy, which leverages natural data behavior.

This strategy adheres to the most common natural distribution of hot and cold data and follows
a minimalist design principle without requiring real-time data analysis. The rules of SUP-GC are
as follows: according to the natural temporal properties of data, all newly written data is auto-
matically treated as hot data and is directly written into hot data blocks. During the GC process,
valid data in flash blocks selected for reclamation is treated as cold data and migrated to dedicated
cold data blocks. By exploiting the natural hot and cold properties of data, this approach avoids
complex predictive algorithms, thereby eliminating computational overhead and mitigating I/O
blocking issues.

3 SUP-GC

In this section, we thoroughly explore the SUP-GC scheme, an innovative GC management strat-
egy designed to optimize the performance and extend the lifespan of SSDs. By simplifying the data
processing workflow, SUP-GC significantly reduces system overhead and enhances data process-
ing efficiency. This section first provides an overview of the system architecture, and then delves
into a detailed discussion of its two core strategies: the data allocation strategy during the data
writing process (Data Allocation) and the data migration strategy during GC (Garbage Collection
Migration).

3.1 System Overview

Figure 6 shows a system overview of an SSD storage system based on the SUP-GC scheme. The host
side consists of an application layer, a file system layer, and a block device layer. The SSD connects

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:10 K. Wang et al.

| Applications |
:
8
2 ;
2 | File Systems |
2
]
=
| Block Device Driver |
Read [Write
Data GC
I Allocation | | Migration | Addres.s
Translation
Transaction
SUP-GC Schedule

Cold Hot
Re“"j[Write 1[Write 1[Erase

—>| Flash Chip | —>| Flash Chip | Flash Chip
—>| Flash Chip | —>| Flash Chip | ----- Flash Chip

<>| Flash Chip | <>| Flash Chip | Flash Chip

Fig. 6. System overview of an SSD storage system based on the SUP-GC scheme.

Flash-based SSD

to the host via a PCle interface using the NVMe protocol, through which the host’s I/O requests
are transmitted to the SSD. These requests are processed by SUP-GC before being sent to the flash
memory. SUP-GC comprises two main components—Data Allocation and GC Migration—both of
which operate within the FTL.

Figure 7 illustrates the overall execution process of the SUP-GC mechanism. The process begins
when the host issues a write request, prompting the NVMe manager to generate a corresponding
I/O write request. The system then checks for sufficient free blocks within the memory. If adequate
free blocks are available, the system proceeds with address mapping, followed by Data Allocation,
where new data is written into hot data blocks. In contrast, if the system detects insufficient free
blocks, the GC mechanism is initiated. During this process, the GC Migration module transfers
valid data to cold data blocks and releases invalid blocks, thereby reclaiming storage space. Once
these steps are completed, the system returns to the original I/O write request and continues the
write operation until the request is fully processed.

The Data Allocation module handles write requests from the host, where all newly written
data is by default considered hot data and is directly stored in hot data blocks, thereby avoid-
ing complex and resource-intensive real-time data state analysis. As data usage frequency nat-
urally changes, previously hot data that becomes inactive is recognized as cold data during the
GC process and is uniformly migrated to cold data blocks by the GC Migration module. This in-
tuitive partitioning significantly reduces the need for complex judgments about data states, opti-
mizing the storage management process. By effectively distinguishing and managing data states,
SUP-GC significantly enhances the efficiency of data migration during GC, thereby improving the

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior 36:11

Release
Y

X Release Invalid
|Garbage Collectlon| Blocks

A

A 4

Garbage Collection | Cold Data Blocks

Migration A

Transfer Valid Data

Fig. 7. System design flowchart of SUP-GC mechanism.

performance and durability of SSDs. In the following sections, we will explore in detail the specific
design of Data Allocation and GC Migration.

3.2 Data Allocation

In mainstream SSDs, data allocation strategies typically adopt a minimalist approach by directly
distributing data to flash memory blocks through channel-level parallelism to optimize write
efficiency. This method significantly reduces computational and spatial overhead. However, dur-
ing the GC process, the lack of effective data temperature segmentation often leads to inefficient
reclamation. Although academic research has proposed methods to enhance GC efficiency by
categorizing data into hot and cold data, these methods often overlook the computational and
spatial costs involved in implementing these strategies in actual SSD systems.

The SUP-GC strategy addresses this issue by leveraging the principle of temporal locality. Tem-
poral locality is a fundamental concept in computer architecture and memory hierarchy design,
stating that data recently accessed or modified is more likely to be accessed again in the near
future. In the context of SSDs, this means that newly written data is expected to have a higher fre-
quency of subsequent access. Therefore, SUP-GC automatically classifies all newly written data as
hot data and stores it in designated hot data blocks. By doing so, we improve data access efficiency
and reduce unnecessary erase operations and write amplification because frequently updated
data remains in hot data blocks, minimizing interference with less frequently accessed cold data.

To illustrate this concept, Figure 8 presents a conceptual diagram of the theoretical foundation of
our data allocation strategy. As shown in the figure, hot data is directly written into hot data blocks,

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:12 K. Wang et al.

Data Queue

(DD)
[

€ C ¢
€ C| i C
Hot Hot Cold
Block 0 Block 1 Block 2
Clean D Data D Invalid

Flash

Fig. 8. SUP-GC data allocation concept.

Write Data Queue Write Data Queue Write Data Queue
p N -~ N p
[eInIoelpfe]ofo]o]o]e]o] | | [eIoIefe]pfo]o]ofe]o]ofo] | [pInIeTefofe]ofoofoo]o] |
) 5 ’ n) N
U s I
¢ [B[p]7] [o]o]o] : ¢ [BIP]P] [b]o]D] :
: (LI : (LN
: mnnn Lopr] - nnn [
Block 0 Block | Block2 ° ©Block0 Block | Block2 ©Block 0 Block | Block2
Hot Cold Hot : . Hot Cold Hot : : Hot Cold Hot :
¢ [oIp]o] [D[p]p]
| aEma 0o [p[p]p] :
: T : O :
Block 3 Block 4 Blocks ° ©Block3 Block 4 Blocks ©Block3 Block 4 Block 5
. Hot Cold Hot : . Hot Cold Hot : N Hot Cold Hot
@ Write Data . CleanPage E Write Data - CleanPage @ Write Data . Clean Page
. Valid Page m Invalid Page . Valid Page Invalid Page - . Valid Page m Invalid Page
Flash Flash Flash
L) N\) L
Step 1 Step2 Step 3

Fig. 9. A typical data allocation scenario.

while cold data blocks do not receive any new data writes. This visual representation emphasizes
how SUP-GC leverages temporal locality by isolating hot data into specific blocks, thus optimizing
performance and reducing overhead.

This approach not only maintains the high write efficiency of high-performance SSDs but also
avoids unnecessary computational and storage overhead during the data allocation phase, thereby
optimizing the entire data management process. Through this method, the SUP-GC strategy sig-
nificantly enhances the overall system performance and responsiveness while reducing the im-
pact of GC on system performance. Additionally, it simplifies the decision-making process in data
handling by eliminating the immediate need for complex analysis of data usage patterns, which
typically consumes substantial computational resources.

In Figure 9, we illustrate a typical data allocation scenario under the SUP-GC strategy. In this
scenario, D represents new data waiting to be written, located in the write queue; V denotes valid
data pages; I indicates invalid data pages; and C represents clean pages, that is, pages that have
not yet been written to. Initially, Figure 9 shows the D data in the write queue ready to be written.
At this point, the system includes four hot data blocks (Block 0, Block 2, Block 3, and Block 5),
which contain valid and invalid data pages as well as clean pages, while the two cold data blocks
(Block 1 and Block 4) mainly consist of clean pages and valid data. In the second step illustrated in

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior ~ 36:13

ALGORITHM 1: Data Allocation Algorithm in SUP-GC

Require: A sequence of write requests from the host {(LSA;, data;)}, where i = 1ton
Ensure: Allocate and write data to flash memory blocks
1: for each write request (LSA;, data;) do
2: /* Check if there are sufficient free pages in hot data blocks */
3: if there are available free pages in hot data blocks then
4 Map the logical address LSA; to a physical address in a hot block
5 Write data; to the mapped physical address
6: else
7 Trigger Garbage Collection (see Algorithm 2)
8 After garbage collection, map LSA; to a physical address in a hot block
9 Write data; to the mapped physical address
10: endif
11: end for

Figure 9, the new data marked as D in the write queue begins to be allocated across various data
blocks. When writing data to the flash blocks, the system first checks for clean pages in Block 0.
If clean pages are available, the data D is written to these pages. Once Block 0 is filled, the system
proceeds to check Block 1 for clean pages, according to the logical sequence of blocks. However,
as Block 1 is a cold block, the system skips it and moves to the next logical block, Block 2, where
clean pages are available and thus data D is written into Block 2. As new data fills Blocks 0 and
2, the pages previously marked as C for clean are now transformed to D, indicating that the new
data has been written. In the third step, more data from the write queue is written into the data
blocks. The system first checks whether Block 3 contains clean pages. If clean pages are found, the
new data D is written into Block 3. The system then checks the next logical block for clean pages.
However, since Block 4 is a cold block, the system also skips it and proceeds to the next logical
block, Block 5, which meets the requirements for writing. Consequently, new data D is written into
Block 5. Ultimately, the clean pages in Blocks 3 and 5 are filled with new data D. Throughout this
process, the SUP-GC strategy allocates new data to hot blocks, aiming to avoid mixing new data
with cold data in cold blocks, thereby minimizing unnecessary erasure operations and optimizing
the use of clean pages to maintain the performance of the flash memory.

