
1 23

Telecommunication Systems
Modelling, Analysis, Design and
Management

ISSN 1018-4864

Telecommun Syst
DOI 10.1007/s11235-016-0203-1

Design and analysis of parallel file
downloading algorithms in peer-to-peer
networks

Keqin Li

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Telecommun Syst
DOI 10.1007/s11235-016-0203-1

Design and analysis of parallel file downloading algorithms
in peer-to-peer networks

Keqin Li1

© Springer Science+Business Media New York 2016

Abstract It is well known that the method of parallel down-
loading can be used to reduce file download times in a
peer-to-peer (P2P) network. There has been little investiga-
tion on parallel download and chunk allocation for source
peers with random service capacities. The main contribution
of this paper is to address the problem of efficient parallel
file download in P2P networks with random service capac-
ities. A precise analysis of the expected download time is
given when the service capacity of a source peer is a random
variable. A general framework is developed for analyzing the
expected download time of a parallel download and chunk
allocation algorithm, and is applied to the analysis of sev-
eral algorithms. Two chunk allocation algorithms for parallel
download are proposed. It is observed that the performance
of parallel download can be significantly improved by using
the method of probing high-capacity peers. One such algo-
rithm is proposed and its expected parallel download time is
analyzed. The performance of these parallel file download
algorithms in P2P networks with random service capacities
are compared. The above parallel download algorithms are
extended to multiple file download by dividing source peers
into clusters. It is noticed that there is an important issue of
optimal parallelism which minimizes the combined effect of
intracluster and intercluster overhead of parallel download
and load imbalance.

Keywords Chunk allocation · Download time · File sharing
system · Parallel downloading · Peer-to-peer network ·
Random service capacity

B Keqin Li
lik@newpaltz.edu

1 Department of Computer Science, State University
of New York, New Paltz, NY 12561, USA

1 Introduction

A peer-to-peer (P2P) network is able to provide various
services by employing diverse connectivity among partic-
ipating peers and the combined resources of participants
including storage space, computing power, and communi-
cation bandwidth [3]. There are two significant advantages
in P2P networks. The first advantage is scalability, i.e., the
total service capacity of a P2P network increases as partici-
pating peers in the network increases. An important feature
of a P2P network is that all peers contribute resources, and
all peers function as both clients and servers. The second
advantage is reliability, i.e., the robustness and fault toler-
ance of a P2P network increases due to the distributed nature
of the network and the capability of replicating data over
multiple peers. In a pure P2P network, peers find locations
of data without relying on a centralized index server, which
means that there is no single point of failure in the network.
File sharing using application layer protocols such as Bit-
Torrent is the most popular application of P2P networks.
Current popular file sharing networks and services include
Gnutella/Gnutella2 (G2), eDonkey, Direct Connect, BitTor-
rent, RetroShare, Mininova, isoHunt, The Pirate Bay, and
KickassTorrents [2].

Extensive investigation has been performed by many
researchers in the last few years for performance measure-
ment, modeling, analysis, and optimization of file sharing in
P2P networks. Research in this area has been conducted at
three different levels, i.e., system level, peer group level, and
individual peer level. At the system level, research is focused
on establishing models of P2P networks such as queueing
models [13,30] and fluid models [12], so that overall sys-
tem characterizations such as system throughput and average
file download time can be obtained. At the peer group level,
research is focused on distributing a file from a set of source

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-016-0203-1&domain=pdf

K. Li

peers to a set of user peers, so that the overall distribution
time is minimized [16,18,23,24,29,31]. At the individual
peer level, research is focused on analyzing and minimizing
the file download time of a single peer [10,19,21,22]. It is
clear that the vast majority of file downloads are performed
by individual users. Therefore, P2P network performance
optimization from a single peer’s point of view has been an
interesting and important issue.

File download strategies for an individual user peer can be
classified into two categories, namely, single downloadmeth-
ods from one source peer and parallel download methods
from several source peers simultaneously. The main concern
in single download methods is the peer selection problem,
namely, switching among source peers and finally settling
on one, while keeping the total time of probing and down-
loading to a minimum [4–6,8,11,19,21,22]. It is well known
that themethod of parallel downloading can be used to reduce
file download times. The main concern in parallel download
methods is the chunk allocation problem, namely, how to
divide a file to be downloaded into chunks which can be
downloaded from several source peers simultaneously. In
[10], it is proposed that a file is divided into chunks of equal
sizes. In [27], it is observed that to achieve the maximum
speedup, chunks should be allocated such that all servers fin-
ish their transmissions at the same time. It has been observed
that performance improvement experienced by clients who
perform parallel downloading comes at the expense of clients
who simply go to a single server to retrieve files [14].

Performance measurement, modeling, analysis, and opti-
mization of parallel document downloading in the Internet
and file sharing in P2P networks have also been conducted
at three different levels, i.e., system level, peer/client group
level, and individual peer/client level. At the system level,
research is focused on understanding the impact of large
scale parallel downloading on the performance of a network
[14,17,25,26]. At the peer/client group level, research is
focused on parallel document/file downloading from mul-
tiple mirror sites and source peers such that duplicated
transmissions are kept to a minimum by using efficient mul-
ticasting [7]. At the individual peer/client level, research is
focused on minimizing the parallel file download time for a
single peer/client [10,27]. Fine parallel downloading algo-
rithms for an individual user peer is critical in competing for
network resources. However, there is lack of comprehensive
and analytical performance study of parallel download algo-
rithms, especially when source peers have random service
capacities [20].

The main contribution of this paper is to address the
problem of efficient parallel file download in peer-to-peer
networks with random service capacities. We give a precise
analysis of the expected download time when the service
capacity of a source peer is a random variable (Sect. 2).
We develop a general framework for analyzing the expected

download time of a parallel download and chunk allocation
algorithm (Sect. 3.1), and apply the framework to the analy-
sis of several algorithms (Sects. 3.2–3.4). We propose two
chunk allocation algorithms for parallel download (Sects.
3.3–3.4). We observe that the performance of parallel down-
load can be significantly improved by using the method of
probing high-capacity peers. We propose such an algorithm
and analyze the expected download time of our algorithm
(Sect. 3.5). We compare the performance of these parallel
file download algorithms in P2P networks with random ser-
vice capacities (Sect. 4). We also extend the above parallel
download algorithms to multiple file download by dividing
source peers into clusters and analyze the expected download
time (Sect. 5.1). We notice that there is an important issue of
optimal parallelism which minimizes the combined effect of
intracluster and intercluster overhead of parallel download
and load imbalance (Sect. 5.2).

2 Preliminaries

Throughout the paper, we use P[e] to denote the probability
of an event e, fX (x) the probability distribution function
(pdf), FX (x) the cumulative distribution function (cdf), and
E(X) the expectation, respectively, of a random variable X .

Assume that n peers 1, 2, . . . , n have been identified as
source peers of a file of interest, such that any part of the
file can be downloaded from any of these n source peers. We
further assume that the service capacity (i.e., the download
speed experienced by a user, or the number of bits that can
be downloaded in one unit of time measured in, e.g., kbps,
MB/min) of source peer i is Ci , a random variable in [0,∞)

with pdf fCi (c) and cdf FCi (c). (Notice that ifCi is in a finite
range [0, B], we simply have fCi (c) = 0 for all c > B.) It is
also assumed that all source peers are stable, i.e., they remain
in a P2P network for significant amount of time. In other
words, there is no effect of peer churn [28] for downloading
the file of interest, i.e., all source peers are available during
downloading of the file. Moreover, all the n source peers are
seed peers, i.e., they all hold a complete copy of a file, such
that any chunk of the file can be obtained from any source
peer. Further analysis of the effect of peer churn and non-seed
peers can be a direction for future investigation.

We use S to represent the size as well as the name of a file.
The file size ismeasured in the number of units of data, where
one unit of data can be kilo-byte (KB) or mega-byte (MB).
Let Ti (S) be the download time of a file of size S from source
peer i . The following theorem gives the expected download
time of a complete file (or any chunk of a file) of size S from
source peer i .

Theorem 1 The expected download time of a file of size S
from source peer i is

123

Author's personal copy

Design and analysis of parallel file downloading algorithms in peer-to-peer networks

E(Ti (S)) = SE(Ti (1)),

where

E(Ti (1)) =
∫ ∞

0

fCi (c)

c
dc

is the expected download time of one unit of data from source
peer i .

