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Abstract We consider the problem of power and performance management for a
multicore server processor in a cloud computing environment by optimal server con-
figuration for a specific application environment. The motivation of the study is that
such optimal virtual server configuration is important for dynamic resource provision
in a cloud computing environment to optimize the power and performance tradeoff
for certain specific type of applications. Our strategy is to treat a multicore server
processor as an M/M/m queueing system with multiple servers. The system perfor-
mance measures are the average task response time and the average power consump-
tion. Two core speed and power consumption models are considered, namely, the
idle-speed model and the constant-speed model. Our investigation includes justifi-
cation of centralized management of computing resources, server speed constrained
optimization, power constrained performance optimization, and performance con-
strained power optimization. Our main results are (1) cores should be managed in
a centralized way to provide the highest performance without consumption of more
energy in cloud computing; (2) for a given server speed constraint, fewer high-speed
cores perform better than more low-speed cores; furthermore, there is an optimal se-
lection of server size and core speed which can be obtained analytically, such that
a multicore server processor consumes the minimum power; (3) for a given power
consumption constraint, there is an optimal selection of server size and core speed
which can be obtained numerically, such that the best performance can be achieved,
i.e., the average task response time is minimized; (4) for a given task response time
constraint, there is an optimal selection of server size and core speed which can be
obtained numerically, such that minimum power consumption can be achieved while
the given performance guarantee is maintained.
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1 Introduction

As the latest multimedia and networking based applications in the ever increasing
cloud computing field provide new features and cutting-edge capabilities, processor
development needs to stay ahead of increased demands from software applications.
It has been realized that increasing processor speed is not the only concern and solu-
tion. Modern large-scale computer systems need to run faster and cooler, occupy less
space, and consume less energy. The multicore processor technology helps dealing
with these challenges simultaneously. With the power of dozens or even hundreds
processor cores on a single chip, multicore processors deliver leading performance
and unique features that help server systems in a data center run cooler and more ef-
ficient. The evolution of multicore design has allowed for increased performance and
higher productivity to meet the needs of next-generation applications. Since multicore
processors offer true multitasking capabilities, users can simultaneously run multiple
complex applications and successfully complete more tasks in a shorter amount of
time. Because they put more processing power into a smaller package, multicore pro-
cessors help build data center server infrastructures in a cloud computing environment
with a smaller footprint, reduced cooling needs, and increased energy efficiency [11].

In this paper, we consider power and performance management for a multicore
server processor in a cloud computing environment by optimal server configuration
(i.e., optimal server size and core speed determination) for a specific application envi-
ronment specified by the task arrival rate and the average task execution requirement.
Such optimal virtual server configuration is important for dynamic resource provision
in a cloud computing environment to optimize the power and performance tradeoff
for certain specific type of applications. A multicore server processor is treated as
an M/M/m queueing system with multiple servers (i.e., an m-server queueing system
with an exponential inter-arrival time distribution and an exponential service time
distribution). The system performance measures are the average task response time
and the average power consumption. We show the following results.

• Optimization via Core Distribution (Justification of Centralized Management)—
A group of n m-core server processors yield shorter average task response time
than a group of n′ m′-core server processors do, where all the cores have the same
speed and nm = n′m′ = M and n < n′. Both groups consume the same amount of
power. In other words, fewer multicore server processors of larger sizes perform
better than more multicore server processors of smaller sizes. Consequently, an
mn-core server processor yields shorter average task response time than n m-core
server processors do, for all n > 1, and the mn-core server processor consumes the
same amount of power as n m-core server processors do. This result implies that
cores should be managed in a centralized way to provide the highest performance
without consumption of more energy in cloud computing.

• Server Speed Constrained Optimization—An m-core server processor with core
speed s yields shorter average task response time than an m′-core server processor
with core speed s′ does, where m < m′ and s > s′ and ms = m′s′ = c and c is the
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server speed, i.e., the product of server size and core speed, or, the combined core
speed. In other words, given a fixed server speed c of a multicore server processor,
fewer high-speed cores perform better than more low-speed cores. However, when
m is too small, the high-speed cores consume significant amount of energy. On the
other hand, when m is too large, the overhead in power consumption also causes
increased energy waste. Hence, for a fixed server speed c, there is an optimal selec-
tion of server size m and core speed s, such that an m-core server processor with
core speed s consumes the minimum power.

• Power Constrained Performance Optimization—Given a fixed power supply P ,
there is an optimal selection of server size m and core speed s, such that an m-core
server processor with core speed s has the minimum average task response time
and that it consumes power P . When m is too small, the increment in core speed s

is not enough to handle a given workload. On the other hand, when m is too large,
the overhead in power consumption eats up the performance. Hence, there is an
optimal selection of server size and core speed, such that the best performance can
be achieved (i.e., the average task response time is minimized) by consuming a
given energy resource (i.e., power consumption does not exceed the supply).

• Performance Constrained Power Optimization—For a given average task response
time T , there is an optimal choice of server size m and core speed s, such that
an m-core server processor with core speed s consumes the minimum power and
that the task response time is T . The reason is similar to server speed constrained
optimization, i.e., when m is too small, the high-speed cores consume significant
amount of energy; on the other hand, when m is too large, the overhead in power
consumption also causes increased energy waste. Hence, there is an optimal selec-
tion of server size and core speed, such that minimum power consumption can be
achieved while a given performance guarantee is maintained.

Two core speed and power consumption models are considered, namely, the idle-
speed model and the constant-speed model (see Sect. 4 for an explanation). We also
provide extensive numerical examples and data to demonstrate our results and ob-
servations. To the best of our knowledge, such analytical study of power and perfor-
mance tradeoff using a multiserver queueing model has not been performed before.