Pseudocode 1 illustrates the data allocation process within the SUP-GC framework, optimizing
the data writing procedure for SSDs. The algorithm begins by processing incoming write requests
from the host, each associated with a logical slice address (LSA) and the corresponding data. The
LSA is a logical address used to abstract the physical storage location of data. The LSA establishes
a mapping between the host system and physical storage, making data management within SSDs
more flexible and efficient. Each LSA corresponds to a set of data, and through this logical-to-
physical mapping relationship, the SSD can efficiently locate and access the data stored internally.
For each write request, the system first checks whether there are sufficient free pages available in
the hot data blocks. If free pages are available, the algorithm maps the logical address to a physical
address in a hot block and writes the data to this location. This data allocation strategy ensures that
new data is preferentially written to hot blocks, effectively preventing mixing with cold block data,
thereby significantly reducing unnecessary erase operations and enhancing data storage efficiency.
However, if there are insufficient free pages in the hot data blocks, the algorithm triggers the GC
process, as detailed in Algorithm 2. After GC frees up space, the algorithm proceeds to map the
logical address to a physical address in a hot block and writes the data accordingly. By integrating
GC seamlessly into the data allocation routine, the algorithm maintains optimal write performance
without introducing significant delays or computational overhead.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:14 K. Wang et al.

From the preceding analysis, it is evident that the data allocation strategy adopted by SUP-GC
enables the preservation of the existing advantages associated with high-performance SSD writing,
while circumventing the complexities of computational overhead and RAM space consumption.
This efficiency is achieved by foregoing the categorization of data into hot and cold types; instead,
it automatically classifies incoming write data as hot based on its inherent characteristics and
segregates this from the existing cold data within the flash memory. However, this mechanism of
hot data allocation alone does not fully leverage the capabilities of SUP-GC. Subsequently, we will
explore another fundamental strategy within SUP-GC that dictates the distribution and migration
of cold data during the GC process.

3.3 GC Migration

In both industrial and academic contexts, the greedy algorithm is commonly employed as a strategy
for selecting victim blocks for GC, due to its effectiveness in identifying and reclaiming blocks
with the greatest number of invalid pages, thereby rapidly freeing up storage space. However, this
method typically does not involve further processing of the remaining valid data in the reclaimed
blocks. Over time, these valid data, due to their low access frequency, often evolve into naturally
cold data.

The GC migration strategy in SUP-GC is grounded in two fundamental concepts: temporal
locality and data aging. Temporal locality is a well-established principle in computer architecture,
stating that data that has been accessed recently is more likely to be accessed again in the near
future. In contrast, data that is accessed less frequently over a longer period can be broadly
categorized under data aging. Data aging is a phenomenon in storage systems that refers to
the gradual decline in the frequency of data access as time progresses. In the context of SSDs,
frequently updated hot data are often invalidated over a short period, whereas the data that
remain valid during GC are generally those that have not been modified for an extended duration,
inherently qualifying them as naturally cold data.

By leveraging this understanding, SUP-GC identifies these valid data as cold during the GC
process and migrates them to designated cold data blocks, effectively achieving the isolation of hot
and cold data and minimizing their intermixing. This approach simplifies the data management
process, reduces interference with hot data, and consequently enhances the system’s response
time and data access efficiency.

To illustrate this concept, Figure 10 presents a conceptual diagram of the theoretical foundation
of our GC migration strategy. As shown in the figure, the GC process involves identifying and
migrating valid data. Specifically, the victim block is selected for GC because it contains a large
number of invalid pages, but it still has some valid data. Since these valid data pages have not been
accessed for a long time, they are classified as cold data and are migrated to cold data blocks.

Figure 11 illustrates a typical GC data migration scenario under the SUP-GC strategy, with sym-
bol definitions consistent with those in Figure 11: D represents new data waiting in the write queue,
V denotes valid data pages, I indicates invalid data pages, and C stands for clean pages that have
not yet been written to. In the initial state (Step 1), new data D is ready for writing, with blocks 0,
2, 3, and 5 containing a mix of valid and invalid data, while blocks 1 and 4 mainly contain a large
number of clean pages and some valid data. As the system progresses to Step 2, the new data D
begins to be written to flash memory. Due to the lack of clean pages in blocks 0, 2, 3, and 5, the
system needs to perform GC operations. Following a greedy algorithm, the system first recycles
block 0, which has the most invalid pages, transferring its valid pages to the cold block 1, after
which the new data D occupies block 0. When block 0 is filled, the system searches for the next
available block, finds no free blocks, and thus performs GC on block 2, transferring its valid pages
to block 1. Subsequently, block 1 is erased to become a new clean block, and new data D is written

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior ~ 36:15

Data Queue

-
VVVVVV

vV vy cclc clcc c clc V VoV
C||Cc|C Cc|c|c Cc|CcC V VY
c ccC ~ c cc c|cc CcC CC
Hot Hot Cold Hot Hot
Block 0 Block 1 Block 2 Block 0 Block 1
Clean Valid Dlnvahd Clean Al Valid
Flash Flash

Fig. 10. SUP-GC garbage collection migration concept.

B Write Data Queue . ~ Write Data Queue - B Write Data Queue -
[efvefo]pfo]efofofofoofo] [e]efofofofolpfofofofo]o] | [efpfpfo]opfpfofofo]p]p] |
!] I
Onn [T DRE DR DR b[o]D
[y] p[p]p p[p[p p[p[p b[p[D

1 : - [o[p]o b[p[D b[p][D b[p[D
Block 0 Block | Block2 - ©Block0 Block | Block 2 5 Block 0 Block | Block 2
: Hot Cold Hot : Hot Cold Hot : Hot Cold Hot
annn : annn ; annD oTo[o] -
nnn : Ennn : o |p[p[p p|p[p] :
: R = [o]o]® DERE
Block 3 Block 4 Blocks - " Block3 Block 4 Blocks - © Block3 Block 4 Block 5
N Hot Cold Hot : : Hot Cold Hot : N Hot Cold Hot
[B] write Data [cieanpoe [B] write Data B ceanpoge [B] wiie Data [crean pace
- Valid Page m Invalid Page : . Valid Page Invalid Page . Valid Page m Invalid Page
Flash Flash Flash
L J
Step 1 Step 2 Step

Fig. 11. A typical GC data migration scenario.

into block 2. In Step 3, the valid pages from block 3 are transferred to block 1 by the same principle,
followed by the erasure of block 3 and the writing of new data D. As operations continue, block
5 also enters GC status, requiring the migration of valid pages. Since cold block 1 is now full, the
valid data from block 5 is transferred to the next available cold block, block 4, after which block
5 is erased, and new data D is written into block 5. This SUP-GC strategy effectively stores valid
pages in cold blocks, efficiently preventing the mixing of cold and hot data, and this data migration
strategy does not impose additional computational or space costs on the system.

Pseudocode 2 illustrates the GC migration process within the SUP-GC framework, optimizing
the management of valid data during GC in SSDs. The algorithm is triggered when the system
identifies insufficient free pages in the hot data blocks during the data allocation process. Upon
activation, the algorithm employs a greedy strategy to select victim blocks for GC. These victim
blocks are chosen because they contain the highest number of invalid pages, thereby maximizing
the efficiency of space reclamation. For each selected victim block, the algorithm iterates over
all valid pages contained within it. The valid data from these pages is read and migrated to cold
data blocks that have available free pages. By transferring valid data to cold blocks, the algorithm
effectively segregates cold data from hot data, reducing interference between frequently and
infrequently accessed data. This segregation minimizes write amplification and unnecessary
erase operations on hot blocks, enhancing both the performance and the lifespan of the SSD.
After all valid data has been migrated, the victim block is erased, reclaiming space that can
be used for future write operations. The mapping table is updated accordingly to reflect the

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:16 K. Wang et al.

ALGORITHM 2: Garbage Collection Migration Algorithm in SUP-GC

Require: Garbage collection is triggered when there are insufficient free pages in hot data blocks
Ensure: Reclaim space and migrate valid data to cold data blocks
1: Select victim blocks for garbage collection using the greedy algorithm
2: for each victim block do
3: for each valid page in the victim block do
4 Read the valid data
5 Select a cold data block with free pages
6: Write the valid data to the cold data block
7 Update the mapping table with the new physical address
8 end for
9: Erase the victim block to reclaim space
10: end for
11: Proceed with the data allocation process (see Algorithm 1)

new physical locations of the migrated data. Once the GC process is complete, the algorithm
returns control to the data allocation process, allowing it to proceed with handling pending write
requests.

This GC strategy leverages the natural aging of data; data that remains valid during GC is likely
to be less frequently accessed in the future. By migrating such data to cold blocks, the SUP-GC
framework avoids the computational overhead of real-time data heat analysis while still achieving
effective separation of hot and cold data. Overall, this method enhances storage efficiency, reduces
write amplification, and contributes to the improved durability and performance of SSDs.

