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a  b  s  t  r  a  c  t

In  a  data  center  for  cloud  computing,  there  are  typically  multiple  heterogeneous  servers  which  provide
services  in  different  application  domains.  For  such  heterogeneous  servers  in a  data  center  with  different
configurations  for diversified  applications  and  certain  available  power,  there  is  a  problem  of  allocating  the
power  to the  servers,  such  that the  overall  quality  of  service  of the  servers  in  the data  center  is optimized.
We  address  power  constrained  performance  optimization  in  a data  center  with  multiple  heterogeneous
servers.  We  consider  the  problem  of  optimal  power  allocation  among  multiple  heterogeneous  servers,
i.e., minimizing  the  average  task  response  time  of  multiple  heterogeneous  computer  systems  with  energy
constraint.  Each  server  is  treated  as  a queueing  system  and the average  task  response  time  in  a  data  center
with multiple  servers  is  formulated  as  a  function  of  power  allocations  to  the  servers.  The  average  task
response  time  is minimized  subjected  to the  constraint  that  the total  effective  power  consumption  of all
the servers  does  not  exceed  a given  power  limit.  We  develop  an  algorithm  to find  the  optimal  solution
and demonstrate  numerical  data.  We  also  develop  several  closed-form  heuristic  solutions  and show  that
they  are  very  close  to the  optimal  solution.  Our  approach  provides  an analytical  way  of  studying  the
power-performance  tradeoff  at  the  data  center  level.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Data center energy consumption in the US has doubled every
five years, reaching about 110 billion kilowatt-hours per year by
2011 and representing an annual electricity cost of 7.4 billion US
dollars. The peak load on the power grid from servers of data cen-
ters will be 12 GW by 2011, equivalent to the output of 25 baseload
power plants [42]. A data center can consume up to 100 times
more energy than a standard office building. Data centers consume
large amount of natural resources. Only 33% of the original source
energy can be transformed to electricity and delivered to data cen-
ters for consumption. More than half of the electrical power is used
by cooling equipment and for power conversion and distribution.
Eventually, less than 15% of the original source energy is actually
used by information technology equipment for useful computation
and communication within a data center. In addition to consump-
tion of natural resources, data centers in many areas around the
world are powered by coal-fired or natural gas electrical genera-
tion plants, creating tremendous amounts of CO2 emissions as a
bi-product of their power consumption.

Cloud computing provides a fundamentally new way  of deliv-
ering computing and information technology services and has
been rapidly and widely considered and accepted as a promising
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computing paradigm [38]. In a data center for cloud computing,
there are typically multiple heterogeneous servers which provide
services in different application domains. Due to different charac-
teristics of various applications, a server is specifically configured
in terms of computing power, memory capacity, communication
bandwidth, and so on, to fit the requirements of a specific applica-
tion domain. Each server accepts service requests from a particular
application domain with unique workload characteristics such as
the task arrival rate and the average task execution requirement.
For such heterogeneous servers with different configurations for
diversified applications, load distribution among servers seems
inadequate, i.e., each service request must be submitted to a desig-
nated server. Another case is the type of dedicated servers, which
provide dedicated hosting service or managed hosting service,
i.e., a type of Internet hosting in which a client leases an entire
server not shared with anyone [2].  The average task response
time of a server can be improved by increasing the processor
computing power of the server. However, increasing the proces-
sor speed of a server implies more power consumption of the
server. Hence, given certain available power, there is a problem
of allocating the power to the servers in a data center, such that
the overall quality of service of the servers in the data center is
optimized.

In this paper, we deal with power constrained performance opti-
mization in a data center with multiple heterogeneous servers. We
consider the problem of optimal power allocation among multiple

2210-5379/$ – see front matter ©  2011 Elsevier Inc. All rights reserved.
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heterogeneous servers, i.e., minimizing the average task response
time of multiple heterogeneous computer systems with energy
constraint. Notice that from users’ point of view, the average task
response time of all servers is an important measure of quality
of service in a data center. Each server is treated as a queueing
system and the average task response time in a data center with
multiple servers is formulated as a function of power allocations
to the servers. The average task response time is minimized sub-
jected to the constraint that the total effective power consumption
of all the servers does not exceed a given power limit. Such a
minimization problem is solved by finding an optimal power allo-
cation to the servers, since a power allocation determines both
average task response time and total effective power consump-
tion. We  develop an algorithm to find the optimal solution and
demonstrate numerical data. We  also develop several closed-form
heuristic solutions and show that they are very close to the opti-
mal  solution. Our approach provides an analytical way  of studying
the power-performance tradeoff at the data center level. To the
best of the author’s knowledge, such combined investigation of
data center performance optimization and energy efficiency has not
been studied before as a multivariable optimization problem in the
literature.