The remainder of the paper is organized as follows. In Sect. 2, we review related
research in managing the power and performance tradeoff. In Sect. 3, we describe an
M/M/m queueing model for a multicore server processor. In Sect. 4, we present two
power consumption and core speed models. In Sect. 5, we prove that a centralized
management of cores performs better than a distributed management of cores. In
Sect. 6, we consider server speed constrained power and performance optimization.
In Sect. 7, we study power constrained performance optimization. In Sect. 8, we
investigate performance constrained power optimization. We conclude the paper in
Sect. 9.

2 Related research

Energy-efficient computing to deal with the power and performance tradeoff has
gained increasing research attention in the last few years. Essentially, there are two
methods in coping with the energy-delay and power-performance tradeoffs. Both ap-
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proaches fix one factor and optimize the other. The first method is power or energy
constrained performance optimization, which is applied to high-performance com-
puting systems and servers, where power-aware design techniques and algorithms
attempt to maximize performance or minimize delay under certain power consump-
tion or energy budget constraint. The second method is performance constrained
power minimization, where low-power and energy-efficient design techniques and
algorithms aim to minimize energy consumption while still meeting certain perfor-
mance goal. Such combined consideration and management of power and perfor-
mance have compelling economic, environmental, and technical reasons. There has
been increasing interest and importance in developing high-performance and energy-
efficient computing systems and data centers. Reducing processor energy consump-
tion has been an important and pressing research issue in recent years, and an explo-
sive body of literature has been developed for energy-efficient computing and com-
munication. The reader is referred to [1, 5, 36, 37] for comprehensive surveys.

Among the numerous hardware and software techniques ever developed for reduc-
ing energy consumption, dynamic power management at the operating system level
is one of the most effective and efficient ways of managing the power-performance
tradeoff. Such techniques are based on supply voltage and clock frequency adjust-
ment schemes implemented while tasks are running. These power reduction and per-
formance optimization techniques explore the opportunities for fine and ultra-fine
tuning of the energy-delay tradeoff [35]. Such management of power and perfor-
mance can be carried out at different levels, i.e., task level, system level, server clus-
ter, and data center level.

Task Level Power and Performance Management—Power-aware task scheduling
on processors with variable voltages and speeds has been extensively studied since
mid-1990s. In a pioneering paper [40], the authors proposed a method of energy re-
duction using fine grain control of processor speed by an operating system scheduler.
The main idea is to monitor processor idle time and to reduce energy consumption
by reducing clock speed and idle time to a minimum. In [4], the author studied the
problems of minimizing the expected execution time given a hard energy budget and
minimizing the expected energy expenditure given a hard execution deadline for a
single task with randomized execution requirement. In [9], the authors examined the
relationship among parallelization of an application, program performance, and en-
ergy consumption, and the problem of minimizing energy-delay product. In [15, 20],
the authors attempted joint minimization of energy consumption and task execution
time for a parallel program or a metatask in a heterogeneous or grid computing envi-
ronment.

System Level Power and Performance Management—Performance constrained
energy reduction in a computing system with multiple tasks was first studied in [42],
where the authors analyzed offline and online algorithms for scheduling tasks with
arrival times and deadlines on a uniprocessor computer to achieve minimum energy
consumption. The research has been extended by a number of researchers in substan-
tial further investigation [3, 7, 19, 26–28, 43]. Significant research has been focused
on real-time applications, namely, adjusting the supply voltage and clock frequency
to minimize processor energy consumption while still meeting the deadlines for task
execution [2, 10, 13, 18, 21, 29–31, 33, 34, 41, 48–51]. Energy and time constrained
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power allocation and task scheduling on multiprocessor computers with dynamically
variable voltage and frequency and speed and power have also been addressed as
combinatorial optimization problems [22–25]. Our scheduling problems are defined
such that the energy-delay product is optimized by fixing one factor and minimizing
the other. In [6], the author considered scheduling jobs with equal requirements on
multiprocessors. In [32], the authors investigated the problem of system value maxi-
mization subject to both time and energy constraints.

Server Cluster and Data Center Level Power and Performance Management—
Efficient power management and performance optimization in large-scale data cen-
ters and server clusters has gained much attention in the research community in recent
years. In [16], the authors developed a framework for hierarchical autonomic power
and performance management in high-performance distributed data centers. In [39],
the authors proposed a highly scalable hierarchical power control architecture for
large-scale data centers. In [38], the authors presented a novel cluster-level control
architecture that coordinates individual power and performance control loops for vir-
tualized server clusters. In [45–47], the authors formulated an optimization problem
to get an optimal resource scheduling strategy for a given parallel workload in a
server cluster, such that the proposed optimization model provides controllable and
predictable quantitative control of power consumption with theoretically guaranteed
service performance, where a server is treated as an M/G/1 queueing system, i.e., a
single server system.

Our investigation in this paper belongs to the system and server level. Again, we
consider both power constrained performance optimization and performance con-
strained power minimization. However, our approach in this paper is different from
all previous studies at the system and server level. Instead of considering power-aware
scheduling of a given set of tasks, we investigate power and performance of a multi-
core server processor by modeling the server as a dynamic queueing system (i.e., an
M/M/m queueing system with multiple servers). The motivation and rationale of such
a study is to reveal the nature of a multicore server processor in a cloud computing
environment, not in a traditional high-performance computing or a real-time com-
puting environment. Our research introduces a number of unique features. First, the
performance measure of a multicore server processor treated as a dynamic queueing
system is the average task response time, not the makespan in scheduling a given set
of tasks. Second, the energy consumption measure is the average power consumption
of a multicore server processor, not the total amount of energy consumed to complete
a set of tasks. Third, optimization of performance and power is realized by server
configuration, which is different from minimization of energy and delay by heuristic
scheduling algorithms.

3 A multicore server processor model

Assume that a multicore server processor S has m identical cores. In this paper, a
multicore server processor is treated as an M/M/m queueing system which is elabo-
rated as follows.