The SUP-GC strategy fundamentally eliminates the computational overhead associated with
traditional hot-cold data segregation processes. In this strategy, all newly written data is auto-
matically considered hot, and data migration during GC relies solely on simple activity-level
judgments, avoiding complex real-time data analysis or heat calculations. This direct and effective
method significantly reduces the processor’s burden, enhancing the system’s overall efficiency
and responsiveness. Additionally, the SUP-GC strategy simplifies the management of data blocks
by merely marking them as hot or cold, greatly reducing the need to maintain state information in
RAM. This minimalist management strategy not only optimizes memory usage but also simplifies
the operations during the GC process, adding minimal extra RAM overhead. Theoretically, this
simple design based on natural data behavior has clear advantages, and its practicality and effi-
ciency will be validated in the subsequent experimental section. Detailed performance evaluations
will demonstrate how the SUP-GC strategy significantly enhances SSD responsiveness and data
processing capabilities while reducing computational and space overhead, proving its practical
value in high-load environments. The upcoming experimental section will further showcase
the performance of the SUP-GC strategy in actual applications, providing solid evidence of its
innovative contributions to SSD GC optimization.

4 Implementation

This section describes the implementation of the SUP-GC architecture and the implementation of
other mainstream comparative schemes. All experiments were conducted on the Cosmos+ FPGA
OpenSSD [32]. We modified the firmware layer of the Cosmos+ FPGA OpenSSD and compiled the
source code written in C language into the firmware of the Cosmos+ FPGA OpenSSD development
board using cross-compilation techniques.

Cosmos+ FPGA OpenSSD is an open-source SSD development platform designed to support
research and education in flash-based SSD technology. The platform features two advanced ARM

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior 36:17

Fig. 12. Cosmos+ FPGA OpenSSD connected to the host system.

Cortex-A9 cores as its microprocessor, with other hardware implemented in FPGA. For address
mapping, Cosmos+ OpenSSD uses a pure page mapping method, while its cache replacement al-
gorithm follows the LRU strategy. GC is handled using a greedy algorithm. Additionally, Cosmos+
FPGA OpenSSD utilizes the NVMe protocol to connect with the host system through the PCle
interface. Figure 12 illustrates the connection of Cosmos+ FPGA OpenSSD to the host system via
the PCle interface.

SUP-GC scheme implemented in Cosmos+ FPGA OpenSSD. In implementing SUP-GC
within the Cosmos+ FPGA OpenSSD firmware, we modified the metadata within the blocks to
include two new data types: hot block and cold block. New data is written to hot blocks within
the write function, and during the GC process, valid data from the collected blocks is written into
cold blocks. This entire process does not introduce additional computational overhead or space
overhead beyond the metadata.

Cache-related GC scheme implemented in Cosmos+ FPGA OpenSSD. Cache, as a key
component in SSDs, significantly enhances data processing speed by reducing read/write latency
and optimizing the data storage process. Among the many academic studies aimed at improving
SSD performance, GCaR [17] is particularly notable in the cache domain. Initially implemented in
the Disksim simulator, it was later adapted and applied to the OpenSSD platform. In this process,
we adjusted the data buffer area of Cosmos+ FPGA OpenSSD to temporarily store cache entries
related to GC during cache replacement, thus enhancing the system’s response speed during GC.
Additionally, while maintaining the core concept of GCaR, we made several technical improve-
ments and lightweight design modifications, enabling it to effectively operate on real SSD devices.
It’s worth mentioning that the GCaR referred to here is not specifically the original GCaR plan
but represents a typical example of this class of cache-related GC technologies. We refer to this
enhanced implementation as GCaR-Optimized.

Bloom filter-related GC scheme implemented in Cosmos+ FPGA OpenSSD. Bloom filter-
based strategies [29, 30] are used to differentiate cold and hot data in SSDs by identifying cold and
hot data associated with logical addresses. This method can efficiently identify obsolete data blocks
without exhaustive checks, thus reducing the overhead of traditional GC methods. Although differ-
ent implementations may vary, they share a common core principle: using Bloom filters to identify
cold and hot data and achieve data isolation within flash memory blocks. We optimized these tech-
nical details and adopted a lightweight design to ensure these strategies can operate efficiently on
real SSD devices. Additionally, given the effectiveness of Bloom filters in SSDs, we consider these
strategies as a representative of advanced hot and cold data classification schemes and evaluate
their performance, referring to them as BF-Optimized.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:18 K. Wang et al.

Table 1. Cosmos+ OpenSSD Platform Parameters

Related Parameters Parameter Values
Page Size 16KB
Pages per Block 128
Blocks per Die 8,192+(88*2)
Total Dies 64
Flash Type MLC
FPGA Chip Model Xilinx Zyng-7000 AP SoC (XC7Z045-FFG900-3)
DRAM Capacity 1GB
CPU Model Dual-Core ARM CortexTM-A9
CPU Clock Frequency Up to 1,000 MHZ

Since the display information of Cosmos+ FPGA OpenSSD is relatively simple, in order to display
the internal parameters of all the above experiments when running on Cosmos+ FPGA OpenSSD,
we have written and added related functions to display Cosmos+ FPGA OpenSSD related running
time, internal physical block status, and block Information such as page status. The relevant in-
formation is displayed on the interface of the compiling host connected to the Cosmos+ FPGA
OpenSSD through the serial port.

5 Performance Evaluation

In this section, we first describe the experimental setup and test benchmarks. Then, we will conduct
comprehensive testing and evaluation of our proposed SUP-GC scheme at the block device layer,
file system layer, and application layer.

5.1 Experimental Setup

The Cosmos+ FPGA OpenSSD development platform is equipped with HYNIX H27Q1T8YEB9R
flash memory chips. These flash memory chips are of MLC NAND type with 16 KB pages and
128 pages per block. The number of effective blocks in each die is 8,192, and there are a total
of 64 dies. The flash memory module adopts 8 channels and 8 channels. The microcontroller of
Cosmos+ OpenSSD uses Xilinx’s ZYNQ-7000 series chip which contains two ARM Cortex-A9 em-
bedded CPUs, and the controller has 1 GB DRAM to store the metadata like FTL mapping table
and the buffer cache data.Cosmos+ FPGA OpenSSD uses the PCle interface with NVMe protocol to
connect to the host. The NVMe protocol is version 1.2, and the PCle interface uses Xilinx 7 series
IP cores (PCle 2.0 version). The detailed parameters of the Cosmos+ OpenSSD platform are shown
in Table 1.

The host machine is an Intel Core 17-4790K 4.4 GHz processor with 16 GB DRAM and 256 GB
SSD. The operating system is Ubuntu 16.04 based on Linux kernel 4.15 with ext4 file system.

5.2 Benchmark

To comprehensively test system performance, we utilized three types of benchmark tests. The
Sysbench benchmark is used to test the I/O performance of the SSD at the block device layer,
the FIO benchmark is employed to assess performance at the file system layer, and the MySQL
database test demonstrates performance at the application layer.

Block Device Layer: Sysbench [33] is an open-source, multi-functional benchmarking tool that
provides various testing modules including CPU, memory, disk I/O, threads, and databases. In our
system evaluation, we utilized Sysbench to generate an equivalent amount of data to test the disk
I/O performance in a non-GC state. This setup allowed us to examine the raw performance of the

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior ~ 36:19

SSD without any interference from background GC processes, providing a clear baseline for our
system’s I/O performance.

File System Layer: FIO (Flexible I/O Tester) [34] is a robust tool capable of simulating a wide
range of I/O operations. It is designed to generate multiple threads or processes to perform user-
specified I/O tasks, making it ideal for testing both files and storage systems. In our tests, FIO
was specifically used to evaluate the impact of each configuration scheme on the random read
and write performance of the file system. This benchmark is critical for assessing how well the
file system handles high-concurrency I/O operations, which are crucial for real-world application
performance.

Application Layer: MySQL [35], a widely used relational database management system, was
selected to demonstrate the performance at the application layer. By conducting OLTP tests using
Sysbench in conjunction with MySQL, we analyzed the system’s capability to handle complex
database operations, focusing on transaction speed and query response times. This testing phase
is essential for understanding how our system performs under typical operational loads at the
upper layers.

5.3 Run-time Performance

In this section, we will conduct a comparative analysis of the performance of each strategy based
on empirical tests. This includes the Sysbench test on the block device layer, the FIO test on the
file system, and the Sysbench combined with MySQL test on the application layer.

At the block device layer, data is typically written sequentially to maximize I/O efficiency
and throughput while minimizing seek time. Performance at this layer is primarily measured by
throughput (MB/s), which effectively reflects the I/O subsystem’s ability to handle sequential ac-
cesses. Optimizing throughput at this layer is crucial for enhancing the inherent performance of
the underlying storage media. To assess throughput, we used the Sysbench benchmarking tool,
which is specifically designed to measure the performance of various storage media under differ-
ent loads, particularly focusing on I/O throughput and latency. In our tests, Sysbench was used to
evaluate the SSD’s I/O performance, specifically avoiding the influence of GC to present a clearer
picture of the SSD’s raw performance.

At the file system level, data layout and structure have a significant impact on performance.
Access patterns typically involve a mix of sequential and random access. Therefore, performance
evaluation should focus on several key metrics: Input/Output Operations Per Second (IOPS),
which measures the system’s ability to handle large-scale read/write requests in a concurrent
environment; latency, which reflects the system’s response time to operation requests, with lower
latency indicating faster responses; and BW, which represents the system’s efficiency in handling
large volumes of data. In this study, we employed the FIO tool for performance testing. FIO
generates a variety of access patterns and provides detailed performance data, including IOPS,
latency, and throughput. By analyzing these performance metrics and comparing them with
the performance characteristics of SSDs and other storage media, this article evaluates the file
system’s performance from multiple perspectives across different access patterns and effectively
identifies potential performance bottlenecks.

