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Abstract Energy-efficient scheduling of stochastic tasks is considered in this paper.
The main characteristic of a stochastic task is that its execution time is a random vari-
able whose actual value is not known in advance, but only its probability distribution.
Our performance measures are the probability that the total execution time does not
exceed a given bound and the probability that the total energy consumption does not
exceed a given bound. Both probabilities need to be maximized. However, maximiza-
tions of the two performance measures are conflicting objectives. Our strategy is to
fix one and maximize the other. Our investigation includes the following two aspects,
with the purpose of maximizing the probability for the total execution time not to
exceed a given bound, under the constraint that the probability for the total energy
consumption not to exceed a given bound is at least certain value. First, we explore
the technique of optimal processor speed setting for a given set of stochastic tasks
on a processor with variable speed. It is found that the simple equal speed method
(in which all tasks are executed with the same speed) yields high quality solutions.
Second, we explore the technique of optimal stochastic task scheduling for a given set
of stochastic tasks on a multiprocessor system, assuming that the equal speed method
is used. We propose and evaluate the performance of several heuristic stochastic task
scheduling algorithms. Our simulation studies identify the best methods among the
proposed heuristic methods.
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1 Introduction

1.1 Motivation

It has long been recognized that task execution times in parallel and distributed com-
puting are unpredictable, because of variable execution paths of a parallel program due
to different input data, uncertain communication delays due to network contention,
and other nondeterministic costs due to various resource competition [27, p. 86]. Task
execution times in cloud computing are also random due to Internet-based access of
virtualized and shared resources [9, p. 291], [16], [24, Chapter 8, p. 155]. Furthermore,
the random variables which represent unpredictable task execution times are usually
assumed to obey normal distributions, because of their accurate approximation of
random task execution times, their analytical tractability, and their closeness to other
distributions such as Gamma and Beta distributions [11, p. 185], [20, p. 78], [31].
The reader is referred to [7, Chapter 3] for a gentle introduction to stochastic schedul-
ing and [18] for a comprehensive treatment of stochastic task scheduling by using
expectation-variance analysis of a schedule based on the addability of the expecta-
tions and variances of normal distributions. With the emergence of energy-aware task
scheduling [29,30], energy constrained scheduling of stochastic tasks becomes theo-
retically interesting and practically important.

1.2 Related research

Stochastic task scheduling on multiple machines was originated in the mid 1960’s.
Rothkopf was the first to consider the problem of scheduling immediately available
tasks with random variable service times [17]. Since then, numerous researchers have
contributed to this field, and there is a large body of literature. In [15], Möhring et
al. considered the problem to minimize the total weighted completion time of a set
of jobs with individual release dates which have to be scheduled on identical parallel
machines. In [19], Scharbrodt et al. presented a new average case analysis for the
problem of scheduling jobs on multiple machines so that the sum of job completion
times is minimized. In [25], Weiss considered scheduling a batch of jobs with stochas-
tic processing times on parallel machines, with minimization of expected weighted
flowtime as objective.

Stochastic task scheduling has been extended to various scheduling models. In
[1], Ahmadizar et al. dealt with a stochastic group shop scheduling problem with the
objective to find a job schedule which minimizes the expected makespan. In [10], Gu
et al. proposed a novel parallel quantum genetic algorithm for the stochastic job shop
scheduling problemwith the objective of minimizing the expected value of makespan,
where the processing times are subjected to independent normal distributions. In [14],
Megow et al. incorporated both stochastic scheduling and online scheduling, and con-
sidered non-preemptive parallel machine scheduling, with the objective to minimize
the total weighted completion times of jobs. In [26], Weiss and Pinedo considered pre-
emptive scheduling of tasks on multiple processors with different speeds, where tasks
require amounts ofworkwhich are exponentially distributedwith different parameters.
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Energy constrained scheduling of stochastic tasks

Stochastic task scheduling has been investigated for precedence constrained tasks.
In [2], Ando et al. presented a linear time algorithm for approximating the longest path
length of a given directed acyclic graph (DAG), where each edge length is given as a
normally distributed random variable. In [4], Canon and Jeannot studied the evaluation
of the efficiency and the robustness of schedules of parallel applications consisting of
stochastic tasks having precedence constraints. In [21], Skutella and Uetz considered
parallel and identical machine scheduling problems, where the jobs are subject to
precedence constraints and release dates, and where the processing times of jobs are
governed by independent probability distributions. In [23], Tongsima et al. studied
scheduling algorithms taking into account the probabilistic execution times, where
tasks are represented as a data-flow graph.

Stochastic task scheduling has been explored for various kinds of parallel and dis-
tributed computing environments. In [6], Chen et al. considered both stochastic and
robust scheduling on unrelated machines with objectives of minimizing the sum of
weighted completion times and the makespan by capturing resource provisioning and
job scheduling in the cloud. In [8], Dong et al. proposed a mechanism used to estimate
the probability distribution of task execution time based on resource load and intro-
duced a resource load-based stochastic scheduling algorithm for grid environments. In
[13], Li et al. presented a model of scheduling precedence constrained stochastic tasks
with communication times on a heterogeneous cluster system with processors of dif-
ferent computing capabilities tominimize a parallel application’s expected completion
time. In [22], Tang et al. addressed the problem of scheduling precedence constrained
tasks of a parallel application with random processing times and communication times
on a grid computing system so as to minimize the makespan.

However, there has been only a little research on energy-efficient stochastic task
scheduling. In [12], Li et al. studied the problem of scheduling a bag-of-tasks applica-
tion, made of a collection of independent stochastic tasks with normal distributions of
task execution times, on a heterogeneous platformwith deadline and energy consump-
tion budget constraints. The main approach in [12] is to minimize a weighted sum of
the probability that the makespan does not exceed certain deadline and the probability
that the energy consumption does not exceed a given budget. The main concern of this
method is that the two probabilities are different in nature and it makes little sense to
consider a weighted sum.

1.3 New contributions

In this paper, we consider energy-efficient scheduling of stochastic tasks. The main
characteristic of a stochastic task is that its execution time is a random variable whose
actual value is not known in advance, but only its probability distribution. Our per-
formance measures are the probability that the total execution time does not exceed a
given bound and the probability that the total energy consumption does not exceed a
given bound. Both probabilities need to bemaximized. However, maximizations of the
two performance measures are conflicting objectives, and simultaneous bi-objective
optimization is impossible. Our strategy is to fix one and maximize the other, and
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thus, we take a different approach from [12]. To the best of the author’s knowledge,
the optimization problem proposed in this paper has never been studied before.