The rest of the paper is organized as follows. In Section 2, we
mention related research. In Section 3, we present the power con-
sumption model used in this paper. In Section 4, we describe a
queueing model for each server so that the average task response
time can be characterized analytically. In Section 5, we  formally
define our optimal power allocation problem. In Section 6, we
develop an algorithm to solve our optimization problem. In Section
7, we demonstrate numerical data. In Section 8, we develop several
closed-form heuristic solutions and show their quality. In Section
9, we conclude the paper.

2. Related research

According to Moore’s law, power consumption in computer sys-
tems has increased at an exponential speed for decades. Power
density in high-performance computer systems will soon reach
that of a nuclear reactor [43]. Such increased energy consumption
causes severe economic, ecological, environmental, and techni-
cal problems [12–14,39].  Power conservation is critical in many
computation and communication environments and has attracted
extensive research activities. Reducing processor energy consump-
tion has been an important and pressing research issue in recent
years. There has been increasing interest and importance in devel-
oping high-performance and energy-efficient computing systems
and data centers. Significant research and development efforts
have been devoted to finding power and performance manage-
ment methods, and an explosively growing body of literature
has been developed for energy-efficient computing and commu-
nication. The reader is referred to [3,7,41,43] for comprehensive
surveys.

Power consumption in computing systems can be reduced by
thermal-aware hardware and software design at various levels
[40]. Among the numerous hardware and software techniques,
methods, and paradigms ever developed for reducing energy con-
sumption, dynamic power management at the operating system
level is one of the most effective and efficient ways of managing the
power-performance tradeoff. Such software techniques for power
reduction are supported by a mechanism called dynamic voltage
scaling (equivalently, dynamic frequency scaling, dynamic speed
scaling, dynamic power scaling), which are based on supply voltage
and clock frequency and processor speed and power consump-
tion adjustment schemes implemented while tasks are running. A
power-aware scheduling or control algorithm can change supply

voltage and clock frequency and processor speed and power
consumption at appropriate times to optimize a combined con-
sideration of power reduction and performance optimization. Such
management of power and performance can be carried out at dif-
ferent levels, i.e., task level, system and server level, server cluster
and data center level.

Since the pioneering work in [46], power-aware task schedul-
ing on processors with variable voltages and speeds has been
extensively studied [6,11,17,22]. Performance constrained energy
reduction in a computing system with multiple tasks was first
studied in [48], and the research has been extended by a number of
researchers in substantial further investigation [5,9,21,29–31,49].
Significant research has been focused on real-time applications,
namely, adjusting the supply voltage and clock frequency to
minimize processor energy consumption while still meeting the
deadlines for task execution [4,15,16,20,23,32–34,36,37,47,54–57].
Energy and time constrained power allocation and task
scheduling on multiprocessor computers with dynamically
variable voltage and frequency and speed and power have
also been addressed as combinatorial optimization problems
[8,24–27,35].

Efficient power management and performance optimization in
large-scale data centers and server clusters has gained much atten-
tion in the research community in recent years. In [18], the authors
developed a framework for hierarchical autonomic power and
performance management in high-performance distributed data
centers. In [44], the authors proposed a highly scalable hierarchi-
cal power control architecture for large-scale data centers. In [45],
the authors presented a novel cluster-level control architecture
that coordinates individual power and performance control loops
for virtualized server clusters. In [51–53],  the authors formulated
an optimization problem to get an optimal resource scheduling
strategy for a given parallel workload in a server cluster, such
that the proposed optimization model provides controllable and
predictable quantitative control of power consumption with the-
oretically guaranteed service performance, which is essentially
performance constrained power minimization.

Our investigation in this paper belongs to power constrained
performance optimization at the data center level by formu-
lating and solving a multivariable optimization problem. Such
an approach has rarely been seen in the existing literature
[28].

