
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Sustainable Computing: Informatics and Systems 2 (2012) 13– 22

Contents lists available at SciVerse ScienceDirect

Sustainable Computing: Informatics and Systems

j ourna l ho me page: www.elsev ier .com/ locate /suscom

Optimal power allocation among multiple heterogeneous servers in a data center

Keqin Li ∗

Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o

Keywords:
Average task response time
Data center
Heterogeneous server
Optimal power allocation
Power consumption

a b s t r a c t

In a data center for cloud computing, there are typically multiple heterogeneous servers which provide
services in different application domains. For such heterogeneous servers in a data center with different
configurations for diversified applications and certain available power, there is a problem of allocating the
power to the servers, such that the overall quality of service of the servers in the data center is optimized.
We address power constrained performance optimization in a data center with multiple heterogeneous
servers. We consider the problem of optimal power allocation among multiple heterogeneous servers,
i.e., minimizing the average task response time of multiple heterogeneous computer systems with energy
constraint. Each server is treated as a queueing system and the average task response time in a data center
with multiple servers is formulated as a function of power allocations to the servers. The average task
response time is minimized subjected to the constraint that the total effective power consumption of all
the servers does not exceed a given power limit. We develop an algorithm to find the optimal solution
and demonstrate numerical data. We also develop several closed-form heuristic solutions and show that
they are very close to the optimal solution. Our approach provides an analytical way of studying the
power-performance tradeoff at the data center level.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Data center energy consumption in the US has doubled every
five years, reaching about 110 billion kilowatt-hours per year by
2011 and representing an annual electricity cost of 7.4 billion US
dollars. The peak load on the power grid from servers of data cen-
ters will be 12 GW by 2011, equivalent to the output of 25 baseload
power plants [42]. A data center can consume up to 100 times
more energy than a standard office building. Data centers consume
large amount of natural resources. Only 33% of the original source
energy can be transformed to electricity and delivered to data cen-
ters for consumption. More than half of the electrical power is used
by cooling equipment and for power conversion and distribution.
Eventually, less than 15% of the original source energy is actually
used by information technology equipment for useful computation
and communication within a data center. In addition to consump-
tion of natural resources, data centers in many areas around the
world are powered by coal-fired or natural gas electrical genera-
tion plants, creating tremendous amounts of CO2 emissions as a
bi-product of their power consumption.

Cloud computing provides a fundamentally new way of deliv-
ering computing and information technology services and has
been rapidly and widely considered and accepted as a promising

∗ Tel.: +1 845 257 3534; fax: +1 845 257 3996.

computing paradigm [38]. In a data center for cloud computing,
there are typically multiple heterogeneous servers which provide
services in different application domains. Due to different charac-
teristics of various applications, a server is specifically configured
in terms of computing power, memory capacity, communication
bandwidth, and so on, to fit the requirements of a specific applica-
tion domain. Each server accepts service requests from a particular
application domain with unique workload characteristics such as
the task arrival rate and the average task execution requirement.
For such heterogeneous servers with different configurations for
diversified applications, load distribution among servers seems
inadequate, i.e., each service request must be submitted to a desig-
nated server. Another case is the type of dedicated servers, which
provide dedicated hosting service or managed hosting service,
i.e., a type of Internet hosting in which a client leases an entire
server not shared with anyone [2]. The average task response
time of a server can be improved by increasing the processor
computing power of the server. However, increasing the proces-
sor speed of a server implies more power consumption of the
server. Hence, given certain available power, there is a problem
of allocating the power to the servers in a data center, such that
the overall quality of service of the servers in the data center is
optimized.

In this paper, we deal with power constrained performance opti-
mization in a data center with multiple heterogeneous servers. We
consider the problem of optimal power allocation among multiple

2210-5379/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.suscom.2011.11.002

Author's personal copy

14 K. Li / Sustainable Computing: Informatics and Systems 2 (2012) 13– 22

heterogeneous servers, i.e., minimizing the average task response
time of multiple heterogeneous computer systems with energy
constraint. Notice that from users’ point of view, the average task
response time of all servers is an important measure of quality
of service in a data center. Each server is treated as a queueing
system and the average task response time in a data center with
multiple servers is formulated as a function of power allocations
to the servers. The average task response time is minimized sub-
jected to the constraint that the total effective power consumption
of all the servers does not exceed a given power limit. Such a
minimization problem is solved by finding an optimal power allo-
cation to the servers, since a power allocation determines both
average task response time and total effective power consump-
tion. We develop an algorithm to find the optimal solution and
demonstrate numerical data. We also develop several closed-form
heuristic solutions and show that they are very close to the opti-
mal solution. Our approach provides an analytical way of studying
the power-performance tradeoff at the data center level. To the
best of the author’s knowledge, such combined investigation of
data center performance optimization and energy efficiency has not
been studied before as a multivariable optimization problem in the
literature.

The rest of the paper is organized as follows. In Section 2, we
mention related research. In Section 3, we present the power con-
sumption model used in this paper. In Section 4, we describe a
queueing model for each server so that the average task response
time can be characterized analytically. In Section 5, we formally
define our optimal power allocation problem. In Section 6, we
develop an algorithm to solve our optimization problem. In Section
7, we demonstrate numerical data. In Section 8, we develop several
closed-form heuristic solutions and show their quality. In Section
9, we conclude the paper.

2. Related research

According to Moore’s law, power consumption in computer sys-
tems has increased at an exponential speed for decades. Power
density in high-performance computer systems will soon reach
that of a nuclear reactor [43]. Such increased energy consumption
causes severe economic, ecological, environmental, and techni-
cal problems [12–14,39]. Power conservation is critical in many
computation and communication environments and has attracted
extensive research activities. Reducing processor energy consump-
tion has been an important and pressing research issue in recent
years. There has been increasing interest and importance in devel-
oping high-performance and energy-efficient computing systems
and data centers. Significant research and development efforts
have been devoted to finding power and performance manage-
ment methods, and an explosively growing body of literature
has been developed for energy-efficient computing and commu-
nication. The reader is referred to [3,7,41,43] for comprehensive
surveys.