Proof It is clear that

Ti (S) = S

Ci
.

Let Ti (S, c) = S/c be the download time of a file of size S
from source peer i when Ci = c. The first equation in the
theorem can be obtained by randomizing c in Ti (S, c), i.e.,

E(Ti (S)) =
∫ ∞

0
Ti (S, c) fCi (c)dc =

∫ ∞

0

S

c
fCi (c)dc.

The above equation can also be written as

E(Ti (S)) = S
∫ ∞

0

fCi (c)

c
dc = SE(Ti (1)),

that is, E(Ti (S)) is a linear function of S, where

E(Ti (1)) =
∫ ∞

0

fCi (c)

c
dc

is the expected download time of one unit of data from source
peer i . ��

We say that the n source peers are homogeneous if their
service capacities C1, C2,…, Cn are identical random vari-
ables C with the same pdf, i.e.,

fC1(c) = fC2(c) = · · · = fCn (c) = fC (c),

and the same cdf, i.e.,

FC1(c) = FC2(c) = · · · = FCn (c) = FC (c).

Notice that this does notmean that the n source peers have the
same service capacity. In fact, during transferring the same
file at the same time, the service capacities of the n source
peers can be entirely and radically different as governed by
fC (c).
For homogeneous source peers, we use E(T (S)) =

SE(T (1)) to represent the expected download time of a file
of size S from any source peer, where

E(T (1)) =
∫ ∞

0

fC (c)

c
dc

is the expected download time of one unit of data from any
source peer.

3 Parallel download and chunk allocation

A file can be downloaded from r service peers 1, 2, . . . , r
simultaneously by using a parallel download algorithm. For
instance, in BitTorrent, a file is divided into small chunks,
and a peer can download multiple chunks of the file from
different source peers simultaneously [9,15]. It is assumed
that the r source peers are independent and do not interfere
with each other. Although in reality, this might not be the
case, especially when a number of servers share network
paths and thus have correlated service capacities.

3.1 A generic algorithm and analysis

3.1.1 Algorithm

In a generic parallel download algorithm A, a file of size S
is divided into r chunks of sizes S1, S2, . . . , Sr , such that
chunk Si is downloaded from source peer i , for all 1 ≤ i ≤ r
in parallel. Different algorithms have different strategies in
choosing the chunk sizes and have different parallel down-
load times. The key issue is then to choose the best chunk
sizes.

Notice that in a real communication, when a packet is
sent, additional information is needed (e.g., the header of a
packet). Therefore, splitting a file into chunks results in a
slightly different total size of the original file due to such
additional information in each chunk. However, we believe
that the size of such additional data is negligible compared
to the size of a chunk, and the impact of such overhead is not
included in our discussion.

3.1.2 Analysis

Let TA(S, r) denote the parallel download time of algorithm
A for a file of size S from r source peers with chunk sizes
S1, S2, . . . , Sr . The following theorem gives the expected
parallel download time of algorithm A.

Theorem 2 The expected parallel download time of algo-
rithm A is

E(TA(S, r)) =
∫ ∞

0

(
1 −

r∏
i=1

(
1 − FCi

(
Si
t

)))
dt,

or, equivalently,

E(TA(S, r)) =
r∑

i=1

∫ ∞

0

Si
c

fCi (c)
∏
i ′ �=i

(
1 − FCi ′

(
Si ′

Si
c

))
dc.

123

Author's personal copy

K. Li

Proof The parallel download time of algorithm Awith chunk
sizes S1, S2, . . . , Sr for a file of size S from r source peers is

TA(S, r) = max{T1(S1), T2(S2), . . . , Tr (Sr)}.

Since Ti (Si) = Si/Ci , we get the cdf of Ti (Si) as follows,

FTi (Si)(t) = P[Ti (Si) ≤ t]
= P

[
Si
Ci

≤ t

]

= P
[
Ci ≥ Si

t

]

= 1 − FCi

(
Si
t

)
,

and the pdf of Ti (Si) as follows,

fTi (Si)(t) = Si
t2

fCi

(
Si
t

)
,

for all t > 0. Hence, the cdf of TA(S, r) is

FTA(S,r)(t) = P[TA(S, r) ≤ t]

=
r∏

i=1

P [Ti (Si) ≤ t]

=
r∏

i=1

FTi (Si)(t)

=
r∏

i=1

(
1 − FCi

(
Si
t

))
,

and the pdf of TA(S, r) is

fTA(S,r)(t) =
r∑

i=1

Si
t2

fCi

(
Si
t

) ∏
i ′ �=i

(
1 − FCi ′

(
Si ′

t

))
,

for all t > 0. The expected parallel download time of algo-
rithm A is

E(TA(S, r)) =
∫ ∞

0
(1 − FTA(S,r)(t))dt

=
∫ ∞

0

(
1 −

r∏
i=1

(
1 − FCi

(
Si
t

)))
dt,

or, equivalently,

E(TA(S, r))

=
∫ ∞

0
t fTA(S,r)(t)dt

=
∫ ∞

0
t

r∑
i=1

Si
t2

fCi

(
Si
t

) ∏
i ′ �=i

(
1 − FCi ′

(
Si ′

t

))
dt

=
r∑

i=1

∫ ∞

0

Si
t
fCi

(
Si
t

) ∏
i ′ �=i

(
1 − FCi ′

(
Si ′

t

))
dt

=
r∑

i=1

∫ 0

∞
c fCi (c)

∏
i ′ �=i

(
1 − FCi ′

(
Si ′

Si
c

))

×
(

− Si
c2

)
dc

(
by letting c = Si

t

)

=
r∑

i=1

∫ ∞

0

Si
c

fCi (c)
∏
i ′ �=i

(
1 − FCi ′

(
Si ′

Si
c

))
dc.

This proves the theorem. ��

Our main problem here is to find chunk sizes S1, S2, . . . ,
Sr , such that the expectedparallel download timeE(TA(S, r))
is minimized. This is a well defined multi-variable optimiza-
tion problem.Unfortunately, the problem is very complicated
to solve, even numerically. In this paper, we will analyze sev-
eral simple heuristic solutions to the problem.

3.2 Algorithm PD0 and analysis

3.2.1 Algorithm

In the naive parallel download algorithm PD0, a file of size S
is divided into r chunks of equal size, i.e., S1 = S2 = · · · =
Sr = S/r [10]. Algorithm PD0 has no knowledge of and
does not probe the current service capacities of the source
peers.

3.2.2 Analysis

The following theorem gives the expected parallel download
time of algorithm PD0 for a file of size S from r source peers.

Theorem 3 The expected parallel download time of algo-
rithm PD0 is

E(TPD0(S, r)) = SE(TPD0(1, r)),

where

E(TPD0(1, r)) = 1

r

∫ ∞

0

1

c2

(
1 −

r∏
i=1

(
1 − FCi (c)

))
dc,

or, equivalently,

E(TPD0(1, r)) = 1

r

r∑
i=1

∫ ∞

0

fCi (c)

c

∏
i ′ �=i

(
1 − FCi ′ (c)

)
dc,

is the expected download time of one unit of data.

123

Author's personal copy

Design and analysis of parallel file downloading algorithms in peer-to-peer networks

Proof The parallel download time of algorithm PD0 for a
file of size S from r source peers is

TPD0(S, r) = max

{
T1

(
S

r

)
, T2

(
S

r

)
, . . . , Tr

(
S

r

)}
.

The cdf of TPD0(S, r) is

FTPD0 (S,r)(t) =
r∏

i=1

(
1 − FCi

(
S

rt

))
,

and the pdf of TPD0(S, r) is

fTPD0 (S,r)(t) =
r∑

i=1

S

rt2
fCi

(
S

rt

) ∏
i ′ �=i

(
1 − FCi ′

(
S

rt

))
,

for all t > 0.
The expected parallel download time of algorithm PD0 is

E(TPD0(S, r)) =
∫ ∞

0
(1 − FTPD0 (S,r)(t))dt

=
∫ ∞

0

(
1 −

r∏
i=1

(
1 − FCi

(
S

rt

)))
dt

=
∫ 0

∞

(
1 −

r∏
i=1

(
1 − FCi (c)

))

×
(

− S

rc2

)
dc

(
by letting c = S

rt

)

=
∫ ∞

0

S

rc2

(
1 −

r∏
i=1

(
1 − FCi (c)

))
dc

= SE(TPD0(1, r)),

where

E(TPD0(1, r)) = 1

r

∫ ∞

0

1

c2

(
1 −

r∏
i=1

(
1 − FCi (c)

))
dc,

or, equivalently, by Theorem 2,

E(TPD0(S, r)) =
r∑

i=1

∫ ∞

0

S

rc
fCi (c)

∏
i ′ �=i

(
1 − FCi ′ (c)

)
dc

= SE(TPD0(1, r)),

where

E(TPD0(1, r)) = 1

r

r∑
i=1

∫ ∞

0

fCi (c)

c

∏
i ′ �=i

(
1 − FCi ′ (c)

)
dc.