At the application layer, data access patterns become even more complex. Applications may
generate highly random workloads, such as those encountered in database transaction processing
and query operations, which place considerable pressure on the storage devices. Performance eval-
uation at this layer primarily focuses on response time and transaction throughput, reflecting the
impact of I/O latency on application performance. To more comprehensively evaluate performance
at the application layer, we used Sysbench in conjunction with MySQL database for benchmarking,
examining the database system’s performance under real-world workloads.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:20 K. Wang et al.

0.5

Normalized Throughput

0.0 -

Cosmos+ BF-Optimized GCaR-Optimized SUP-GC
Sysbench

Fig. 13. Normalized throughput.

5.3.1 Block Device Layer. In our tests conducted at the block device layer, the primary goal
was to assess the actual computational and blocking overheads imposed by various strategies on
SSD performance. Utilizing Sysbench’s data preparation feature within the Sysbench workload
allowed us to bypass the application and file system layers, enabling direct data writing to SSDs
through the block device layer. While it is challenging to directly quantify the impact of each
strategy’s complexity on real SSDs, this methodology effectively demonstrates how the complexity
of strategies influences SSD system performance.

Figure 13 depicts the relationship between SSD throughput and the various strategies tested.
We used Cosmos+ as the baseline to evaluate the actual performance of each strategy, with
results normalized for comparison. As demonstrated in the figure, Cosmos+ employs a notably
simple and efficient architecture that does not introduce any additional computational or resource
blocking overhead, thereby setting its performance metric at 1. To illustrate the resource overhead
associated with the GCaR-Optimized strategy during cache replacement, this strategy was also
activated in a non-GC state. Experimental findings reveal that GCaR-Optimized’s performance
was only 65% of the baseline due to its ongoing requirement to search and traverse the cache
during the replacement process, resulting in substantial resource blocking and computational
overheads. Remarkably, even minimal cache traversal by GCaR, at only 1%, leads to significant
performance degradation, underscoring the critical limitations of such cache replacement strate-
gies in real-world scenarios. In contrast, the BF-Optimized strategy benefits from an inherently
lightweight design, resulting in a much lesser impact on performance than GCaR. However, BF-
Optimized still exhibits a performance reduction of about 5% compared to the baseline, indicating
that even highly optimized, lightweight strategies can negatively affect system performance in
actual SSDs. Our newly proposed SUP-GC strategy, which incurs no computational or blocking
overheads, matches the performance of the Cosmos+ strategy, achieving a performance index of
1. These results confirm that our strategies do not impose any computational burdens and can
fully harness the native performance potential of SSDs in block device layer testing.

5.3.2 File System Layer. This section compares the performance of different strategies in real-
world file system tests. We use the FIO tool to evaluate the performance of SUP-GC and other strate-
gies. The evaluation includes a 700 GB data volume test to assess SSD performance from an empty
to nearly full state. To comprehensively evaluate SSD performance under different read/write ra-
tios, we set five test ratios: 1%, 25%, 50%, 75%, and 99%. The evaluation metrics include IOPS and
BW, which directly reflect the throughput performance of SSDs; block erase counts and GC page

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior ~ 36:21

== Cosmos+

§ —e— BF-Optimized
—o— BF-Optimized |-A— GCaR-Optimized|
—a— GCaR-Optimized| {—4— SUP-GC

—+— SUP-GC

[—a— Cosmos+

= 30000

2
38
L

————A—

20000

3
L

10000 4

Total TOPS With Write Ratio
Total BW With Write Ratio 1% (MB/S)

-

T T T T T T T T T T T T T T
100 200 300 400 500 600 700 100 200 300 400 500 600 700
Data Size (GB) Data Size (GB)

(a) Total IOPS (b) Total BW

1000

500 4

L T

99% Tail Latency (ms)

100 200 300 100 500 600 700
Data Size (GB)

(c) Tail Latency

Fig. 14. FIO 1% write ratio test.

move counts, which indicate block utilization efficiency and write amplification performance. The
99% tail latency demonstrates the tail latency performance during the tests. The FIO test configu-
ration is as follows: the IO engine is set to libaio, the access pattern is randrw, the block size is 4
KB, and the number of concurrent jobs is set to 10.

In Figure 14, with the FIO write ratio set to 1%, the entire testing process primarily remains
in a read state. Throughout the 700 GB data testing process, none of the schemes enter the GC
state, indicating that both the block erase count and the GC page move count remain at zero
(experimental data for these values is not shown due to the data volume being zero). Consequently,
we observe no performance degradation as the data volume increases from 100 GB to 700 GB.
Although this scenario does not reflect the performance of each scheme during GC, it indirectly
indicates the impact of algorithmic complexity on the performance of each scheme in a real
SSD. Using Cosmos+ as the baseline, we observe that BF-Optimized’s average performance is
approximately 5% lower than the baseline. This is attributed to the hash computations performed
by the Bloom filter during each write operation. Despite the Bloom filter being designed to be
lightweight, it still incurs around a 5% performance impact in a real SSD. In this test, GCaR
experiences a certain degree of performance decline relative to the baseline. This is because
GCaR causes I/O blocking issues during cache traversal, even though we set the GCaR cache
traversal value to occupy only a very small portion of the entire cache. This results in a significant
performance drop. Our proposed SUP-GC, due to its lack of additional computational overhead,
exhibits performance identical to the baseline in this test. The experimental results in this scenario
are similar to the conclusions drawn from the Sysbench test in Figure 13.

The next set of tests examines the performance at a higher write ratio of 25%.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:22 K. Wang et al.

[~=— Cosmos+
Optimized
ptimized|

100 9

ptimized
R-Opt imized|

20000 4

10000

Total I0PS With Write Ratio 25%
Total BW With Write Ratio 25% (MB/S)

T T T T T T T T T T T T T T
100 200 300 100 500 600 700 100 200 300 100 500 600 700
Data Size (GB) Data Size (GB)

(a) Total IOPS (b) Total BW

200000 10000000

180000
160000 4 8000000
140000

120000 6000000

Count

< 100000

GC Page

Erase

80000 4 4000000 4
60000 4
40000 4 2000000

20000 4

0

T T T T T T T T T
100 200 300 400 500 100 200 300 100 500
Data Size (GB) Data Size (GB)

(c) Erase Count (d) GC Page

-0,
GCaR-Opt imized|
SUP-GC

6000

4000

2000 4

99% Tail Latency (ms)

100 200 300 400 500 600 700
Data Size (GB)

(e) Tail Latency

Fig. 15. FIO 25% write ratio test.

In Figure 15, when the FIO write ratio increases to 25%, the entire testing process changes. When
the data volume reaches 500 GB, the performance of IOPS and BW starts to decline, accompanied
by an increase in block erase counts and GC page move counts. Tail latency also increases with
the onset of GC. Therefore, this experimental observation further reinforces the notion that GC
is indeed a primary factor influencing SSD performance. As shown in Figure 15, when the data
volume reaches 600 GB and 700 GB, all schemes experience varying degrees of performance
decline due to the impact of GC. However, SUP-GC outperforms the other comparison schemes
in terms of both IOPS and BW. This advantage can be attributed to SUP-GC’s data recognition
strategy based on natural data attributes and efficient block-level utilization in flash memory.
Additionally, BF-Optimized, which employs hot and cold data separation, outperforms Cosmos+
and GCaR. This is because BF-Optimized’s data partitioning strategy enhances efficiency during
GC, reducing unnecessary flash page migrations and thereby improving SSD I/O performance.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior 36:23

Similarly, constrained by computational complexity, GCaR fails to achieve satisfactory results
in this scenario, even performing worse than the baseline. This is because the performance
improvement brought by the GCaR strategy itself is insufficient to offset the disadvantages
introduced by its performance overhead.

Specifically, when the data reaches 700 GB, SUP-GC performs excellently under medium-to-low
write ratios and large data volumes: IOPS is about 15.7% higher than Cosmos+, 11.5% higher than
BF-Optimized, and 17,5% higher than GCaR; BW is approximately 15.8% higher than Cosmos+,
11.6% higher than BF-Optimized, and 17.6% higher than GCaR; block erase count is about 5.7%
lower than Cosmos+, 5.2% lower than BF-Optimized, and 5.6% lower than GCaR; GC page move-
ment count is about 15.2% lower than Cosmos+, 14.3% lower than BF-Optimized, and 15.2% lower
than GCaR; 99% tail latency is about 70.2% lower than Cosmos+, 7.4% lower than BF-Optimized,
and 68.9% lower than GCaR.

As we increase the write ratio to 50%, we observe more pronounced differences in performance
between the schemes.

In Figure 16, as the write ratio increases to 50%, GC is triggered more frequently and earlier.
At 300 GB, the block erase count and GC page movement begin to rise (as shown in Figure 16(c)
and (d)), while IOPS and BW (as shown in Figure 16(a) and (b)) start to decline, and tail latency
in Figure 16(e) sharply increases. The trends observed in these metrics are consistent with those
in Figure 15. However, as the write ratio increases and GC is triggered more frequently, the per-
formance differences between the schemes become more pronounced. Notably, towards the end
of the 700 GB data load, the performance of the baseline scheme Cosmos+ significantly deterio-
rates due to insufficient SSD space for GC data migration, leading to a substantial increase in block
erase counts. In contrast, SUP-GC, by efficiently allocating data in blocks based on their natural
properties, shows satisfactory performance even under frequent GC triggers.