There is a Poisson stream of tasks with arrival rate λ (measured in the number of
tasks arrived per second), i.e., the inter-arrival times are independent and identically
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distributed (i.i.d.) exponential random variables with mean 1/λ. A multicore server
S maintains a queue with infinite capacity for waiting tasks when all the m cores
are busy. The first-come-first-served (FCFS) queueing discipline is adopted. The task
execution requirements (measured by the number of giga instructions to be executed)
are i.i.d. exponential random variables r with mean r̄ . The m cores of server S have
identical execution speed s (measured by the number of giga instructions that can be
executed in one second). Hence, the task execution times on the cores of server S are
i.i.d. exponential random variables x = r/s (measured in second) with mean x̄ = r̄/s.

Let μ = 1/x̄ = s/r̄ be the average service rate, i.e., the average number of tasks
that can be finished by a processor core of server S in one second. The core utiliza-
tion is

ρ = λ

mμ
= λx̄

m
= λ

m
· r̄

s
,

which is the average percentage of time that a core of S is busy. Let pk denote the
probability that there are k tasks (waiting or being processed) in the M/M/m system
for S. Then we have ([17], p. 102)

pk =
⎧
⎨

⎩

p0
(mρ)k

k! , k ≤ m;
p0

mmρk

m! , k ≥ m;

where

p0 =
(

m−1∑

k=0

(mρ)k

k! + (mρ)m

m! · 1

1 − ρ

)−1

.

The probability of queueing (i.e., the probability that a newly arrived task must wait
because all processor cores are busy) is

Pq = pm

1 − ρ
= p0

(mρ)m

m! · 1

1 − ρ
.

The average number of tasks (in waiting or in execution) in S is

N̄ =
∞∑

k=0

kpk.

By straightforward algebraic manipulation, we get

N̄ = mρ + ρ

1 − ρ
Pq.

Applying Little’s result, we get the average task response time T as

T = N̄

λ
= x̄ + Pq

m(1 − ρ)
x̄ = x̄

(

1 + Pq

m(1 − ρ)

)

= x̄

(

1 + pm

m(1 − ρ)2

)

,

where T is measured in second.
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4 Power consumption and core speed models

Power dissipation and circuit delay in digital CMOS circuits can be accurately mod-
eled by simple equations, even for complex microprocessor circuits. CMOS circuits
have dynamic, static, and short-circuit power dissipation; however, the dominant
component in a well designed circuit is dynamic power consumption p (i.e., the
switching component of power), which is approximately P = aCV 2f (measured
in Watt), where a is an activity factor, C is the loading capacitance, V is the sup-
ply voltage, and f is the clock frequency [8]. Since s ∝ f , where s is the processor
speed, and f ∝ V φ with 0 < φ ≤ 1 [44], which implies that V ∝ f 1/φ , we know
that power consumption is P ∝ f α and P ∝ sα , where α = 1 + 2/φ ≥ 3. For ease of
discussion, we will assume that the power allocated to a processor core with speed s

is simply sα . (Note: For all numerical examples in this paper, we set α = 3.)
We will consider two types of core speed models. In the idle-speed model, a core

runs at zero speed when there is no task to perform. Since the power for speed s is
sα , the average amount of energy consumed by a core in one unit of time is

ρsα = λ

m
r̄sα−1,

where we notice that the speed of a core is zero when it is idle. The average amount
of energy consumed by an m-core server S in one unit of time, i.e., the power supply
to server S, is

P = mρsα = λr̄sα−1,

where mρ = λx̄ is the average number of busy cores in S. Since a processor core still
consumes some amount of power P ∗ even when it is idle (e.g., its cache memory
consumes energy), we will include P ∗ in P , i.e.,

P = m(ρsα + P ∗) = λr̄sα−1 + mP ∗.

Notice that when P ∗ = 0, the above P is independent of m.
In the constant-speed model, all cores run at the speed s even if there is no task

to perform. Again, we use P to represent the power allocated to server S. Since the
power for speed s is sα , the power allocated to server S is P = m(sα + P ∗).

It is clear that the idle-speed model is more difficult to implement than the
constant-speed model. However, recent development in processor technologies has
supported the idle-speed model. For instance, available in servers built with Intel
Xeon processor 5500 series, Intel intelligent power technology conserves power
by delivering advanced power-management capabilities [12]. Providing the highest
system-level performance per watt, Intel intelligent power technology helps business
gain capacity to grow, increase IT performance, and save energy costs. Integrated
power gates in Intel intelligent power technology allow individual idling cores to re-
duce to near-zero power consumption independent from other operating cores. Such
low-power states automatically put processors and memories into the lowest available
power states to meet requirements of the current workload, while not impacting per-
formance. The Intel intelligent power node manager utilizes instrumentation available
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on Intel Xeon processor 5500 series and other system components to report and cap
system power. This system level technology provides a foundation for rack, group,
data center, and facility level management capabilities to improve overall data center
energy efficiency and resource flexibility [14].

5 Optimization via core distribution

In this section, we consider performance and power optimization via distribution of
cores among servers. In particular, we show that for the same number of cores and
core speed, and the same workload, a centralized management of cores yields better
performance (i.e., shorter average task response time) than a distributed management
of cores, while the power consumption is the same.

5.1 Performance optimization

Theorem 1 A group of n m-core server processors yield shorter average task re-
sponse time than a group of n′ m′-core server processors do, where all the cores have
the same speed s and nm = n′m′ = M and n < n′.

Proof Assume that the task arrival rate is λ. It is easy to see that the average task re-
sponse time of n m-core servers is minimized when all the n servers handle the same
amount of workload, i.e., the task arrival rate to each server is λ/n. The utilization of
an m-core server is

ρ = (λ/n)r̄

ms
= λr̄

mns
= λr̄

Ms
.

Similarly, the utilization of an m′-core server is

ρ′ = (λ/n′)r̄
m′s

= λr̄

m′n′s
= λr̄

Ms
,

which is the same as ρ. The average task response time of an m-core server is

T = x̄

(

1 + pm

m(1 − ρ)2

)

,

and the average task response time of an m′-core server is

T ′ = x̄

(

1 + pm′

m′(1 − ρ)2

)

.