3. Power model

Power dissipation and circuit delay in digital CMOS circuits
can be accurately modeled by simple equations, even for complex
microprocessor circuits. CMOS circuits have dynamic, static, and
short-circuit power dissipation; however, the dominant compo-
nent in a well designed circuit is dynamic power consumption p
(i.e., the switching component of power), which is approximately
p = aCV2f, where a is an activity factor, C is the loading capacitance,
V is the supply voltage, and f is the clock frequency [10]. Since s ∝ f,
where s is the processor speed, and f ∝ V� with 0 < � ≤ 1 [50], which
implies that V ∝ f1/� , we  know that power consumption is p ∝ f˛ and
p ∝ s˛, where  ̨ = 1 + 2/�  ≥ 3.

4. Performance model

Throughout the paper, we use x to denote the expectation of a
random variable x and �2

x to denote the variance of x and cx = �x/x
to denote the coefficient of variation of x.

Assume that we have n heterogeneous servers 1, 2, . . .,  n in
a data center, each having its own  arrival stream of tasks
and power supply. There is no load distribution and balancing
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mechanism. A task submitted to a server must be processed on
that server and task mitigation/migration/rejection is not allowed.
System performance optimization is achieved by optimal power
allocation.

Each server is modeled as an M/G/1 queueing system. Assume
that there is a Poisson stream of arrival tasks to server i with
arrival rate �i (measured in the number of tasks per second). Let
� = �1 + �2 + · · · + �n be the total arrival rate.

Let ri represent the random execution requirement (measured
in the number of giga instructions) of a task submitted to server
i, where 1 ≤ i ≤ n. Notice that ri can have an arbitrary probability
distribution. We  use pi to represent the power (measured in Watt)
supplied to server i. For ease of discussion, we  will assume that
pi is simply s˛

i
, where si = p1/˛

i
is the execution speed of server i

(measured in the number of giga instructions executed per second).
The random execution time of a task on server i is ti = ri/si = ri/p1/˛

i
(measured in second). Since ti and ri are linearly related, they have
the same coefficient of variation cti

= cri
= ci.

Let �i = �iti = �iri/p1/˛
i

= wi/p1/˛
i

denote the utilization of
server i, where wi = �iri is the expected amount of work received
by server i in a unit of time. Since �i < 1, we must have pi > w˛

i
.

By using the well known Pollaczek–Khinchin mean-value for-
mula [19], we get the average task response time of server i, i.e.,

Ti = ti

(
1 +

(1 + c2
ti

)�i

2(1 − �i)

)
= ri

p1/˛
i

(
1 + (1 + c2

i
)wi

2(p1/˛
i

− wi)

)
.

The average task response time in the data center with n
servers is

T(p1, p2, . . . , pn) =
n∑

i=1

(
�i

�

)
Ti

= 1
�

n∑
i=1

�iri

p1/˛
i

(
1 + (1 + c2

i
)wi

2(p1/˛
i

− wi)

)

= 1
�

n∑
i=1

wi

p1/˛
i

(
1 + (1 + c2

i
)wi

2(p1/˛
i

− wi)

)

= 1
�

n∑
i=1

wi

(
1

p1/˛
i

+ (1 + c2
i
)wi

2(p2/˛
i

− wip
1/˛
i

)

)
,

(1)

where we view T as a function of power supplies p1, p2, . . .,  pn.

5. Problem formulation

Assume that an idle computer i consumes certain base power p∗
i
,

which includes static power dissipation, short circuit power dis-
sipation, and other leakage and wasted power [1].  Given power
supply pi, the expected energy consumption of server i over a time
period of � is

ei = �(�ipi + p∗
i
)

= �(�itipi + p∗
i
)

= �(�i(ri/p1/˛
i

)pi + p∗
i
)

= �(�irip
1−1/˛
i

+ p∗
i
)

= �(wip
1−1/˛
i

+ p∗
i
),

where wip
1−1/˛
i

+ p∗
i

is the effective power consumed by server i.
The total expected energy consumption of the n servers is

n∑
i=1

ei =
n∑

i=1

�(wip
1−1/˛
i

+ p∗
i ) = �

n∑
i=1

(wip
1−1/˛
i

+ p∗
i ),

where

n∑
i=1

(wip
1−1/˛
i

+ p∗
i )

is the total effective power consumed by the n servers. The average
task response time T(p1, p2, . . .,  pn) is minimized subject to the
constraint that

n∑
i=1

�(wip
1−1/˛
i

+ p∗
i ) = E,

where E is a given energy constraint. The above condition is equiv-
alent to

n∑
i=1

(wip
1−1/˛
i

+ p∗
i ) = E

�
,

where E/� is a constraint on the total effective power. In other
words, we have

F(p1, p2, . . . , pn) =
n∑

i=1

wip
1−1/˛
i

= P, (2)

where

P = E

�
−

n∑
i=1

p∗
i ,

is the total available effective power to be allocated. Notice that we
must have �i < 1, i.e., p1/˛

i
> wi, or pi > w˛

i
, for all 1 ≤ i ≤ n, and

P =
n∑

i=1

wip
1−1/˛
i

>

n∑
i=1

w˛
i ,

for all the n servers to run fast enough to handle the n task arrival
streams.