Our investigation and contributions include the following two aspects, with the
purpose of maximizing the probability that the total execution time does not exceed a
given bound, under the constraint that the probability that the total energy consumption
does not exceed a given bound is at least certain value.

• First, we explore the technique of optimal processor speed setting for a given set
of stochastic tasks on a processor with variable speed. It is found that the simple
equal speed method (in which all tasks are executed with the same speed) yields
high quality (i.e., near-optimality) solutions.

• Second, we explore the technique of optimal stochastic task scheduling for a given
set of stochastic tasks on a multiprocessor system, assuming that the equal speed
method is used. We propose and evaluate the performance of several heuristic
stochastic task scheduling algorithms. Our simulation studies identify the best
methods among the proposed heuristic methods.

The rest of the paper is organized as follows. In Sect. 2, we describe the speed and
powermodel and the stochastic taskmodel anddefineour energy constrained stochastic
task scheduling problem. In Sect. 3, we consider optimal processor speed setting on a
uniprocessor system. In Sect. 4, we consider optimal stochastic task scheduling on a
multiprocessor system. In Sect. 5, we conclude the paper.

2 Preliminaries

2.1 The speed and power model

Power dissipation and circuit delay in digital CMOS circuits can be accurately mod-
eled by simple equations, even for complex microprocessor circuits. CMOS circuits
have dynamic, static, and short-circuit power dissipation; however, the dominant
component in a well-designed circuit is dynamic power consumption p (i.e., the
switching component of power), which is approximately p = aCV 2 f , where a
is an activity factor, C is the loading capacitance, V is the supply voltage, and f
is the clock frequency [5]. In the ideal case, the supply voltage and the clock fre-
quency are related in such a way that V ∝ f φ for some constant φ > 0 [28].
The processor execution speed s is usually linearly proportional to the clock fre-
quency, namely s ∝ f . For ease of discussion, we will assume that V = b f φ and
s = c f , where b and c are some constants. Hence, we know that power consumption is
p = aCV 2 f = ab2C f 2φ+1 = (ab2C/c2φ+1)s2φ+1 = ξsα , where ξ = ab2C/c2φ+1

and α = 2φ + 1.
Assume that we are given n independent sequential tasks to be executed on m

identical processors. There is no communication nor precedence constraint among the
tasks. Let ri represent the execution requirement (measured in the number of processor
cycles or the number of instructions) of task i , where 1 ≤ i ≤ n. Let pi represent the
dynamic power (measured in watts) consumed to execute task i , which is pi = ξsα

i ,
where si is the execution speed of task i (measured in GHz or the number of billion
instructions per second). Since ξ is a constant which only creates scaling effect, for

123

Author's personal copy



Energy constrained scheduling of stochastic tasks

ease of discussion, we will assume that ξ = 1. Hence, the power required to execute
task i is pi = sα

i . The execution time (measured in seconds) of task i is ti = ri/si .
The energy (measured in joule) consumed to execute task i is ei = pi ti = ri s

α−1
i .

2.2 The stochastic task model

Throughout the paper, we use fX (x) to represent the probability density function (pdf)
of a random variable X , and FX (x) to represent the cumulative distribution function
(cdf) of a random variable X . The mean and variance of a random variable X are
represented by μX and σ 2

X , respectively.
A normal random variable X has pdf

fX (x) = 1√
2πσX

e−(x−μX )2/2σ 2
X .

It is well known that Y = (X − μX )/σX is a standard normal random variable with
mean 0 and variance 1. The pdf of Y is

fY (y) = 1√
2π

e−y2/2.

The cdf of Y is

FY (x) = 1√
2π

∫ x

−∞
e−y2/2dy.

For any normal random variable X and any z, we have

FX (z) = FY

(
z − μX

σX

)
.

Although all random variables in this paper are nonnegative, for convenience, we still
assume that they are regular normal random variables in the range (−∞,+∞), not
truncated normal random variables in the range (0,+∞), with the understanding that
the distribution in the range (−∞, 0) is extremely small and negligible.

There are n stochastic tasks which are elaborated as follows.
For task i , where 1 ≤ i ≤ n, the execution requirement ri of the task is a normal

random variable with mean μi = μri and variance σ 2
i = σ 2

ri . The execution speed of
the processor for task i is si . Hence, the execution time of task i is ri/si , which is a
normal random variable with mean μi/si and variance σ 2

i /s2i . The energy consumed
by task i is ri s

α−1
i , which is a normal random variable with meanμi s

α−1
i and variance

σ 2
i s

2(α−1)
i .
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2.3 The optimization problem

In this paper, we consider scheduling stochastic tasks on a multiprocessor system with
m identical processors. A schedule of a set S of n tasks on m processors is actually a
partition (S1, S2, . . . , Sm) of the n tasks into m disjoint subsets S1, S2, . . . , Sm , such
that S1 ∪ S2 ∪ · · · ∪ Sm = S.

Given a schedule (S1, S2, . . . , Sm), we can assign a processor speed si to each task
i . Let Tj denote the total execution time of the j th processor, where 1 ≤ j ≤ m. Since
the execution time of task i is ri/si , we have

Tj =
∑
i∈S j

ri
si

,

which is a normal random variable. The total execution time of the n tasks is

T = max{T1, T2, . . . , Tm}.

Unfortunately, T does not have a normal distribution. Its cdf is

FT (x) =
m∏
j=1

FTj (x),

and its pdf can be obtained as follows,

fT (x) =
m∑
j=1

fTj (x)
∏
j ′ 	= j

FTj ′ (x).

