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Summary
Performance and power are 2 significant issues in cloud computing. It is a crit-
ical issue on how to provide the best quality of service by consuming certain
available power resource. For a given application environment and a given
group of servers, optimal load distribution and optimal server speed setting can
be an effective way to deal with the power-performance tradeoff. The technique
of variable and task-type–dependent server speed management can be explored
to optimize the server performance and to minimize the power consumption
of a server with mixed applications. In this paper, we consider the problem of
optimal load distribution for multiple classes of applications on heterogeneous
servers with variable speeds. Given several classes of applications characterized
by their arrival rates and expected execution requirements, several hetero-
geneous servers characterized by their power consumption parameters, and
certain power supply, our problem is formulated as a multivariable optimiza-
tion problem, ie, finding an optimal load distribution and an optimal server
speed setting, such that the average task response time is minimized. To study
the problem analytically, each server is treated as an M/G/1 queueing sys-
tem with mixed classes of tasks such that both the average response time and
the average power consumption can be calculated analytically. We define a
power constrained performance optimization problem and develop a numerical
algorithm to solve our optimization problem by solving a system of nonlinear
equations. We also demonstrate numerical examples to show the effectiveness
of our model and method. To the best of our knowledge, such analytical study of
optimal load distribution and optimal server speed setting for multiple classes
of applications on heterogeneous servers with variable speeds has not been
available in the existing literature.
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1 INTRODUCTION

Performance and power are 2 significant issues in cloud computing. From a cloud consumer's point of view, quality of
service (QoS) is an important concern, which is a key factor in satisfying a user's experience and expectation and in
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choosing a service provider. While there are many different perspectives of QoS for different applications, the average
response time is a commonly adopted performance metric. From a service provider's point of view, cost of service is
an important concern. Contemporary warehouse-scale data centers consume significant amount of energy. The power
consumed by IT equipment plus the overhead power consumed in power delivery and cooling can be over 30% of the
overall operating expenses and a significant portion of the total cost of ownership of a data center.1 Therefore, it is a critical
issue on how to provide the best QoS by consuming certain available power resource.

A data center is a massive collection of servers that provide computation, storage, and communication services. It has
been pointed out that future scaling of data center capability depends upon improvements to server power efficiency.
Most of the future opportunity to improve data center power efficiency lies in improving the power efficiency of the
servers themselves, as most of the inefficiency in the rest of a data center has largely been eliminated.2 Thus, an important
question for data center operators is how to balance the workload among the servers and how to decide the server capacity
(number of servers and speeds of servers) so as to minimize the average task response time without exceeding certain
power limitation. For a given application environment and a given group of servers, optimal load distribution and optimal
server speed setting can be an effective way to deal with the power-performance tradeoff.

The technique of workload-dependent dynamic power management refers to dynamic power and speed adjustment
according to the current workload.3 It is a powerful way of fine server tuning for applications with different characteristics.
The technique of variable and task-type–dependent server speed management can be explored to optimize the server
performance and to minimize the power consumption of a server with mixed applications. For instance, the power supply
and the server speed can be increased for a type of applications with greater arrival rate and greater coefficient of variation
of execution requirement.4 Such runtime power and speed adjustment can be supported by a mechanism called dynamic
voltage scaling, or equivalently, dynamic frequency scaling, dynamic speed scaling, or dynamic power scaling.5

In this paper, we consider the problem of optimal load distribution for multiple classes of applications on heterogeneous
servers with variable speeds. There are multiple classes of applications with different arrival rates and execution require-
ments. The heterogeneous servers have different speeds in processing different classes of applications. Furthermore, they
have different power consumption parameters. Given several classes of applications characterized by their arrival rates
and expected execution requirements, several heterogeneous servers characterized by their power consumption parame-
ters, and certain power supply, our problem is formulated as a multivariable optimization problem, ie, finding an optimal
load distribution and an optimal server speed setting, such that the average task response time is minimized. The main
contributions of the paper are as follows.

• To study the problem analytically, each server is treated as an M/G/1 queueing system with mixed classes of tasks such
that both the average response time and the average power consumption can be calculated analytically.

• We define a power constrained performance optimization problem and develop a numerical algorithm to solve our
optimization problem by solving a system of nonlinear equations.

• We also demonstrate numerical examples to show the effectiveness of our model and method.

To the best of our knowledge, such analytical study of optimal load distribution and optimal server speed setting for
multiple classes of applications on heterogeneous servers with variable speeds has not been available in the existing lit-
erature. The proposed problem and algorithm can be applied to practical cloud computing systems with multiple classes
of applications.

The rest of the paper is organized as follows. In Section 2, we review related research. In Section 3, we present our
queueing model for heterogeneous servers with mixed applications. In Section 4, we formulate our power constrained
performance optimization problem. In Section 5, we develop our numerical algorithm. In Section 6, we demonstrate a
numerical example. In Section 7, we conclude the paper.

2 RELATED RESEARCH

Data center power efficiency has been studied by many researchers. Gandhi investigated new approaches to dynamic
server provisioning to increase server utilization and to reduce data center power consumption.6 Ganesh et al proposed
an integrated approach, which combines the benefits of the power proportional approach (focusing on reducing disk
and server power consumption) and the green data center approach (focusing on reducing power consumed by support
infrastructure like cooling equipment, power distribution units, and power backup equipment).7 Leverich explored 4
compelling opportunities to improve server power efficiency, ie, 2 hardware proposals that explicitly reduce the power
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consumption of servers and 2 software proposals that improve the power efficiency of servers operating as a cluster.2

Pakbaznia and Pedram addressed server consolidation concurrently with task assignment by formulating the resulting
optimization problem as an integer linear programming problem and solving the problem by using a heuristic algorithm
in polynomial time.8 Tuncer et al presented a data center power budgeting policy that simultaneously improves the QoS
and power efficiency by considering the workload and cooling induced asymmetries among the servers.9 Zapater et al
developed empirical models to estimate the contributions of static and dynamic power consumption in enterprise servers
for a wide range of workloads and analyzed the interactions between temperature, leakage, and cooling power for various
workload allocation policies.10