Our optimization problem is defined as follows: given task
arrival rates �1, �2, . . .,  �n, expected task execution require-
ments r1, r2, . . . , rn, variances of task execution requirements
�2

r1
, �2

r2
, . . . , �2

rn
, and total available effective power P, find opti-

mal  power supplies p1, p2, . . .,  pn which minimize the average task
response time T(p1, p2, . . .,  pn) in (1) subject to the power constraint
in (2).  Notice that the objective of the optimization problem is to
reduce the average response time of all the servers in a data center.
These servers are entirely heterogeneous in terms of task arrival
rate, task execution requirement, coefficient of variation of task
execution requirements, base power consumption, power supply,
task execution speed, server utilization, and task response time.

6. An algorithm for numerical solutions

We can minimize T(p1, p2, . . .,  pn) subject to the constraint F(p1,
p2, . . .,  pn) = P by using the Lagrange multiplier system

∇T(p1, p2, . . . , pn) = y∇F(p1, p2, . . . , pn),
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where y is a Lagrange multiplier. Notice that

∂T(p1, p2, . . . , pn)

∂pi

= wi

�

(
− 1

˛p1+1/˛
i

−
(1 + c2

i
)wi

2
·

(2/˛)p2/˛−1
i

− wi(1/˛)p1/˛−1

(p2/˛
i

− wip
1/˛
i

)2

)
= − wi

�˛

(
1

p1+1/˛
i

+
(1 + c2

i
)wi

2
·
(

2

p1−2/˛
i

− wi

p1−1/˛
i

)
· 1

(p2/˛
i

− wip
1/˛
i

)2

)
= − wi

�˛

(
1

p1+1/˛
i

+
(1 + c2

i
)wi

2
·

2p1/˛
i

− wi

p1−1/˛
i

· 1

(p2/˛
i

− wip
1/˛
i

)2

)
= − wi

�˛p1+1/˛
i

(
1 +

(1 + c2
i
)wi

2
·

2p1/˛
i

− wi

(p1/˛
i

− wi)
2

)
.

Also, we have

∂F(p1, p2, . . . , pn)
∂pi

=
(

1 − 1
˛

)
wi

p1/˛
i

.

Since

∂T(p1, p2, . . . , pn)
∂pi

= y
∂F(p1, p2, . . . , pn)

∂pi

,

we obtain

− wi

�˛p1+1/˛
i

(
1 + (1 + c2

i
)wi

2
· 2p1/˛

i
− wi

(p1/˛
i

− wi)
2

)
= y
(

1 − 1
˛

)
wi

p1/˛
i

,

which can be simplified as

1
�pi

(
1 + (1 + c2

i
)wi

2
· 2p1/˛

i
− wi

(p1/˛
i

− wi)
2

)
= (−y)(  ̨ − 1).  (3)

Thus, we have a nonlinear system of n + 1 equations from (2) and
(3).

A closed-form solution to Eq. (3) can be obtained for the special
case when ci = 1 (e.g., when server i is an M/M/1  queueing system)
and  ̨ = 3. In this case, Eq. (3) becomes

p1/3
i

(p1/3
i

− wi)
2 = − 1

2�y
.

Let xi = p1/3
i

. Then, we get

x3
i − 2wix

2
i + w2

i xi + 1
2�y

= 0.

The above cubic equation can be solved by using a standard method
(see, e.g., p. 82 of [58]). If we let

zi = xi − 2wi

3
,

we have

z3
i + 3Cizi + Di = 0,

where

Ci = −w2
i

9
,

and

Di = 2w3
i

27
+ 1

2�y
.

If 4C3
i

+ D2
i

> 0, we get

zi =
(

−Di +
√

4C3
i

+ D2
i

2

)1/3

+
(

−Di −
√

4C3
i

+ D2
i

2

)1/3

.

If 4C3
i

+ D2
i

≤ 0, we get

zi = 2(−C3
i )1/6 cos

�i

3
= 2

3
wi cos

�i

3
,

where

�i = cos−1

(
− Di

2
√

−C3
i

)
= cos−1

(
−27Di

2w3
i

)

= cos−1

(
−
(

1 + 27

4w3
i
�y

))
.