Specifically, when the data reaches 700 GB, SUP-GC performs excellently under medium-to-high
write ratios and large data volumes: IOPS is about 35.1% higher than Cosmos+, 10.1% higher than
BF-Optimized, and 35.2% higher than GCaR; BW is approximately 35.3% higher than Cosmos+,
10.2% higher than BF-Optimized, and 35.3% higher than GCaR; block erase count is about 22.1%
lower than Cosmos+, 2% lower than BF-Optimized, and 22% lower than GCaR; GC page movement
count is about 44.7% lower than Cosmos+, 5.6% lower than BF-Optimized, and 44.6% lower than
GCaR; 99% tail latency is about 87.2% lower than Cosmos+, 68.3% lower than BF-Optimized, and
87.2% lower than GCaR.

In summary, SUP-GC, under medium-to-high write ratios and large data volumes, significantly
enhances the overall performance of SSDs through its simplified design principles and effective
block-level utilization, demonstrating excellent performance and efficiency. The advantage of SUP-
GC lies in its lack of additional computational overhead, relying on the natural behavior of data
for classification, and efficiently allocating data in blocks, simplifying the GC process. This sig-
nificantly reduces block erasures and data migrations, greatly lowering write amplification, and
improving system responsiveness and efficiency. In comparison, BF-Optimized improves efficiency
during GC through a hot and cold data partitioning strategy, but still falls short of SUP-GC, though
it outperforms Cosmos+ and GCaR. GCaR, constrained by its high computational complexity, per-
forms poorly under high data volume and medium-to-high write ratios, even lagging behind the
baseline Cosmos+. These results further validate the effectiveness and advantages of SUP-GC in
enhancing SSD performance.

When the write ratio is further increased to 75%, the system faces an even more write-intensive
workload, providing insights into the schemes’ behavior under heavy load.

In Figure 17, when the number of write operations surpasses the read operations, reaching
a write ratio of 75%, the entire testing system enters a write-intensive workload scenario.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:24 K. Wang et al.

@

| T

10000

Total I0PS With Write Ratio 50%

Total BW With Write Ratio 50% (MB/S)
P
/ ‘
¢

T T T T T T T T T T T T T T
100 200 300 100 500 600 700 100 200 300 400 500 600 700
Data Size (GB) Data Size (GB)

(a) Total IOPS (b) Total BW

360000 7
340000
320000 4
300000
280000

24000000 -
22000000
20000000
18000000 4
16000000 4

220000
200000

£ 14000000
180000 £

£ 12000000
3
10000000
8000000 -

% 160000
= 140000
120000
100000
80000 4
60000
40000 4

6000000 -
4000000 4

TS

2000000 4

0 7 A
100 200 300 400 500 600 700 100 200 300 100 500 600 700
Data Size (GB) Data Size (GB)

(c¢) Erase Count

60000 7

40000 4

20000 -

99% Tail Latency (ms)

100 200 300 100 500 600 700
Data Size (GB)

(e) Tail Latency

Fig. 16. FIO 50% write ratio test.

From Figure 17(c) and (d), it is evident that when the data volume reaches 200 GB, both the
block erase count and GC page move count start to rise, accompanied by a decline in IOPS
and BW. This indicates the initiation of GC in the SSD. In this scenario, due to the frequent
occurrence of GC triggers, all schemes experience a substantial decline in performance during
GC phases. However, due to the adoption of hot and cold data partitioning strategies, the perfor-
mance degradation of SUP-GC and BF-Optimized is less noticeable compared to Cosmos+ and
GCaR.

Specifically, when the data reaches 700 GB, SUP-GC performs excellently under medium-to-high
write ratios and large data volumes: IOPS is about 73.5% higher than Cosmos+, 72.6% higher than
BF-Optimized, and 75.6% higher than GCaR; BW is approximately 73.6% higher than Cosmos+,
72.6% higher than BF-Optimized, and 75.8% higher than GCaR; block erase count is about 35% lower
than Cosmos+, 32.7% lower than BF-Optimized, and 35.3% lower than GCaR; GC page movement

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior ~ 36:25

509
(—=— Cosmos+

—— BF-Optimized
(—A— GCaR-Optimized|
[—*— SUP-GC

10000 4

Total IOPS With Write Ratio 75%
Total BW With Write Ratio 75% (MB/S)

100 200 300 100 500 600 700 100 200 300 400 500 600 700
Data Size (GB) Data Size (GB)

(a) Total IOPS (b) Total BW

40000000

500000 -

1000004 30000000

300000 %

20000000

Erase Count
GC Page

200000 4

10000000 4
100000 4

SINNNIINIIWIIIIINIIWWWW
NN

100 200 300 400 500 600 700 100 200 300 400 500 600 700
Data Size (GB) Data Size (GB)

(c) Erase Count (d) GC Page

2 20000

100 200 300 100 500 600 700
Data Size (GB)

(e) Tail Latency

Fig. 17. FIO 75% write ratio test.

count is about 65.9% lower than Cosmos+, 63.7% lower than BF-Optimized, and 66.1% lower than
GCaR; 99% tail latency is about 87.2% lower than Cosmos+, 68.3% lower than BF-Optimized, and
87.2% lower than GCaR.

In the tests with a data volume of 700 GB, SUP-GC significantly outperforms other meth-
ods, achieving substantial performance improvements compared to Cosmos+, GCaR, and BF-
Optimized, and also significantly reducing block erase counts. Additionally, at data volumes of
500 GB and 600 GB, BF-Optimized performs better than Cosmos+ and GCaR. However, when the
data volume reaches 700 GB, the performance of BF-Optimized sharply declines, slightly falling
below Cosmos+ and GCaR. This counterintuitive result may be due to BF-Optimized’s inability to
effectively distinguish between hot and cold data states under extremely high GC scenarios, lead-
ing to ineffective partitioning and isolation of hot and cold data, and thus failing to achieve the
expected performance gains.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:26 K. Wang et al.

[~=— Cosmos+

@
2
)

W | o —e— BF-Optimized
-] [—A— GCaR-Opt imized
-Optimized 5 e
S =2 SUP-6C E StPee
3 10000
° =
2 iy
= 8
= 2
© =
2]
= E
= 2
= b=
5 &
= £
E
=
2 =
S =
=
= =
5 =
3
04— T T T T T - 0 T T r T T T T
100 200 300 400 500 600 700 100 200 300 400 500 600 700
Data Size (GB) Data Size (GB)
(a) Total IOPS (b) Total BW
700000
50000000
600000
10000000
500000
; 100000 4 & 30000000 4
- £
£ 300000 8
o 20000000
200000
10000000 4
100000 4
o , 2 od S =
100 200 300 400 500 600 700 100 200 300 100 500 600 700
Data Size (GB) Data Size (GB)
(c) Erase Count (d) GC Page

ptimized
Optimized|
GC

120000 7

100000 -

80000 4

60000 4

7\

2\

40000

99% Tail Latency (ms)

20000

777
V77

z /A
100 200 300 400 500 600 700
Data Size (GB)

(e) Tail Latency

Fig. 18. FIO 99% write ratio test.

Regarding write amplification, as indicated by GC page movements in Figure 17(d), SUP-GC
shows a significantly lower GC page move count, indicating reduced write amplification compared
to the other methods. This lower write amplification contributes to better overall performance and
longevity of the SSD.

Moreover, Figure 17(e) shows the 99% tail latency for different schemes. At 700 GB, SUP-GC
demonstrates significantly lower tail latency compared to Cosmos+, BF-Optimized, and GCaR-
Optimized. This indicates that SUP-GC not only maintains higher overall performance but also
ensures better responsiveness under heavy write-intensive workloads.

Finally, we test the performance under an extreme write ratio of 99%, pushing the system to its
limits.

In Figure 18, when the write ratio reaches 99%, indicating a substantial amount of write opera-
tions along with extensive GC activities, all strategies experience severe performance degradation

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior 36:27

in this extremely write-intensive scenario. However, even under such extreme conditions, SUP-GC
demonstrates commendable performance. In the final test with a data volume of 700 GB, our
proposed SUP-GC significantly outperforms other comparative methods, exhibiting a perfor-
mance advantage of 57.9%, 69.9%, and 59.8% over Cosmos+, BF-Optimized, and GCaR-Optimized,
respectively. Additionally, the block erase count is also notably reduced by 22.5%, 28.3%, and 22.6%,
respectively. In this scenario with an exceptionally high write ratio, the IOPS and BW perfor-
mance of BF-Optimized generally fall short of Cosmos+ and GCaR. Simultaneously, we observe in
Figure 18(c) and (d) that the block erase count and GC page move count of BF-Optimized are con-
sistently higher than those of Cosmos+ and GCaR. This phenomenon corroborates our speculation
from the analysis in Figure 17, suggesting that in extremely high GC scenarios, BF-Optimized strug-
gles to effectively distinguish between hot and cold data states, leading to inadequate partitioning
and isolation of hot and cold data and consequently failing to achieve the expected performance
improvement.

Regarding write amplification, as indicated by GC page movements in Figure 18(d), SUP-GC
shows a significantly lower GC page move count, indicating reduced write amplification com-
pared to the other methods. This reduced write amplification contributes to the better overall
performance and longevity of the SSD.

Moreover, Figure 18(e) shows the 99% tail latency for different schemes. Similarly, SUP-GC
demonstrates significantly lower tail latency compared to Cosmos+, BF-Optimized, and GCaR.
This indicates that SUP-GC not only maintains higher overall performance but also ensures better
responsiveness under heavy write-intensive workloads.