Several surveys and comparative studies have been conducted for the extensive research in cloud load balancing and
load distribution. Al Sallami discussed and compared existing load balancing techniques in cloud computing based on
various parameters.11 Himanshi and Ahuja explored autonomic approaches for optimizing provisioning for heteroge-
neous workloads on enterprise grids and clouds, and reviewed load balancing strategies for cloud infrastructures.12 Kapoor
surveyed various dynamic load balancing algorithms in cloud with discussion and comparison of the pros and cons of
these algorithms.13 Katyal and Mishra presented a comparative study of various load balancing schemes in different
cloud environments based on requirements specified in service level agreement.14 Kaur and Luthra gave an overview
of many load balancing algorithms that help to achieve better throughput and improve the response time in cloud
environments.15 Khiyaita et al gave an overview of load balancing in cloud computing by exposing the most important
research challenges.16 Al Nuaimi et al investigated the different algorithms proposed to resolve the issue of load balanc-
ing and task scheduling in cloud computing and discussed and compared these algorithms to provide an overview of the
latest approaches in the field.17 Rahman et al provided a comprehensive review on the existing load balancing strategies
and presented load balancer as a service model adopted by the major market players.18 Shameem and Shaji presented
a survey of dynamic load balancing strategies on cloud with the focus on various metrics to analyze the efficacy of the
existing techniques.19 Singh et al compared various load balancing algorithms on the basis of their metrics.20

Numerous researchers have investigated various approaches to cloud load balancing. Anjali et al showed a new
approach to dynamic load balancing using the concept of mobile agent, ie, a software program that executes indepen-
dently and performs the basic task.21 Dasgupta et al proposed a novel load balancing strategy using a genetic algorithm,
which thrives to balance the load of a cloud infrastructure while trying to minimize the makespan of a given task set.22

Dhinesh and Krishna proposed an algorithm named honey bee behavior inspired load balancing, which aims to achieve
well-balanced load across virtual machines for maximizing the throughput and minimizing the amount of waiting time
of the tasks.23 Gasior and Seredynski proposed a novel approach to dynamic load balancing in cloud computing sys-
tems based on the phenomena of self-organization in a game theoretical spatially generalized prisoner's dilemma model
defined on the 2-dimensional cellular automata space.24 Gopinath and Vasudevan focused on 2 load balancing algorithms
in cloud, ie, Min-Min and Max-Min, to minimize the response time and the waiting time.25 Grover and Katiyar used an
agent-based dynamic load balancing approach that greatly reduces the communication cost of servers, accelerates the
rate of load balancing, and improves the throughput and the response time of the cloud.26 Li studied the problem of opti-
mal distribution of generic tasks over a group of heterogeneous blade servers in a cloud computing environment or a data
center such that the average response time of generic tasks is minimized.27 Liu et al took a game approach to multiservers
load balancing with load-dependent server availability consideration.28 Sahu et al introduced a threshold-based dynamic
compare and balance algorithm for cloud server optimization, which also minimizes the number of host machines to be
powered on for reducing the cost of cloud services.29 Singh et al proposed an autonomous agent-based load balancing
algorithm, which provides dynamic load balancing for cloud environment.30 Srinivasan et al used an enhanced shortest
job-first scheduling algorithm to achieve reduced response time and reduced starvation and job rejection rate.31 Tong et al
developed an approach from machine learning to learn task arrival and execution patterns online, ie, automatically acquir-
ing such knowledge without any beforehand modeling and proactively allocating tasks on account of the forthcoming
tasks and their execution dynamics.32 Xiao et al studied the collaboration among benevolent clouds that are cooperative
in nature and willing to accept jobs from other clouds, took advantage of machine learning, and proposed a distributed
scheduling mechanism to learn the knowledge of job model, resource performance, and others' policies.33 Xiao et al also
proposed a fairness-aware load balancing algorithm, where the load balancing problem is defined as a game, and the Nash
equilibrium solution for this problem minimizes the expected response time while maintaining fairness.34

Cloud load distribution has been considered together with energy consumption. Beloglazov et al conducted a survey
of research in energy-efficient computing and proposed architectural principles for the energy-efficient management
of clouds and energy-efficient resource allocation policies and scheduling algorithms considering QoS expectations
and power usage characteristics of the devices.35 Cao et al addressed optimal power allocation and load distribution
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for multiple heterogeneous multicore server processors across clouds and data centers as optimization problems.36

Ghafari et al proposed a new power-aware load balancing algorithm based on artificial bee colony to detect both
overutilized and underutilized hosts for effective power management.37 Huang et al studied the problem of power con-
sumption minimization with performance constraint in heterogeneous distributed embedded systems by optimal load
distribution.38 Kansal and Chana discussed existing load balancing techniques in cloud computing and further com-
pared them based on various parameters and discussed these techniques from energy consumption and carbon emission
perspective.39 Li addressed the issue of optimal task dispatching on multiple heterogeneous multiserver systems with
dynamic speed and power management.40 Malik et al modeled a data center as a cyber physical system to capture the
thermal properties exhibited by the data center, where software aspects such as scheduling, load balancing, and computa-
tions are the cyber component and hardware aspects such as servers and switches are the physical component.41 Paul et al
investigated load distribution strategies to minimize the electricity cost and increase renewable energy integration subject
to compliance with service level agreement with consideration of the adverse effects of switching the servers.42 Tian et al
investigated performance and power tradeoff for multiple heterogeneous servers by considering 2 problems, ie, optimal
job scheduling with fixed service rates and joint optimal service speed scaling and job scheduling.43 Yang et al employed
a game theoretic approach to solve the problem of minimizing energy consumption as a Stackelberg game and modeled

TABLE 1 Summary of the notations used in the paper

Notation Definition

m Number of classes of applications
n Number of heterogeneous servers
𝜆̃i The arrival rate of the ith type of applications
𝜆 The total task arrival rate, ie, 𝜆̃1 + 𝜆̃2 + · · · + 𝜆̃m

𝜆i, j The arrival rate of the substream of tasks assigned to server j
𝜆j The total task arrival rate to server j, ie, 𝜆1, j + 𝜆2 j + · · · + 𝜆m, j

ri The execution requirements of the tasks of the ith type of applications
ri, r2

i Mean and second moment of ri

si, j The execution speed for the ith type of applications on server j
xi, j The execution times of the tasks of the ith type of applications on server j

xi,𝑗 , x2
i,𝑗 Mean and second moment of xi, j

xj The execution time of a task on server j

x𝑗 , x2
𝑗

Mean and second moment of xj

𝜌j The utilization of server j
Wj The average waiting time of a task on server j

𝜎j 𝜆𝑗x2
𝑗
= 𝜆1,𝑗x

2
1,𝑗 + 𝜆2,𝑗x2

2,𝑗 + · · · + 𝜆m,𝑗x2
m,𝑗

Ti, j The average response time of the tasks of the ith type of applications on server j
Tj The average response time of all tasks on server j
T The average response time of all tasks on the n servers
P∗
𝑗