Based on zi, we  obtain

pi = x3
i =
(

zi + 2
3

wi

)3
,

for all 1 ≤ i ≤ n. However, there is no closed-form solution for y.
It is unlikely that the above nonlinear system of equations

accommodates a closed-form solution. We  use the following strat-
egy to find a numerical solution (y, p1, p2, . . .,  pn).

6.1. An algorithm for solving Eq. (3)

Our algorithm for finding a numerical solution (y, p1, p2, . . .,  pn)
repeatedly uses a subroutine to solve Eq. (3). Given �, ci, wi, and y,
our algorithm to find pi ∈ (w˛

i
, ∞)  which satisfies (3) is described

as follows. Let f(pi) be the left-hand side of (3),  i.e.,

f (pi) = 1
�pi

(
1 + (1 + c2

i
)wi

2
· 2p1/˛

i
− wi

(p1/˛
i

− wi)
2

)
.

It is easy to verify that f(pi) is a strictly decreasing function of pi in
the domain (w˛

i
, ∞)  with range (0, ∞).  Thus, there is a unique solu-

tion to pi for arbitrary y < 0. Our idea is to find an interval [left, right)
such that the solution to pi can be found in [left, right) by using the
bisection method with arbitrary precision.

The algorithm has three major steps.

Step 1. Our identification of the interval [left, right) starts with
p(0)

i
= 2w˛

i
.

Step 2A. If f (p(0)
i

) < (−y)(  ̨ − 1), then [left, right) ⊂ (w˛
i

, p(0)
i

). We

consider a sequence of pi: p(0)
i

, p(1)
i

, p(2)
i

, . . . , p(m−1)
i

, p(m)
i

,

where the distance from p(j)
i

to w˛
i

is half of the dis-

tance from p(j−1)
i

to w˛
i

, i.e., p(j)
i

− w˛
i

= (p(j−1)
i

− w˛
i

)/2,

or, p(j)
i

= (p(j−1)
i

+ w˛
i

)/2, for all 1 ≤ j ≤ m.  The value of

m ≥ 1 is determined such that f (p(m−1)
i

) < (−y)(  ̨ − 1)

but f (p(m)
i

) ≥ (−y)(  ̨ − 1). The interval [left, right) is then

[p(m)
i

, p(m−1)
i

) = [p(m)
i

, 2p(m)
i

− w˛
i

).

Step 2B. If f (p(0)
i

) ≥ (−y)(  ̨ − 1), then [left, right) ⊂ [p(0)
i

, ∞). We

consider a sequence of pi: p(0)
i

, p(1)
i

, p(2)
i

, . . . , p(m−1)
i

, p(m)
i

,

where p(j)
i

= 2p(j−1)
i

, for all 1 ≤ j ≤ m.  The value of m ≥ 1

is determined such that f (p(m−1)
i

) ≥ (−y)(  ̨ − 1) but

f (p(m)
i

) < (−y)(  ̨ − 1). The interval [left, right) is then

[p(m−1)
i

, p(m)
i

) = [p(m)
i

/2, p(m)
i

).
Step 3. The length of the interval [left, right) is repeatedly reduced

by half until it is no larger than some prespecified accu-
racy 	 > 0. The middle point (left + right)/2 is returned as a
numerical solution to pi with accuracy 	.

The above algorithm is formally described in Fig. 1.
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Fig. 1. Algorithm for solving Eq. (3).

6.2. An algorithm for finding (y, p1, p2, . . .,  pn)

Given �, w1, w2, . . . , wn, c1, c2, . . .,  cn, (these data are from
the input to our optimization problem, namely, �1, �2, . . .,  �n,
r1, r2, . . . , rn, �2

r1
, �2

r2
, . . . , �2

rn
) and P, our algorithm to find a

numerical solution (y, p1, p2, . . .,  pn) which satisfies (2) and (3) is
described as follows. The algorithm has three major steps.

Step 1. We simplify (3) as

1
�pi

= (−y(0))(  ̨ − 1),

that is,

pi = 1
�(−y(0))(  ̨ − 1)

.

Putting the pi’s into (2),  we  get

n∑
i=1

wi

(�(−y(0))(  ̨ − 1))1−1/˛
= P,

which gives rise to

y(0) = − 1
�(  ̨ − 1)

(
1
P

n∑
i=1

wi

)˛/(˛−1)

.