Power consumption in computing systems can be reduced by
thermal-aware hardware and software design at various levels
[40]. Among the numerous hardware and software techniques,
methods, and paradigms ever developed for reducing energy con-
sumption, dynamic power management at the operating system
level is one of the most effective and efficient ways of managing the
power-performance tradeoff. Such software techniques for power
reduction are supported by a mechanism called dynamic voltage
scaling (equivalently, dynamic frequency scaling, dynamic speed
scaling, dynamic power scaling), which are based on supply voltage
and clock frequency and processor speed and power consump-
tion adjustment schemes implemented while tasks are running. A
power-aware scheduling or control algorithm can change supply

voltage and clock frequency and processor speed and power
consumption at appropriate times to optimize a combined con-
sideration of power reduction and performance optimization. Such
management of power and performance can be carried out at dif-
ferent levels, i.e., task level, system and server level, server cluster
and data center level.

Since the pioneering work in [46], power-aware task schedul-
ing on processors with variable voltages and speeds has been
extensively studied [6,11,17,22]. Performance constrained energy
reduction in a computing system with multiple tasks was first
studied in [48], and the research has been extended by a number of
researchers in substantial further investigation [5,9,21,29–31,49].
Significant research has been focused on real-time applications,
namely, adjusting the supply voltage and clock frequency to
minimize processor energy consumption while still meeting the
deadlines for task execution [4,15,16,20,23,32–34,36,37,47,54–57].
Energy and time constrained power allocation and task
scheduling on multiprocessor computers with dynamically
variable voltage and frequency and speed and power have
also been addressed as combinatorial optimization problems
[8,24–27,35].

Efficient power management and performance optimization in
large-scale data centers and server clusters has gained much atten-
tion in the research community in recent years. In [18], the authors
developed a framework for hierarchical autonomic power and
performance management in high-performance distributed data
centers. In [44], the authors proposed a highly scalable hierarchi-
cal power control architecture for large-scale data centers. In [45],
the authors presented a novel cluster-level control architecture
that coordinates individual power and performance control loops
for virtualized server clusters. In [51–53], the authors formulated
an optimization problem to get an optimal resource scheduling
strategy for a given parallel workload in a server cluster, such
that the proposed optimization model provides controllable and
predictable quantitative control of power consumption with the-
oretically guaranteed service performance, which is essentially
performance constrained power minimization.

Our investigation in this paper belongs to power constrained
performance optimization at the data center level by formu-
lating and solving a multivariable optimization problem. Such
an approach has rarely been seen in the existing literature
[28].

3. Power model

Power dissipation and circuit delay in digital CMOS circuits
can be accurately modeled by simple equations, even for complex
microprocessor circuits. CMOS circuits have dynamic, static, and
short-circuit power dissipation; however, the dominant compo-
nent in a well designed circuit is dynamic power consumption p
(i.e., the switching component of power), which is approximately
p = aCV2f, where a is an activity factor, C is the loading capacitance,
V is the supply voltage, and f is the clock frequency [10]. Since s ∝ f,
where s is the processor speed, and f ∝ V� with 0 < � ≤ 1 [50], which
implies that V ∝ f1/� , we know that power consumption is p ∝ f˛ and
p ∝ s˛, where ̨ = 1 + 2/� ≥ 3.

4. Performance model

Throughout the paper, we use x to denote the expectation of a
random variable x and �2

x to denote the variance of x and cx = �x/x
to denote the coefficient of variation of x.

Assume that we have n heterogeneous servers 1, 2, . . ., n in
a data center, each having its own arrival stream of tasks
and power supply. There is no load distribution and balancing

Author's personal copy

K. Li / Sustainable Computing: Informatics and Systems 2 (2012) 13– 22 15

mechanism. A task submitted to a server must be processed on
that server and task mitigation/migration/rejection is not allowed.
System performance optimization is achieved by optimal power
allocation.

Each server is modeled as an M/G/1 queueing system. Assume
that there is a Poisson stream of arrival tasks to server i with
arrival rate �i (measured in the number of tasks per second). Let
� = �1 + �2 + · · · + �n be the total arrival rate.

Let ri represent the random execution requirement (measured
in the number of giga instructions) of a task submitted to server
i, where 1 ≤ i ≤ n. Notice that ri can have an arbitrary probability
distribution. We use pi to represent the power (measured in Watt)
supplied to server i. For ease of discussion, we will assume that
pi is simply s˛

i
, where si = p1/˛

i
is the execution speed of server i

(measured in the number of giga instructions executed per second).
The random execution time of a task on server i is ti = ri/si = ri/p1/˛

i
(measured in second). Since ti and ri are linearly related, they have
the same coefficient of variation cti

= cri
= ci.

Let �i = �iti = �iri/p1/˛
i

= wi/p1/˛
i

denote the utilization of
server i, where wi = �iri is the expected amount of work received
by server i in a unit of time. Since �i < 1, we must have pi > w˛

i
.

By using the well known Pollaczek–Khinchin mean-value for-
mula [19], we get the average task response time of server i, i.e.,

Ti = ti

(
1 +

(1 + c2
ti

)�i

2(1 − �i)

)
= ri

p1/˛
i

(
1 + (1 + c2

i
)wi

2(p1/˛
i

− wi)

)
.

The average task response time in the data center with n
servers is

T(p1, p2, . . . , pn) =
n∑

i=1

(
�i

�

)
Ti

= 1
�

n∑
i=1

�iri

p1/˛
i

(
1 + (1 + c2

i
)wi

2(p1/˛
i

− wi)

)

= 1
�

n∑
i=1

wi

p1/˛
i

(
1 + (1 + c2

i
)wi

2(p1/˛
i

− wi)

)

= 1
�

n∑
i=1

wi

(
1

p1/˛
i

+ (1 + c2
i
)wi

2(p2/˛
i

− wip
1/˛
i

)

)
,

(1)

where we view T as a function of power supplies p1, p2, . . ., pn.