Base power consumption of server j

𝜉j, 𝛼j Parameters of the dynamic power consumption of server j
Pj The average power consumption of server j
P The total power consumption of the n servers
P̃ Power constraint
Li 𝜆i,1 + 𝜆i,2 + · · · + 𝜆i,n

𝜙i, 𝜓 Lagrange multipliers
N 2mn + m + 1
y ( y1, y2, … , yN) = (𝜆1,1, … , 𝜆m,n, s1,1, … , sm,n, 𝜙1, … , 𝜙m, 𝜓)

Gi, j,Hi, j, Ji,K 2mn + m + 1 nonlinear equations
Fk F(i−1)n+j = Gi, j, Fmn+(i−1)n+j = Hi, j, F2mn+i = Ji, FN = K, 1 ≤ i ≤ m, 1 ≤ j ≤ n

F(y) (F1(y),F2(y), … ,FN(y))
J(y) The Jacobian matrix of F(y)
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the problem of minimizing average task response time as a noncooperative game among decentralized scheduler agents
as they compete with one another in the shared resources.44

3 THE MODEL

Throughout the paper, we use x to represent the expectation of a random variable x. Table 1 provides a summary of the
notations used in this paper.

There are m classes of applications. Each class of applications is characterized by its arrival rate and execution require-
ment. We consider n heterogeneous servers with variable execution speeds. Each server has its own speed in processing a
class of applications and its own power consumption parameters. A server is treated as an M/G/1 queueing system with
mixed classes of tasks arriving in a Poisson stream (see Figure 1).

Assume that the tasks of each class of applications arrive according to a Poisson process. The arrival rate of the ith type
of applications is 𝜆̃i, where 1 ≤ i ≤ m. The total task arrival rate is 𝜆 = 𝜆̃1 + 𝜆̃2 + · · · + 𝜆̃m. A load distribution mechanism
splits the stream of the ith class of applications into n substreams with rates 𝜆i,1, 𝜆i,2, … , 𝜆i,n, such that the substream of
tasks with rate 𝜆i, j is assigned to server j. The total task arrival rate to server j is 𝜆j = 𝜆1, j+𝜆2, j+· · ·+𝜆m, j, where 1 ≤ j ≤ n.

For the ith type of applications, the execution requirements of the tasks are independent and identically distributed
(i.i.d.) random variables ri with mean ri and second moment r2

i . The execution speed for the ith type of applications on
server j is si, j. Hence, the execution times of the tasks of the ith type of applications on server j are i.i.d. random variables
xi, j = ri∕si, j with mean xi,𝑗 = ri∕si,𝑗 and second moment x2

i,𝑗 = r2
i ∕s2

i,𝑗 , where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
The execution time of a task on server j is a random variable xj with mean

x𝑗 =
𝜆1,𝑗

𝜆𝑗
x1,𝑗 +

𝜆2,𝑗

𝜆𝑗
x2,𝑗 + · · · +

𝜆m,𝑗

𝜆𝑗
xm,𝑗 .

The utilization of server j is
𝜌𝑗 = 𝜆𝑗x𝑗 = 𝜆1,𝑗x1,𝑗 + 𝜆2,𝑗x2,𝑗 + · · · + 𝜆m,𝑗xm,𝑗 .

The second moment of xj is

x2
𝑗
=
𝜆1,𝑗

𝜆𝑗
x2

1,𝑗 +
𝜆2,𝑗

𝜆𝑗
x2

2,𝑗 + · · · +
𝜆m,𝑗

𝜆𝑗
x2

m,𝑗 .

FIGURE 1 Load distribution on heterogeneous servers with variable speeds
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The average waiting time of a task on server j is (See p. 190 in the work of Kleinrock45)

W𝑗 =
𝜆𝑗x2

𝑗

2(1 − 𝜌𝑗)
=

𝜎𝑗

2(1 − 𝜌𝑗)
,

where

𝜎𝑗 = 𝜆𝑗x2
𝑗
= 𝜆1,𝑗x2

1,𝑗 + 𝜆2,𝑗x2
2,𝑗 + · · · + 𝜆m,𝑗x2

m,𝑗 .

The average response time of the tasks of the ith type of applications on server j is

Ti,𝑗 = xi,𝑗 + W𝑗 = xi,𝑗 +
𝜎𝑗

2(1 − 𝜌𝑗)
,

which can be rewritten as

Ti,𝑗 = xi,𝑗 +
𝜆1,𝑗x2

1,𝑗 + 𝜆2,𝑗x2
2,𝑗 + · · · + 𝜆m,𝑗x2

m,𝑗

2
(
1 − 𝜆1,𝑗x1,𝑗 − 𝜆2,𝑗x2,𝑗 − · · · − 𝜆m,𝑗xm,𝑗

) ,
and

Ti,𝑗 =
ri

si,𝑗
+

𝜆1,𝑗x2
1,𝑗 + 𝜆2,𝑗x2

2,𝑗 + · · · + 𝜆m,𝑗x2
m,𝑗

2
(
1 − 𝜆1,𝑗x1,𝑗 − 𝜆2,𝑗x2,𝑗 − · · · − 𝜆m,𝑗xm,𝑗

) ,
where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The average response time of all tasks on server j is

T𝑗 =
m∑

i=1

𝜆i,𝑗

𝜆𝑗
Ti,𝑗 =

1
𝜆𝑗

m∑
i=1

𝜆i,𝑗ri

si,𝑗
+

𝜎𝑗

2(1 − 𝜌𝑗)
=
𝜌𝑗

𝜆𝑗
+

𝜎𝑗

2(1 − 𝜌𝑗)
,

which is actually

T𝑗 = x𝑗 + W𝑗 ,

where

x𝑗 =
𝜌𝑗

𝜆𝑗
= 1
𝜆𝑗

(
𝜆1,𝑗r1

s1,𝑗
+
𝜆2,𝑗r2

s2,𝑗
+ · · · +

𝜆m,𝑗rm

sm,𝑗

)
,

and

𝜌𝑗 = 𝜆1,𝑗
r1

s1,𝑗
+ 𝜆2,𝑗

r2

s2,𝑗
+ · · · + 𝜆m,𝑗

rm

sm,𝑗
,

and

𝜎𝑗 = 𝜆1,𝑗
r2

1

s2
1,𝑗

+ 𝜆2,𝑗
r2

2

s2
2,𝑗

+ · · · + 𝜆m,𝑗
r2

m

s2
m,𝑗
,

where 1 ≤ j ≤ n. The average response time of all tasks on the n servers is

T = 𝜆1

𝜆
T1 +

𝜆2

𝜆
T2 + · · · + 𝜆n

𝜆
Tn,

which is the main performance goal to be optimized.
Assume that server j has a base power consumption P∗