By using y(0) and solving Eq. (3),  we  obtain (p(0)
1 , p(0)

2 , . . . , p(0)
n ).

Unfortunately, Eq. (3) yields (p(0)
1 , p(0)

2 , . . . , p(0)
n ) which are

too large, since

n∑
i=1

wi(p
(0)
i

)1−1/˛ > P.



Author's personal copy

18 K. Li / Sustainable Computing: Informatics and Systems 2 (2012) 13– 22

Step 2. We  consider a sequence of y: y(0), y(1), y(2), . . .,  y(m−1), y(m),
where y(j) = 2y(j−1) for all j = 1, 2, . . .,  m,  and each y(j) results
in (p(j)

1 , p(j)
2 , . . . , p(j)

n ) by solving Eq. (3).  The sequence of

decreased value of y give decreased (p(j)
1 , p(j)

2 , . . . , p(j)
n ),

because the left-hand side of (3) is a strictly decreasing
function of pi. The value m ≥ 1 is determined such that

n∑
i=1

wi(p
(m−1)
i

)1−1/˛ > P,

but

n∑
i=1

wi(p
(m)
i

)1−1/˛ ≤ P.

Step 3. We  search y in the interval [left, right) = [y(m),
y(m−1)) = [y(m), y(m)/2) by using the bisection method
such that the resulted (y, p1, p2, . . .,  pn) are all within
some prespecified accuracy 	 > 0.

The above algorithm is formally described in Fig. 2.

7. Numerical data

The purpose of this section is to demonstrate numerical data.
The significance of these data is to show the impact of the task
arrival rates, the expected task execution requirements, and the
coefficients of variation of task execution requirements on the aver-
age task response time. All our parameters are chosen in such a
way that in each figure, we can show the impact of one of the
major factors, i.e., the task arrival rates, the expected task execution
requirements, and the coefficients of variation of task execution
requirements.

We consider a data center containing n = 10 heterogeneous
servers with ˛ = 3.

Let the unit of time be normalized such that the minimum arrival
rate is one, and �i = 1 + l(i − 1) for all 1 ≤ i ≤ n. Let the measure of
task execution requirement be normalized such that the minimum
requirement is one, and ri = 1.0 + 0.1(i − 1) for all 1 ≤ i ≤ n. We  set
�ri

= 0.5 + 0.2(i − 1) for all 1 ≤ i ≤ n. In Fig. 3, we show the aver-
age task response time T vs. total effective power P and l, where
l = 0.100, 0.125, 0.150, 0.175, 0.200. All the data are calculated by
using Algorithms 1 and 2 with 	 = 10−10.

As another example, we set � = 1 + 0.1(i − 1), ri = 1 + u(i − 1), and
�ri

= 0.5 + 0.2(i − 1), for all 1 ≤ i ≤ n. In Fig. 4, we  show the aver-
age task response time T vs. total effective power P and u, where
u = 0.100, 0.125, 0.150, 0.175, 0.200.

As a third example, we set � = 1 + 0.1(i − 1), ri = 1 + 0.1(i − 1), and
�ri

= 0.5 + v(i − 1), for all 1 ≤ i ≤ n. In Fig. 5, we show the average
task response time T vs. total effective power P and v, where v =
0.20, 0.50, 0.80, 0.11, 0.14.

The values of l, u, v are selected in such a way that the impact
of the task arrival rates, the expected task execution requirements,
and the coefficients of variation of task execution requirements can
be clearly demonstrated. We  observe that the task arrival rates,
the expected task execution requirements, and the coefficients of
variation of task execution requirements all have significant impact
on the average task response time in a data center.

8. Heuristic solutions

A number of heuristic solutions can be developed for the optimal
power allocation problem. These methods provide simple and even
closed-form solutions which yield the average task response time

very close to the optimal solution. The benefit of a heuristic method
is that it can provide a quick yet accurate solution.

8.1. The workload proportional method

In the workload proportional (WP) method, also called the energy
proportional method [53], the power allocated to a server is pro-
portional to the workload on the server. Hence, for n servers with
workloads w1, w2, . . . , wn, we  have

pi = x
(

wi

w1 + w2 + · · · +  wn

)
P,

for some x, where 1 ≤ i ≤ n. Notice that

n∑
i=1

wip
1−1/˛
i

= P,

that is,

x1−1/˛P1−1/˛

n∑
i=1

wi

(
wi

w1 + w2 + · · · + wn

)1−1/˛

= P,

or, equivalently,

x1−1/˛

(
w2−1/˛

1 + w2−1/˛
2 + · · · + w2−1/˛

n

(w1 + w2 + · · · + wn)1−1/˛

)
= P1/˛,

and

x˛−1

(
(w2−1/˛

1 + w2−1/˛
2 + · · · + w2−1/˛

n )˛

(w1 + w2 + · · · + wn)˛−1

)
= P.