5. Problem formulation

Assume that an idle computer i consumes certain base power p∗
i
,

which includes static power dissipation, short circuit power dis-
sipation, and other leakage and wasted power [1]. Given power
supply pi, the expected energy consumption of server i over a time
period of � is

ei = �(�ipi + p∗
i
)

= �(�itipi + p∗
i
)

= �(�i(ri/p1/˛
i

)pi + p∗
i
)

= �(�irip
1−1/˛
i

+ p∗
i
)

= �(wip
1−1/˛
i

+ p∗
i
),

where wip
1−1/˛
i

+ p∗
i

is the effective power consumed by server i.
The total expected energy consumption of the n servers is

n∑
i=1

ei =
n∑

i=1

�(wip
1−1/˛
i

+ p∗
i) = �

n∑
i=1

(wip
1−1/˛
i

+ p∗
i),

where

n∑
i=1

(wip
1−1/˛
i

+ p∗
i)

is the total effective power consumed by the n servers. The average
task response time T(p1, p2, . . ., pn) is minimized subject to the
constraint that

n∑
i=1

�(wip
1−1/˛
i

+ p∗
i) = E,

where E is a given energy constraint. The above condition is equiv-
alent to

n∑
i=1

(wip
1−1/˛
i

+ p∗
i) = E

�
,

where E/� is a constraint on the total effective power. In other
words, we have

F(p1, p2, . . . , pn) =
n∑

i=1

wip
1−1/˛
i

= P, (2)

where

P = E

�
−

n∑
i=1

p∗
i ,

is the total available effective power to be allocated. Notice that we
must have �i < 1, i.e., p1/˛

i
> wi, or pi > w˛

i
, for all 1 ≤ i ≤ n, and

P =
n∑

i=1

wip
1−1/˛
i

>

n∑
i=1

w˛
i ,

for all the n servers to run fast enough to handle the n task arrival
streams.

Our optimization problem is defined as follows: given task
arrival rates �1, �2, . . ., �n, expected task execution require-
ments r1, r2, . . . , rn, variances of task execution requirements
�2

r1
, �2

r2
, . . . , �2

rn
, and total available effective power P, find opti-

mal power supplies p1, p2, . . ., pn which minimize the average task
response time T(p1, p2, . . ., pn) in (1) subject to the power constraint
in (2). Notice that the objective of the optimization problem is to
reduce the average response time of all the servers in a data center.
These servers are entirely heterogeneous in terms of task arrival
rate, task execution requirement, coefficient of variation of task
execution requirements, base power consumption, power supply,
task execution speed, server utilization, and task response time.

6. An algorithm for numerical solutions

We can minimize T(p1, p2, . . ., pn) subject to the constraint F(p1,
p2, . . ., pn) = P by using the Lagrange multiplier system

∇T(p1, p2, . . . , pn) = y∇F(p1, p2, . . . , pn),

Author's personal copy

16 K. Li / Sustainable Computing: Informatics and Systems 2 (2012) 13– 22

where y is a Lagrange multiplier. Notice that

∂T(p1, p2, . . . , pn)

∂pi

= wi

�

(
− 1

˛p1+1/˛
i

−
(1 + c2

i
)wi

2
·

(2/˛)p2/˛−1
i

− wi(1/˛)p1/˛−1

(p2/˛
i

− wip
1/˛
i

)2

)
= − wi

�˛

(
1

p1+1/˛
i

+
(1 + c2

i
)wi

2
·
(

2

p1−2/˛
i

− wi

p1−1/˛
i

)
· 1

(p2/˛
i

− wip
1/˛
i

)2

)
= − wi

�˛

(
1

p1+1/˛
i

+
(1 + c2

i
)wi

2
·

2p1/˛
i

− wi

p1−1/˛
i

· 1

(p2/˛
i

− wip
1/˛
i

)2

)
= − wi

�˛p1+1/˛
i

(
1 +

(1 + c2
i
)wi

2
·

2p1/˛
i

− wi

(p1/˛
i

− wi)
2

)
.

Also, we have

∂F(p1, p2, . . . , pn)
∂pi

=
(

1 − 1
˛

)
wi

p1/˛
i

.

Since

∂T(p1, p2, . . . , pn)
∂pi

= y
∂F(p1, p2, . . . , pn)

∂pi

,

we obtain

− wi

�˛p1+1/˛
i

(
1 + (1 + c2

i
)wi

2
· 2p1/˛

i
− wi

(p1/˛
i

− wi)
2

)
= y
(

1 − 1
˛

)
wi

p1/˛
i

,

which can be simplified as

1
�pi

(
1 + (1 + c2

i
)wi

2
· 2p1/˛

i
− wi

(p1/˛
i

− wi)
2

)
= (−y)(̨ − 1). (3)

Thus, we have a nonlinear system of n + 1 equations from (2) and
(3).

A closed-form solution to Eq. (3) can be obtained for the special
case when ci = 1 (e.g., when server i is an M/M/1 queueing system)
and ̨ = 3. In this case, Eq. (3) becomes

p1/3
i

(p1/3
i

− wi)
2 = − 1

2�y
.

Let xi = p1/3
i

. Then, we get

x3
i − 2wix

2
i + w2

i xi + 1
2�y

= 0.

The above cubic equation can be solved by using a standard method
(see, e.g., p. 82 of [58]). If we let

zi = xi − 2wi

3
,

we have

z3
i + 3Cizi + Di = 0,

where

Ci = −w2
i

9
,

and

Di = 2w3
i

27
+ 1

2�y
.

If 4C3
i

+ D2
i

> 0, we get

zi =
(

−Di +
√

4C3
i

+ D2
i

2

)1/3

+
(

−Di −
√

4C3
i

+ D2
i

2

)1/3

.

If 4C3
i

+ D2
i

≤ 0, we get

zi = 2(−C3
i)1/6 cos

�i

3
= 2

3
wi cos

�i

3
,

where

�i = cos−1

(
− Di

2
√

−C3
i

)
= cos−1

(
−27Di

2w3
i

)

= cos−1

(
−
(

1 + 27

4w3
i
�y

))
.