The total energy consumption, i.e.,

E = r1s
α−1
1 + r2s

α−1
2 + · · · + rns

α−1
n ,

is a normal random variable.
Our problem of energy constrained scheduling of stochastic tasks can be formally

defined as the following combinatorial optimization problem. Givenm processors and
n stochastic tasks with μ1, μ2, . . . , μn, σ1, σ2, . . . , σn , a total execution time bound
T ∗, a total energy consumption bound E∗, and β (where 0 < β < 1), our optimization
problem is to find a stochastic task schedule (S1, S2, . . . , Sm) of the n tasks on the
m processors, and a processor speed setting (s1, s2, . . . , sn), such that FT (T ∗) =
P(T ≤ T ∗) is maximized, under the condition that FE (E∗) = P(E ≤ E∗) = β.
The optimization problem is defined in such a way that the probability for the total
execution time T not to exceed a given bound T ∗ is maximized, under the constraint
that the probability for the total energy consumption E not to exceed a given bound
E∗ is at least β.
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2.4 The road map

It is clear that our optimization problem contains two subproblems, i.e., task schedul-
ing [finding an optimal stochastic task schedule (S1, S2, . . . , Sm)] and speed setting
[finding an optimal processor speed setting (s1, s2, . . . , sn)]. Attempting to solve both
subproblems at the same time seems difficult. Our approach to solving the optimization
problem is the following.

First, in Sect. 3, we consider the subproblem of optimal processor speed setting.We
explore the technique of optimal processor speed setting for a given set of stochastic
tasks on a processor with variable speed, to maximize the probability for the total
execution time not to exceed a given bound, under the constraint that the probability
for the total energy consumption not to exceed a given bound is at least certain value.
In fact, we consider the special case of a uniprocessor system. Surprisingly, even for
this special case, the optimal processor speed setting problem is still too complicated
to accommodate an effective method to find an optimal solution. However, it is found
that the equal speed method yields high quality solutions.

Second, in Sect. 4, we consider the subproblem of optimal stochastic task schedul-
ing. We explore the technique of optimal stochastic task scheduling for a given set of
stochastic tasks on a multiprocessor system to maximize the probability for the total
execution time not to exceed a given bound, under the constraint that the probability
for the total energy consumption not to exceed a given bound is at least certain value,
assuming that a simple power allocation method is used, i.e., the equal speed method,
in which, all tasks are executed with the same speed s. Thus, we can focus on heuris-
tic stochastic task scheduling algorithms on a multiprocessor system. We evaluate the
performance of several heuristic stochastic task scheduling algorithms. Our simulation
studies identify the best methods among the proposed heuristic methods.

3 Optimal processor speed setting

In this section, we consider optimal processor speed setting on a uniprocessor system.
First, we define our optimization problem on a uniprocessor. Next, we present our
method and a numerical algorithm to solve the optimization problem. Finally, we
demonstrate numerical examples.

3.1 Problem definition

Consider n tasks executed on a single processor.
The total execution time of the n tasks is

T = r1
s1

+ r2
s2

+ · · · + rn
sn

.

T is a normal random variable with mean

μT = μ1

s1
+ μ2

s2
+ · · · + μn

sn
,
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and variance

σ 2
T = σ 2

1

s21
+ σ 2

2

s22
+ · · · + σ 2

n

s2n
.

The total energy consumption of the n tasks is

E = r1s
α−1
1 + r2s

α−1
2 + · · · + rns

α−1
n .

E is a normal random variable with mean

μE = μ1s
α−1
1 + μ2s

α−1
2 + · · · + μns

α−1
n ,

and variance

σ 2
E = σ 2

1 s
2(α−1)
1 + σ 2

2 s
2(α−1)
2 + · · · + σ 2

n s
2(α−1)
n .

The pdf of T is

fT (x) = 1√
2πσT

e−(x−μT )2/2σ 2
T .

The cdf of T is

FT (T ∗) = P(T ≤ T ∗) =
∫ T ∗

−∞
fT (x)dx .

The pdf of E is

fE (x) = 1√
2πσE

e−(x−μE )2/2σ 2
E .

The cdf of E is

FE (E∗) = P(E ≤ E∗) =
∫ E∗

−∞
fE (x)dx .

Notice that both FT (T ∗) and FE (E∗) can be viewed as functions of s1, s2, . . . , sn ,
i.e., FT (T ∗) = FT (s1, s2, . . . , sn, T ∗), and FE (E∗) = FE (s1, s2, . . . , sn, E∗).

We are now ready to define our problem of optimal processor speed setting.
Given n stochastic tasks with μ1, μ2, . . . , μn, σ1, σ2, . . . , σn , a total execution time
bound T ∗, a total energy consumption bound E∗, and β (where 0 < β < 1), our
optimization problem is to find an optimal processor speed setting (s1, s2, . . . , sn),
in the sense that FT (s1, s2, . . . , sn, T ∗) is maximized, under the condition that
FE (s1, s2, . . . , sn, E∗) = β.
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3.2 The method

Weare facing amutli-variable optimization problem.We canmaximize FT (s1, s2, . . . ,
sn, T ∗) by using the method of Lagrange multiplier, namely

∇FT (s1, s2, . . . , sn, T
∗) = φ∇FE (s1, s2, . . . , sn, E

∗),

that is,

∂FT (s1, s2, . . . , sn, T ∗)
∂si

= φ
∂FE (s1, s2, . . . , sn, E∗)

∂si
,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier.
It can be shown that

∂FT (s1, s2, . . . , sn, T ∗)
∂si

= fT (T ∗)
(

μi

s2i
+ 1

σT

(
T ∗ − μT

σT

)
σ 2
i

s3i

)
,

and

∂FE (s1, s2, . . . , sn, E∗)
∂si

= −(α − 1) fE (E∗)
(

μi s
α−2
i + 2

(
E∗ − μE

σE

)
σ 2
i s

2α−3
i

)
.

The derivation of the above two equations is given in “Appendix 1”.
Therefore, we need to solve the following equation, i.e.,

fT (T ∗)
(

μi

s2i
+ 1

σT

(
T ∗ − μT

σT

)
σ 2
i

s3i

)

= −φ(α − 1) fE (E∗)
(

μi s
α−2
i + 2

(
E∗ − μE

σE

)
σ 2
i s

2α−3
i

)
,

or equivalently,

Fi = fT (T ∗)
(

μi

s2i
+ σ 2

i

(
T ∗ − μT

σ 2
T s

3
i

))

+φ(α − 1) fE (E∗)
(

μi s
α−2
i + 2σ 2

i s
2α−3
i

(
E∗ − μE

σE

))
= 0,

for all 1 ≤ i ≤ n. The above equation, together with

F0 = FE (s1, s2, . . . , sn, E
∗) − β = 0,

constitute a nonlinear system of n + 1 equations with n + 1 unknowns, i.e.,
s1, s2, . . . , sn , and φ.