The last equation gives rise to

x =
(

w1 + w2 + · · · + wn

(w2−1/˛
1 + w2−1/˛

2 + · · · + w2−1/˛
n )˛/(˛−1)

)
P1/(˛−1),

and

pi =
(

wi

(w2−1/˛
1 + w2−1/˛

2 + · · · + w2−1/˛
n )˛/(˛−1)

)
P˛/(˛−1),

for all 1 ≤ i ≤ n.

8.2. The equal speed method

Another workload proportional method is that the effective
power consumed by a server is proportional to the workload on
the server, namely,

wip
1−1/˛
i

=
(

wi

w1 + w2 + · · · + wn

)
P,

which implies that

pi =
(

P

w1 + w2 + · · · + wn

)˛/(˛−1)
,

for all 1 ≤ i ≤ n. The above equation indicates that all servers have
the same power and speed. Hence, we  call this method as the equal
speed (ES) method.
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Fig. 2. Algorithm for finding (y, p1, p2, . . ., pn).

Fig. 3. The average task response time T vs. total effective power P and l.
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Fig. 4. The average task response time T vs. total effective power P and u.

8.3. The equal utilization method

In the equal utilization (EU) method, the available power P is
allocated to the servers in such a way that all the servers have the
same utilization, i.e., �1 = �2 = · · · = �n = �. Since

�i = wi

p1/˛
i

= �,

we have

pi =
(

wi

�

)˛

,

for all 1 ≤ i ≤ n. Based on the condition that

n∑
i=1

wip
1−1/˛
i

= P,

we get

P =
n∑

i=1

wi

(
wi

�

)˛−1
= 1

�˛−1

n∑
i=1

w˛
i ,

which implies that

�˛−1 = 1
P

n∑
i=1

w˛
i ,

and

pi =
(

w˛
i

(w˛
1 + w˛

2 + · · · +  w˛
n )˛/(˛−1)

)
P˛/(˛−1),

for all 1 ≤ i ≤ n.

8.4. The equal time method

In the equal time (ET) method, the available power P is allocated
to the servers in such a way that all the servers have the same
average task response time, i.e., T1 = T2 = · · · = Tn = T, which is also the
average task response time in a data center with n servers. Since

Ti = ri

p1/˛
i

(
1 + (1 + c2

i
)wi

2(p1/˛
i

− wi)

)
= T,

we obtain

2Tp2/˛
i

− 2(ri + wiT)p1/˛
i

− riwi(c
2
i − 1) = 0,

Fig. 5. The average task response time T vs. total effective power P and v.
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Table 1
Comparison of heuristic solutions.

P ES WP  EU ET OPT

160 – – 23.6464820 23.6014442 20.0403962
170 – – 11.0667775 10.9992702 9.3999089
180 –  – 7.3041328 7.2317756 6.2144186
190  – – 5.4923905 5.4189046 4.6790143
200 –  – 4.4255392 4.3522292 3.7739411
210  – – 3.7218538 3.6492758 3.1763537
220  – – 3.2224276 3.1508370 2.7518160
230  – 5.9323698 2.8492928 2.7788051 2.4343428
240 – 3.7009223 2.5597051 2.4903646 2.1877444
250  – 2.8692808 2.3282689 2.2600817 1.9905099
260 –  2.4058969 2.1389450 2.0718960 1.8290474
270  – 2.1003346 1.9811038 1.9151662 1.6943447
280  – 1.8793819 1.8474213 1.7825620 1.5801894
290  10.6952124 1.7100732 1.7326864 1.6688692 1.4821590
300 4.5150157 1.5750692 1.6330896 1.5702771 1.3970189
310 3.1538259 1.4642476 1.5457811 1.4839361 1.3223482
320  2.5251252 1.3712394 1.4685866 1.4076725 1.2562991
330 2.1507320 1.2918056 1.3998178 1.3397991 1.1974358
340  1.8967079 1.2229978 1.3381438 1.2789864 1.1446263
350 1.7102047 1.1626919 1.2825011 1.2241724 1.0969655
360  1.5658943 1.1093131 1.2320298 1.1744987 1.0537211
370  1.4499911 1.0616653 1.1860266 1.1292637 1.0142942
380  1.3542846 1.0188216 1.1439110 1.0878882 0.9781900
390  1.2735451 0.9800508 1.1051995 1.0498902 0.9449963
400 1.2042637 0.9447673 1.0694859 1.0148649 0.9143669
410  1.1439863 0.9124961 1.0364268 0.9824702 0.8860085
420 1.0909381 0.8828470 1.0057296 0.9524145 0.8596715
430  1.0437989 0.8554966 0.9771432 0.9244484 0.8351418
440  1.0015634 0.8301738 0.9504517 0.8983565 0.8122346
450 0.9634508 0.8066497 0.9254673 0.8739524 0.7907897
460  0.9288437 0.7847296 0.9020268 0.8510738 0.7706677
470 0.8972467 0.7642467 0.8799873 0.8295787 0.7517463
480  0.8682570 0.7450571 0.8592231 0.8093422 0.7339180
490 0.8415434 0.7270359 0.8396232 0.7902541 0.7170880
500  0.8168303 0.7100742 0.8210893 0.7722168 0.7011721