Based on zi, we obtain

pi = x3
i =
(

zi + 2
3

wi

)3
,

for all 1 ≤ i ≤ n. However, there is no closed-form solution for y.
It is unlikely that the above nonlinear system of equations

accommodates a closed-form solution. We use the following strat-
egy to find a numerical solution (y, p1, p2, . . ., pn).

6.1. An algorithm for solving Eq. (3)

Our algorithm for finding a numerical solution (y, p1, p2, . . ., pn)
repeatedly uses a subroutine to solve Eq. (3). Given �, ci, wi, and y,
our algorithm to find pi ∈ (w˛

i
, ∞) which satisfies (3) is described

as follows. Let f(pi) be the left-hand side of (3), i.e.,

f (pi) = 1
�pi

(
1 + (1 + c2

i
)wi

2
· 2p1/˛

i
− wi

(p1/˛
i

− wi)
2

)
.

It is easy to verify that f(pi) is a strictly decreasing function of pi in
the domain (w˛

i
, ∞) with range (0, ∞). Thus, there is a unique solu-

tion to pi for arbitrary y < 0. Our idea is to find an interval [left, right)
such that the solution to pi can be found in [left, right) by using the
bisection method with arbitrary precision.

The algorithm has three major steps.

Step 1. Our identification of the interval [left, right) starts with
p(0)

i
= 2w˛

i
.

Step 2A. If f (p(0)
i

) < (−y)(̨ − 1), then [left, right) ⊂ (w˛
i

, p(0)
i

). We

consider a sequence of pi: p(0)
i

, p(1)
i

, p(2)
i

, . . . , p(m−1)
i

, p(m)
i

,

where the distance from p(j)
i

to w˛
i

is half of the dis-

tance from p(j−1)
i

to w˛
i

, i.e., p(j)
i

− w˛
i

= (p(j−1)
i

− w˛
i

)/2,

or, p(j)
i

= (p(j−1)
i

+ w˛
i

)/2, for all 1 ≤ j ≤ m. The value of

m ≥ 1 is determined such that f (p(m−1)
i

) < (−y)(̨ − 1)

but f (p(m)
i

) ≥ (−y)(̨ − 1). The interval [left, right) is then

[p(m)
i

, p(m−1)
i

) = [p(m)
i

, 2p(m)
i

− w˛
i

).

Step 2B. If f (p(0)
i

) ≥ (−y)(̨ − 1), then [left, right) ⊂ [p(0)
i

, ∞). We

consider a sequence of pi: p(0)
i

, p(1)
i

, p(2)
i

, . . . , p(m−1)
i

, p(m)
i

,

where p(j)
i

= 2p(j−1)
i

, for all 1 ≤ j ≤ m. The value of m ≥ 1

is determined such that f (p(m−1)
i

) ≥ (−y)(̨ − 1) but

f (p(m)
i

) < (−y)(̨ − 1). The interval [left, right) is then

[p(m−1)
i

, p(m)
i

) = [p(m)
i

/2, p(m)
i

).
Step 3. The length of the interval [left, right) is repeatedly reduced

by half until it is no larger than some prespecified accu-
racy 	 > 0. The middle point (left + right)/2 is returned as a
numerical solution to pi with accuracy 	.

The above algorithm is formally described in Fig. 1.

Author's personal copy

K. Li / Sustainable Computing: Informatics and Systems 2 (2012) 13– 22 17

Fig. 1. Algorithm for solving Eq. (3).

6.2. An algorithm for finding (y, p1, p2, . . ., pn)

Given �, w1, w2, . . . , wn, c1, c2, . . ., cn, (these data are from
the input to our optimization problem, namely, �1, �2, . . ., �n,
r1, r2, . . . , rn, �2

r1
, �2

r2
, . . . , �2

rn
) and P, our algorithm to find a

numerical solution (y, p1, p2, . . ., pn) which satisfies (2) and (3) is
described as follows. The algorithm has three major steps.

Step 1. We simplify (3) as

1
�pi

= (−y(0))(̨ − 1),

that is,

pi = 1
�(−y(0))(̨ − 1)

.

Putting the pi’s into (2), we get

n∑
i=1

wi

(�(−y(0))(̨ − 1))1−1/˛
= P,

which gives rise to

y(0) = − 1
�(̨ − 1)

(
1
P

n∑
i=1

wi

)˛/(˛−1)

.

By using y(0) and solving Eq. (3), we obtain (p(0)
1 , p(0)

2 , . . . , p(0)
n).

Unfortunately, Eq. (3) yields (p(0)
1 , p(0)

2 , . . . , p(0)
n) which are

too large, since

n∑
i=1

wi(p
(0)
i

)1−1/˛ > P.

Author's personal copy

18 K. Li / Sustainable Computing: Informatics and Systems 2 (2012) 13– 22

Step 2. We consider a sequence of y: y(0), y(1), y(2), . . ., y(m−1), y(m),
where y(j) = 2y(j−1) for all j = 1, 2, . . ., m, and each y(j) results
in (p(j)

1 , p(j)
2 , . . . , p(j)

n) by solving Eq. (3). The sequence of

decreased value of y give decreased (p(j)
1 , p(j)

2 , . . . , p(j)
n),

because the left-hand side of (3) is a strictly decreasing
function of pi. The value m ≥ 1 is determined such that

n∑
i=1

wi(p
(m−1)
i

)1−1/˛ > P,

but

n∑
i=1

wi(p
(m)
i

)1−1/˛ ≤ P.

Step 3. We search y in the interval [left, right) = [y(m),
y(m−1)) = [y(m), y(m)/2) by using the bisection method
such that the resulted (y, p1, p2, . . ., pn) are all within
some prespecified accuracy 	 > 0.

The above algorithm is formally described in Fig. 2.