This proves the theorem. ��

For homogeneous source peers, we get the cdf of TPD0

(S, r),

FTPD0 (S,r)(t) =
(
1 − FC

(
S

rt

))r

,

and the pdf of TPD0(S, r),

fTPD0 (S,r)(t) = S

t2
fC

(
S

rt

) (
1 − FC

(
S

rt

))r−1

,

for all t > 0. The expected parallel download time of algo-
rithm PD0 is

E(TPD0(S, r)) =
∫ ∞

0

S

rc2
(
1 − (1 − FC (c))r

)
dc

= SE(TPD0(1, r)),

where

E(TPD0(1, r)) = 1

r

∫ ∞

0

1

c2
(
1 − (1 − FC (c))r

)
dc,

or, equivalently,

E(TPD0(S, r)) =
∫ ∞

0

S

c
fC (c) (1 − FC (c))r−1 dc

= SE(TPD0(1, r)),

where

E(TPD0(1, r)) =
∫ ∞

0

fC (c)

c
(1 − FC (c))r−1 dc.

3.3 Algorithm PD1 and analysis

3.3.1 Algorithm

Our algorithm PD1 for parallel download and chunk alloca-
tion without probing works as follows. Instead of dividing a
file into chunks of equal sizes, algorithm PD1 divides a file
of size S into chunks of sizes S1, S2, . . . , Sr , such that all the
r source peers have the same expected download time, i.e.,

E(T1(S1)) = E(T2(S2)) = · · · = E(Tr (Sr)).

Algorithm PD1 has no knowledge of and does not probe
the current service capacities of the source peers. However,
algorithm PD1 attempts to do chunk allocation based on the
expected behavior of source peers (e.g., the expected down-
load time of one unit of data, which is certainly available,
since we assume that the pdf of each source peer is known).

123

Author's personal copy

K. Li

Since E(Ti (Si)) = SiE(Ti (1)), for all 1 ≤ i ≤ r , where
E(Ti (1)) is given by Theorem 1, we have

S1E(T1(1)) = S2E(T2(1)) = · · · = SrE(Tr (1)) = T,

for some T , which implies that

Si = T

E(Ti (1))
.

Since S1 + S2 + · · · + Sr = S, we have

T

E(T1(1))
+ T

E(T2(1))
+ · · · + T

E(Tr (1))
= S,

which gives rise to

T = S

(
r∑

i=1

1

E(Ti (1))

)−1

,

and

Si = S

E(Ti (1))

(
r∑

i=1

1

E(Ti (1))

)−1

,

for all 1 ≤ i ≤ r . In words, each chunk size is proportional
to the reciprocal of the expected download time of one unit
of data from a source peer.

3.3.2 Analysis

The following theorem gives the expected parallel download
time of algorithm PD1 for a file of size S from r source peers.

Theorem 4 The expected parallel download time of algo-
rithm PD1 is

E(TPD1(S, r)) = SE(TPD1(1, r)),

where

E(TPD1(1, r))

=
(

r∑
i=1

1

E(Ti (1))

)−1

×
r∑

i=1

1

E(Ti (1))

∫ ∞

0

fCi (c)

c

∏
i ′ �=i

(
1 − FCi ′

(
E(Ti (1))

E(Ti ′(1))
c

))
dc,

is the expected download time of one unit of data.

Proof The parallel download time of algorithm PD1 for a
file of size S from r source peers is

TPD1(S, r) = max{T1(S1), T2(S2), . . . , Tr (Sr)}.

By Theorem 2, the expected parallel download time of algo-
rithm PD1 is

E(TPD1(S, r))

=
r∑

i=1

∫ ∞

0

Si
c

fCi (c)
∏
i ′ �=i

(
1 − FCi ′

(
Si ′

Si
c

))
dc

=
r∑

i=1

∫ ∞

0

Si
c

fCi (c)
∏
i ′ �=i

(
1 − FCi ′

(
E(Ti (1))

E(Ti ′(1))
c

))
dc

=
r∑

i=1

∫ ∞

0

S

cE(Ti (1))

(
r∑

i=1

1

E(Ti (1))

)−1

fCi (c)

∏
i ′ �=i

(
1 − FCi ′

(
E(Ti (1))

E(Ti ′(1))
c

))
dc

= SE(TPD1(1, r)),

where

E(TPD1(1, r))

=
(

r∑
i=1

1

E(Ti (1))

)−1

×
r∑

i=1

1

E(Ti (1))

∫ ∞

0

fCi (c)

c

∏
i ′ �=i

(
1 − FCi ′

(
E(Ti (1))

E(Ti ′(1))
c

))
dc.

This proves the theorem. ��

For r source peers with E(T1(1)) = E(T2(1)) = · · · =
E(Tr (1)) (including the case of homogeneous source peers),
algorithm PD1 works in exactly the same way as algorithm
PD0, namely, dividing S into r chunks of equal size S/r .

3.4 Algorithm PD2 and analysis

3.4.1 Algorithm

Algorithm PD2 for parallel download and chunk alloca-
tion without probing works as follows. Instead of allocating
chunks to source peers in proportion to the reciprocals of their
expected download times of one unit of data, chunk sizes are
proportional to the expected service capacities, that is,

Si =
(

E(Ci)

E(C1) + E(C2) + · · · + E(Cr)

)
S,

for all 1 ≤ i ≤ r . Since the expected download time of one
unit of data and the expected service capacity of a source
peer are not reciprocals of each other [19] due to Jensen’s
inequality (see [32], p. 579), algorithms PD1 and PD2 are
different.

123

Author's personal copy

Design and analysis of parallel file downloading algorithms in peer-to-peer networks

Fig. 1 A parallel download and
chunk allocation algorithm with
probing

3.4.2 Analysis

The following theorem gives the expected parallel download
time of algorithm PD2 for a file of size S from r source peers.

Theorem 5 The expected parallel download time of algo-
rithm PD2 is

E(TPD2(S, r)) = SE(TPD2(1, r)),

where

E(TPD2(1, r)) =
(

1

E(C1) + E(C2) + · · · + E(Cr)

)

×
r∑

i=1

E(Ci)

∫ ∞

0

fCi (c)

c

∏
i ′ �=i

(
1 − FCi ′

(
E(Ci ′)

E(Ci)
c

))
dc,

is the expected download time of one unit of data.

Proof Similar to the analysis of algorithm PD1, the expected
parallel download time of algorithm PD2 can be obtained as
follows,

E(TPD2(S, r))

=
r∑

i=1

∫ ∞

0

Si
c

fCi (c)
∏
i ′ �=i

(
1 − FCi ′

(
Si ′

Si
c

))
dc

=
r∑

i=1

∫ ∞

0

Si
c

fCi (c)
∏
i ′ �=i

(
1 − FCi ′

(
E(Ci ′)

E(Ci)
c

))
dc

=
r∑

i=1

∫ ∞

0

S

c

(
E(Ci)

E(C1) + E(C2) + · · · + E(Cr)

)

× fCi (c)
∏
i ′ �=i

(
1 − FCi ′

(
E(Ci ′)

E(Ci)
c

))
dc

= SE(TPD2(1, r)),

where

E(TPD2(1, r)) =
(

1

E(C1) + E(C2) + · · · + E(Cr)

)

×
r∑

i=1

E(Ci)

∫ ∞

0

fCi (c)

c

∏
i ′ �=i

(
1 − FCi ′

(
E(Ci ′)

E(Ci)
c

))
dc.

This proves the theorem. ��
For r source peers with E(C1) = E(C2) = · · · = E(Cr)

(including the case of homogeneous source peers), algo-
rithm PD2 works in exactly the same way as algorithm PD0,
namely, dividing S into r chunks of equal size S/r .