An analytical solution to the above equations is impossible. We will seek numerical
solutions.
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3.3 A numerical algorithm

We have a nonlinear system of equations, i.e.,

F0(φ, s1, . . . , sn) = 0,

F1(φ, s1, . . . , sn) = 0,
...

Fn(φ, s1, . . . , sn) = 0.

By using vector notation to represent the variables φ, s1, . . . , sn , we write

y = (y0, y1, . . . , yn) = (φ, s1, . . . , sn),

and Fi (φ, s1, . . . , sn) = Fi (y0, y1, . . . , yn) = Fi (y), where Fi : Rn+1 → R maps
(n + 1)-dimensional space R

n+1 into the real line R. By defining a function F :
R
n+1 → R

n+1 which maps Rn+1 into Rn+1,

F(y) = (F0(y0, y1, . . . , yn), F1(y0, y1, . . . , yn), . . . , Fn(y0, y1, . . . , yn)),

namely,

F(y) = (F0(y), F1(y), . . . , Fn(y)),

then our nonlinear system of equations is

F(y) = 0,

where 0 = (0, 0, . . . , 0).
The above nonlinear system of equations can be solved by using Newton’s method.

To this end, we need the Jacobian matrix J (y) defined as

J (y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F0(y)
∂y0

∂F0(y)
∂y1

· · · ∂F0(y)
∂yn

∂F1(y)
∂y0

∂F1(y)
∂y1

· · · ∂F1(y)
∂yn

...
...

. . .
...

∂Fn(y)
∂y0

∂Fn(y)
∂y1

· · · ∂Fn(y)
∂yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The various components of the above matrix are calculated in “Appendix 2”.
Our numerical algorithm for finding an optimal processor speed setting (s1, . . . , sn)

and the Lagrange multiplier φ, i.e., the vector y = (φ, s1, . . . , sn) which satisfies the
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nonlinear system of equations F(y) = 0, is given in Algorithm 1. This is essentially
the standard Newton’s iterative method [3, p. 451]. Our initial approximation of y is
φ = −1 and si = s for all 1 ≤ i ≤ n [line (1)], where s is the constant speed of the
processor, which satisfies

FE (s, s, . . . , s, E∗) = β.

Let

μ =
n∑

i=1

μi ,

and

σ 2 =
n∑

i=1

σ 2
i .

Then, we have μE = μsα−1 and σ 2
E = σ 2s2(α−1) = (σ sα−1)2 and

fE (x) = 1√
2πσ sα−1

e−(x−μsα−1)2/2(σ sα−1)2 .

Hence s is the unique value which satisfies

FE (s, s, . . . , s, E∗) = FY

(
E∗ − μsα−1

σ sα−1

)
= β,

where we notice that FE (s, s, . . . , s, E∗) is a decreasing function of s. Since E∗ −
μsα−1 ≥ 0, we have s ≤ (E∗/μ)1/(α−1). Thus, s can be found by using the classic
bisection method [3, p. 21] in the interval [0, (E∗/μ)1/(α−1)]. The value of y is then
repeatedly modified as y + z [line (6)], where z is the solution to the linear system of
equations J (y)z = −F(y) [line (5)]. Such modification is repeated until ‖z‖ ≤ ε [line
(7)], where

‖z‖ =
√
z20 + z21 + · · · + z2n,

and ε is a sufficiently small constant, say, 10−10. The linear system of equations in line
(5) can be solved by using the classic Gaussian elimination with backward substitution
algorithm [3, pp. 268–269].

Although there is no analytical result on the time complexity of the algorithm, our
experiments reveal that the algorithm is reasonably fast.
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Algorithm 1: A numerical algorithm for finding an optimal processor speed setting.

Algorithm: Optimal Processor Speed Setting
Input: Parameters μ1, μ2, . . . , μn , σ1, σ2, . . . , σn , T ∗, E∗, and β.
Output: An optimal processor speed setting and φ, i.e., y = (φ, s1, . . . , sn), which satisfies F(y) = 0.

y ← (−1, s, . . . , s); (1)
repeat (2)

Calculate J (y), where J (y)i, j = ∂Fi (y)/∂y j for 0 ≤ i, j ≤ n; (3)
Calculate F(y) = (F0(y), F1(y), . . . , Fn(y)); (4)
Solve the linear system of equations J (y)z = −F(y); (5)
y ← y + z; (6)

until ‖z‖ ≤ ε. (7)
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Fig. 1 FT (s1, s2, . . . , sn , T ∗) versus q

3.4 Numerical examples

Let us consider n = 7 tasks with parameters μi = 5.0 + 2.0(i − 1) and σi =
1.0 + 0.4(i − 1), for all 1 ≤ i ≤ n. We set T ∗ = 80, E∗ = 100, and β = 0.9. We set
α = 3 in all the examples in this paper. (All values are chosen for illustrative purpose
only.)

We consider the following processor speed setting, (s1, s1q, s1q2, . . . , s1qn−1),
i.e., si = s1qi−1, for all 1 ≤ i ≤ n, where s1 is determined in such a way that
FE (s1, s2, . . . , sn, E∗) = β. In Fig. 1, we show FT (s1, s2, . . . , sn, T ∗) as a function
of q, where 0.6 ≤ q ≤ 1.4. It is seen that different processor speed settings do
result in significantly different quality of stochastic task scheduling. Hence, finding
the optimal processor speed setting which maximizes FT (s1, s2, . . . , sn, T ∗) is indeed
an important problem.
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Fig. 2 FT (s1, s2, . . . , sn , T ∗) versus E∗

Using our algorithm in the last section, the optimal processor speed setting found
by Algorithm 1 is

(s1, s2, s3, s4, s5, s6, s7)

= (1.1889282, 1.1490253, 1.1183048, 1.0936121, 1.0731642,

1.0558559, 1.0409555),

which gives rise to FT (s1, s2, . . . , sn, T ∗) = 0.9390434.
In Fig. 2, we show FT (s1, s2, . . . , sn, T ∗) as a function of E∗, where 60 ≤ E∗ ≤

120. The (s1, s2, s3, s4, s5, s6, s7) is obtained by using Algorithm 1. It is observed that
asmore andmore energy resource is provided, the quality of stochastic task scheduling,
i.e., the probability that a given time deadline is satisfied, increases.