7. Numerical data

The purpose of this section is to demonstrate numerical data.
The significance of these data is to show the impact of the task
arrival rates, the expected task execution requirements, and the
coefficients of variation of task execution requirements on the aver-
age task response time. All our parameters are chosen in such a
way that in each figure, we can show the impact of one of the
major factors, i.e., the task arrival rates, the expected task execution
requirements, and the coefficients of variation of task execution
requirements.

We consider a data center containing n = 10 heterogeneous
servers with ˛ = 3.

Let the unit of time be normalized such that the minimum arrival
rate is one, and �i = 1 + l(i − 1) for all 1 ≤ i ≤ n. Let the measure of
task execution requirement be normalized such that the minimum
requirement is one, and ri = 1.0 + 0.1(i − 1) for all 1 ≤ i ≤ n. We set
�ri

= 0.5 + 0.2(i − 1) for all 1 ≤ i ≤ n. In Fig. 3, we show the aver-
age task response time T vs. total effective power P and l, where
l = 0.100, 0.125, 0.150, 0.175, 0.200. All the data are calculated by
using Algorithms 1 and 2 with 	 = 10−10.

As another example, we set � = 1 + 0.1(i − 1), ri = 1 + u(i − 1), and
�ri

= 0.5 + 0.2(i − 1), for all 1 ≤ i ≤ n. In Fig. 4, we show the aver-
age task response time T vs. total effective power P and u, where
u = 0.100, 0.125, 0.150, 0.175, 0.200.

As a third example, we set � = 1 + 0.1(i − 1), ri = 1 + 0.1(i − 1), and
�ri

= 0.5 + v(i − 1), for all 1 ≤ i ≤ n. In Fig. 5, we show the average
task response time T vs. total effective power P and v, where v =
0.20, 0.50, 0.80, 0.11, 0.14.

The values of l, u, v are selected in such a way that the impact
of the task arrival rates, the expected task execution requirements,
and the coefficients of variation of task execution requirements can
be clearly demonstrated. We observe that the task arrival rates,
the expected task execution requirements, and the coefficients of
variation of task execution requirements all have significant impact
on the average task response time in a data center.

8. Heuristic solutions

A number of heuristic solutions can be developed for the optimal
power allocation problem. These methods provide simple and even
closed-form solutions which yield the average task response time

very close to the optimal solution. The benefit of a heuristic method
is that it can provide a quick yet accurate solution.

8.1. The workload proportional method

In the workload proportional (WP) method, also called the energy
proportional method [53], the power allocated to a server is pro-
portional to the workload on the server. Hence, for n servers with
workloads w1, w2, . . . , wn, we have

pi = x
(

wi

w1 + w2 + · · · + wn

)
P,

for some x, where 1 ≤ i ≤ n. Notice that

n∑
i=1

wip
1−1/˛
i

= P,

that is,

x1−1/˛P1−1/˛

n∑
i=1

wi

(
wi

w1 + w2 + · · · + wn

)1−1/˛

= P,

or, equivalently,

x1−1/˛

(
w2−1/˛

1 + w2−1/˛
2 + · · · + w2−1/˛

n

(w1 + w2 + · · · + wn)1−1/˛

)
= P1/˛,

and

x˛−1

(
(w2−1/˛

1 + w2−1/˛
2 + · · · + w2−1/˛

n)˛

(w1 + w2 + · · · + wn)˛−1

)
= P.

The last equation gives rise to

x =
(

w1 + w2 + · · · + wn

(w2−1/˛
1 + w2−1/˛

2 + · · · + w2−1/˛
n)˛/(˛−1)

)
P1/(˛−1),

and

pi =
(

wi

(w2−1/˛
1 + w2−1/˛

2 + · · · + w2−1/˛
n)˛/(˛−1)

)
P˛/(˛−1),

for all 1 ≤ i ≤ n.

8.2. The equal speed method

Another workload proportional method is that the effective
power consumed by a server is proportional to the workload on
the server, namely,

wip
1−1/˛
i

=
(

wi

w1 + w2 + · · · + wn

)
P,

which implies that

pi =
(

P

w1 + w2 + · · · + wn

)˛/(˛−1)
,

for all 1 ≤ i ≤ n. The above equation indicates that all servers have
the same power and speed. Hence, we call this method as the equal
speed (ES) method.

Author's personal copy

K. Li / Sustainable Computing: Informatics and Systems 2 (2012) 13– 22 19

Fig. 2. Algorithm for finding (y, p1, p2, . . ., pn).

Fig. 3. The average task response time T vs. total effective power P and l.

Author's personal copy

20 K. Li / Sustainable Computing: Informatics and Systems 2 (2012) 13– 22

Fig. 4. The average task response time T vs. total effective power P and u.

8.3. The equal utilization method

In the equal utilization (EU) method, the available power P is
allocated to the servers in such a way that all the servers have the
same utilization, i.e., �1 = �2 = · · · = �n = �. Since

�i = wi

p1/˛
i

= �,

we have

pi =
(

wi

�

)˛

,

for all 1 ≤ i ≤ n. Based on the condition that

n∑
i=1

wip
1−1/˛
i

= P,

we get

P =
n∑

i=1

wi

(
wi

�

)˛−1
= 1

�˛−1

n∑
i=1

w˛
i ,

which implies that

�˛−1 = 1
P

n∑
i=1

w˛
i ,

and

pi =
(

w˛
i

(w˛
1 + w˛

2 + · · · + w˛
n)˛/(˛−1)

)
P˛/(˛−1),

for all 1 ≤ i ≤ n.

8.4. The equal time method

In the equal time (ET) method, the available power P is allocated
to the servers in such a way that all the servers have the same
average task response time, i.e., T1 = T2 = · · · = Tn = T, which is also the
average task response time in a data center with n servers. Since

Ti = ri

p1/˛
i

(
1 + (1 + c2

i
)wi

2(p1/˛
i

− wi)

)
= T,

we obtain

2Tp2/˛
i

− 2(ri + wiT)p1/˛
i

− riwi(c
2
i − 1) = 0,

Fig. 5. The average task response time T vs. total effective power P and v.

Author's personal copy

K. Li / Sustainable Computing: Informatics and Systems 2 (2012) 13– 22 21

Table 1
Comparison of heuristic solutions.