3.5 Algorithm PD3 and analysis

3.5.1 Algorithm

Our algorithm PD3 for parallel download and chunk alloca-
tion with probing is given in Fig. 1. The algorithm consists
of two stages. In the first stage (lines (1)–(3)), the service
capacities of the r source peers are probed simultaneously by
downloading one chunk of size S∗ from each source, where
S∗ is a network-wide parameter agreed by and acceptable to
all source and user peers. S∗ should be reasonably chosen,
e.g., 10 MB, to probe the current service capacities. After
the first stage is performed, the algorithm knows the current
service capacity Ci of each source peer i , where 1 ≤ i ≤ r .
The parallel download time of the first stage is

max{T1(S∗), T2(S∗), . . . , Tr (S∗)} = TPD0(r S
∗, r).

In the second stage (lines (4)–(9)), the rest of the file of size
S−r S∗ is divided into r chunks of different sizes according to

123

Author's personal copy

K. Li

the Ci ’s detected in the first stage, such that all the r parallel
downloads complete at the same time. It is clear that the size
Si of the i th chunk to be downloaded from source peer i
should be

Si =
(

Ci

C1 + C2 + · · · + Cr

)
(S − r S∗),

for all 1 ≤ i ≤ r . The parallel download time of the second
stage is

T ′
PD3

(S, r) = S − r S∗

C1 + C2 + · · · + Cr
.

Summarizing the abovediscussion, the overall parallel down-
load time of algorithm PD3 for a file of size S from r source
peers is

TPD3(S, r) = TPD0(r S
∗, r) + T ′

PD3
(S, r).

If service capacities do not change after probing, algorithm
PD3 is already close to the optimal by achieving perfect load
balancing in the second stage.

3.5.2 Analysis

Further analysis of T ′
PD3

(S, r) depends on the fCi (c)’s. For
instance, consider the case whenCi is a normal random vari-
able with mean μCi and variance σ 2

Ci
, i.e.,

fCi (c) = 1√
2πσCi

e
−(c−μCi)

2/(2σ 2
Ci

)
,

where we assume that μCi is reasonably large while σCi

is reasonably small such that the distribution of fCi (c) in
(−∞, 0] is negligible. It is well known that for a normal
random variable Ci , the probability that its value is in the
range [μCi − 3σCi , μCi + 3σCi] is 99.73 %. The normal
distribution is chosen here for analytical tractability. For all
other real or synthetic probability distributions, simulations
can be conducted for experimental performance evaluation
(see Sect. 5.2.3). Let Φ(x) be the cdf of a standard normal
distribution.

The following theorem gives the expected parallel down-
load time of algorithm PD3 for a file of size S from r source
peers.

Theorem 6 If Ci is a normal random variable with para-
meters μCi and σ 2

Ci
, where 1 ≤ i ≤ r , the expected parallel

download time of algorithm PD3 is

E(TPD3(S, r)) = SE(TPD3(1, r)) + KPD3(r),

where

E(TPD3(1, r)) = E(T ′
PD3

(1, r)),

and

KPD3(r) = r S∗(E(TPD0(1, r)) − E(T ′
PD3

(1, r))),

and

E(T ′
PD3

(1, r)) = σr

∫ ∞

−μr /σr

Φ(x)

(σr x + μr)2
dx,

with

μr = μC1 + μC2 + · · · + μCr ,

and

σ 2
r = σ 2

C1
+ σ 2

C2
+ · · · + σ 2

Cr
.

Proof It is clear that if Ci is a normal random variable with
parameters μCi and σ 2

Ci
, for all 1 ≤ i ≤ r , then, C1 + C2 +

· · · + Cr is also a normal random variable with parameters

μr = μC1 + μC2 + · · · + μCr ,

and

σ 2
r = σ 2

C1
+ σ 2

C2
+ · · · + σ 2

Cr
.

This gives rise to the cdf of T ′
PD3

(S, r) as follows,

FT ′
PD3

(S,r)(t) = P
[
T ′
PD3

(S, r) ≤ t
]

= P
[

S − r S∗

C1 + C2 + · · · + Cr
≤ t

]

= P
[
C1 + C2 + · · · + Cr ≥ S − r S∗

t

]

= 1 − Φ

(
(S − r S∗)/t − μr

σr

)
,

and the pdf of T ′
PD3

(S, r) as follows,

fT ′
PD3

(S,r)(t) = S − r S∗
√
2πσr t2

e−((S−r S∗)/t−μr)
2/(2σ 2

r),

123

Author's personal copy

Design and analysis of parallel file downloading algorithms in peer-to-peer networks

for all t > 0. The expectation of T ′
PD3

(S, r) is

E(T ′
PD3

(S, r))

=
∫ ∞

0

(
1 − FT ′

PD3
(S,r)(t)

)
dt

=
∫ ∞

0
Φ

(
(S − r S∗)/t − μr

σr

)
dt

=
∫ −μr /σr

∞
Φ(x)

(
−σr (S − r S∗)

(σr x + μr)2

)
dx

(
by letting x = 1

σr

(
S − r S∗

t
− μr

))

= σr (S − r S∗)
∫ ∞

−μr /σr

Φ(x)

(σr x + μr)2
dx

= (S − r S∗)E(T ′
PD3

(1, r)),

where

E(T ′
PD3

(1, r)) = σr

∫ ∞

−μr /σr

Φ(x)

(σr x + μr)2
dx

= σr

(∫ 3.5

−μr /σr

Φ(x)

(σr x + μr)2
dx

+
∫ ∞

3.5

Φ(x)

(σr x + μr)2
dx

)

≈ σr

(∫ 3.5

−μr /σr

Φ(x)

(σr x + μr)2
dx

+
∫ ∞

3.5

1

(σr x + μr)2
dx

)

(notice that Φ(x) ≈ 1 for x ≥ 3.5)

= σr

(∫ 3.5

−μr /σr

Φ(x)

(σr x + μr)2
dx

+ 1

σr (3.5σr + μr)

)
.

Finally, we notice that the expectation of TPD3(S, r) is
simply

E(TPD3(S, r)) = E(TPD0(r S
∗, r)) + E(T ′

PD3
(S, r))

= r S∗E(TPD0(1, r))

+ (S − r S∗)E(T ′
PD3

(1, r))

= SE(T ′
PD3

(1, r))

+ r S∗(E(TPD0(1, r)) − E(T ′
PD3

(1, r)))

= SE(TPD3(1, r)) + KPD3(r),

where

E(TPD3(1, r)) = E(T ′
PD3

(1, r))

0 100 200 300 400 500 600 700 800 900 1000

S

0

5

10

15

20

25

30

35

40

T
he

ex
pe
ct
ed

pa
ra
lle
ld

ow
nl
oa
d
tim

e
(m

in
ut
es
)

...............
................

................
................

................
................

.................
................

................
................

................
................

................
.................

...............
................

................
................

................
.................

................
................

................
................

................
................

.................
................

................
................

................
................

.................
...............

................
................

................
................

................
.................

................
................

................
................

................
................

.................
................

................
................

................
................

................
................

................
................

................
................

................
......

.................
.................

.................
................

.................
.................

.................
.................

.................
.................

................
.................

..................
................

.................
.................

................
.................

..................
.................

................
.................

.................
................

..................
.................

.................
................

.................
.................

.................
.................

.................
.................

................
.................

..................
................

.................
.................

.................
................

.................
..................

................
.................

.................
.................

................
..................

.................
................

.................
.................

.................
........

.....................
......................

.....................
......................

.......................
......................

......................
......................

.......................
......................

.....................
......................

......................
.......................

......................
......................

......................
.......................

.....................
......................

......................
......................

.......................
......................

......................
......................

.......................
......................

.....................
......................

.......................
......................

......................
......................

......................
.......................

.....................
......................

......................
.............

IPID0

IPID1
IPID2

IPID3

Fig. 2 The expected parallel download time versus file size

and

KPD3(r) = r S∗(E(TPD0(1, r)) − E(T ′
PD3

(1, r)))

are constants independent of S. ��

We also notice that the pdf of TPD3(S, r), which involves
the pdf of TPD0(r S

∗, r) + T ′
PD3

(S, r), is very complicated.
For homogeneous source peers, we have μr = rμC , and

σ 2
r = rσ 2

C . Consequently,

E(T ′
PD3

(1, r)) = σC√
r

∫ ∞

−√
rμC/σC

Φ(x)

(σCx + √
rμC)2

dx .