Unfortunately, due to the sophistication of FT (s1, s2, . . . , sn, T ∗) and FE (s1, s2,
. . . , sn, E∗), Newton’s iterative method exhibits two weaknesses. First, it is very sen-
sitive to the initial approximation and does not always converge to a solution. Second,
even though it converges, it does not yield an optimal solution. Surprisingly, the simple
equal speedmethod, in which, all tasks are executedwith the same speed, may perform
better than Newton’s iterative method. For the above example, when si = 1.0850523,
for all 1 ≤ i ≤ n, we get FT (s1, s2, . . . , sn, T ∗) = 0.9432856, which is greater than
that of Newton’s iterative method.

Of course, the equal speed method is not optimal either. Let us consider only the
first two tasks in the above example. Newton’s iterative method gives
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(s1, s2) = (1.2025708, 1.1755580),

and FT (s1, s2, T ∗) = 0.9498905. The equal speed method gives

(s1, s2) = (1.1865784, 1.1865784),

and FT (s1, s2, T ∗) = 0.9501387. It is clear that the constraint FE (s1, s2, E∗) = β

makes s2 as a function of s1, i.e., s2 = g(s1) for some g. Therefore, FE (s1, s2, E∗) =
FE (s1, g(s1), E∗) becomes a function of s1. It is observed that in a small interval
[1.180, 1.188] of s1, FE (s1, g(s1), E∗) increases as s1 increases and then decreases
as s1 further increases. When

(s1, s2) = (1.1840000, 1.1883252),

we have FT (s1, s2, T ∗) = 0.9501429, which is greater than that of the equal speed
method.Due to the unavailability of g analytically, there is noway to obtain the optimal
solution based on ∂FE (s1, g(s1), E∗)/∂s1 = 0 and the fact that it is a decreasing
function of s1 so that the bisection method is applicable.

Notice that on amultiprocessor system, both of the two probabilities FT (s1, s2, . . . ,
sn, T ∗) and FE (s1, s2, . . . , sn, E∗) depend on a task schedule (S1, S2, . . . , Sm) and
a speed setting (s1, s2, . . . , sn). It is clear that given μ1, μ2, . . . , μn , σ1, σ2, . . . , σn ,
a total execution time bound T ∗, a total energy consumption bound E∗, β (0 <

β < 1), and a schedule (S1, S2, . . . , Sm), there is an optimal processor speed
setting (s1, s2, . . . , sn), such that FT (s1, s2, . . . , sn, T ∗) is maximized, and that
FE (s1, s2, . . . , sn, E∗) = β. Although theoretically, a processor speed setting can
be calculated by using the method developed in this section, the computational pro-
cedure is excessively complicated.

4 Optimal stochastic task scheduling

In this section, we consider optimal stochastic task scheduling on a multiprocessor
system,First,wedefineour optimizationproblem.Next,wepresent heuristic stochastic
task scheduling algorithms on a multiprocessor. Finally, we evaluate the performance
of the heuristic methods by simulations.

4.1 Problem definition

It is conceivable that the problem of finding an optimal stochastic task schedule
(S1, S2, . . . , Sm) and an optimal processor speed setting (s1, s2, . . . , sn) is extremely
challenging. Here, we have two subproblems simultaneously, namely task scheduling
(i.e., to find a stochastic task schedule (S1, S2, . . . , Sm)), and power allocation (i.e., to
find a processor speed setting (s1, s2, . . . , sn)). However, since the equal speedmethod
yields high quality (i.e., near-optimality) processor speed setting, we can focus on task
scheduling by assuming that all tasks are executed with the same speed.
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Hence, our problem of energy constrained scheduling of stochastic tasks becomes
a pure optimal stochastic task scheduling problem. Given n stochastic tasks
with μ1, μ2, . . . , μn, σ1, σ2, . . . , σn , a total execution time bound T ∗, a total
energy consumption bound E∗, and β (where 0 < β < 1), our optimiza-
tion problem is to find an optimal stochastic task schedule (S1, S2, . . . , Sm),
in the sense that FT (s1, s2, . . . , sn, T ∗) is maximized, under the condition that
FE (s1, s2, . . . , sn, E∗) = β.

4.2 Heuristic scheduling algorithms

In this section, we consider a simple power allocation method, i.e., the equal speed
method, in which, all tasks are executed with the same speed s, where s is the unique
value which satisfies

FE (s, s, . . . , s, E∗) = FY

(
E∗ − μsα−1

σ sα−1

)
= β.

For such a simple power allocationmethod, the problem of finding an optimal schedule
is still NP-hard, even though all random execution requirements are deterministic
values (i.e., σi → 0). In this case, maximizing FT (s, s, . . . , s, T ∗) is equivalent to
determine whether n tasks with execution times μ1/s, μ2/s, . . . , μn/s, where s =
(E∗/μ)1/(α−1), can be completed by the deadline T ∗.

We evaluate the performance of several heuristic task scheduling algorithms. Let

μ( j) =
∑
i∈S j

μi ,

and

(σ ( j))2 =
∑
i∈S j

σ 2
i .

Then, we have μTj = μ( j)/s and σ 2
Tj

= (σ ( j))2/s2 = (σ ( j)/s)2. Furthermore, we get

fTj (x) = 1√
2πσ ( j)/s

e−(x−μ( j)/s)2/2(σ ( j)/s)2 ,

and

FT (s, s, . . . , s, T ∗) =
m∏
j=1

FY

(
T ∗ − μ( j)/s

σ ( j)/s

)
.

By using the equal speed method, FT (s, s, . . . , s, T ∗) only depends on a schedule.
Our goal is to compare FT (s, s, . . . , s, T ∗) produced by different task scheduling
algorithms.
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Algorithm 2: A heuristic algorithm for optimal stochastic task scheduling.