Overall, the SUP-GC scheme demonstrated significant performance improvements in file
system layer tests. Through a series of evaluations using the FIO tool under different read/write
ratios, we observed that SUP-GC consistently outperformed BF-Optimized, GCaR, and the
baseline Cosmos+ in multiple key performance metrics. SUP-GC efficiently handled a 700 GB
data volume without introducing additional computational overhead. By treating newly written
data as hot and efficiently managing cold data during GC, SUP-GC reduced block erasures and
GC page movements, thereby lowering write amplification. This not only improved throughput
performance (higher IOPS and BW) but also ensured lower 99% tail latency, enhancing system
responsiveness. SUP-GC’s strategy, based on natural data behavior, simplified data processing by
eliminating the need for complex real-time data state analysis, reducing the computational burden
on the SSD microcontroller. Consequently, SUP-GC maintained superior performance even
under high write ratios and heavy workloads, whereas other strategies underperformed in these
scenarios.

5.3.3 Application Layer. This section compares the performance of different strategies in real-
world application-level database system tests. We use Sysbench combined with MySQL to evaluate
the performance of SUP-GC and other strategies. To comprehensively test database performance,
we preheat with 1 TB of data and then conduct comprehensive tests with 100 tables, each contain-
ing 9,000,000 records, in both only write and mixed read/write scenarios. Evaluation metrics in-
clude transactions and queries, which directly reflect the transaction and query processing capabil-
ities of the database running on SSDs; latency, which reflects the average read/write performance
of the database; block erase counts and GC page move counts, which indicate block utilization
efficiency and write amplification performance; and 95% tail latency, which demonstrates the tail
latency performance of the database running on SSDs during the tests.

Figure 19 illustrates the performance of the database under only write conditions when
combining Sysbench and MySQL. In Figure 19(a), the OpenSSD with the SUP-GC scheme shows
an increase in database transaction processing capacity by 54.1%, 32.1%, and 52.4% compared to

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:28 K. Wang et al.

2

Latency (ms)

©

004

Transactions (per sec)
3
Queries (per sec)

Cosmost BF-Optimized GCaR-Optimized SUP-GC
Sysbench+MySQL Sysbench+MySQL Sysbench+MySQL

(a) Transactions (b) Queries (c) Latency

600000 30000000

8

550000 -
500000 -
450000 -

8

~ 100000 4 20000000
g

Z 350000
8

2 300000

£ 250000
&

95% Tail Latency (ms)
8

GC Page Count

200000 - 10000000

8

150000 4

100000 4

50000 4

0 0 0

Cosmos+ BF-Optimized GCaR-Optimized — SUP-GC Cosmos+ BF-Optimized GCaR-Optimized SUP-GC Cosmos+ BF-Optimized GCaR-Optimized — SUP-GC
Sysbench+\MySQL Sysbench+MySQL Sysbench+\MySQL

(d) Erase Count (e) GC Page (f) 95% Tail Latency

Fig. 19. Sysbench+MySQL.

other OpenSSD schemes. Similarly, in Figure 19(b), SUP-GC demonstrates the same advantage in
database query capability. The number of transactions and queries executed per second directly
reflects the database’s performance, and OpenSSD based on the SUP-GC scheme achieves the best
results in both aspects. This phenomenon occurs because data migration during GC can severely
affect the normal read and write operations of the database. Moreover, SUP-GC effectively reduces
the overhead of migrating invalid data during GC by adopting a data distribution method that
perfectly matches natural data behavior, thereby minimizing the impact of GC data migration on
normal data writes.

Although the BF-Optimized scheme uses a hot and cold data partitioning strategy, this attempt
to precisely partition the write data not only introduces additional computational overhead but also
cannot achieve perfect partitioning. Additionally, any change in workload characteristics requires
parameter readjustment (in the database tests, we readjusted the parameters used in FIO to better
suit the database for BF-Optimized to perform as expected), which severely restricts its application
prospects in real-world scenarios. Furthermore, the OpenSSD based on GCaR-Optimized did not
achieve the expected advantages in this test. Although GCaR-Optimized considers the impact of
data distribution in the cache on GC performance, its performance improvement is limited, and
the computational overhead and data blocking caused by cache traversal also severely hinder its
performance.

In Figure 19(c), the OpenSSD based on the SUP-GC scheme also achieves the best results in aver-
age database latency compared to other schemes. It reduces the latency by 35.1%, 28.5%, and 34.6%
compared to Cosmos+, BF-Optimized, and GCaR-Optimized SSDs, respectively. In Figure 19(d),
due to the perfect allocation of hot and cold data, SUP-GC reduces the number of block erasures
by 13.2%, 9.7%, and 12.7% compared to other schemes. Figure 19(e) reflects the number of page
migrations related to GC within OpenSSD. This metric effectively reflects the write amplification
performance of each algorithm. Compared to Cosmos+, BF-Optimized, and GCaR-Optimized, SUP-
GC reduces write amplification by 44.5%, 32.6%, and 42.1%, respectively. Figure 19(f) shows the tail

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior ~ 36:29

1200 9

2

10004

8

3

Queries (per sec)
2
Latency (ns)

Transactions (per sec)
8

Cosmos+ BF-Optimized GCaR-Optimized — SUP-GC Cosmos+ BF-Optimized GCaR-Optimized — SUP-GC Cosmos+ BF-Optimized GCaR-Optimized — SUP-GC
Sysbench+MySQL Sysbench+MySQL Sysbench+\MySQL

(a) Transactions (b) Queries (c) Latency

900000
60000000

500000 4

700000 50000000

600000 4 10000000

int

2 500000
3
30000000

Page Count

@
2 100000 {
4000009 2 20000000
200000 4 1004

10000000
100000

0+ 0 0
Cosmost BF-Optinized GCaR-Optimized — SUP-GC Coswost BF-Optinized GCaR-Optimized — SUP-GC Cosmos+ BF-Optimized GCaR-Optimized SUP-GC
Sysbench+MySQL Sysbench+MySQL Sysbench+MySQL

(d) Erase Count (e) GC Page (f) 95% Tail Latency
Fig. 20. Sysbench+MySQL.

latency performance among the strategies for the 95th percentile tail latency. Similarly, SUP-GC
achieves the best performance in this tail latency metric as well.

Figure 20 illustrates the database performance under read-write mixed conditions when com-
bining Sysbench and MySQL. Similar to the performance observed in Figure 19, in Figure 20(a), the
OpenSSD using the SUP-GC scheme shows an improvement of 36.5%, 13.5%, and 33.6% in database
transaction processing capacity compared to other OpenSSD schemes. Likewise, in Figure 20(b),
SUP-GC demonstrates the same advantages in database query capacity. It is evident that in read-
write mixed scenarios, SUP-GC effectively reduces the overhead of migrating invalid data during
GC by adopting a data distribution method that perfectly matches the natural data behavior,
thereby minimizing the impact of GC data migration on normal data read and write operations.

The BF-Optimized scheme attempts to optimize performance by partitioning hot and cold data,
but under read-write mixed conditions, the additional computational overhead and the problem of
imperfect partitioning introduced by this method still exist. Similarly, the GCaR-Optimized scheme
did not show the expected advantages in this test. Although this scheme considers the impact of
data distribution in the cache on GC performance, its performance improvement in read-write
mixed scenarios is limited, and the computational overhead and data blocking issues caused by
cache traversal still exist.

In Figure 20(c), the OpenSSD using the SUP-GC scheme continues to perform excellently in
terms of average database latency. Compared to Cosmos+, BF-Optimized, and GCaR-Optimized
SSDs, SUP-GC reduces latency by 26.7%, 19.1%, and 26.5%, respectively. Figure 20(d) shows that
due to the reasonable allocation of hot and cold data, the SUP-GC scheme also reduces the number
of block erasures by 29.2%, 15.2%, and 28.1% compared to the other schemes. Figure 20(e) shows
that under read-write mixed conditions, SUP-GC continues to perform best in terms of write
amplification. Compared to Cosmos+, BF-Optimized, and GCaR-Optimized, SUP-GC reduces page
migration by 57.5%, 42.9%, and 57.2%, respectively, significantly reducing the write amplification
effect. Figure 20(f) demonstrates the performance of each strategy in terms of 95th percentile

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:30 K. Wang et al.

tail latency, with the SUP-GC scheme also performing best in this metric, further validating its
excellent performance in read-write mixed scenarios.

Overall, the SUP-GC scheme demonstrated significant performance improvements in
application-level database system tests. Through a series of evaluations using Sysbench combined
with MySQL, we observed that SUP-GC consistently outperformed BF-Optimized, GCaR, and the
baseline Cosmos+ in multiple key performance metrics. SUP-GC efficiently handled large data
volumes without introducing additional computational overhead. By treating newly written data
as hot and efficiently managing cold data during GC, SUP-GC reduced block erasures and GC
page movements, thereby lowering write amplification. This not only improved throughput perfor-
mance (more transactions and queries) but also ensured lower 95% tail latency, enhancing system
responsiveness. SUP-GC'’s strategy, based on natural data behavior, simplified data processing by
eliminating the need for complex real-time data state analysis, reducing the computational burden
on the SSD microcontroller. Consequently, SUP-GC maintained superior performance even under
high write ratios and mixed workload.

6 Related Work

In this section, we introduce works related to SUP-GC.

In SSD research, simulators are commonly used to evaluate their designs. Popular simulators
include DISKSim [36], SSDSim [39], WiscSim [38], FlashSim [37], and MQSim [3]. While these
simulators can emulate the state of real SSDs to a certain extent, they still exhibit discrepancies
when compared to actual SSDs.