4 Performance comparison

In this section, we present a numerical example to compare
the performance of the algorithms discussed in this paper. As
in most P2P file sharing and exchange systems, the file sizes
S are in the range 10 − 1500 MB [1]. We set the chunk size
S∗ = 10 MB. The service capacity of a source peer is in the
range 50 − 1000 kbps, i.e., 0.375 − 7.5 MB/min.

Let us consider a P2P file sharing system with n = 10
source peers. Assume that Ci has a normal distribution with
parameters μCi and σ 2

Ci
, where μCi = 3 + 0.2(i − 1) and

σCi = 0.5 + 0.05(i − 1), for all 1 ≤ i ≤ n. (Notice that a
larger service capacity tends to have greater variance. Also,
these values are for demonstration purpose only.) In Fig. 2,
we show the expected parallel download time of algorithm
PD� as a function of file size S, where 0 ≤ � ≤ 3, and 100 ≤
S ≤ 1000. All the data are calculated by using Theorems 3–
6. It is observed that algorithms PD1 and PD2 perform better
than algorithm PD0 by careful chunk allocation based on the
expected behavior of source peers. Although algorithm PD2

performs slightly better than algorithm PD1, the difference
is not noticeable in this example. Algorithm PD3 (with S∗ =

123

Author's personal copy

K. Li

0 1 2 3 4 5 6 7 8 9 10

r

0

20

40

60

80

100

120

140
T
he

ex
pe
ct
ed

pa
ra
lle
ld

ow
nl
oa
d
tim

e
(m

in
ut
es
) ..

...

IPID0

IPID3

Fig. 3 The expected parallel download time versus parallelism (S =
500)

10) performs significantly better than PD0,PD1, and PD2 by
probing source peers.

In Fig. 3, we consider a P2P file sharing system with r
homogeneous source peers whose service capacity has a nor-
mal distribution with parameters μC = 3.9 and σ 2

C = 1.0.
We show the expected parallel download time of algorithm
PD�(� = 0, 3) as a function of the parallelism r , where
1 ≤ r ≤ 10, for a file of size S = 500. Since algorithms
PD0,PD1,PD2 are identical for homogeneous source peers,
we only show the curves for PD0 and PD3. It is observed that
the the expected parallel download time decreases dramati-
cally, although not linearly, as the number r of source peers
increases. This implies that parallelism indeed improves the
performance of file downloading.

5 Multiple downloads and optimal parallelism

For multiple downloads, we have N files of sizes S1, S2, . . . ,
SN to be downloaded from n source peers 1, 2, . . . , n. All
source peers in this section are homogeneous whose service
capacities are random variable C .

5.1 Algorithm PD
∗
�
and analysis

5.1.1 Algorithm

Our algorithm PD
∗
� for multiple downloads works as fol-

lows. We divide the n source peers into k = n/r clusters,
each having r source peers. We also divide the N files into
k groups, where group j contains b = N/k = Nr/n
files S(j−1)b+1, S(j−1)b+2, . . . , S jb, for all 1 ≤ j ≤ k. For
examples, group 1 contains S1, S2, . . . , Sb; group 2 contains
Sb+1, Sb+2, . . . , S2b; and so on. Let

G j = S(j−1)b+1 + S(j−1)b+2 + ·s + S jb

be the total workload of group j . A file in group j is down-
loaded from the r source peers in cluster j in parallel by
using the algorithm PD�, where 0 ≤ � ≤ 3. Files in the same
group are downloaded one at a time.

5.1.2 Analysis

Let TPD�
(G j , r) denote the parallel download time of algo-

rithm PD� for all files in group j from the r source peers in
cluster j , where 1 ≤ j ≤ k, and 0 ≤ � ≤ 3. It is clear that

TPD�
(G j , r) = TPD�

(S(j−1)b+1, r) + TPD�
(S(j−1)b+2, r)

+ · · · + TPD�
(S jb, r).

Our analysis in the last section reveals that for all 0 ≤ � ≤ 3,
the expected parallel download time of algorithm PD� for a
file of size S from r source peers is a linear function of S,
namely,

E(TPD�
(S, r)) = SE(TPD�

(1, r)) + KPD�
(r).

In fact, KPD�
(r) = 0 except for � = 3. Hence, the expected

parallel download time of algorithmPD� for all files in group
j from the r source peers in cluster j is a linear function of
G j calculated as follows,

E(TPD�
(G j , r))

= E(TPD�
(S(j−1)b+1, r)) + E(TPD�

(S(j−1)b+2, r))

+ · · · + E(TPD�
(S jb, r))

= (S(j−1)b+1E(TPD�
(1, r)) + KPD�

(r))

+ (S(j−1)b+2E(TPD�
(1, r)) + KPD�

(r))

+ · · · + (S jbE(TPD�
(1, r)) + KPD�

(r))

= (S(j−1)b+1 + S(j−1)b+2 + · · · + S jb)E(TPD�
(1, r))

+ bKPD�
(r)

= G jE(TPD�
(1, r)) + bKPD�

(r).

Let TPD∗
�
(N , n) denote the download time of algorithm PD

∗
�

for N files from n source peers. Then, we have

TPD∗
�
(N , n) = max{TPD�

(G1, r),

TPD�
(G2, r), . . . , TPD�

(Gk, r)}.

Unfortunately, the pdf of TPD∗
�
(N , n) (in fact, even the pdf

of TPD�
(G j , r)) is too complicated, which makes the evalu-

ation of E(TPD∗
�
(N , n)) analytically intractable. Instead, we

consider

T ′
PD

∗
�
(N , n) = max{E(TPD�

(G1, r)),

E(TPD�
(G2, r)), . . . ,E(TPD�

(Gk, r))},

123

Author's personal copy

Design and analysis of parallel file downloading algorithms in peer-to-peer networks

where the expectation of TPD�
(G j , r) is with respect to

the random service capacities of the r source peers in
cluster j . Notice that T ′

PD
∗
�
(N , n) is also a random vari-

able, whose expectation with respect to the random G j ’s
is given by the following theorem. (Notice that TPD∗

�
(N , n)

and T ′
PD

∗
�
(N , n) are different. While T ′

PD
∗
�
(N , n) may reveal

some useful information, it cannot substitute TPD∗
�
(N , n).

To understand TPD∗
�
(N , n), we can conduct experiments

to study E(TPD∗
�
(N , n)). Such experiments are reported in

Sect. 5.2.3.)

Theorem 7 If S1, S2, . . . , SN are independent and identi-
cally distributed normal random variables with parameters
μS and σ 2

S , we have

E(T ′
PD

∗
�
(N , n)) = E(W)E(TPD�

(1, r)) + Nr

n
KPD�

(r),

where

W = max{G1,G2, . . . ,Gk},

and

E(W) =
√

Nr

n
σS

(√
Nr

n
· μS

σS
− 3.5

+
∫ ∞

−3.5

(
1 − (Φ(x))k

)
dx

)
.

Proof It is clear that

T ′
PD

∗
�
(N , n)

= max{E(TPD�
(G1, r)),

E(TPD�
(G2, r)), . . . ,E(TPD�

(Gk, r))}
= max{G1E(TPD�

(1, r)),

G2E(TPD�
(1, r)), . . . ,GkE(TPD�

(1, r))}
+ bKPD�

(r)

= max{G1,G2, . . . ,Gk}E(TPD�
(1, r))

+ bKPD�
(r)

= WE(TPD�
(1, r)) + bKPD�

(r),

where

W = max{G1,G2, . . . ,Gk}.

Notice that

E(T ′
PD

∗
�
(N , n)) = E(W)E(TPD�

(1, r)) + Nr

n
KPD�

(r),

where the terms E(W) and b = Nr/n include the effect
of the overhead of intercluster parallelism and the terms

E(TPD�
(1, r)) and KPD�

(r) include the effect of the over-
head of intracluster parallelism.