Algorithm: Optimal Stochastic Task Scheduling
Input: A set of n stochastic tasks with parameters μ1, μ2, . . . , μn , and σ1, σ2, . . . , σn , m identical proces-
sors, T ∗, E∗, β, and a list L of the n tasks.
Output: A schedule (S1, S2, . . . , Sm ) such that FT (s, s, . . . , s, T ∗) is as high as possible.

s ← the unique value which satisfies FE (s, s, . . . , s, E∗) = β; (1)
for ( j ← 1; j ≤ m; j++) do (2)

S j ← ∅; (3)

μ( j) ← 0; (4)
(σ ( j))2 ← 0; (5)
z j ← ∞; (6)

end for; (7)
for (k ← 1; k ≤ n; k++) do (8)

i ← the next unscheduled task in L; (9)
remove i from L; (10)
find j such that z j = max{z1, z2, . . . , zm }; //Ties are broken arbitrarily. (11)
S j ← S j ∪ {i}; (12)

μ( j) ← μ( j) + μi ; (13)
(σ ( j))2 ← (σ ( j))2 + σ 2

i ; (14)

z j ← (T ∗ − μ( j)/s)/(σ ( j)/s); (15)
end for; (16)
calculate FT (s, s, . . . , s, T ∗); (17)
return (S1, S2, . . . , Sm) and FT (s, s, . . . , s, T ∗). (18)

Our heuristic algorithm for optimal stochastic task scheduling is given in Algorithm
2. It is clear that to keep FT (s, s, . . . , s, T ∗) as high as possible, we need to keep z j
as large as possible for all 1 ≤ j ≤ m, where z j = (T ∗ − μ( j)/s)/(σ ( j)/s). In the
beginning, we have z j = ∞, for all 1 ≤ j ≤ m [line (6)]. As more and more tasks are
scheduled on processor j , μ( j) and (σ ( j))2 get larger and larger, while z j becomes
smaller and smaller. Our strategy is to let the z j ’s be reduced at about the same pace.
For each task i , a processor j with the maximum z j is chosen, and task i is scheduled
on processor j [line (11)].

The n tasks are initially arranged in certain order L and then scheduled in this
order. There are several arrangements of the n tasks into a list L . Let ci = σi/μi be
the coefficient of variation of task i , where 1 ≤ i ≤ n. We consider the following
heuristics.

• Smallest μ First (SμF): The n tasks are sorted such that μ1 ≤ μ2 ≤ · · · ≤ μn .
• Largest μ First (LμF): The n tasks are sorted such that μ1 ≥ μ2 ≥ · · · ≥ μn .
• Smallest σ First (SσF): The n tasks are sorted such that σ1 ≤ σ2 ≤ · · · ≤ σn .
• Largest σ First (LσF): The n tasks are sorted such that σ1 ≥ σ2 ≥ · · · ≥ σn .
• Smallest c First (ScF): The n tasks are sorted such that c1 ≤ c2 ≤ · · · ≤ cn .
• Largest c First (LcF): The n tasks are sorted such that c1 ≥ c2 ≥ · · · ≥ cn .
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Table 1 Simulation results

n SμF LμF SσF LσF ScF LcF

20 0.1238265 0.2301079 0.1220124 0.2253457 0.1300818 0.1311873

30 0.1067940 0.2925648 0.1469017 0.3028942 0.2153746 0.2074393

40 0.2353938 0.3681579 0.2482962 0.3659853 0.2905738 0.2883837

50 0.2865000 0.4403613 0.3184542 0.4412833 0.3597027 0.3664775

60 0.3412605 0.4818616 0.3756390 0.5000767 0.4201616 0.4214347

70 0.5161491 0.5651946 0.4546225 0.5560961 0.4806573 0.4887583

80 0.4530198 0.5859283 0.5018688 0.6011409 0.5344322 0.5422561

90 0.5852184 0.6463159 0.5619365 0.6425824 0.5872445 0.5831224

100 0.5695922 0.6749998 0.5962498 0.6760803 0.6294984 0.6364103

4.3 Performance evaluation

Themain purpose of this section is to examine the performance of the heuristicmethods
proposed in the last section in scheduling stochastic tasks.

In Table 1, we demonstrate our experimental results. We consider m = 7 identical
processors. For each combination of the number of tasksn and the six heuristicmethods
M , where n = 20, 30, . . . , 100, and M ∈ {SμF,LμF,SσF,LσF,ScF,LcF}, we
generate 10,000 sets of n stochastic tasks, where μi is uniformly distributed in the
range [10.0, 30.0), and σi is uniformly distributed in the range [0.15μi , 0.25μi ). The
time deadline is set as T ∗ = 20(n/m). The energy constraint is set as E∗ = 25n. The
value of β is 0.9. The heuristic method M is applied to each set of stochastic tasks,
and the mean of the 10,000 values of FT (s, s, . . . , s, T ∗) is reported. We have the
following observations from Table 1.

• Different methods do result in different quality of scheduling.
• LμF performs better than SμF, and LσF performs better than SσF. However, LcF
has about the same performs as ScF.

• Overall speaking, LμF and LσF are best methods among the six heuristicmethods.

5 Conclusions

We have introduced the energy constrained stochastic task scheduling problem and
pointed out that the problem is extremely challenging due to the sophistication of the
two performance measures. We have made some initial efforts in solving this opti-
mization problem. However, our investigation is far from being satisfactory, and there
are muchmore work to be carried out. First, further research should be directed toward
the optimal solutions to the problems of optimal processor speed setting and optimal
stochastic task scheduling, and the integration of the two. Second, future research
efforts can also be made to apply the algorithms to real-world tasks and applications.
Third, the optimization problem proposed in this paper can be addressed as a multi-
objective optimization problem, i.e., simultaneously maximizing the probability that
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the total execution time does not exceed a given bound and the probability that the
total energy consumption does not exceed a given bound. Fourth, more sophisticated
task models (e.g., tasks with precedence constraints and communication costs) can be
considered.

Acknowledgements The author deeply appreciates eighteen (18) anonymous reviewers for their correc-
tions, criticism, and comments on the original manuscript.

Appendix 1: Derivation of ∂FT/∂si and ∂FE/∂si

Notice that

∂FT (s1, s2, . . . , sn, T ∗)
∂si

=
∫ T ∗

−∞
∂ fT (x)

∂si
dx .