To show that T < T ′, we only need to show that pm/m < pm′/m′. It suffices to show
that for a fixed ρ, pm/m is a decreasing function of m.

In fact, pm is a decreasing function of m. To show this, let us use the following
closed-form approximation:

m−1∑

k=0

(mρ)k

k! ≈ emρ,
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which is very accurate when m is not too small and ρ is not too large. We also need
Stirling’s approximation of m!, i.e.,

m! ≈ √
2πm

(
m

e

)m

.

Therefore, we get the following closed-form approximation of p0,

p0 ≈
(

emρ + (eρ)m√
2πm

· 1

1 − ρ

)−1

,

and the following closed-form approximation of pm,

pm ≈
(eρ)m√

2πm

emρ + (eρ)m√
2πm

· 1
1−ρ

,

namely,

pm ≈ 1 − ρ√
2πm(1 − ρ)(eρ/eρ)m + 1

.

It suffices to show that eρ > eρ, i.e., 1/ρ > e1−ρ , for all 0 ≤ ρ < 1. Notice that

1

ρ
= 1

1 − (1 − ρ)
= 1 + (1 − ρ) + (1 − ρ)2 + (1 − ρ)3 + · · · ,

and

e1−ρ = 1 + (1 − ρ) + (1 − ρ)2

2
+ (1 − ρ)3

6
+ · · · .

Hence, the inequality is obvious. �

By using the closed-form expression of pm derived in the proof of Theorem 1, we
get a closed-form expression of the average task response time as

T = x̄

(

1 + 1

m(1 − ρ)(
√

2πm(1 − ρ)(eρ/eρ)m + 1)

)

.

The above closed-form expression of T will be repeatedly used in this paper. In Ta-
ble 1, we display numerical data to show the relative error of the expression compared
with the exact value of T . It can be seen that the closed-form expression of T is very
accurate when m is not too small and ρ is not too large.

5.2 Power optimization

Theorem 2 Consider a group of n m-core server processors and a group of n′
m′-core server processors, where all the cores have the same speed s and nm =
n′m′ = M . Both groups consume the same amount of power.
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Table 1 Relative error of the closed-form approximation of T

m ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9

1 −0.17% −1.84% −4.39% −7.36% −10.32% −12.83% −14.32% −13.91% −10.13%

2 0.02% −0.08% −0.67% −2.01% −4.21% −7.12% −10.21% −12.35% −11.06%

3 0.00% 0.00% −0.11% −0.61% −1.83% −4.02% −7.13% −10.36% −11.03%

4 0.00% 0.00% −0.02% −0.20% −0.84% −2.36% −5.05% −8.61% −10.65%

5 0.00% 0.00% −0.00% −0.07% −0.41% −1.44% −3.65% −7.16% −10.13%

6 0.00% 0.00% 0.00% −0.02% −0.21% −0.90% −2.68% −6.00% −9.56%

7 0.00% 0.00% 0.00% −0.01% −0.11% −0.58% −2.00% −5.05% −9.00%

8 0.00% 0.00% 0.00% −0.00% −0.06% −0.38% −1.52% −4.28% −8.45%

9 0.00% 0.00% 0.00% −0.00% −0.03% −0.25% −1.17% −3.66% −7.93%

10 0.00% 0.00% 0.00% 0.00% −0.02% −0.17% −0.90% −3.14% −7.44%

11 0.00% 0.00% 0.00% 0.00% −0.01% −0.12% −0.71% −2.71% −6.99%

12 0.00% 0.00% 0.00% 0.00% −0.00% −0.08% −0.56% −2.35% −6.57%

13 0.00% 0.00% 0.00% 0.00% −0.00% −0.06% −0.44% −2.05% −6.18%

14 0.00% 0.00% 0.00% 0.00% −0.00% −0.04% −0.35% −1.79% −5.82%

15 0.00% 0.00% 0.00% 0.00% −0.00% −0.03% −0.28% −1.58% −5.48%

16 0.00% 0.00% 0.00% 0.00% −0.00% −0.02% −0.23% −1.39% −5.18%

17 0.00% 0.00% 0.00% 0.00% −0.00% −0.01% −0.19% −1.23% −4.89%

18 0.00% 0.00% 0.00% 0.00% −0.00% −0.01% −0.15% −1.09% −4.63%

19 0.00% 0.00% 0.00% 0.00% 0.00% −0.01% −0.12% −0.97% −4.38%

20 0.00% 0.00% 0.00% 0.00% 0.00% −0.01% −0.10% −0.87% −4.15%

Proof We will prove the theorem for both core speed and power consumption models.
In the idle-speed model, an m-core server processor consumes power

P = λ

n
r̄sα−1 + mP ∗,

and a group of n m-core server processors consume power

nP = λr̄sα−1 + mnP ∗.

Similarly, an m′-core server processor consumes power

P ′ = λ

n′ r̄s
α−1 + m′P ∗,

and a group of n′ m′-core server processors consume power

n′P ′ = λr̄sα−1 + m′n′P ∗.

Clearly, we have

nP = n′P ′ = λr̄sα−1 + MP ∗.
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Fig. 1 Average task response time T vs. λ and n

In the constant-speed model, an m-core server processor consumes power

P = m
(
sα + P ∗),

and an m′-core server processor consumes power

P ′ = m′(sα + P ∗).

Again, we have

nP = n′P ′ = M
(
sα + P ∗).