To evaluate E(W), we need further information of
S1, S2, . . . , SN . If S1, S2, . . . , SN are independent and iden-
tically distributed random variables with pdf fS(s) in [0,∞),
and furthermore, fS(s) has a normal distribution with para-
metersμS and σ 2

S , then,G j is a normal random variable with
parameters μG j = bμS and σ 2

G j
= bσ 2

S , for all 1 ≤ j ≤ k.
This gives the cdf of W as

FW (w) = P[W ≤ w]

=
k∏
j=1

P[G j ≤ w]

=
k∏
j=1

FG j (w)

=
k∏
j=1

Φ

(
w − μG j

σG j

)

=
(

Φ

(
w − bμS√

bσS

))k

,

and the pdf of W as

fW (w)=k

(
Φ

(
w − bμS√

bσS

))k−1 1√
2πbσS

e−(w−bμS)
2/(2bσ 2

S),

for all w > 0, and the expectation of W as

E(W) =
∫ ∞

0
(1 − FW (w)) dw

=
∫ ∞

0

(
1 −

(
Φ

(
w − bμS√

bσS

))k
)
dw

=
∫ ∞

−√
bμS/σS

√
bσS

(
1 − (Φ(x))k

)
dx

(
by letting x = w − bμS√

bσS

)

= √
bσS

(∫ −3.5

−√
bμS/σS

(
1 − (Φ(x))k

)
dx

+
∫ ∞

−3.5

(
1 − (Φ(x))k

)
dx

)

≈ √
bσS

(√
bμS/σS − 3.5

+
∫ ∞

−3.5

(
1 − (Φ(x))k

)
dx

)

=
√

Nr

n
σS

(√
Nr

n
· μS

σS
− 3.5

+
∫ ∞

−3.5

(
1 − (Φ(x))k

)
dx

)
,

123

Author's personal copy

K. Li

where we notice that Φ(x) ≈ 0 for x ≤ −3.5. ��

We would like to mention that if S1, S2, . . . , SN are not
normal random variables and have any real or synthetic
probability distributions, simulations can be conducted for
experimental performance study (see Sect. 5.2.3).

5.2 Optimal parallelism

5.2.1 Overhead of parallelism

There are two kinds of overhead of parallelism, i.e., synchro-
nization for parallel download.

• Intracluster overhead – This is the peer level overhead,
i.e., the extra time for synchronization of the r par-
allel downloads of a file caused by load imbalance
among chunks and/or heterogeneity of service capaci-
ties. If a file of size Sa is divided into r chunks of sizes
Sa,1, Sa,2, . . . , Sa,r , and chunk Sa,i is downloaded from
source peer i , for all 1 ≤ i ≤ r in parallel, it is practi-
cally impossible to achieve T1(Sa,1) = T2(Sa,2) = · · · =
Tr (Sa,r).

• Intercluster overhead – This is the cluster level overhead,
i.e., the extra time for synchronization of the k parallel
downloads of k groups of files caused by load imbalance
among groups and/or heterogeneity of service capacities.
It is practically impossible to have the k clusters to com-
plete their downloads at the same time.

The parameter r is the degree of parallelism at the peer level.
The parameter k is the degree of parallelism at the cluster
level. When r is small, the intracluster overhead of paral-
lelism is small; however, the number of clusters k is large,
which causes large load imbalance among the clusters and
the intercluster overhead of parallelism is large. On the other
hand, when r is large, the intracluster overhead of paral-
lelism is large due to increased load imbalance among the
source peers in a cluster, while the intercluster overhead of
parallelism is small due to decreased load imbalance among
the clusters. Therefore, there is an optimal choice of the
parallelism r which minimizes the combined effect of intr-
acluster and intercluster overhead of parallel download and
load imbalance.

5.2.2 Numerical data

Our main problem in this section is to find r such that
E(T ′

PD
∗
�
(N , n)) is minimized.

Consider the case when C is a normal random variable
with parameters μC and σ 2

C . Based on Theorems 3,4, and 5
of the last section, we have

E(TPD0(1, r)) = E(TPD1(1, r))

= E(TPD2(1, r))

= 1

r

∫ ∞

0

1

c2
(
1 − (1 − FC (c))r

)
dc

= 1

r

∫ ∞

0

1

c2

(
1 −

(
1 − Φ

(
c − μC

σC

))r)
dc

= σC

r

∫ ∞

−μC/σC

(
1 − (1 − Φ(x))r

)
(σCx + μC)2

dx

(
by letting x = c − μC

σC

)

= σC

r

(∫ 3.5

−μC/σC

(
1 − (1 − Φ(x))r

)
(σCx + μC)2

dx

+
∫ ∞

3.5

(
1 − (1 − Φ(x))r

)
(σC x + μC)2

dx

)

≈ σC

r

(∫ 3.5

−μC/σC

(
1 − (1 − Φ(x))r

)
(σCx + μC)2

dx

+
∫ ∞

3.5

1

(σC x + μC)2
dx

)

= σC

r

(∫ 3.5

−μC/σC

(
1 − (1 − Φ(x))r

)
(σCx + μC)2

dx

+ 1

σC (3.5σC + μC)

)
,

where we notice that Φ(x) ≈ 1 for x ≥ 3.5. By Theorem 6,
we also have

E(TPD3(1, r)) = σC√
r

∫ ∞

−√
rμC/σC

Φ(x)

(σCx + √
rμC)2

dx

= σC√
r

(∫ 3.5

−√
rμC/σC

Φ(x)

(σCx + √
rμC)2

dx

+
∫ ∞

3.5

Φ(x)

(σC x + √
rμC)2

dx

)

≈ σC√
r

(∫ 3.5

−√
rμC/σC

Φ(x)

(σCx + √
rμC)2

dx

+
∫ ∞

3.5

1

(σC x + √
rμC)2

dx

)

= σC√
r

(∫ 3.5

−√
rμC/σC

Φ(x)

(σCx + √
rμC)2

dx

+ 1

σC (3.5σC + √
rμC)

)
,

and

KPD3(r) = r S∗(E(TPD0(1, r)) − E(TPD3(1, r))).

123

Author's personal copy

Design and analysis of parallel file downloading algorithms in peer-to-peer networks

0 4 8 12 16 20 24 28 32

r

250

260

270

280

290

300

310

320

330

340

350
T
he

ex
pe
ct
ed

pa
ra
lle
ld

ow
nl
oa
d
tim

e
(m

in
ut
es
) ...

...
..

..
..

..
..

..
................................

...
..

...
..........................

..........................
.........................

.........................
.........................

..........................
.........................

.........................
.........................

.........................
..........................

.........................
.........................

.........................
..........................

.........................
.........................

.........................
.............

IPID0

IPID3

Fig. 4 The expected parallel download time versus parallelism (n =
32, N = 64)

Let us consider a P2P file sharing system with n = 32
homogeneous source peers whose service capacity has a nor-
mal distribution with parameters μC = 4.0 and σC = 0.5.
Assume that we are going to download N = 64 files whose
sizes have a normal distribution with parameters μS = 500
and σS = 130. In Fig. 4, we show the expected parallel down-
load time of algorithm PD�(� = 0, 3) as a function of the
parallelism r , where 1 ≤ r ≤ 32. All the data are calculated
by using Theorem 7. Since algorithms PD0,PD1,PD2 are
identical for homogeneous source peers, we only show the
curves for PD0 and PD3 (with S∗ = 10). It is observed that
the expected parallel download time is sensitive to the config-
uration of a P2P file sharing system, i.e., how the source peers
are divided into clusters. Assume that r = 1, 2, 4, 8, 16, 32.
Then, the best parallelism for both algorithms PD0 and PD3

is r = 8.

5.2.3 Simulation results

As mentioned before, TPD∗
�
(N , n), the download time of

algorithm PD
∗
� for N files from n source peers, is an

extremely sophisticated random variable beyond analy-
sis. However, simulations can be performed to evaluate
E(TPD∗

�
(N , n)), where the expectation is taken with respect

to the random service capacitiesC1,C2, . . . ,Cn and random
file sizes S1, S2, . . . , SN .

Again, we consider parallel downloading of N = 64 files
from a P2P file sharing system with n = 32 homogeneous
source peers. We consider algorithm PD

∗
�(p, q)(� = 0, 3).