Furthermore, we have

∂ fT (x)

∂si

= 1√
2π

(
− 1

σ 2
T

∂σT

∂si
e−(x−μT )2/2σ 2

T

+ 1

σT
e−(x−μT )2/2σ 2

T

(
−1

2

)
2

(
x − μT

σT

) −∂μT /∂si · σT −(x−μT )∂σT /∂si
σ 2
T

)

= − 1√
2πσ 2

T

e−(x−μT )2/2σ 2
T

(
∂σT

∂si
−

(
x − μT

σ 2
T

) (
σT

∂μT

∂si
+ (x − μT )

∂σT

∂si

))

= − 1√
2πσ 2

T

e−(x−μT )2/2σ 2
T

(
∂σT

∂si
− ∂μT

∂si

(
x − μT

σT

)
− ∂σT

∂si

(
x − μT

σT

)2
)

.

Therefore, we get

∂FT (s1, s2, . . . , sn , T ∗)

∂si

=
∫ T ∗

−∞
− 1√

2πσ 2
T

e−(x−μT )2/2σ2
T

(
∂σT

∂si
− ∂μT

∂si

(
x − μT

σT

)
− ∂σT

∂si

(
x − μT

σT

)2
)
dx

= − 1√
2πσ 2

T

(
∂σT

∂si

∫ T ∗

−∞
e−(x−μT )2/2σ2

T dx − ∂μT

∂si

∫ T ∗

−∞

(
x − μT

σT

)
e−(x−μT )2/2σ2

T dx

− ∂σT

∂si

∫ T ∗

−∞

(
x − μT

σT

)2
e−(x−μT )2/2σ2

T dx

)
.

By letting

y = x − μT

σT
,
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we have

∂FT (s1, s2, . . . , sn, T ∗)
∂si

= − 1√
2πσT

(
∂σT

∂si

∫ (T ∗−μT )/σT

−∞
e−y2/2dy − ∂μT

∂si

∫ (T ∗−μT )/σT

−∞
ye−y2/2dy

−∂σT

∂si

∫ (T ∗−μT )/σT

−∞
y2e−y2/2dy

)
.

Since

∫
ye−y2/2dy = −e−y2/2,

and

∫
y2e−y2/2dy = −ye−y2/2 +

∫
e−y2/2dy,

we obtain

∂FT (s1, s2, . . . , sn, T ∗)
∂si

= − 1√
2πσT

(
∂σT

∂si

√
2πFY

(
T ∗ − μT

σT

)
− ∂μT

∂si

(
−e−y2/2

) ∣∣∣∣
(T ∗−μT )/σT

−∞

−∂σT

∂si

(
−ye−y2/2

∣∣∣∣
(T ∗−μT )/σT

−∞
+ √

2πFy

(
T ∗ − μT

σT

)))

= − 1√
2πσT

(
∂σT

∂si

√
2πFY

(
T ∗ − μT

σT

)
+ ∂μT

∂si
e−(T ∗−μT )2/2σ 2

T

+∂σT

∂si

((
T ∗ − μT

σT

)
e−(T ∗−μT )2/2σ 2

T − √
2πFY

(
T ∗ − μT

σT

)))

= − 1√
2πσT

(
∂μT

∂si
e−(T ∗−μT )2/2σ 2

T + ∂σT

∂si

(
T ∗ − μT

σT

)
e−(T ∗−μT )2/2σ 2

T

)

= − 1√
2πσT

e−(T ∗−μT )2/2σ 2
T

(
∂μT

∂si
+

(
T ∗ − μT

σT

)
∂σT

∂si

)

= − fT (T ∗)
(

∂μT

∂si
+

(
T ∗ − μT

σT

)
∂σT

∂si

)
.

It is clear that

∂μT

∂si
= −μi

s2i
.
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Since

σT =
(

σ 2
1

s21
+ σ 2

2

s22
+ · · · + σ 2

n

s2n

)1/2

,

we get

∂σT

∂si
= 1

2

(
σ 2
1

s21
+ σ 2

2

s22
+ · · · + σ 2

n

s2n

)−1/2

σ 2
i

(
− 2

s3i

)
= − 1

σT
· σ 2

i

s3i
.

Consequently, we get

∂FT (s1, s2, . . . , sn, T ∗)
∂si

= fT (T ∗)
(

μi

s2i
+ 1

σT

(
T ∗ − μT

σT

)
σ 2
i

s3i

)
.

In a similar way, we can also derive

∂FE (s1, s2, . . . , sn, E∗)
∂si

= − fE (E∗)
(

∂μE

∂si
+

(
E∗ − μE

σE

)
∂σE

∂si

)
.

It is clear that

∂μE

∂si
= (α − 1)μi s

α−2
i ,

and

∂σE

∂si
= 2(α − 1)σ 2

i s
2α−3
i .

Consequently, we get

∂FE (s1, s2, . . . , sn, E∗)
∂si

= −(α − 1) fE (E∗)
(

μi s
α−2
i + 2

(
E∗ − μE

σE

)
σ 2
i s

2α−3
i

)
.

Appendix 2: Calculation of ∂Fi (y)/∂ y j

First, we have

∂F0(y)
∂y0

= ∂F0(y)
∂φ

= 0,

and
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∂F0(y)
∂y j

= ∂F0(y)
∂s j

= ∂FE (s1, s2, . . . , sn, E∗)
∂s j

= −(α − 1) fE (E∗)
(

μ j s
α−2
j + 2

(
E∗ − μE

σE

)
σ 2
j s

2α−3
j

)
,

for all 1 ≤ j ≤ n. Next, we have

∂Fi (y)
∂y0

= ∂Fi (y)
∂φ

= (α − 1) fE (E∗)
(

μi s
α−2
i + 2

(
E∗ − μE

σE

)
σ 2
i s

2α−3
i

)
,

for all 1 ≤ i ≤ n. Recall that

∂ fT (x)

∂si

= − 1√
2πσ 2

T

e−(x−μT )2/2σ 2
T

(
∂σT

∂si
− ∂μT

∂si

(
x − μT

σT

)
− ∂σT

∂si

(
x − μT

σT

)2
)

= fT (x)

σT

(
−∂μT

∂si

(
x − μT

σT

)
+ ∂σT

∂si

(
1 −

(
x − μT

σT

)2
))

= fT (x)

σT

(
μi

s2i

(
x − μT

σT

)
− 1

σT
· σ 2

i

s3i

(
1 −

(
x − μT

σT

)2
))

,

which implies that

∂ fT (T ∗)
∂si

= fT (T ∗)
σT

(
μi

s2i

(
T ∗ − μT

σT

)
− 1

σT
· σ 2

i

s3i

(
1 −

(
T ∗ − μT

σT

)2
))

.