To address the limitations of simulators, some researchers have turned to using real SSDs for
their studies. The first open-source SSD platform, Jasmine OpenSSD [40], employs a commercial
SOC as the storage controller and allows users to freely modify its firmware. Although Jasmine
OpenSSD has many advantages, its strategies are outdated and do not support the latest high-
performance SSD protocols. Recently, researchers have developed the first open-source SSD that
supports the NVMe protocol, named Cosmos+. Cosmos+ OpenSSD [32] not only permits the free
modification of its software and hardware components but also makes its source code publicly
available. This advancement positions Cosmos+ OpenSSD as the most advanced real SSD device
currently available, significantly advancing SSD research.

The identification and classification of hot and cold data have always been key challenges
in SSD research. To effectively identify hot data in flash memory, Chang et al. [31] adopted a
two-level LRU linked list to distinguish between hot and cold data. PGIS [26] utilizes a lightweight
linked list to identify and classify hot and cold data, isolating them at the block level. MHF [29]
employs multiple hash functions and a Bloom filter to identify hot and cold data, which results
in low computational and memory overhead, making it well-suited for use in flash memory. To
address the issue of recency information in MHF, MBF [30] uses multiple Bloom filters to capture
finer-grained recency information. Although these schemes achieve a certain level of performance
in terms of identification accuracy, they still face unresolved issues related to computational and
spatial overhead. Additionally, they cannot guarantee consistent accuracy across all scenarios.
Furthermore, these schemes have been validated through simulators, lacking verification on
actual SSD devices, which makes their real-world performance evaluation insufficient. Li et al.
[42] and Yang et al. [43] both leveraged machine learning techniques to predict data heat and
manage SSD performance more effectively. Li et al. utilized historical access patterns to improve
prediction accuracy and adaptability, while Yang et al. aimed at reducing GC overhead based
on workload prediction. However, both methods suffer from high implementation complexity
and significant computational overhead, which limit their practicality in resource-constrained
environments.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior ~ 36:31

In addition to the aforementioned strategies that improve GC efficiency through hot and cold
data classification, there are other methods that optimize GC from different angles. GCaR [17]
considers the impact of data distribution in the cache on GC and gives higher priority to cached
data blocks belonging to flash memory chips in the GC state to reduce conflicts between user
input I/O operations and GC-induced I/O operations. However, GCaR uses a sequential method to
search for GC-related data in the cache, which adds extra time overhead and leads to performance
degradation. PaGC [16] utilizes plane-level parallelism to improve GC efficiency, but PaGC is only
applicable to SSDs that can take advantage of plane-level parallelism, making its application range
narrower than that of block-level parallelism. Kim et al. [48] and Wu [49] both proposed suspension
techniques to optimize the timing of GC operations, aiming to minimize their impact on I/O perfor-
mance. Kim et al. specifically focused on suspending erase operations in modern low-latency SSDs,
while Wu extended this approach by suspending both program and erase operations to further
reduce read latency. These techniques mitigate GC interference by strategically managing timing
but do not fundamentally enhance the efficiency of GC itself. In scenarios with intensive write
workloads and limited idle time, their effectiveness is reduced, which may degrade overall system
performance. FaGC+ [12] considers the impact of block-level parallelism on GC and implements
four types of hot and cold block classifications. However, the relocation of each page in FaGC+
is overly cumbersome, which can hinder the execution of normal I/O operations in real-world
scenarios, leading to excessive blocking issues. TTFLASH [14] reduces GC-induced tail latencies
by utilizing intra-plane copy operations. This approach accelerates the copying of pages during
the GC process by skipping error correction code checks, thereby minimizing the impact of GC on
user input/output operations. However, the TTFLASH strategy has significant disadvantages due
to its heavy reliance on intra-plane copy operations, which are not supported by many existing
hardware platforms. Furthermore, the implementation and validation of TTFLASH on actual hard-
ware face numerous challenges, limiting its potential for performance improvements and possibly
compromising data reliability. These limitations restrict the broad applicability of the TTFLASH
strategy. RLGC [19], utilizing dynamic state management and reinforcement learning-assisted
garbage collection, aims at reducing SSD long-tail latency. However, this method has drawbacks:
increased computational overhead, the need for tuning Q-table cache size, and it may not always
outperform alternative methods. Implementing this technique in SSD firmware could face chal-
lenges due to limitations in memory and code size. FIOS [41] method reduces write amplification,
improving SSD performance and durability by optimizing data organization. It lowers internal
operation overhead, increases device BW, and enhances workload throughput. However, its
implementation is complex and resource-intensive, requiring feature extraction, matrix construc-
tion, and multithreaded K-means clustering. Different workload features affect WAF differently,
making it challenging to select the optimal feature combination. The method’s high computational
overhead and its applicability only to multi-stream SSDs further limit its practicality.

7 Conclusion

This article introduced SUP-GC, an innovative and potentially disruptive GC scheme for SSDs. By
categorizing all newly written data as hot and simplifying the data processing workflow, while
storing valid pages as cold data in cold blocks during the GC process, SUP-GC eliminates the need
for complex real-time data state analysis, thereby reducing computational overhead and signifi-
cantly improving SSD efficiency and responsiveness. Implemented and validated on the Cosmos+
FPGA OpenSSD platform, experimental results show that SUP-GC significantly enhances read and
write response speeds during GC. This approach not only streamlines data management, reduces
system overhead, and extends the lifespan of SSDs, but also demonstrates practical feasibility and
efficiency across various workloads. By effectively utilizing existing hardware resources, SUP-GC

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

36:32 K. Wang et al.

achieves efficient GC while minimizing system resource usage. This not only highlights the theoret-
ical advantages of the scheme but also proves its significant effectiveness in practical applications.
We expect that SUP-GC will bring groundbreaking advancements in GC management, making
significant contributions to the development of SSD technology. Looking ahead, since our current
evaluation has not yet been conducted on commercial SSDs, we plan to apply SUP-GC to commer-
cial SSD products in the future to further validate its effectiveness in real-world environments.

References

[1] Chin-Hsien Wu, Liang-Ting Chen, Ren-Jhen Hsu, and Jian-Yu Dai. 2023. A state-aware method for flows with fairness

on NVMe SSDs with load balance. IEEE Transactions on Cloud Computing 11, 3 (2023), 3040-3054.

Hui Sun, Shangshang Dai, Jianzhong Huang, and Xiao Qin. 2021. Co-active: A workload-aware collaborative
cache management scheme for NVMe SSDs. IEEE Transactions on Parallel and Distributed Systems 32, 6 (2021),
1437-1451.

Arash Tavakkol, Juan Gémez-Luna, Mohammad Sadrosadati, Saugata Ghose, and Onur Mutlu. 2018. MQSim: A frame-
work for enabling realistic studies of modern multi-queueSSD devices. In Proceedings of the 16th USENLX Conference
on File and Storage Technologies (FAST’18). USENIX Association, 49-66.

Haodong Lin, Jun Li, Zhibing Sha, Zhigang Cai, Yuanquan Shi, and Balazs Gerofi. 2022. Adaptive management with
request granularity for DRAM cache inside NAND-based SSDs. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 42, 8 (2022), 2475-2487.

M. Bjerling, A. Aghayev, H. Holmberg, A. Ramesh, D. Le Moal, G. R. Ganger, and G. Amvrosiadis. 2021. ZNS: Avoiding
the block interface tax for flash-based SSDs. In Proceedings of the 2021 USENIX Annual Technical Conference (USENIX
ATC’21). USENIX Association, 689-703.

M. Jung, W. Choi, S. Srikantaiah, J. Yoo, and M. T. Kandemir. 2014. HIOS: A host interface I/O scheduler for solid
state disks. ACM SIGARCH Computer Architecture News 42, 3 (2014), 289-300.

R. Liu, Z. Tan, Y. Shen, L. Long, and D. Liu. 2024. Fair-zns: Enhancing fairness in zns ssds through self-balancing I/O
scheduling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 43, 7 (2024), 2012-2022.
N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Panigrahy. 2008. Design tradeoffs for SSD
performance. In Proceedings of the 2008 USENIX Annual Technical Conference (USENLX ATC 08).

[9] J. Li, X. Xu, Z. Cai, J. Liao, K. Li, B. Gerofi, and Y. Ishikawa. 2022. Pattern-based prefetching with adaptive cache

[10

[11

[12

(13
(14

[15

[16

(17

(18

]

]

]

]
]
]

=

]

=

management inside of solid-state drives. ACM Transactions on Storage 18, 1 (2022), 1-25.

H. Lin, J. Li, Z. Sha, Z. Cai, Y. Shi, and B. Gerofi. 2023. Adaptive management with request granularity for DRAM
cache inside NAND-based SSDs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42,
8(2023), 2475-2487.

Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, Yixin Luo, and Yaohua Wang. 2018. FLIN: En-
abling fairness and enhancing performance in modern NVMe solid state drives. In Proceedings of the 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). IEEE, 397-410.

Hua Yan, Yong Huang, Xinzhi Zhou, and Yinjie Lei. 2018. An efficient and non-time-sensitive file-aware garbage
collection algorithm for NAND flash-based consumer electronics. IEEE Transactions on Consumer Electronics 65, 1
(2018), 73-79.