If p = 0, the service capacities have a normal distribution
with parameters μC = 4.0 and σC = 0.5. If p = 1, the
service capacities have a uniform distribution in the range
[4 − √

3/2, 4 + √
3/2], with mean μC = 4.0 and variance

σ 2
C = 0.25 (i.e., σC = 0.5). If q = 0, the file sizes have a nor-

mal distribution with parameters μS = 500 and σS = 130.
If q = 1, the file sizes have a Pareto distribution (commonly
used for modeling a power law probability distribution) with
pdf

0 4 8 12 16 20 24 28 32

r

250

270

290

310

330

350

370

390

410

430

450

T
he

ex
pe
ct
ed

pa
ra
lle
ld

ow
nl
oa
d
tim

e
(m

in
ut
es
)

..

..

...

..

IPID∗
0(0,1)

IPID
∗
0(0,0)

IPID
∗
0(1,1)

IPID
∗
0(1,0)

Fig. 5 The expected parallel download timeE(TPD∗
0
(N , n))versus par-

allelism (n = 32, N = 64)

fS(s) = αβα

sα+1 ,

in the range [β,∞), where α is the shape parameter and β is
the scale parameter. We set α = 5 and β = 400, such that

μS = αβ

α − 1
= 500,

and

σS = β

α − 1

√
α

α − 2
= 100

√
5

3
≈ 129.

Since algorithms PD0,PD1,PD2 are identical for homoge-
neous source peers, we only consider PD0 and PD3.

In Fig. 5, we show the expected parallel download
time E(TPD∗

0
(N , n)) with PD

∗
0(0, 0),PD

∗
0(0, 1),PD

∗
0(1, 0),

PD
∗
0(1, 1). All the data are obtained from simulations. In

each experiment, we generate n random service capacities
and N random file sizes based on the probability distrib-
utions specified by p and q. Then algorithm PD

∗
0 is used

to get the parallel download time. Consider the j th cluster
of source peers C(j−1)r+1,C(j−1)r+2, . . . ,C jr which pro-
vide files S(j−1)b+1, S(j−1)b+2, . . . , S jb in group j . Then,
we have

TPD0 (G j , r) =
b∑

i=1

max

(
S(j−1)b+i

rC(j−1)r+1
,

S(j−1)b+i

rC(j−1)r+2
, . . . ,

S(j−1)b+i

rC jr

)

=
b∑

i=1

S(j−1)b+i

r
· 1

min(C(j−1)r+1,C(j−1)r+2, . . . ,C jr)

= 1

r
· 1

min(C(j−1)r+1,C(j−1)r+2, . . . ,C jr)

b∑
i=1

S(j−1)b+i

= G j

r
· 1

min(C(j−1)r+1,C(j−1)r+2, . . . ,C jr)
,

for all 1 ≤ j ≤ k, and

123

Author's personal copy

K. Li

0 4 8 12 16 20 24 28 32

r

250

270

290

310

330

350

370

390

410

430

450
T
he

ex
pe
ct
ed

pa
ra
lle
ld

ow
nl
oa
d
tim

e
(m

in
ut
es
)

...
..

..
..

..
..

..
..

..
....

...
..

...
..

..
..

...
..

...

..
..

..
..

..

...
...

...
...

...
..........

IPID ∗
3(0,1)

IPID ∗
3(0,0)

IPID ∗
3(1,1)

IPID ∗
3(1,0)

Fig. 6 The expected parallel download timeE(TPD∗
3
(N , n))versus par-

allelism (n = 32, N = 64)

TPD∗
0
(N , n) = max{TPD0(G1, r),

TPD0(G2, r), . . . , TPD0(Gk, r)}.

Each data in the figure is the average of the data obtained from
10,000 repeated experiments, such that the 99 % confidence
interval is no more than ±0.57 %. It is observed from these
simulation results that E(TPD∗

0
(N , n)) is actually a decreas-

ing function of r , i.e., larger parallelism with fewer clusters
result in reduced parallel downloading time.

In Fig. 6, we show the expected parallel download
time E(TPD∗

3
(N , n)) with PD

∗
3(0, 0),PD

∗
3(0, 1),PD

∗
3(1, 0),

PD
∗
3(1, 1). We follow the same procedure as Fig. 5. It is

noticed that

TPD3(G j , r) =
b∑

i=1

(
max

(
S∗

C(j−1)r+1
, . . . ,

S∗

C jr

)

+ S(j−1)b+i − r S∗

C(j−1)r+1 + · · · + C jr

)

=
b∑

i=1

(
S∗

min(C(j−1)r+1, . . . ,C jr)

+ S(j−1)b+i − r S∗

C(j−1)r+1 + · · · + C jr

)

= b

(
S∗

min(C(j−1)r+1, . . . ,C jr)

− r S∗

C(j−1)r+1 + · · · + C jr

)

+ 1

C(j−1)r+1 + · · · + C jr

b∑
i=1

S(j−1)b+i

= b

(
S∗

min(C(j−1)r+1, . . . ,C jr)

− r S∗

C(j−1)r+1 + · · · + C jr

)

+ G j

C(j−1)r+1 + · · · + C jr
,

for all 1 ≤ j ≤ k, and

TPD∗
3
(N , n) = max{TPD3(G1, r),

TPD3(G2, r), . . . , TPD3(Gk, r)}.

Each data in the figure is the average of the data obtained
from 10,000 repeated experiments, such that the 99 % confi-
dence interval is no more than ±0.56 %. It is observed from
these simulation results that E(TPD∗

3
(N , n)) decreases as r

increases, and beyond certain point, increases. When service
capacities have a normal distribution, the optimal parallelism
is r = 8. When service capacities have a uniform distribu-
tion, the optimal parallelism is r = 16.

From both Figs. 5 and 6, we notice that E(TPD∗
�
(N , n)) >

E(T ′
PD

∗
�
(N , n)). Furthermore, we observe that different dis-

tributions of service capacities and file sizes have noticeably
different performance, even with the same mean and vari-
ance. In particular, for service capacities, the normal distrib-
ution has longer download time than the uniformdistribution;
and for file sizes, the Pareto distribution has longer download
time than the normal distribution.

6 Conclusions

Wehave addressed the problemof efficient parallel file down-
load in peer-to-peer networkswith randomservice capacities.
We gave a precise analysis of the expected download time
when the service capacity of a source peer is a random
variable. We developed a general framework for analyz-
ing the expected download time of a parallel download and
chunk allocation algorithm, and applied the framework to
the analysis of several algorithms. We have proposed two
chunk allocation algorithms for parallel download. We also
proposed an algorithm of probing high-capacity peers and
analyzed the expected download time of the algorithm. We
compared the performance of these parallel file download
algorithms in P2P networks with random service capacities.
We also extended the above parallel download algorithms to
multiple file download by dividing source peers into clusters
and analyzed the expected download times. We pointed out
that there is an important issue of optimal parallelism which
minimizes the combined effect of intracluster and interclus-
ter overhead of parallel download and load imbalance.

This paper has made some initial effort of analytical per-
formance study of parallel download algorithms. Further
research should take more challenging scenarios into con-
sideration. For instance, for a hot and new eagerly awaited
release, how to benefit from peers with incomplete files is
very interesting and important for improved performance.
Another direction worth of investigation is to consider mul-
tiple smaller chunks from each source peer, instead of one

123

Author's personal copy

Design and analysis of parallel file downloading algorithms in peer-to-peer networks

single larger chunk, where the sizes of smaller chunks can
be dynamically adjusted according to the current service
capacities (assuming that service capacities still change after
probing and multiple probings are required) to increase the
quality of load balancing. It is conceivable that analysis of
such a sophisticated method is quite challenging.

Acknowledgments The author deeply appreciates the comments from
three anonymous reviewers that have helped to improve the quality of
the manuscript.

References

1. http://blogplots.blogspot.com/2008/02/p2p-file-size-distribution.
html. Accessed 18 July 2016.

2. http://en.wikipedia.org/wiki/File_sharing. Accessed 18 July 2016.
3. http://en.wikipedia.org/wiki/Peer-to-peer. Accessed 18 July 2016.
4. Adler, M., Kumar, R., Ross, K., Rubenstein, D., Suel, T., & Yao,

D. D. (2005). Optimal peer selection for P2P downloading and
streaming. In Proceedings of the 24th Annual Joint Conference
of the IEEE Computer and Communications Societies (vol. 3, pp.
1538–1549).

5. Adler, M., Kumar, R., Ross, K., Rubenstein, D., Turner, D., & Yao,
D. D. (2004) Optimal peer selection in a free-market peer-resource
economy. In Proceedings of the 2nd Workshop on the Economics
of Peer-to-Peer Systems.