P ES WP EU ET OPT

160 – – 23.6464820 23.6014442 20.0403962
170 – – 11.0667775 10.9992702 9.3999089
180 – – 7.3041328 7.2317756 6.2144186
190 – – 5.4923905 5.4189046 4.6790143
200 – – 4.4255392 4.3522292 3.7739411
210 – – 3.7218538 3.6492758 3.1763537
220 – – 3.2224276 3.1508370 2.7518160
230 – 5.9323698 2.8492928 2.7788051 2.4343428
240 – 3.7009223 2.5597051 2.4903646 2.1877444
250 – 2.8692808 2.3282689 2.2600817 1.9905099
260 – 2.4058969 2.1389450 2.0718960 1.8290474
270 – 2.1003346 1.9811038 1.9151662 1.6943447
280 – 1.8793819 1.8474213 1.7825620 1.5801894
290 10.6952124 1.7100732 1.7326864 1.6688692 1.4821590
300 4.5150157 1.5750692 1.6330896 1.5702771 1.3970189
310 3.1538259 1.4642476 1.5457811 1.4839361 1.3223482
320 2.5251252 1.3712394 1.4685866 1.4076725 1.2562991
330 2.1507320 1.2918056 1.3998178 1.3397991 1.1974358
340 1.8967079 1.2229978 1.3381438 1.2789864 1.1446263
350 1.7102047 1.1626919 1.2825011 1.2241724 1.0969655
360 1.5658943 1.1093131 1.2320298 1.1744987 1.0537211
370 1.4499911 1.0616653 1.1860266 1.1292637 1.0142942
380 1.3542846 1.0188216 1.1439110 1.0878882 0.9781900
390 1.2735451 0.9800508 1.1051995 1.0498902 0.9449963
400 1.2042637 0.9447673 1.0694859 1.0148649 0.9143669
410 1.1439863 0.9124961 1.0364268 0.9824702 0.8860085
420 1.0909381 0.8828470 1.0057296 0.9524145 0.8596715
430 1.0437989 0.8554966 0.9771432 0.9244484 0.8351418
440 1.0015634 0.8301738 0.9504517 0.8983565 0.8122346
450 0.9634508 0.8066497 0.9254673 0.8739524 0.7907897
460 0.9288437 0.7847296 0.9020268 0.8510738 0.7706677
470 0.8972467 0.7642467 0.8799873 0.8295787 0.7517463
480 0.8682570 0.7450571 0.8592231 0.8093422 0.7339180
490 0.8415434 0.7270359 0.8396232 0.7902541 0.7170880
500 0.8168303 0.7100742 0.8210893 0.7722168 0.7011721

for all 1 ≤ i ≤ n. Solving the above quadratic equation of p1/˛
i

, we get

p1/˛
i

=
ri + wiT +

√
(ri + wiT)2 + 2riwi(c2

i
− 1)T

2T
,

and

pi =

⎛⎝ ri + wiT +
√

(ri + wiT)2 + 2riwi(c2
i

− 1)T

2T

⎞⎠˛

,

for all 1 ≤ i ≤ n. Based on the condition that

n∑
i=1

wip
1−1/˛
i

= P,

we have

n∑
i=1

wi

⎛⎝ ri + wiT +
√

(ri + wiT)2 + 2riwi(c2
i

− 1)T

2T

⎞⎠˛−1

= P.

Notice that the left-hand side of the above equation is a decreas-
ing function of T. Hence, given P, we can find T easily by using the
bisection method.

8.5. Performance comparison

Again, let us consider a data center having n = 10 heterogeneous
servers with ̨ = 3. In Table 1, we compare the average task response
time T produced by the four heuristic solutions and the opti-
mal solution, where we set � = 1 + 0.1(i − 1), ri = 1 + 0.1(i − 1), and

�ri
= 0.5 + 0.2(i − 1), for all 1 ≤ i ≤ n. An entry with no datum means

that the heuristic solution does not provide a meaningful solution
(i.e., pi > w˛

i
, for all 1 ≤ i ≤ n).

We have a number of observations.

• All our heuristic solutions are reasonably or very close to the opti-
mal solution OPT, except when a heuristic solution is close to its
saturation point (i.e., when the task response time starts to grow
sharply).

• The ES method performs consistently worse than other methods,
because the equal speed method does not consider the workload
on the servers and does not yield a good solution.

• The ET method performs consistently better than the EU method,
because the equal time method attempts to balance the perfor-
mance of all the servers.

• The WP method performs worse than EU and ET when P is small
and WP is close to its saturation point. However, as P increases,
WP performs better than EU and ET.

9. Summary

We have introduced the problem of optimal power allocation
among multiple heterogeneous servers in a data center for cloud
computing. The purpose is to provide the best quality of service by
using certain limited power resource. Our approach is to model a
server as an M/G/1 queueing system and formulate the average task
response time in a data center with multiple servers as a function of
power allocations to the servers. We have developed an algorithm
to find the optimal solution numerically. We have also developed
several closed-form heuristic solutions which are able to provide
near-optimal solutions. Our approach provides an analytical way of
studying the power-performance tradeoff at the data center level.

Notice that our power consumption model in this paper assumes
that clock frequency and supply voltage and execution speed
and power supply of a server can change continuously and
unboundedly. However, in the current processor technology, clock
frequency and supply voltage and execution speed and power
supply can only be set with a few discrete levels. It is definitely
interesting and important to formulate and solve our optimal
power allocation problem for multiple heterogeneous servers with
discrete and bounded and different clock frequency and supply
voltage and execution speed and power supply levels. Such inves-
tigation will be practically more useful. Another direction worth of
further investigation is to extend our work in this paper to more
general queueing models such as G/G/1, which can be applied to
more general servers, data centers, and cloud computing environ-
ments.

Acknowledgment

A preliminary version of the paper entitled “Performance
optimization with energy constraint in heterogeneous multiple
computer systems” was presented on Workshop on Parallel Com-
puting and Optimization, Anchorage, Alaska, 2011.