Hence, for both core speed models, a group of n m-core server processors consume
the same amount of power as a group of n′ m′-core server processors do. �

5.3 Numerical examples

In Fig. 1, we show the average task response time T (calculated using the exact ex-
pression) as a function of λ. We assume that there are M = 32 cores. The value of n is
set as 1, 2, 4, 8, 16, and 32. The average task execution time is x̄ = 1 second. We ob-
serve that as n increases and m decreases, the average task response time T increases
noticeably, as we have proved in Theorem 1. (Notice that T depends on m. Since
m = M/n, T also depends on n.) Therefore, for a fixed total number M of cores,
fewer multicore server processors of larger sizes perform better than more multicore
server processors of smaller sizes. Consequently, an M-core server processor yields
shorter response time than n m-core server processors do, for all n > 1 and nm = M .
Furthermore, the M-core server processor consumes the same amount of power as n

m-core server processors do. The implication of these results is that cores should be
managed in a centralized way as suggested in cloud computing to provide the highest
performance without increasing power consumption.
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6 Server speed constrained optimization

In this section, we consider performance and power optimization with server speed
constraints, where the server speed is defined as the product of server size and core
speed, i.e., the combined core speed. In particular, we show that for a fixed server
speed of a multicore server processor, fewer high-speed cores perform better than
more low-speed cores. Furthermore, for a given server speed, there is an optimal se-
lection of server size and core speed, such that the power consumption is minimized.

6.1 Performance optimization

Theorem 3 An m-core server processor with core speed s yields shorter average
task response time than an m′-core server processor with core speed s′ does, where
m < m′ and s > s′ and ms = m′s′ = c and c is the server speed.

Proof Assume that ms = c for some fixed c. Then we have ρ = λr̄/c, which is also
fixed. The average task response time is

T = r̄

c

(

m + 1

(1 − ρ)(
√

2πm(1 − ρ)(eρ/eρ)m + 1)

)

.

We need to show that T is an increasing function of m, i.e., ∂T /∂m > 0. Let us
rewrite T as

T = r̄

c

(

m + F

1 − ρ

)

,

where

F = 1√
2πm(1 − ρ)(eρ/eρ)m + 1

= 1√
2π(1 − ρ)

√
m(eρ/eρ)m + 1

.

Notice that

∂F

∂m
= −F 2

√
2π(1 − ρ)

(
1

2
√

m

(
eρ

eρ

)m

+ √
m

(
eρ

eρ

)m

ln
eρ

eρ

)

= −√
2π(1 − ρ)

(
eρ

eρ

)m(
1

2
√

m
+ (ρ − lnρ − 1)

√
m

)

F 2,

and

∂T

∂m
= r̄

c

(

1 + 1

(1 − ρ)
· ∂F

∂m

)

= r̄

c

(

1 − √
2π

(
eρ

eρ

)m(
1

2
√

m
+ (ρ − lnρ − 1)

√
m

)

F 2
)

= r̄

c

(

1 −
√

2π
(
eρ/eρ

)m(
1/(2

√
m) + (ρ − lnρ − 1)

√
m

)

(√
2π(1 − ρ)

√
m(eρ/eρ)m + 1

)2

)

.
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It suffices to show that

(√
2π(1 − ρ)

√
m

(
eρ

eρ

)m

+ 1

)2

>
√

2π

(
eρ

eρ

)m(
1

2
√

m
+ (ρ − lnρ − 1)

√
m

)

.

The above inequality can be seen by observing that for a fixed ρ, the left-hand side
has growth rate Θ(mG2m), while the right-hand side has growth rate Θ(

√
mGm),

where G = eρ/eρ > 1. �

6.2 Power optimization

Theorem 4 For a fixed server speed c, there is an optimal selection of server size m

and core speed s, such that an m-core server processor with core speed s consumes
the minimum power.

Proof In the idle-speed model, we have

P = λr̄sα−1 + c

s
P ∗.

It is clear that when

∂P

∂s
= λr̄(α − 1)sα−2 − c

s2
P ∗ = 0,

that is,

s =
(

cP ∗

λr̄(α − 1)

)1/α

, (1)

power consumption is minimized. In the constant-speed model, we have

P = c

(

sα−1 + P ∗

s

)

.

It is clear that when

∂P

∂s
= c

(

(α − 1)sα−2 − P ∗

s2

)

= 0,

that is,

s =
(

P ∗

α − 1

)1/α

, (2)

power consumption is minimized. �

6.3 Numerical examples

In Fig. 2, we display the average task response time T (calculated using the exact
expression) as a function of m. The task arrival rate λ is set as 14, 15, 16, 17, 18, and
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Fig. 2 Average task response time T vs. m and λ

Fig. 3 Power consumption P vs. m and P ∗ (idle-speed model)

19 tasks per second. The server speed is c = 20 giga instructions per second. The task
execution requirement is r̄ = 1 giga instructions. It is observed that T (in second) is
an increasing function of m, as we have already proved in Theorem 3. Furthermore,
from

T = x̄

(

1 + pm

m(1 − ρ)2

)

= r̄

c

(

m + pm

(1 − ρ)2

)

,

where r̄ , c, and ρ are constants, which is indeed the case in Fig. 2, we know that T

is almost a linear function of m, since pm is very small compared with m, as we can
observe from Fig. 2.

In Figs. 3 and 4, we further demonstrate the power consumption P (in Watt) as
a function of server size m for the idle-speed model and the constant-speed model,
respectively. The base power supply P ∗ is set as 2, 4, 6, 8, 10, and 12 watts. The
server speed is c = 20 giga instructions per second. The task arrival rate is λ = 14
tasks per second. The task execution requirement is r̄ = 1 giga instructions. It is
observed that when m is too small, the high-speed cores consume significant amount
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Fig. 4 Power consumption P vs. m and P ∗ (constant-speed model)

of energy. Hence, we only show P for m ≥ 4. On the other hand, when m is too
large, the overhead P ∗ in power consumption also causes increased energy waste.
Hence, there is an optimal choice of m and s, such that an m-core server processor
with core speed s consumes the minimum power and that c = ms is fixed, as claimed
in Theorem 4.