𝑗
and consumes no dynamic power when it is idle. The dynamic

power consumption of server j is 𝜉𝑗s𝛼𝑗 when its speed is s. The average power consumption of server j is

P𝑗 =
m∑

i=1
𝜆i,𝑗xi,𝑗𝜉𝑗s

𝛼𝑗

i,𝑗 + P∗
𝑗 = 𝜉𝑗

m∑
i=1
𝜆i,𝑗ris

𝛼𝑗−1
i,𝑗 + P∗

𝑗 ,

where 1 ≤ j ≤ n. The total power consumption of the n servers is

P = P1 + P2 + · · · + Pn,

which is another performance goal to be optimized.
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4 POWER CONSTRAINED PERFORMANCE OPTIMIZATION

Our power constrained performance optimization problem can be defined as follows. Given m classes of applications with
task arrival rates 𝜆̃1, 𝜆̃2, … , 𝜆̃m, expected task execution requirements r1, r2, … , rm, the second moments of task execution
requirements r2

1, r2
2, … , r2

m, and n heterogeneous servers with coefficients 𝜉1, 𝜉2, … , 𝜉n and exponents 𝛼1, 𝛼2, … , 𝛼n for
dynamic power consumption, and base power P∗

1 ,P
∗
2 , … ,P∗

n for static power consumption, and certain power supply P̃,
our problem is to find load distribution 𝜆i, j and server speeds si, j, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, such that T is minimized
and that P does not exceed P̃. The optimization problem contains 3(m+n)+1 input parameters and 2mn output parameters.
It needs to determine an optimal load distribution for multiple classes of applications over heterogeneous servers and an
optimal application-dependent server speed setting for all the servers.

The aforementioned optimization problem is a multivariable (ie, 2mn variables) optimization problem with multiple
(ie, m + 1) constraints, ie, Li = 𝜆i,1 + 𝜆i,2 + · · · + 𝜆i,n = 𝜆̃i, for all 1 ≤ i ≤ m, and P = P̃. Notice that T, P, and Li are all
treated as functions of the 𝜆i, j's and the si, j's. The optimization problem can be solved by using the method of Lagrange
multiplier, namely,

∇T = 𝜙1∇L1 + 𝜙2∇L2 + · · · + 𝜙m∇Lm + 𝜓∇P,
that is,

𝜕T
𝜕𝜆i,𝑗

= 𝜙1
𝜕L1

𝜕𝜆i,𝑗
+ 𝜙2

𝜕L2

𝜕𝜆i,𝑗
+ · · · + 𝜙m

𝜕Lm

𝜕𝜆i,𝑗
+ 𝜓 𝜕P

𝜕𝜆i,𝑗
,

and
𝜕T
𝜕si,𝑗

= 𝜙1
𝜕L1

𝜕si,𝑗
+ 𝜙2

𝜕L2

𝜕si,𝑗
+ · · · + 𝜙m

𝜕Lm

𝜕si,𝑗
+ 𝜓 𝜕P

𝜕si,𝑗
,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, where 𝜙1, 𝜙2, … , 𝜙m and 𝜓 are m + 1 Lagrange multipliers.
In the following, we calculate all the partial derivatives and transform our optimization problem into a system of

nonlinear equations. Notice that

T = 1
𝜆

n∑
𝑗=1
𝜆𝑗T𝑗 =

1
𝜆

n∑
𝑗=1

(
𝜌𝑗 +

𝜆𝑗𝜎𝑗

2(1 − 𝜌𝑗)

)
.

Since
𝜕𝜆

𝜆i,𝑗
=
𝜕𝜆𝑗

𝜆i,𝑗
= 1,

and
𝜕𝜎𝑗

𝜆i,𝑗
=

r2
i

s2
i,𝑗

,

and
𝜕𝜌𝑗

𝜆i,𝑗
= ri

si,𝑗
,

we have

𝜕T
𝜕𝜆i,𝑗

= − 1
𝜆2

n∑
𝑗=1

(
𝜌𝑗 +

𝜆𝑗𝜎𝑗

2(1 − 𝜌𝑗)

)
+ 1
𝜆

⎛⎜⎜⎝
ri

si,𝑗
+ 1

2

⎛⎜⎜⎝
𝜎𝑗

1 − 𝜌𝑗
+

𝜆𝑗

1 − 𝜌𝑗
·

r2
i

s2
i,𝑗

+
𝜆𝑗𝜎𝑗

(1 − 𝜌𝑗)2 · ri

si,𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠ .

Furthermore, since 𝜕Li∕𝜕𝜆i, j = 1 and 𝜕Li′∕𝜕𝜆i, j = 0, for all i′ ≠ i, and

𝜕P
𝜕𝜆i,𝑗

=
𝜕P𝑗
𝜕𝜆i,𝑗

= 𝜉𝑗ris
𝛼𝑗−1
i,𝑗 ,

we have

− 1
𝜆2

n∑
𝑗=1

(
𝜌𝑗 +

𝜆𝑗𝜎𝑗

2(1 − 𝜌𝑗)

)
+ 1
𝜆

⎛⎜⎜⎝
ri

si,𝑗
+ 1

2

⎛⎜⎜⎝
𝜎𝑗

1 − 𝜌𝑗
+

𝜆𝑗

1 − 𝜌𝑗
·

r2
i

s2
i,𝑗

+
𝜆𝑗𝜎𝑗

(1 − 𝜌𝑗)2 · ri

si,𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠ = 𝜙i + 𝜓𝜉𝑗ris

𝛼𝑗−1
i,𝑗 ,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Notice that 𝜙i > 0 because 𝜕T∕𝜕𝜆i, j > 0 (ie, T is an increasing function of 𝜆i, j) and 𝜓 < 0
(see as follows). The last equation can be rewritten as

Gi,𝑗 =
1
𝜆2

n∑
𝑗=1

(
𝜌𝑗 +

𝜆𝑗𝜎𝑗

2(1 − 𝜌𝑗)

)
− 1
𝜆

⎛⎜⎜⎝
ri

si,𝑗
+ 1

2

⎛⎜⎜⎝
𝜎𝑗

1 − 𝜌𝑗
+

𝜆𝑗

1 − 𝜌𝑗
·

r2
i

s2
i,𝑗

+
𝜆𝑗𝜎𝑗

(1 − 𝜌𝑗)2 · ri

si,𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠ + 𝜙i + 𝜓𝜉𝑗ris

𝛼𝑗−1
i,𝑗 = 0,
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for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Since

𝜕𝜎𝑗

si,𝑗
= −

2𝜆i,𝑗r2
i

s3
i,𝑗

,

and
𝜕𝜌𝑗

si,𝑗
= −

𝜆i,𝑗ri

s2
i,𝑗

,

we have

𝜕T
𝜕si,𝑗

= 1
𝜆

⎛⎜⎜⎝−
𝜆i,𝑗ri

s2
i,𝑗

+
𝜆𝑗

2

⎛⎜⎜⎝ 1
1 − 𝜌𝑗

⎛⎜⎜⎝−
2𝜆i,𝑗r2

i

s3
i,𝑗

⎞⎟⎟⎠ +
𝜎𝑗

(1 − 𝜌𝑗)2

(
−
𝜆i,𝑗ri

s2
i,𝑗

)⎞⎟⎟⎠
⎞⎟⎟⎠ .