References

[1] http://en.wikipedia.org/wiki/CMOS.
[2] http://en.wikipedia.org/wiki/Dedicated hosting service.
[3] S. Albers, Energy-efficient algorithms, Communications of the ACM 53 (5)

(2010) 86–96.
[4] H. Aydin, R. Melhem, D. Mossé, P. Mejía-Alvarez, Power-aware scheduling

for periodic real-time tasks, IEEE Transactions on Computers 53 (5) (2004)
584–600.

[5] N. Bansal, T. Kimbrel, K. Pruhs, Dynamic speed scaling to manage energy and
temperature, in: Proceedings of the 45th IEEE Symposium on Foundation of
Computer Science, 2004, pp. 520–529.

Author's personal copy

22 K. Li / Sustainable Computing: Informatics and Systems 2 (2012) 13– 22

[6] J.A. Barnett, Dynamic task-level voltage scheduling optimizations, IEEE Trans-
actions on Computers 54 (5) (2005) 508–520.

[7] L. Benini, A. Bogliolo, G. De Micheli, A survey of design techniques for system-
level dynamic power management, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 8 (3) (2000) 299–316.

[8] D.P. Bunde, Power-aware scheduling for makespan and flow, in: Proceedings
of the 18th ACM Symposium on Parallelism in Algorithms and Architectures,
2006, pp. 190–196.

[9] H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, P.W.H. Wong, Energy
efficient online deadline scheduling, in: Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms, 2007, pp. 795–804.

[10] A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design,
IEEE Journal on Solid-State Circuits 27 (4) (1992) 473–484.

[11] S. Cho, R.G. Melhem, On the interplay of parallelization, program performance,
and energy consumption, IEEE Transactions on Parallel and Distributed Systems
21 (3) (2010) 342–353.

[12] W.-C. Feng, The importance of being low power in high performance comput-
ing, CTWatch Quarterly, vol. 1, no. 3, Los Alamos National Laboratory, August
2005.

[13] A. Gara, al. et, Overview of the Blue Gene/L system architecture, IBM Journal of
Research and Development 49 (2/3) (2005) 195–212.

[14] S.L. Graham, M. Snir, C.A. Patterson (Eds.), Getting Up to Speed: The Future
of Supercomputing, Committee on the Future of Supercomputing, National
Research Council, National Academies Press, 2005.

[15] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M.B. Srivastava, Power optimization
of variable-voltage core-based systems, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 18 (12) (1999) 1702–1714.

[16] C. Im, S. Ha, H. Kim, Dynamic voltage scheduling with buffers in low-power
multimedia applications, ACM Transactions on Embedded Computing Systems
3 (4) (2004) 686–705.

[17] S.U. Khan, I. Ahmad, A cooperative game theoretical technique for joint opti-
mization of energy consumption and response time in computational grids,
IEEE Transactions on Parallel and Distributed Systems 20 (3) (2009) 346–360.

[18] B. Khargharia, S. Hariri, F. Szidarovszky, M. Houri, H. El-Rewini, S. Khan, I.
Ahmad, M.S. Yousif, Autonomic power and performance management for large-
scale data centers, NFS Next Generation Software Program (2007).

[19] L. Kleinrock, Queueing Systems, Volume 1: Theory, John Wiley and Sons, New
York, 1975.

[20] C.M. Krishna, Y.-H. Lee, Voltage-clock-scaling adaptive scheduling techniques
for low power in hard real-time systems, IEEE Transactions on Computers 52
(12) (2003) 1586–1593.

[21] W.-C. Kwon, T. Kim, Optimal voltage allocation techniques for dynamically vari-
able voltage processors, ACM Transactions on Embedded Computing Systems
4 (1) (2005) 211–230.

[22] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing
systems under different operating conditions, IEEE Transactions on Parallel and
Distributed Systems 22 (8) (2011) 1374–1381.

[23] Y.-H. Lee, C.M. Krishna, Voltage-clock scaling for low energy consumption in
fixed-priority real-time systems, Real-Time Systems 24 (3) (2003) 303–317.

[24] K. Li, Performance analysis of power-aware task scheduling algorithms on mul-
tiprocessor computers with dynamic voltage and speed, IEEE Transactions on
Parallel and Distributed Systems 19 (11) (2008) 1484–1497.

[25] K. Li, Energy efficient scheduling of parallel tasks on multiprocessor computers,
Journal of Supercomputing, doi:10.1007/s11227-010-0416-0, published online
12 March 2010.

[26] K. Li, Power allocation and task scheduling on multiprocessor computers with
energy and time constraints, in: Y.-C. Lee, A. Zomaya (Eds.), Energy Aware
Distributed Computing Systems, Wiley Series on Parallel and Distributed Com-
puting, 2011.

[27] K. Li, Algorithms and analysis of energy-efficient scheduling of parallel tasks,
in: S. Ranka, I. Ahmad (Eds.), Handbook of Energy-Aware and Green Computing,
Chapman and Hall/CRC Press, 2011.

[28] K. Li, Performance optimization with energy constraint in heterogeneous mul-
tiple computer systems, Workshop on Parallel Computing and Optimization
(2011), Anchorage, Alaska.

[29] M. Li, B.J. Liu, F.F. Yao, Min-energy voltage allocation for tree-structured tasks,
Journal of Combinatorial Optimization 11 (2006) 305–319.

[30] M. Li, A.C. Yao, F.F. Yao, Discrete and continuous min-energy schedules for vari-
able voltage processors, Proceedings of the National Academy of Sciences USA
103 (11) (2006) 3983–3987.

[31] M. Li, F.F. Yao, An efficient algorithm for computing optimal discrete voltage
schedules, SIAM Journal on Computing 35 (3) (2006) 658–671.

[32] J.R. Lorch, A.J. Smith, PACE: a new approach to dynamic voltage scaling, IEEE
Transactions on Computers 53 (7) (2004) 856–869.