For the idle-speed model, the optimal server size m is 16, 13, 11, 10, 9, and 9,
when P ∗ is 2, 4, 6, 8, 10, and 12, respectively. For the constant-speed model, the
optimal server size m is 20, 16, 14, 13, 12, and 11, when P ∗ is 2, 4, 6, 8, 10, and 12,
respectively. These values can be obtained by calculating the optimal core speed s

using (1) and (2) for the two core speed models and the relation m = c/s, and then
rounding the solutions to the nearest integers. It is clear that for both core speed
models and all values of P ∗, the power consumption P when m is a nonoptimal
choice can be much more than that when m is an optimal choice.

Our results can be used as design guidelines for a multicore server processor. For
instance, for the constant-speed model, when P ∗ = 10 Watts, the power consumption
is P = 205.00 watts when m = 8 and P = 204.69 watts when m = 18, which are
about the same. However, when λ = 14 tasks per second, the average task response
time is T = 0.445 seconds when m = 8, which is less than half of T = 0.918 sec-
onds when m = 18. Therefore, a better choice is certainly m = 8 and s = 2.5 giga
instructions per second.

7 Power constrained performance optimization

In this section, we consider power constrained performance optimization, i.e., aver-
age task response time optimization with power consumption constraints. In particu-
lar, we show that for a given power supply, there is an optimal selection of server size
and core speed, such that the average task response time is minimized, while power
consumption does not exceed the supply.
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7.1 The method

Theorem 5 Given a fixed power supply P , there is an optimal selection of server size
m and core speed s, such that an m-core server processor with core speed s has the
minimum average task response time and that it consumes power P .

Proof Recall that by using the closed-form expression of pm derived in Sect. 5, we
get a closed-form expression of the average task response time as

T = r̄

s

(

1 + 1

m(1 − ρ)(
√

2πm(1 − ρ)(eρ/eρ)m + 1)

)

.

In the constant-speed model, since

P = λr̄sα−1 + mP ∗,

we get

s =
(

P − mP ∗

λr̄

)1/(α−1)

. (3)

In the constant-speed model, since

P = m
(
sα + P ∗),

we get

s =
(

P

m
− P ∗

)1/α

. (4)

Let us rewrite T as

T = r̄

s
(1 + F),

where

F = 1

m(1 − ρ)(
√

2πm(1 − ρ)(eρ/eρ)m + 1)
.

Therefore, we get

∂T

∂m
= r̄

(

−1 + F

s2
· ∂s

∂m
+ 1

s
· ∂F

∂m

)

= r̄

s

(

−1 + F

s
· ∂s

∂m
+ ∂F

∂m

)

.

Notice that

∂s

∂m
= 1

α − 1

(
P − mP ∗

λr̄

)1/(α−1)−1(

−P ∗

λr̄

)

= − P ∗

λr̄(α − 1)

(
P − mP ∗

λr̄

)−(α−2)/(α−1)

= − P ∗

λr̄(α − 1)
s−(α−2),
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in the idle-speed model, and

∂s

∂m
= 1

α

(
P

m
− P ∗

)1/α−1(

− P

m2

)

= − P

αm2

(
P

m
− P ∗

)−(α−1)/α

= − P

αm2
s−(α−1),

in the constant-speed model.
We rewrite F as

F = 1

m(1 − ρ)(
√

2πm(1 − ρ)G + 1)
= 1√

2πm3/2(1 − ρ)2G + m(1 − ρ)
,

where

G = (eρ/eρ)m.

Notice that

lnG = m ln
(
eρ/eρ

) = m(ρ − lnρ − 1).

Since

∂ρ

∂m
= − λr̄

m2s
= − ρ

m
,

we get

1

G

∂G

∂m
= (ρ − lnρ − 1) + m

(

1 − 1

ρ

)
∂ρ

∂m
= − lnρ,

and

∂G

∂m
= −G lnρ.

Now, we have

∂F

∂m
= −F 2

(√
2π

(
3

2

√
m(1 − ρ)2G + m3/22(1 − ρ)

(

− ∂ρ

∂m

)

G

+ m3/2(1 − ρ)2 ∂G

∂m

)

+ (1 − ρ) + m

(

− ∂ρ

∂m

))

= −F 2
(√

2π

(
3

2

√
m(1 − ρ)2G + √

m2ρ(1 − ρ)G − m3/2(lnρ)(1 − ρ)2G

)

+ (1 − ρ) + ρ

)

= −F 2
(√

2πm(1 − ρ)

(
3

2
(1 − ρ) + 2ρ − m(lnρ)(1 − ρ)

)

G + 1

)
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Fig. 5 Average task response time T vs. m and P (idle-speed model)

= −F 2
(√

2πm(1 − ρ)

(
ρ + 3

2
− m(lnρ)(1 − ρ)

)

G + 1

)

= −F 2
(√

2πm(1 − ρ)

(
ρ + 3

2
− m(lnρ)(1 − ρ)

)(
eρ

eρ

)m

+ 1

)

.

Summarizing the above discussion, we get

∂T

∂m
= r̄

s
y,

where

y = P ∗

λr̄(α − 1)
· 1 + F

s(α−1)

− F 2
(√

2πm(1 − ρ)

(
ρ + 3

2
− m(lnρ)(1 − ρ)

)(
eρ

eρ

)m

+ 1

)

, (5)

in the idle-speed model, and

y = P

αm2
· 1 + F

sα
− F 2

(√
2πm(1 − ρ)

(
ρ + 3

2
− m(lnρ)(1 − ρ)

)(
eρ

eρ

)m

+ 1

)

,

(6)
in the constant-speed model. The optimal choice of m can be obtained by solv-
ing the equation y = 0. (In fact, we have y < 0 for small m and y > 0 as m in-
creases. Although y is not an increasing function of m, there is a unique m that yields
y = 0.) �

7.2 Numerical examples

In Figs. 5 and 6, we demonstrate the average task response time T (in second) as
a function of server size m for the idle-speed model and the constant-speed model,
respectively. The power supply P is set as 50, 100, 150, 200, 250, and 300 watts.
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Fig. 6 Average task response time T vs. m and P (constant-speed model)