Y. Pan, M. Lin, Z. Wu, H. Zhang, and Z. Xu. 2021. Caching-aware garbage collection to improve performance and
lifetime for NAND flash SSDs. IEEE Transactions on Consumer Electronics 67, 2 (2021), 141-148.

S.Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien, and H. S. Gunawi. 2017. Tiny-tail flash: Near-perfect
elimination of garbage collection tail latencies in NAND SSDs. ACM Transactions on Storage 13, 3 (2017), 1-26.

Y. Kim, Sarp Oral, Galen M. Shipman, Junghee Lee, David A. Dillow, and Feiyi Wang. 2011. Harmonia: A globally
coordinated garbage collector for arrays of solid-state drives. In Proceedings of the 2011 IEEE 27th Symposium on Mass
Storage Systems and Technologies (MSST’11). 1-12.

Narges Shahidi, Mahmut T. Kandemir, Mohammad Arjomand, Chita R. Das, Myoungsoo Jung, and Anand Sivasub-
ramaniam. 2016. Exploring the potentials of parallel garbage collection in SSDs for enterprise storage systems. In
SC’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(SC’16). 561-572.

S. Wu, B. Mao, Y. Lin, and H. Jiang. 2017. Improving performance for flash-based storage systems through GC-aware
cache management. IEEE Transactions on Parallel and Distributed Systems 28, 10 (2017), 2852-2865.

Sungjin Lee, Dongkun Shin, and Jihong Kim. 2012. BAGC: Buffer-aware garbage collection for flash-based storage
systems. IEEE Transactions on Computers 62, 11 (2012), 2141-2154.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

The Art of Garbage Collection Management in SSDs Inspired by Natural Data Behavior ~ 36:33

[19] Wonkyung Kang and Yoo Sungjoo. 2018. Dynamic management of key states for reinforcement learning-assisted
garbage collection to reduce long tail latency in SSD. In Proceedings of the 55th Annual Design Automation Conference
(DAC’18). 1-6.

[20] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A flash translation layer employing demand-
based selective caching of page-level address mappings. ACM SIGPLAN Notices 44, 3 (2009), 229-240.

[21] H. Kim and S. Ahn. 2008. BPLRU: A buffer management scheme for improving random writes in flash storage. In
Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST 08). USENIX Association, 1-14.

[22] Dongzhe Ma, Jianhua Feng, and Guoliang Li. 2011. LazyFTL: A page-level flash translation layer optimized for NAND
flash memory. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (SIGMOD’11).
1-12.

[23] Yudong Yang, Misra Vishal, and Dan Rubenstein. 2015. On the optimality of greedy garbage collection for ssds. ACM
SIGMETRICS Performance Evaluation Review 43, 2 (2015), 63-65.

[24] Van Houdt and Benny. 2013. A mean field model for a class of garbage collection algorithms in flash-based solid state
drives. ACM SIGMETRICS Performance Evaluation Review 41, 1 (2013), 191-202.

[25] Y. Li, P. P. Lee, and J. C. Lui. 2013. Stochastic modeling of large-scale solid-state storage systems: Analysis, design
tradeoffs and optimization. In Proceedings of the ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’13). 179-190.

[26] J. Guo, Y. Hu, B. Mao, and S. Wu. 2017. Parallelism and garbage collection aware I/O scheduler with improved SSD
performance. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS’17). IEEE
Computer Society, 1184-1193.

[27] Y. Hu, H. Jinag, D. Feng, L. Tian, H. Luo, and C. Ren. 2012. Exploring and exploiting the multilevel parallelism inside
SSDs for improved performance and endurance. IEEE Transactions on Computers 62, 6 (2012), 1141-1155.

[28] Feng Chen, Binbing Hou, and Rubao Lee. 2016. Internal parallelism of flash memory-based solid-state drives. ACM
Transactions on Storage 12, 3 (2016), 1-39.

[29] Jen-Wei Hsieh, Tei-Wei Kuo, and Li-Pin Chang. 2006. Efficient identification of hot data for flash memory storage
systems. ACM Transactions on Storage 2, 1 (2006), 22-40.

[30] Dongchul Park and David H. C. Du. 2011. Hot data identification for flash-based storage systems using multiple
bloom filters. In Proceedings of the 2011 IEEE 27th Symposium on Mass Storage Systems and Technologies (MSST). IEEE,
1-11.

[31] Li-Pin Chang and Tei-Wei Kuo. 2002. An adaptive striping architecture for flash memory storage systems of embed-
ded systems. In Proceedings of the 8th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 187-196.

[32] J.Kwak, S. Lee, K. Park, J. Jeong, and Y. H. Song. 2020. Cosmos+ OpenSSD: Rapid prototype for flash storage systems.
ACM Transactions on Storage 16, 3 (2020), 1-35.

[33] A.Kopytov. 2004. Sysbench: A system performance benchmark. [Online]. Available: http://sysbench.sourceforge.net/.
[Accessed: Jan. 31, 2025].

[34] J. Axboe. FIO (Flexible IO Tester). [Online]. Available: http://git.kernel.dk/?p=fio.git;a=summary. [Accessed: Jan. 31,
2025].

[35] Oracle Corporation. 2024. MySQL Community Edition (Version 8.0.36). https://dev.mysql.com/. Accessed: 2025-01-
31.

[36] J. K. Park, D. H. Suh, and S. Baek. 2016. A study of divided disk cache performance using DiskSim. In Proceedings of
the International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT’16). ACM, New York, NY,
USA, 1867-1872.

[37] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar. 2009. Flashsim: A simulator for nand flash-based solid-state drives.
In Proceedings of the 2009 1st International Conference on Advances in System Simulation. IEEE, 125-131.

[38] J. He, S. Kannan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. 2017. The unwritten contract of solid state drives.
In Proceedings of the 12th European Conference on Computer Systems (EuroSys’17). 127-144.

[39] E.Lee,].Kim, H. Bahn, S. Lee, and S. H. Noh. 2017. Reducing write amplification of flash storage through cooperative
data management with NVM. ACM Transactions on Storage 13, 2 (2017), 1-13.

[40] D. Brown, T. O. Walker III, J. A. Blanco, R. W. Ives, H. T. Ngo, J. Shey, and R. Rakvic. 2021. Detecting firmware
modification on solid state drives via current draw analysis. Computers and Security 102 (2021), 102149.

[41] J. Bhimani, Z. Yang, J. Yang, A. Maruf, N. Mi, R. Pandurangan, and V. Balakrishnan. 2022. Automatic stream identifi-
cation to improve flash endurance in data centers. ACM Transactions on Storage 18, 2 (2022), 1-29.

[42] B.Li, C. Deng, J. Yang, D. Lilja, B. Yuan, and D. Du. 2019. Haml-ssd: A hardware accelerated hotness-aware machine
learning based ssd management. In Proceedings of the 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD’19). 1-8.

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

http://sysbench.sourceforge.net/
http://git.kernel.dk/?p=fio.git;a=summary
https://dev.mysql.com/

36:34 K. Wang et al.

[43] P.Yang, N.Xue, Y. Zhang, Y. Zhou, L. Sun, W. Chen, and K. Kwon. 2019. Reducing garbage collection overhead in SSD
based on workload prediction. In Proceedings of thel1th USENLX Workshop on Hot Topics in Storage and File Systems
(HotStorage 19).

[44] D.Purandare, P. Wilcox, H. Litz, and S. Finkelstein. 2022. Append is near: Log-based data management on ZNS SSDs.
In Proceedings of the 12th Annual Conference on Innovative Data Systems Research (CIDR’22).

[45] H.R. Lee, C. G. Lee, S. Lee, and Y. Kim. 2022. Compaction-aware zone allocation for LSM based key-value store on
ZNS SSDs. In Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage’22). 93-99.

[46] Matias Bjerling, Javier Gonzalez, and Philippe Bonnet. 2017. LightNVM: The linux open-channelSSD subsystem. In
Proceedings of the15th USENIX Conference on File and Storage Technologies (FAST’17). 359-374.

[47] X. Zhang, F. Zhu, S. Li, K. Wang, W. Xu, and D. Xu. 2021. Optimizing performance for open-channel ssds in cloud
storage system. In Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 902-911.

[48] S.Kim, J. Bae, H. Jang, W. Jin, J. Gong, S. Lee, and J. W. Lee. 2019. Practical erase suspension for modern low-latency
SSDs. In Proceedings of the 2019 USENIX Annual Technical Conference (USENLX ATC’19). 813-820.

[49] Guanying Wu and Xubin He. 2012. Reducing SSD read latency via NAND flash program and erase suspension. In
Proceedings of the 10th USENIX Conference on File and Storage Technologies (FAST’12). 10.

[50] S.Y.Park,D.Jung,]J. U.Kang,J.S.Kim, and J. Lee. 2006. CFLRU: A replacement algorithm for flash memory. In Proceed-
ings of the 2006 International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES’06).
234-241.

[51] P.Jin, Y. Ou, T. Harder, and Z. Li. 2012. AD-LRU: An efficient buffer replacement algorithm for flash-based databases.
Data and Knowledge Engineering 72 (2012), 83-102. DOI: 10.1016/j.datak.2011.09

[52] J. Gu, C. Wu, and J. Li. 2017. Hotis: A hot data identification scheme to optimize garbage collection of ssds. In
Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and
2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC). IEEE, 331-337.

Received 26 May 2024; revised 11 February 2025; accepted 17 February 2025

ACM Trans. Storage, Vol. 21, No. 4, Article 36. Publication date: November 2025.

https://doi.org/10.1016/j.datak.2011.09