Furthermore, since 𝜕Li′∕𝜕si,𝑗 = 0, for all 1 ≤ i′ ≤ m, and

𝜕P
𝜕si,𝑗

=
𝜕P𝑗
𝜕si,𝑗

= 𝜉𝑗𝜆i,𝑗ri(𝛼𝑗 − 1)s𝛼𝑗−2
i,𝑗 ,

we have

1
𝜆

⎛⎜⎜⎝−
𝜆i,𝑗ri

s2
i,𝑗

+
𝜆𝑗

2

⎛⎜⎜⎝ 1
1 − 𝜌𝑗

⎛⎜⎜⎝−
2𝜆i,𝑗r2

i

s3
i,𝑗

⎞⎟⎟⎠ +
𝜎𝑗

(1 − 𝜌𝑗)2

(
−
𝜆i,𝑗ri

s2
i,𝑗

)⎞⎟⎟⎠
⎞⎟⎟⎠ = 𝜓𝜉𝑗𝜆i,𝑗ri(𝛼𝑗 − 1)s𝛼𝑗−2

i,𝑗 ,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Notice that 𝜓 < 0, since 𝜕T∕𝜕si, j < 0, ie, T is a decreasing function of si, j. The last equation
can be rewritten as

−1
𝜆

⎛⎜⎜⎝
𝜆i,𝑗ri

s2
i,𝑗

+
𝜆𝑗

2

⎛⎜⎜⎝ 1
1 − 𝜌𝑗

·
2𝜆i,𝑗r2

i

s3
i,𝑗

+
𝜎𝑗

(1 − 𝜌𝑗)2 ·
𝜆i,𝑗ri

s2
i,𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠ = 𝜓𝜉𝑗𝜆i,𝑗ri(𝛼𝑗 − 1)s𝛼𝑗−2

i,𝑗 ,

or

−1
𝜆

⎛⎜⎜⎝1 +
𝜆𝑗

2

⎛⎜⎜⎝
r2

i

ri
· 1

1 − 𝜌𝑗
· 2

si,𝑗
+

𝜎𝑗

(1 − 𝜌𝑗)2

⎞⎟⎟⎠
⎞⎟⎟⎠ = 𝜓𝜉𝑗(𝛼𝑗 − 1)s𝛼𝑗i,𝑗 ,

or

Hi,𝑗 =
1
𝜆

⎛⎜⎜⎝1 +
𝜆𝑗

2

⎛⎜⎜⎝
r2

i

ri
· 1

1 − 𝜌𝑗
· 2

si,𝑗
+

𝜎𝑗

(1 − 𝜌𝑗)2

⎞⎟⎟⎠
⎞⎟⎟⎠ + 𝜓𝜉𝑗(𝛼𝑗 − 1)s𝛼𝑗i,𝑗 = 0,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
The aforementioned equations for Gi, j and Hi, j, together with

Ji = Li − 𝜆̃i = 𝜆i,1 + 𝜆i,2 + · · · + 𝜆i,n − 𝜆̃i = 0,

for all 1 ≤ i ≤ m, and

K = P − P̃ =
n∑
𝑗=1

(
𝜉𝑗

m∑
i=1
𝜆i,𝑗ris

𝛼𝑗−1
i,𝑗 + P∗

𝑗

)
− P̃ = 0,

constitute a system of 2mn+m+1 nonlinear equations with 2mn+m+1 unknowns, ie, the 𝜆i, j's, the si, j's, the 𝜙i's, and 𝜓 .

5 A NUMERICAL ALGORITHM

The discussion in the last section gives rise to a system of nonlinear equations, ie,

F1(𝑦1, 𝑦2, … , 𝑦N) = 0,
F2(𝑦1, 𝑦2, … , 𝑦N) = 0,

⋮

FN(𝑦1, 𝑦2, … , 𝑦N) = 0,
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where N = 2mn + m + 1, y(i−1)n+j = 𝜆i, j, ymn+(i−1)n+j = si, j, y2mn+i = 𝜙i, yN = 𝜓 , F(i−1)n+j = Gi, j, Fmn+(i−1)n+j = Hi, j,
F2mn+i = Ji, and FN = K, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

By using vector notation to represent the N variables, ie, the 𝜆i, j's, the si, j's, the 𝜙i's, and 𝜓 , we write

y = (𝑦1, 𝑦2, … , 𝑦N) = (𝜆1,1, … , 𝜆m,n, s1,1, … , sm,n, 𝜙1, … , 𝜙m, 𝜓),

and Fk(y1, y2, … , yN) = Fk(y), where Fk ∶ RN → R maps N-dimensional space RN into the real line R. By defining a
function F ∶ RN → RN , which maps RN into RN ,

F(y) = (F1(𝑦1, 𝑦2, … , 𝑦N),F2(𝑦1, 𝑦2, … , 𝑦N), … ,FN(𝑦1, 𝑦2, … , 𝑦N)),

namely,

F(y) = (F1(y),F2(y), … ,FN(y)),

then our system of nonlinear equations is

F(y) = 0,

where 0 = (0, 0, … , 0).
The aforementioned system of nonlinear equations can be solved by using Newton's method. To this end, we need the

Jacobian matrix J(y) defined as

J(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕F1(y)
𝜕𝑦1

𝜕F1(y)
𝜕𝑦2

· · · 𝜕F1(y)
𝜕𝑦N

𝜕F2(y)
𝜕𝑦1

𝜕F2(y)
𝜕𝑦2

· · · 𝜕F2(y)
𝜕𝑦N

⋮ ⋮ ⋱ ⋮

𝜕FN (y)
𝜕𝑦1

𝜕FN (y)
𝜕𝑦2

· · · 𝜕FN (y)
𝜕𝑦N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The various components of the aforementioned matrix are calculated as follows. As seen from the aforementioned dis-
cussion, our unknowns and equations are divided into 4 groups. For clarity, we only show 𝜕Fi(y)∕𝜕yj if it is not zero. As
a default, a component is zero if it is not mentioned in the following computation.