for all 1 ≤ i ≤ n. Solving the above quadratic equation of p1/˛
i

, we get

p1/˛
i

=
ri + wiT +

√
(ri + wiT)2 + 2riwi(c2

i
− 1)T

2T
,

and

pi =

⎛⎝ ri + wiT +
√

(ri + wiT)2 + 2riwi(c2
i

− 1)T

2T

⎞⎠˛

,

for all 1 ≤ i ≤ n. Based on the condition that

n∑
i=1

wip
1−1/˛
i

= P,

we have

n∑
i=1

wi

⎛⎝ ri + wiT +
√

(ri + wiT)2 + 2riwi(c2
i

− 1)T

2T

⎞⎠˛−1

= P.

Notice that the left-hand side of the above equation is a decreas-
ing function of T. Hence, given P, we can find T easily by using the
bisection method.

8.5. Performance comparison

Again, let us consider a data center having n = 10 heterogeneous
servers with  ̨ = 3. In Table 1, we compare the average task response
time T produced by the four heuristic solutions and the opti-
mal  solution, where we set � = 1 + 0.1(i − 1), ri = 1 + 0.1(i − 1), and

�ri
= 0.5 + 0.2(i − 1), for all 1 ≤ i ≤ n. An entry with no datum means

that the heuristic solution does not provide a meaningful solution
(i.e., pi > w˛

i
, for all 1 ≤ i ≤ n).

We have a number of observations.

• All our heuristic solutions are reasonably or very close to the opti-
mal  solution OPT, except when a heuristic solution is close to its
saturation point (i.e., when the task response time starts to grow
sharply).

• The ES method performs consistently worse than other methods,
because the equal speed method does not consider the workload
on the servers and does not yield a good solution.

• The ET method performs consistently better than the EU method,
because the equal time method attempts to balance the perfor-
mance of all the servers.

• The WP method performs worse than EU and ET when P is small
and WP  is close to its saturation point. However, as P increases,
WP  performs better than EU and ET.

9. Summary

We  have introduced the problem of optimal power allocation
among multiple heterogeneous servers in a data center for cloud
computing. The purpose is to provide the best quality of service by
using certain limited power resource. Our approach is to model a
server as an M/G/1 queueing system and formulate the average task
response time in a data center with multiple servers as a function of
power allocations to the servers. We  have developed an algorithm
to find the optimal solution numerically. We  have also developed
several closed-form heuristic solutions which are able to provide
near-optimal solutions. Our approach provides an analytical way of
studying the power-performance tradeoff at the data center level.

Notice that our power consumption model in this paper assumes
that clock frequency and supply voltage and execution speed
and power supply of a server can change continuously and
unboundedly. However, in the current processor technology, clock
frequency and supply voltage and execution speed and power
supply can only be set with a few discrete levels. It is definitely
interesting and important to formulate and solve our optimal
power allocation problem for multiple heterogeneous servers with
discrete and bounded and different clock frequency and supply
voltage and execution speed and power supply levels. Such inves-
tigation will be practically more useful. Another direction worth of
further investigation is to extend our work in this paper to more
general queueing models such as G/G/1, which can be applied to
more general servers, data centers, and cloud computing environ-
ments.
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