The task arrival rate is λ = 10 tasks per second. The task execution requirement is
r̄ = 1 giga instructions. The base power supply is P ∗ = 2 Watts. Let c = ms be
the combined speed and computing power of an m-core server processor with core
speed s. Then we get

c = m

(
P − mP ∗

λr̄

)1/(α−1)

,

in the idle-speed model, and

c = m

(
P

m
− P ∗

)1/α

,

in the constant-speed model. It is easy to verify that

∂c

∂m
= (P − mP ∗)(2−α)/(α−1)

(λr̄)1/(α−1)

(

P −
(

α

α − 1

)

mP ∗
)

,

in the idle-speed model, and

∂c

∂m
=

(
P

m
− P ∗

)(1−α)/α((
α − 1

α

)
P

m
− P ∗

)

,

in the constant-speed model. Hence, if

P >

(
α

α − 1

)

mP ∗,

which is indeed the case in our example, c is an increasing function of m for both
core speed models. It is observed that when the server size m in decreased, the core
speed s is increased. However, the server speed c is decreased. When m is too small,
the increment in s is not enough for the server to provide enough total speed c = ms

to handle a given workload, i.e., ρ = λr̄/c will exceed 1. In the figures, we only show
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T for m large enough so that ρ = λr̄/c < 1. On the other hand, when m is too large,
the overhead P ∗ in power consumption eats up the performance. Hence, there is an
optimal selection of server size m, so that the minimum task response time T can be
achieved based on given power constraint P , as we have proved in Theorem 5.

For the idle-speed model, the optimal server size m is 9, 8, 7, 7, 6, and 6, when P

is 50, 100, 150, 200, 250, and 300 watts, respectively. For the constant-speed model,
the optimal server size m is 9, 7, 6, 6, 5, and 5, when P is 50, 100, 150, 200, 250,
and 300 watts, respectively. These values can be obtained by solving the equation
y = 0 numerically, where y is given in (5) and (6) for the two core speed models, and
then rounding the solutions to the nearest integers. The optimal core speed s can be
obtained from (3) and (4) for the two core speed models.

It is observed that for both core speed models and all values of P , the average task
response time T when m is a nonoptimal choice (especially when m is very small)
can be much longer than that when m is an optimal choice.

8 Performance constrained power optimization

In this section, we consider performance constrained power optimization, i.e., min-
imizing power consumption with task response time constraints. In particular, we
show that for a given average task response time, there is an optimal selection of
server size and core speed, such that minimum power consumption can be achieved
while a given performance guarantee is maintained.

8.1 The method

Theorem 6 For a given average task response time T , there is an optimal choice of
server size m and core speed s, such that an m-core server processor with core speed
s consumes the minimum power and that the task response time is T .

Proof Let us rewrite the average task response time as

T = ρ

λ

(

m + 1

(1 − ρ)(
√

2πm(1 − ρ)(eρ/eρ)m + 1)

)

.

It is clear that given m, λ, and T , there is unique ρ which satisfies the above equa-
tion. Although there is no closed-form solution, ρ can be found easily by numerical
methods. Based on ρ = λr̄/ms, we can determine s and P .

We will view the core speed s as a function of server size m, i.e.,

s = λr̄

mρ
.

To minimize P , we need to have ∂P/∂m = 0. We notice that in the idle-speed model,
we have P = λr̄sα−1 + mP ∗ and

∂P

∂m
= λr̄(α − 1)sα−2 ∂s

∂m
+ P ∗ = (α − 1)λr̄

(
λr̄

mρ

)α−2
∂s

∂m
+ P ∗.
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In the constant-speed model, we have P = m(sα + P ∗) and

∂P

∂m
= sα + P ∗ + mαsα−1 ∂s

∂m
=

(
λr̄

mρ

)α

+ P ∗ + αm

(
λr̄

mρ

)α−1
∂s

∂m
.

Furthermore, we have

∂s

∂m
= λr̄

(

− 1

m2ρ
− 1

mρ2
· ∂ρ

∂m

)

= − λr̄

mρ

(
1

m
+ 1

ρ
· ∂ρ

∂m

)

= −s

(
1

m
+ 1

ρ
· ∂ρ

∂m

)

.

It remains to find ∂ρ/∂m, which can be obtained even though there is no closed-
form expression of ρ in terms of m. We rewrite the above equation of T as

ρ(m + F) = T λ,

where

F = 1

(1 − ρ)(
√

2πm(1 − ρ)(eρ/eρ)m + 1)
= 1√

2πm(1 − ρ)2G + (1 − ρ)
,

with

G =
(

eρ

eρ

)m

.

By taking the partial derivative of m on both sides of the equation (notice that T is a
fixed value, i.e., the time constraint), we get

∂ρ

∂m
(m + F) + ρ

(

1 + ∂F

∂m

)

= 0.

Since

lnG = m ln
(
eρ/eρ

) = m(ρ − lnρ − 1),

and

1

G

∂G

∂m
= (ρ − lnρ − 1) + m

(

1 − 1

ρ

)
∂ρ

∂m
,

we get

∂G

∂m
= G

(

(ρ − lnρ − 1) + m

(

1 − 1

ρ

)
∂ρ

∂m

)

.