First, we consider Fk, for 1 ≤ k ≤ mn. Let k = (i − 1)n + j and Fk = Gi, j.

• We have

𝜕Gi,𝑗

𝜕𝜆i′,𝑗
= − 2

𝜆3

n∑
𝑗=1

(
𝜌𝑗 +

𝜆𝑗𝜎𝑗

2(1 − 𝜌𝑗)

)

+ 1
𝜆2

⎛⎜⎜⎝
ri′

si′,𝑗
+ 1

2

⎛⎜⎜⎝
𝜎𝑗

1 − 𝜌𝑗
+

𝜆𝑗

1 − 𝜌𝑗
·

r2
i′

s2
i′,𝑗

+
𝜆𝑗𝜎𝑗

(1 − 𝜌𝑗)2 · ri′

si′,𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠

+ 1
𝜆2

⎛⎜⎜⎝
ri

si,𝑗
+ 1

2

⎛⎜⎜⎝
𝜎𝑗

1 − 𝜌𝑗
+

𝜆𝑗

1 − 𝜌𝑗
·

r2
i

s2
i,𝑗

+
𝜆𝑗𝜎𝑗

(1 − 𝜌𝑗)2 · ri

si,𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠

− 1
2𝜆

⎛⎜⎜⎝ 1
1 − 𝜌𝑗

·
r2

i′

s2
i′,𝑗

+
𝜎𝑗

(1 − 𝜌𝑗)2 · ri′

si′,𝑗
+

r2
i

s2
i,𝑗

(
1

1 − 𝜌𝑗
+

𝜆𝑗

(1 − 𝜌𝑗)2 · ri′

si′,𝑗

)

+ ri

si,𝑗

⎛⎜⎜⎝
𝜎𝑗

(1 − 𝜌𝑗)2 +
𝜆𝑗

(1 − 𝜌𝑗)2 ·
r2

i′

s2
i′,𝑗

+
2𝜆𝑗𝜎𝑗

(1 − 𝜌𝑗)3 · ri′

si′,𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠ ,
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for all 1 ≤ i′ ≤ m, and

𝜕Gi,𝑗

𝜕𝜆i′,𝑗′
= − 2

𝜆3

n∑
𝑗=1

(
𝜌𝑗 +

𝜆𝑗𝜎𝑗

2(1 − 𝜌𝑗)

)

+ 1
𝜆2

⎛⎜⎜⎝
ri′

si′,𝑗′
+ 1

2

⎛⎜⎜⎝
𝜎𝑗′

1 − 𝜌𝑗′
+

𝜆𝑗′

1 − 𝜌𝑗′
·

r2
i′

s2
i′,𝑗′

+
𝜆𝑗′𝜎𝑗′

(1 − 𝜌𝑗′ )2 · ri′

si′,𝑗′

⎞⎟⎟⎠
⎞⎟⎟⎠

+ 1
𝜆2

⎛⎜⎜⎝
ri

si,𝑗
+ 1

2

⎛⎜⎜⎝
𝜎𝑗

1 − 𝜌𝑗
+

𝜆𝑗

1 − 𝜌𝑗
·

r2
i

s2
i,𝑗

+
𝜆𝑗𝜎𝑗

(1 − 𝜌𝑗)2 · ri

si,𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

for all 1 ≤ i′ ≤ m and j′ ≠ j.
• We have

𝜕Gi,𝑗

𝜕si,𝑗
= 1
𝜆2

⎛⎜⎜⎝−
𝜆i,𝑗ri

s2
i,𝑗

+
𝜆𝑗

2

⎛⎜⎜⎝ 1
1 − 𝜌𝑗

⎛⎜⎜⎝−
2𝜆i,𝑗r2

i

s3
i,𝑗

⎞⎟⎟⎠ +
𝜎𝑗

(1 − 𝜌𝑗)2

(
−
𝜆i,𝑗ri

s2
i,𝑗

)⎞⎟⎟⎠
⎞⎟⎟⎠

− 1
𝜆

⎛⎜⎜⎝−
ri

s2
i,𝑗

+ 1
2

⎛⎜⎜⎝ 1
1 − 𝜌𝑗

⎛⎜⎜⎝−
2𝜆i,𝑗r2

i

s3
i,𝑗

⎞⎟⎟⎠ +
𝜎𝑗

(1 − 𝜌𝑗)2

(
−
𝜆i,𝑗ri

s2
i,𝑗

)

+ 𝜆𝑗r2
i

(
1

(1 − 𝜌𝑗)2 · 1
s2

i,𝑗

(
−
𝜆i,𝑗ri

s2
i,𝑗

)
+ 1

1 − 𝜌𝑗

(
− 2

s3
i,𝑗

))

+𝜆𝑗ri

⎛⎜⎜⎝ 1
(1 − 𝜌𝑗)2 · 1

si,𝑗

⎛⎜⎜⎝−
2𝜆i,𝑗r2

i

s3
i,𝑗

⎞⎟⎟⎠ +
2𝜎𝑗

(1 − 𝜌𝑗)3 · 1
si,𝑗

(
−
𝜆i,𝑗ri

s2
i,𝑗

)
+

𝜎𝑗

(1 − 𝜌𝑗)2

(
− 1

s2
i,𝑗

)⎞⎟⎟⎠
⎞⎟⎟⎠
⎞⎟⎟⎠

+ 𝜓𝜉𝑗ri(𝛼𝑗 − 1)s𝛼𝑗−2
i,𝑗 ,

and

𝜕Gi,𝑗

𝜕si′,𝑗
= 1
𝜆2

⎛⎜⎜⎝−
𝜆i′,𝑗ri′

s2
i′,𝑗

+
𝜆𝑗

2

⎛⎜⎜⎝ 1
1 − 𝜌𝑗

⎛⎜⎜⎝−
2𝜆i′,𝑗r2

i′

s3
i′,𝑗

⎞⎟⎟⎠ +
𝜎𝑗

(1 − 𝜌𝑗)2

(
−
𝜆i′,𝑗ri′

s2
i′,𝑗

)⎞⎟⎟⎠
⎞⎟⎟⎠

− 1
2𝜆

⎛⎜⎜⎝ 1
1 − 𝜌𝑗

⎛⎜⎜⎝−
2𝜆i′,𝑗r2

i′

s3
i′,𝑗

⎞⎟⎟⎠ +
𝜎𝑗

(1 − 𝜌𝑗)2

(
−
𝜆i′,𝑗ri′

s2
i′,𝑗

)