6. Bernstein, D. S., Feng, Z., Levine, B. N., & Zilberstein, S. (2003).
Adaptive peer selection. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems.

7. Byers, J. W., Luby, M., & Mitzenmacher, M. (1999). Accessing
multiple mirror sites in parallel: Using Tornado codes to speed up
downloads. In Proceedings of the 18th Annual Joint Conference
of the IEEE Computer and Communications Societies (vol. 1, pp.
275–283).

8. Carter, R. L., & Crovella, M. E. (1999). On the network impact of
dynamic server selection. Computer Networks, 31(23–24), 2529–
2558.

9. Chiu, Y.-M. (2009). On the performance of peer selection strate-
gies in stochastic peer-to-peer networks. Ph.D. dissertation, North
Carolina State University, Electrical Engineering.

10. Chiu, Y.-M., & Eun, D. Y. (2008). Minimizing file download time
in stochastic peer-to-peer networks. IEEE/ACM Transactions on
Networking, 16(2), 253–266.

11. Dykes, S. G., Robbins, K. A., & Jeffery, C. L. (2000). An empirical
evaluation of client-side server selection algorithms. In Proceed-
ings of the 19th Annual Joint Conference of the IEEE Computer
and Communications Societies (vol. 3, pp. 1361–1370).

12. Gaeta,R.,Gribaudo,M.,Manini,D.,&Sereno,M. (2006).Analysis
of resource transfers in peer-to-peer file sharing applications using
fluid models. Performance Evaluation, 63, 149–174.

13. Ge, Z., Figueiredo, D. R., Jaiswal, S., Kurose, J., & Towsley, D.
(2003). Modeling peer-peer file sharing systems. In Proceedings
of the 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (vol. 3, pp. 2188–2198).

14. Gkantsidis, C., Ammar, M., & Zegura, E. (2003). On the effect of
large-scale deployment of parallel downloading. In Proceedings of
the 3rd IEEE Workshop on Internet Applications (pp. 79–89).

15. Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., & Zhang, X. (2007).
A performance study ofBitTorrent-like peer-to-peer systems. IEEE
Journal on Selected Areas in Communications, 25(1), 155–169.

16. Koo, S. G. M., Kannan, K., & Lee, C. S. G. (2006). On neighbor-
selection strategy in hybrid peer-to-peer networks. Future Gener-
ation Computer Systems, 22, 732–741.

17. Koo, S. G. M., Rosenberg, C., & Xu, D. (2003). Analysis of par-
allel downloading for large file distribution. In Proceedings of the
9th IEEE Workshop on Future Trends of Distributed Computing
Systems (pp. 128–135).

18. Kumar, R., & Ross, K. W. (2006). Peer-assisted file distribution:
The minimum distribution time. In Proceedings of the IEEEWork-
shop on Hot Topics in Web Systems and Technologies.

19. Li, K. (2012). Probing high-capacity peers to reduce download
times in P2P file sharing systemswith stochastic service capacities.
International Journal of Foundations of Computer Science, 23(6),
1341–1369.

20. Li, K. (2013). Parallel file download in peer-to-peer networks
with random service capacities. In Proceedings of the 27th IEEE
International Parallel and Distributed Processing Symposium
Workshops (15th Workshop on Advances in Parallel and Distrib-
uted Computational Models), pp. 677–686, Boston, MA, May
20–24.

21. Li, K. (2014). On the expected file download time of the random
time-based switching algorithm inP2Pnetworks.Peer-to-PeerNet-
working and Applications, 7(2), 147–158.

22. Li, K. (2015). Analysis of file download time in peer-to-peer net-
works with stochastic and time-varying service capacities. Future
Generation Computer Systems, 42, 36–43.

23. Lingjun, M., & Lui, K.-S. (2008). Scheduling in P2P file
distribution—on reducing the average distribution time. In Pro-
ceedings of the 5th IEEE Consumer Communications and Net-
working Conference (pp. 521–522).

24. Lingjun, M., Xiaolei, W., & Lui, K.-S. (2008). A novel peer group-
ing scheme for P2P file distribution networks. In Proceedings of
the IEEE International Conference onCommunications (pp. 5598–
5602).

25. Liu, Y., Gong, W., & Shenoy, P. (2001). On the impact of con-
current downloads. In Proceedings of the 33nd Winter Simulation
Conference (pp. 1300–1305).

26. Manini, D., & Gribaudo, M. (2006). Modelling search, availabil-
ity, and parallel download in P2P file sharing applications with
fluid model. In Proceedings of 14th International Conference on
Advanced Computing and Communications (pp. 449–454).

27. Rodriguez, P., & Biersack, E. W. (2002). Dynamic parallel access
to replicated content in the internet. IEEE/ACM Transactions on
Networking, 10(4), 455–465.

28. Stutzbach, D., & Rejaie, R. (2006). Understanding churn in peer-
to-peer networks. In Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement.

29. Teo, M., Carbunaru, C., Leong, B., Nataraj, Y., Vu, H. M. L., Tan,
R., & Teo, Y. M. (2008). Achieving high-bandwidth peer-to-peer
file distribution. In Proceedings of the 4th ACM International Con-
ference on Emerging Networking Experiments and Technologies.

30. Tewari, S., & Kleinrock, L. (2005). On fairness, optimal download
performance and proportional replication in peer-to-peer networks.
InProceedings of the 4th International IFIP-TC6NetworkingCon-
ference (LNCS 3462) (pp. 709–717).

31. Zheng, X., Cho, C., & Xia, Y. (2008). Optimal peer-to-peer tech-
nique for massive content distribution. In Proceedings of the 27th
IEEE Conference on Computer Communications (pp. 151–155).

32. Zwillinger, D. (Ed.). (1996). Standard mathematical tables and
formulae (30th ed.). Boca Raton, FL: CRC Press.

123

Author's personal copy

http://blogplots.blogspot.com/2008/02/p2p-file-size-distribution.html
http://blogplots.blogspot.com/2008/02/p2p-file-size-distribution.html
http://en.wikipedia.org/wiki/File_sharing
http://en.wikipedia.org/wiki/Peer-to-peer

K. Li

Keqin Li is a SUNY Distin-
guished Professor of computer
science. His current research
interests include parallel com-
puting and high-performance
computing, distributed comput-
ing, energy-efficient computing
and communication, heteroge-
neous computing systems, cloud
computing, big data computing,
CPU-GPU hybrid and coopera-
tive computing, multicore com-
puting, storage and file sys-
tems, wireless communication
networks, sensor networks, peer-

to-peer file sharing systems, mobile computing, service computing,
Internet of things and cyber-physical systems. He has published over
430 journal articles, book chapters, and refereed conference papers, and
has received several best paper awards. He is currently or has served
on the editorial boards of IEEE Transactions on Parallel and Distrib-
uted Systems, IEEE Transactions on Computers, IEEE Transactions on
Cloud Computing, IEEE Transactions on Services Computing, Journal
of Parallel and Distributed Computing. He is an IEEE Fellow.

123

Author's personal copy

	Design and analysis of parallel file downloading algorithms in peer-to-peer networks
	Abstract
	1 Introduction
	2 Preliminaries
	3 Parallel download and chunk allocation
	3.1 A generic algorithm and analysis
	3.1.1 Algorithm
	3.1.2 Analysis

	3.2 Algorithm mathbbPmathbbD0 and analysis
	3.2.1 Algorithm
	3.2.2 Analysis

	3.3 Algorithm mathbbPmathbbD1 and analysis
	3.3.1 Algorithm
	3.3.2 Analysis

	3.4 Algorithm mathbbPmathbbD2 and analysis
	3.4.1 Algorithm
	3.4.2 Analysis

	3.5 Algorithm mathbbPmathbbD3 and analysis
	3.5.1 Algorithm
	3.5.2 Analysis

	4 Performance comparison
	5 Multiple downloads and optimal parallelism
	5.1 Algorithm mathbbPmathbbD*ell and analysis
	5.1.1 Algorithm
	5.1.2 Analysis

	5.2 Optimal parallelism
	5.2.1 Overhead of parallelism
	5.2.2 Numerical data
	5.2.3 Simulation results

	6 Conclusions
	Acknowledgments
	References