Now, we have

∂F

∂m
= −F 2

(√
2π

(
1

2
√

m
(1 − ρ)2G + √

m2(1 − ρ)

(

− ∂ρ

∂m

)

G

+ √
m(1 − ρ)2 ∂G

∂m

)

− ∂ρ

∂m

)

= −F 2
(√

2π

(
1

2
√

m
(1 − ρ)2G − 2

√
m(1 − ρ)G

∂ρ

∂m
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+ √
m(1 − ρ)2G

(

(ρ − lnρ − 1) + m

(

1 − 1

ρ

)
∂ρ

∂m

))

− ∂ρ

∂m

)

= −F 2
(√

π

2m
(1 − ρ)2G + √

2π

(

−2
√

m(1 − ρ)G
∂ρ

∂m

+ √
m(1 − ρ)2G(ρ − lnρ − 1) − m3/2 (1 − ρ)3

ρ
G

∂ρ

∂m

)

− ∂ρ

∂m

)

= −F 2
(√

π

2m
(1 − ρ)2G + √

2πm(1 − ρ)2G(ρ − lnρ − 1)

+ √
2π

(

−2
√

m(1 − ρ)G
∂ρ

∂m
− m3/2 (1 − ρ)3

ρ
G

∂ρ

∂m

)

− ∂ρ

∂m

)

= −F 2
((√

π

2m
+ √

2πm(ρ − lnρ − 1)

)

(1 − ρ)2G

− √
2πm(1 − ρ)

(

2 + m
(1 − ρ)2

ρ

)

G
∂ρ

∂m
− ∂ρ

∂m

)

= −F 2
((√

π

2m
+ √

2πm(ρ − lnρ − 1)

)

(1 − ρ)2G

−
(√

2πm(1 − ρ)

(

2 + m
(1 − ρ)2

ρ

)

G + 1

)
∂ρ

∂m

)

.

The last equation implies that

(m + F)
∂ρ

∂m
+ ρ

(

1 − F 2
(√

π

2m
+ √

2πm(ρ − lnρ − 1)

)

(1 − ρ)2G

+ F 2
(√

2πm(1 − ρ)

(

2 + m
(1 − ρ)2

ρ

)

G + 1

)
∂ρ

∂m

)

= 0,

that is,
(

m + F + ρF 2
(√

2πm(1 − ρ)

(

2 + m
(1 − ρ)2

ρ

)

G + 1

))
∂ρ

∂m

= ρ

(

F 2
(√

π

2m
+ √

2πm(ρ − lnρ − 1)

)

(1 − ρ)2G − 1

)

,

which gives rise to

∂ρ

∂m
= ρ(F 2(

√
π/2m + √

2πm(ρ − lnρ − 1))(1 − ρ)2G − 1)

m + F + ρF 2(
√

2πm(1 − ρ)(2 + m(1 − ρ)2/ρ)G + 1)
.

Summarizing the above discussion, we obtain

∂s

∂m
= −s

(
1

m
+ F 2(

√
π/2m + √

2πm(ρ − lnρ − 1))(1 − ρ)2G − 1

m + F + ρF 2(
√

2πm(1 − ρ)(2 + m(1 − ρ)2/ρ)G + 1)

)

.
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Fig. 7 Power consumption P vs. m and T (idle-speed model)

and

∂P

∂m
= −λr̄(α − 1)sα−1

×
(

1

m
+ F 2

(√
π/2m + √

2πm(ρ − lnρ − 1)
)
(1 − ρ)2G − 1

m + F + ρF 2
(√

2πm(1 − ρ)
(
2 + m(1 − ρ)2/ρ

)
G + 1

)

)

+ P ∗, (7)

in the idle-speed model, and

∂P

∂m
=

(

1 − αm

(
1

m
+ F 2

(√
π/2m + √

2πm(ρ − lnρ − 1)
)
(1 − ρ)2G − 1

m + F + ρF 2
(√

2πm(1 − ρ)
(
2 + m(1 − ρ)2/ρ

)
G + 1

)

))

sα

+ P ∗, (8)

in the constant-speed model. �

8.2 Numerical examples

In Figs. 7 and 8, we demonstrate the power consumption P (in watt) as a function
of server size m for the idle-speed model and the constant-speed model, respectively.
The time constraint T is set as 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5 seconds. The task
arrival rate λ is 18 tasks per second. The task execution requirement is r̄ = 1 giga
instructions. The base power supply is P ∗ = 2 watts. Again, there is an optimal choice
of m and s, such that an m-core server processor with core speed s consumes the
minimum power while achieving the given average task response time T , as shown
in Theorem 6.

For the idle-speed model, the optimal server size m is 14, 16, 17, 18, 18, and 18,
when T is 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5 seconds, respectively. For the constant-speed
model, the optimal server size m is 12, 15, 17, 18, 18, and 19, when T is 0.5, 0.7,
0.9, 1.1, 1.3, and 1.5 seconds, respectively. These values can be obtained by solving
the equation ∂P/∂m = 0 numerically, where ∂P/∂m is given in (7) and (8) for the
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Fig. 8 Power consumption P vs. m and T (constant-speed model)

two core speed models, and then rounding the solutions to the nearest integers. The
optimal core speed s can be obtained by using the relation s = λr̄/mρ.

It is observed that for both core speed models, the average power consumption P

when m is a nonoptimal choice (especially when m is very small) can be much more
than that when m is an optimal choice.

9 Conclusions

By using an M/M/m queueing system with multiple servers to model a multicore
server processor, and considering system performance measures of average task re-
sponse time and average power consumption, we have studied the problem of power
and performance management for a multicore server processor in a cloud computing
environment by optimal server configuration for a specific application environment.
Our conclusions are (1) cores should be managed in a centralized way to provide
the highest performance without consumption of more energy in cloud computing;
(2) for a given server speed constraint, fewer high-speed cores perform better than
more low-speed cores; furthermore, there is an optimal selection of server size and
core speed which can be obtained analytically, such that a multicore server processor
consumes the minimum power; (3) for a given power consumption constraint, there
is an optimal selection of server size and core speed which can be obtained numeri-
cally, such that the best performance can be achieved, i.e., the average task response
time is minimized; (4) for a given task response time constraint, there is an optimal
selection of server size and core speed which can be obtained numerically, such that
minimum power consumption can be achieved while the given performance guar-
antee is maintained. Further investigation can be directed toward application of our
models and results to multicore server processors in real cloud computing environ-
ments.
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