+
𝜆𝑗r2

i

s2
i,𝑗

· 1
(1 − 𝜌𝑗)2

(
−
𝜆i′,𝑗ri′

s2
i′,𝑗

)

+
𝜆𝑗ri

si,𝑗

⎛⎜⎜⎝ 1
(1 − 𝜌𝑗)2

⎛⎜⎜⎝−
2𝜆i′,𝑗r2

i′

s3
i′,𝑗

⎞⎟⎟⎠ +
2𝜎𝑗

(1 − 𝜌𝑗)3

(
−
𝜆i′,𝑗ri′

s2
i′,𝑗

)⎞⎟⎟⎠
⎞⎟⎟⎠ ,

for all i′ ≠ i, and

𝜕Gi,𝑗

𝜕si′,𝑗′
= 1
𝜆2

⎛⎜⎜⎝−
𝜆i′,𝑗′ri′

s2
i′,𝑗′

+
𝜆𝑗′

2

⎛⎜⎜⎝ 1
1 − 𝜌𝑗′

⎛⎜⎜⎝−
2𝜆i′,𝑗′r2

i′

s3
i′,𝑗′

⎞⎟⎟⎠ +
𝜎𝑗′

(1 − 𝜌𝑗′ )2

(
−
𝜆i′,𝑗′ri′

s2
i′,𝑗′

)⎞⎟⎟⎠
⎞⎟⎟⎠ ,

for all 1 ≤ i′ ≤ m and j′ ≠ j.
• We have 𝜕Gi, j∕𝜙i = 1.
• We have 𝜕Gi,𝑗∕𝜓 = 𝜉𝑗ris

𝛼𝑗−1
i,𝑗 .

Next, we consider Fk, for mn + 1 ≤ k ≤ 2mn. Let k = mn + (i − 1)n + j and Fk = Hi, j.
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• We have
𝜕Hi,𝑗

𝜕𝜆i′,𝑗
= − 1

𝜆2

⎛⎜⎜⎝1 +
𝜆𝑗

2

⎛⎜⎜⎝
r2

i

ri
· 1

1 − 𝜌𝑗
· 2

si,𝑗
+

𝜎𝑗

(1 − 𝜌𝑗)2

⎞⎟⎟⎠
⎞⎟⎟⎠

+ 1
𝜆

⎛⎜⎜⎝1
2

⎛⎜⎜⎝
r2

i

ri
· 1

1 − 𝜌𝑗
· 2

si,𝑗
+

𝜎𝑗

(1 − 𝜌𝑗)2

⎞⎟⎟⎠
+
𝜆𝑗

2

⎛⎜⎜⎝
r2

i

ri
· 1
(1 − 𝜌𝑗)2 · 2

si,𝑗
· ri′

si′,𝑗
+ 1

(1 − 𝜌𝑗)2 ·
r2

i′

s2
i′,𝑗

+
2𝜎𝑗

(1 − 𝜌𝑗)3 · ri′

si′,𝑗

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

for all 1 ≤ i′ ≤ m, and

𝜕Hi,𝑗

𝜕𝜆i′,𝑗′
= − 1

𝜆2

⎛⎜⎜⎝1 +
𝜆𝑗

2

⎛⎜⎜⎝
r2

i

ri
· 1

1 − 𝜌𝑗
· 2

si,𝑗
+

𝜎𝑗

(1 − 𝜌𝑗)2

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

for all 1 ≤ i′ ≤ m and j′ ≠ j.
• We have

𝜕Hi,𝑗

𝜕si,𝑗
=1
𝜆
·
𝜆𝑗

2

⎛⎜⎜⎝
r2

i

ri

(
1

(1 − 𝜌𝑗)2 · 2
si,𝑗

(
−
𝜆i,𝑗ri

s2
i,𝑗

)
+ 1

1 − 𝜌𝑗

(
− 2

s2
i,𝑗

))

+ 1
(1 − 𝜌𝑗)2

⎛⎜⎜⎝−
2𝜆i,𝑗r2

i

s3
i,𝑗

⎞⎟⎟⎠ +
2𝜎𝑗

(1 − 𝜌𝑗)3

(
−
𝜆i,𝑗ri

s2
i,𝑗

)⎞⎟⎟⎠
+ 𝜓𝜉𝑗𝛼𝑗(𝛼𝑗 − 1)s𝛼𝑗−1

i,𝑗 ,

and

𝜕Hi,𝑗

𝜕si′,𝑗
=1
𝜆
·
𝜆𝑗

2

⎛⎜⎜⎝
r2

i

ri
· 1
(1 − 𝜌𝑗)2 · 2

si,𝑗

(
−
𝜆i′,𝑗ri′

s2
i′,𝑗

)

+ 1
(1 − 𝜌𝑗)2

⎛⎜⎜⎝−
2𝜆i′,𝑗r2

i′

s3
i′,𝑗

⎞⎟⎟⎠ +
2𝜎𝑗

(1 − 𝜌𝑗)3

(
−
𝜆i′,𝑗ri′

s2
i′,𝑗

)⎞⎟⎟⎠ ,
for all i′ ≠ i.

• We have 𝜕Hi,𝑗∕𝜕𝜓 = 𝜉𝑗(𝛼𝑗 − 1)s𝛼𝑗i,𝑗 .

Third, we consider Fk, for 2mn + 1 ≤ k ≤ 2mn + m. Let k = 2mn + i and Fk = Ji.

• We have 𝜕Ji∕𝜕𝜆i, j = 1, for all 1 ≤ j ≤ n.

Finally, we consider FN = K.