Similarly, we can also get

∂ fE (x)

∂si

= − 1√
2πσ 2

E

e−(x−μE )2/2σ 2
E

(
∂σE

∂si
− ∂μE

∂si

(
x − μE

σE

)
− ∂σE

∂si

(
x − μE

σE

)2
)

= fE (x)

σE

(
−∂μE

∂si

(
x − μE

σE

)
+ ∂σE

∂si

(
1 −

(
x − μE

σE

)2
))

= fE (x)

σE

(
−(α−1)μi s

α−2
i

(
x−μE

σE

)
+2(α−1)σ 2

i s
2α−3
i

(
1−

(
x−μE

σE

)2
))

,

which implies that
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∂ fE (E∗)
∂si

= (α − 1)
fE (E∗)

σE

(
−μi s

α−2
i

(
E∗ − μE

σE

)

+2σ 2
i s

2α−3
i

(
1 −

(
E∗ − μE

σE

)2
))

.

Hence, we have

∂Fi (y)
∂yi

= ∂Fi (y)
∂si

= ∂ fT (T ∗)

∂si

(
μi

s2i
+ σ 2

i

(
T ∗ − μT

σ 2
T s

3
i

))
+ fT (T ∗)

∂

∂si

(
μi

s2i
+ σ 2

i

(
T ∗ − μT

σ 2
T s

3
i

))

+φ(α − 1)

(
∂ fE (E∗)

∂si

(
μi s

α−2
i + 2σ 2

i s
2α−3
i

(
E∗ − μE

σE

))

+ fE (E∗)
∂

∂si

(
μi s

α−2
i + 2σ 2

i s
2α−3
i

(
E∗ − μE

σE

)))

= ∂ fT (T ∗)

∂si

(
μi

s2i
+ σ 2

i

(
T ∗ − μT

σ 2
T s

3
i

))

+ fT (T ∗)

(
− 2μi

s3i
+ σ 2

i

(−∂μT /∂si · σ 2
T s

3
i − (T ∗ − μT )(2σT ∂σT /∂si · s3i + σ 2

T 3s
2
i )

σ 4
T s

6
i

))

+φ(α − 1)

(
∂ fE (E∗)

∂si

(
μi s

α−2
i + 2σ 2

i s
2α−3
i

(
E∗ − μE

σE

))

+ fE (E∗)

(
μi (α − 2)sα−3

i + 2σ 2
i

(
(2α − 3)s2α−4

i

(
E∗ − μE

σE

)

+s2α−3
i

(
−∂μE/∂si · σE − (E∗ − μE )∂σE/∂si

σ 2
E

))))

= ∂ fT (T ∗)

∂si

(
μi

s2i
+ σ 2

i

(
T ∗ − μT

σ 2
T s

3
i

))

+ fT (T ∗)

(
− 2μi

s3i
+ σ 2

i

(
σ 2
T μi si − (T ∗ − μT )(−2σ 2

i + 3σ 2
T s

2
i )

σ 4
T s

6
i

))

+φ(α − 1)

(
∂ fE (E∗)

∂si

(
μi s

α−2
i + 2σ 2

i s
2α−3
i

(
E∗ − μE

σE

))

+ fE (E∗)

(
(α − 2)μi s

α−3
i + 2σ 2

i

(
(2α − 3)s2α−4

i

(
E∗ − μE

σE

)

−(α − 1)s2α−3
i

(
σEμi s

α−2
i + 2(E∗ − μE )σ 2

i s
2α−3
i

σ 2
E

))))
,

for all 1 ≤ i ≤ n, and

∂Fi (y)
∂y j

= ∂Fi (y)
∂s j

= ∂ fT (T ∗)
∂s j

(
μi

s2i
+ σ 2

i

(
T ∗ − μT

σ 2
T s

3
i

))
+ fT (T ∗) ∂

∂s j

(
μi

s2i
+ σ 2

i

(
T ∗ − μT

σ 2
T s

3
i

))

+φ(α − 1)

(
∂ fE (E∗)

∂s j

(
μi s

α−2
i + 2σ 2

i s
2α−3
i

(
E∗ − μE

σE

))
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+ fE (E∗) ∂

∂s j

(
μi s

α−2
i + 2σ 2

i s
2α−3
i

(
E∗ − μE

σE

)))

= ∂ fT (T ∗)
∂s j

(
μi

s2i
+ σ 2

i

(
T ∗ − μT

σ 2
T s

3
i

))

+ fT (T ∗)
σ 2
i

s3i

(
−∂μT /∂s j · σ 2

T − (T ∗ − μT )2σT ∂σT /∂s j
σ 4
T

)

+φ(α − 1)

(
∂ fE (E∗)

∂s j

(
μi s

α−2
i + 2σ 2

i s
2α−3
i

(
E∗ − μE

σE

))

+2 fE (E∗)σ 2
i s

2α−3
i

(
−∂μE/∂s j · σE − (E∗ − μE )∂σE/∂s j

σ 2
E

))

= ∂ fT (T ∗)
∂s j

(
μi

s2i
+ σ 2

i

(
T ∗ − μT

σ 2
T s

3
i

))

+ fT (T ∗)
σ 2
i

s3i

(
σ 2
Tμ j/s2j + 2(T ∗ − μT )σ 2

j /s
3
j

σ 4
T

)

+φ(α − 1)

(
∂ fE (E∗)

∂s j

(
μi s

α−2
i + 2σ 2

i s
2α−3
i

(
E∗ − μE

σE

))

−2(α − 1) fE (E∗)σ 2
i s

2α−3
i

(
σEμ j s

α−2
j + 2(E∗ − μE )σ 2

j s
2α−3
j

σ 2
E

))
,

for all 1 ≤ i ≤ n and all 1 ≤ j 	= i ≤ n.
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