[33] R.N. Mahapatra, W. Zhao, An energy-efficient slack distribution technique for
multimode distributed real-time embedded systems, IEEE Transactions on Par-
allel and Distributed Systems 16 (7) (2005) 650–662.

[34] G. Quan, X.S. Hu, Energy efficient DVS schedule for fixed-priority real-time
systems, ACM Transactions on Embedded Computing Systems 6 (4) (2007),
Article no. 29.

[35] C. Rusu, R. Melhem, D. Mossé, Maximizing the system value while satisfy-
ing time and energy constraints, in: Proceedings of the 23rd IEEE Real-Time
Systems Symposium, 2002, pp. 256–265.

[36] D. Shin, J. Kim, Power-aware scheduling of conditional task graphs in real-time
multiprocessor systems, in: Proceedings of the International Symposium on
Low Power Electronics and Design, 2003, pp. 408–413.

[37] D. Shin, J. Kim, S. Lee, Intra-task voltage scheduling for low-energy hard
real-time applications, IEEE Design & Test of Computers 18 (2) (2001)
20–30.

[38] S. Srinivasan, V. Getov, Navigating the cloud computing landscape
– technologies, services, and adopters, IEEE Computer 44 (3) (2011)
22–23.

[39] M.B. Srivastava, A.P. Chandrakasan, R.W. Rroderson, Predictive system shut-
down and other architectural techniques for energy efficient programmable
computation, IEEE Transactions on Very Large Scale Integration (VLSI) Systems
4 (1) (1996) 42–55.

[40] M.R. Stan, K. Skadron, Guest editors’ introduction: power-aware computing,
IEEE Computer 36 (12) (2003) 35–38.

[41] O.S. Unsal, I. Koren, System-level power-aware design techniques in real-time
systems, Proceedings of the IEEE 91 (7) (2003) 1055–1069.

[42] US EPA, Report to congress on server and data center energy efficiency, 2007.
[43] V. Venkatachalam, M. Franz, Power reduction techniques for microprocessor

systems, ACM Computing Surveys 37 (3) (2005) 195–237.
[44] X. Wang, M. Chen, C. Lefurgy, T.W. Keller, SHIP: scalable hierarchical power

control for large-scale data centers, in: Proceedings of the 18th International
Conference on Parallel Architectures and Compilation Techniques, 2009, pp.
91–100.

[45] X. Wang, Y. Wang, Coordinating power control and performance management
for virtualized server clusters, IEEE Transactions on Parallel and Distributed
Systems, to appear (2011).

[46] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced CPU energy,
in: Proceedings of the 1st USENIX Symposium on Operating Systems Design and
Implementation, 1994, pp. 13–23.

[47] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, R. Lauwereins,
Energy-aware runtime scheduling for embedded-multiprocessor SOCs, IEEE
Design & Test of Computers 18 (5) (2001) 46–58.

[48] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced CPU energy, in:
Proceedings of the 36th IEEE Symposium on Foundations of Computer Science,
1995, pp. 374–382.

[49] H.-S. Yun, J. Kim, On energy-optimal voltage scheduling for fixed-priority hard
real-time systems, ACM Transactions on Embedded Computing Systems 2 (3)
(2003) 393–430.

[50] B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, Theoretical and practical limits
of dynamic voltage scaling, in: Proceedings of the 41st Design Automation
Conference, 2004, pp. 868–873.

[51] X. Zheng, Y. Cai, Optimal server provisioning and frequency adjustment in
server clusters, in: 39th International Conference on Parallel Processing Work-
shops, 2010, pp. 504–511.

[52] X. Zheng, Y. Cai, Optimal server allocation and frequency modulation on multi-
core based server clusters, International Journal of Green Computing 1 (2)
(2010) 18–30.

[53] X. Zheng, Y. Cai, Achieving energy proportionality in server clusters, Interna-
tional Journal of Computer Networks 1 (2) (2010) 21–35.

[54] X. Zhong, C.-Z. Xu, Energy-aware modeling and scheduling for dynamic voltage
scaling with statistical real-time guarantee, IEEE Transactions on Computers 56
(3) (2007) 358–372.

[55] D. Zhu, R. Melhem, B.R. Childers, Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems, IEEE
Transactions on Parallel and Distributed Systems 14 (7) (2003) 686–700.

[56] D. Zhu, D. Mossé, R. Melhem, Power-aware scheduling for AND/OR graphs in
real-time systems, IEEE Transactions on Parallel and Distributed Systems 15
(9) (2004) 849–864.

[57] J. Zhuo, C. Chakrabarti, Energy-efficient dynamic task scheduling algorithms
for DVS systems, ACM Transactions on Embedded Computing Systems 7 (2)
(2008), Article no. 17.

[58] D. Zwillinger (Ed.), Standard Mathematical Tables and Formulae, 30th ed., CRC
Press, Boca Raton, FL, 1996.

Keqin Li is a SUNY Distinguished Professor in computer
science. His research interests are mainly in design and
analysis of algorithms, parallel and distributed computing,
and computer networking. He has contributed exten-
sively to processor allocation and resource management;
design and analysis of sequential/parallel, determinis-
tic/probabilistic, and approximation algorithms; parallel
and distributed computing systems performance analysis,
prediction, and evaluation; job scheduling, task dispatch-
ing, and load balancing in heterogeneous distributed
systems; dynamic tree embedding and randomized load
distribution in static networks; parallel computing using
optical interconnections; dynamic location management

in wireless communication networks; routing and wavelength assignment in WDM
optical networks; energy-efficient power management and performance opti-
mization. His current research interests include lifetime maximization in sensor
networks, file sharing in peer-to-peer systems, and cloud computing. He has pub-
lished over 235 journal articles, book chapters, and research papers in refereed
international conference proceedings. He has received several Best Paper Awards for
his highest quality work. He is currently on the editorial board of IEEE Transactions on
Parallel and Distributed Systems, Journal of Parallel and Distributed Computing, Inter-
national Journal of Parallel, Emergent and Distributed Systems, International Journal of
High Performance Computing and Networking, and Optimization Letters.