• We have 𝜕K∕𝜕𝜆i,𝑗 = 𝜉𝑗ris
𝛼𝑗−1
i,𝑗 , for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

• We have 𝜕K∕𝜕si,𝑗 = 𝜉𝑗𝜆i,𝑗ri(𝛼𝑗 − 1)s𝛼𝑗−2
i,𝑗 , for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Our numerical algorithm for finding an optimal load distribution 𝜆i, j, an optimal server speed setting si, j, and the
Lagrange multipliers 𝜙1, 𝜙2, … , 𝜙m, 𝜓 , ie, the vector y = ( y1, y2, … , yN) that satisfies the system of nonlinear equations
F(y) = 0, is given in Algorithm 1. This is essentially the standard Newton's iterative method (See p. 451 in the work of
Burden et al46). Our initial approximation of y is 𝜆i,𝑗 = 𝜆̃i∕n, si, j = s, 𝜙i = 1, and 𝜓 = −1, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n
(line(1)), where s is a constant speed of the servers, which satisfies

n∑
𝑗=1

(
𝜉𝑗

m∑
i=1
𝜆i,𝑗ris𝛼𝑗−1 + P∗

𝑗

)
=

n∑
𝑗=1

(
𝜉𝑗

n

m∑
i=1
𝜆̃iris𝛼𝑗−1 + P∗

𝑗

)
= P̃,
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that is,
1
n

( m∑
i=1
𝜆̃iri

)( n∑
𝑗=1
𝜉𝑗s𝛼𝑗−1

)
= P̃ −

n∑
𝑗=1

P∗
𝑗 .

The value of y is then repeatedly modified as y + z (line (6)), where z is the solution to the system of linear equations
J(y)z = −F(y) (line (5)). Such modification is repeated until ||z|| ≤ 𝜀 (line (7)), where

||z|| = √
z2

1 + z2
2 + · · · + z2

N ,

and 𝜀 is a sufficiently small constant, say, 10−10. The system of linear equations in line (5) can be solved by using the classic
Gaussian elimination with backward substitution algorithm (See pp. 268-269 in the work of Burden et al46).

The value of s that satisfies
n∑
𝑗=1
𝜉𝑗s𝛼𝑗−1 =

(
P̃ −

n∑
𝑗=1

P∗
𝑗

)/(
1
n

m∑
i=1
𝜆̃iri

)
can be found by using the standard bisection method (See p. 22 in the work of Burden et al46), ie, searching s in an interval
[s′, s′′]. Let 𝛼′ = min{𝛼1, 𝛼2, … , 𝛼n} and 𝛼′′ = max{𝛼1, 𝛼2, … , 𝛼n}. Since( n∑

𝑗=1
𝜉𝑗

)
s𝛼′−1 ≤

n∑
𝑗=1
𝜉𝑗s𝛼𝑗−1 ≤

( n∑
𝑗=1
𝜉𝑗

)
s𝛼′′−1,

we get

s′ =

((
P̃ −

n∑
𝑗=1

P∗
𝑗

)/(
1
n

m∑
i=1
𝜆̃iri

)/( n∑
𝑗=1
𝜉𝑗

))1∕(𝛼′′−1)

,

and

s′′ =

((
P̃ −

n∑
𝑗=1

P∗
𝑗

)/(
1
n

m∑
i=1
𝜆̃iri

)/( n∑
𝑗=1
𝜉𝑗

))1∕(𝛼′−1)

.

For the aforementioned constant speed s and 𝜆i, j ≈ 𝜆i∕n, we have

𝜌𝑗 ≈
1
ns

m∑
i=1
𝜆̃iri.

Since 𝜌j < 1, we get

s > 1
n

m∑
i=1
𝜆̃iri,

which can be guaranteed if

s′ > 1
n

m∑
i=1
𝜆̃iri,

that is,

P̃

(
1
n

m∑
i=1
𝜆̃iri

)𝛼′′ ( n∑
𝑗=1
𝜉𝑗

)
+

n∑
𝑗=1

P∗
𝑗 .
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TABLE 2 Numerical data for optimal load distribution

i 𝜆i,1 𝜆i,2 𝜆i,3 𝜆i,4

1 0.4760550 0.3944346 0.3363710 0.2931394
2 0.5445796 0.5127890 0.4841513 0.4584801

TABLE 3 Numerical data for optimal speed setting

i si,1 si,2 si,3 si,4

1 1.5646660 1.4264705 1.3192646 1.2329933
2 1.6264802 1.4838095 1.3730264 1.2838000

TABLE 4 Numerical data for optimal server setting

j 𝜉j 𝛼j P∗
𝑗

𝜌j Tj Pj

1 1.0000000 3.0000000 2.0000000 0.7060385 1.7945432 4.8942500
2 1.2000000 3.0000000 2.5000000 0.6912183 1.8988760 5.0888871
3 1.4000000 3.0000000 3.0000000 0.6781080 1.9908953 5.3529902
4 1.6000000 3.0000000 3.5000000 0.6662990 2.0734676 5.6638727

We will let

P̃ = 𝛽

⎛⎜⎜⎝
(

1
n

m∑
i=1
𝜆̃iri

)𝛼′′ ( n∑
𝑗=1
𝜉𝑗

)
+

n∑
𝑗=1

P∗
𝑗

⎞⎟⎟⎠ ,
for some 𝛽 > 1.

6 A NUMERICAL EXAMPLE

Let us consider the m = 2 classes of applications with task arrival rates 𝜆̃i = 1.5 + 0.5(i − 1), expected task execution
requirements ri = 1.0 + 0.2(i − 1), the second moments of task execution requirements r2

i = ri
2(1.0 + 0.2i), where 1 ≤

i ≤ m, and n = 4 heterogeneous servers with coefficients 𝜉j = 1.0 + 0.2(j − 1) and exponents 𝛼j = 3 for dynamic power
consumption, base power P∗

𝑗
= 2.0+ 0.5( 𝑗 − 1) for static power consumption, where 1 ≤ j ≤ n, and power supply P̃ = 21.

In Table 2, we show the optimal load distribution 𝜆i, j, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. In Table 3, we show the optimal
server speeds si, j, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. In Table 4, we show the optimal server setting including 𝜉j, 𝛼j, P∗

𝑗
, 𝜌j, Tj,

and Pj, for all 1 ≤ j ≤ n. All the data are generated by our algorithm in Section 4. The minimized average response time
of all tasks on the n servers is T = 1.9275173, provided that P does not exceed P̃.

7 SUMMARY

The problem of optimal load distribution for multiple classes of applications on heterogeneous servers with variable
speeds has been addressed in this paper. Our problem is formulated as a multivariable optimization problem, ie, finding
an optimal load distribution and an optimal server speed setting, such that the average task response time is minimized
without exceeding certain power supply. We have studied the problem analytically by treating each server as an M/G/1
queueing system with mixed classes of tasks. We have defined a power constrained performance optimization problem
and developed a numerical algorithm to solve our optimization problem by solving a system of nonlinear equations. We
have also demonstrated numerical examples to show the effectiveness of our model and method. The investigation in this
paper provides a rigorous treatment of the critical issue of how to provide the best QoS by consuming certain available
power resource in modern data centers.
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