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Abstract Optimal partitioning of a multicore server processor in a cloud computing
environment, i.e., optimal system (virtual server) configuration for some given types
of applications is considered in this paper. Such optimization is important for dynamic
resource provision and on-demand server customization in a cloud computing environ-
ment for certain specific types of applications, such that the overall systemperformance
is optimizedwithout exceeding certain energy consumption budget. Amulticore server
processor is treated as a group of queueing systems with multiple servers, i.e., M/M/m
queueing systems. The system performance measures are the average task response
time and the average power consumption. Two core speed and power consumption
models are considered, namely, the idle-speed model and the constant-speed model.
Three problems are formulated and solved, namely, optimal multicore server proces-
sor partitioning, optimalmulticore server processor partitioningwith power constraint,
and optimal power allocation. All these problems are well-defined optimization prob-
lems. It is shown that although these problems are sophisticated, they can be solved
by numerical algorithms. Numerical data are demonstrated for each problem.

Keywords Energy consumption · Multicore server processor · Processor partition ·
Queueing model · Response time

1 Introduction

Traditional single-CPU processors have been facing dual challenges and conflicting
requirements of high computing speed and high energy efficiency. On the one hand,
as the latest multimedia- and networking-based applications provide new features and
cutting-edge capabilities, processor development needs to stay ahead of increased

B Keqin Li
lik@newpaltz.edu

1 Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-015-1463-3&domain=pdf


Optimal partitioning of a multicore server processor 3745

demands from software applications and provides increased computing speed and
enhanced computing capabilities. On the other hand, it has been realized that increas-
ing processor speed is not the only concern and solution. Modern computers need to
run faster and cooler, occupy less space, and consume less energy. Power and energy
efficiency should be a major consideration in modern processor technologies. The
multicore processor technology is able to deal with these challenges simultaneously.
Multicore processors offer true multitasking capabilities, so that users can simultane-
ously run multiple complex applications and successfully complete more tasks in a
shorter amount of time. With the power of two or more processor cores on a single
chip, multicore processors deliver leading performance and unique features that help
systems run cooler and more efficient. Because they put more processing power into
a smaller package, multicore processors help to build server infrastructures with a
smaller footprint, reduced cooling needs, and increased energy efficiency [3].

Virtually, all major processor vendors such as AMD, Intel, and IBM are developing
high performance andhighly energy efficientmulticore processors.Current 32nm Intel
logic technology provides for one, two, four, and eight cores in a single processor.Most
of the current commercial multicore processors contain no more than 8 cores, with a
few processors reaching 64 cores [19]. The general trend in processor development has
been frommulticore tomanycore: fromdual-, tri-, quad-, hexa-, octo-core chips to ones
with tens or even hundreds of cores. It is conceivable that future architectures can hold
dozens or even hundreds of processors on a single die [5]. For instance, Adapteva’s
Epiphany scalable manycore architecture consists of hundreds and thousands of RISC
microprocessors, all sharing a single flat and unobstructed memory hierarchy, which
allows cores to communicate with each other very efficiently with low core-to-core
communication overhead. The number of cores in this new type of massively parallel
multicore architecture can be up to 4096 [1]. The Epiphany manycore architecture has
been designed to maximize floating point computing power with the lowest possible
energy consumption, aiming to deliver 100 and more gigaflops of performance at
under 2W of power [6].

It is clear that as multicore server processors become larger and larger andmore and
more powerful, more applications can be executed on a multicore server processor.
Such a large multicore server processor can be managed by the technique of server
partitioning. Server partitioning involves the ability to divide a single large server into
multiple smaller subsystems,with each partition (i.e., subsystem) running its own copy
of an operating system [4]. Each partition acts as a physically independent and self-
contained server with its own processor cores, main memory, input/output devices,
and network resources. Server partitioning is extremely useful in multitier application
environments. Each partition (which is also a multicore server) is employed to run
one type of applications, such as enterprise resource planning, serving and caching
Web pages, retrieving and managing databases, data warehousing, encrypting secure
communications, and streaming multimedia. Due to the different nature of different
types of applications, it is more efficient to partition a large multicore server processor
into disjoint subsystems and to configure each subsystem so that its processor,memory,
and networking features are best configured to fit the computation and communication
requirements of one type of applications. Because of limited core and energy resources,
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3746 K. Li

such partitioning should be performed in a way that the overall system performance
is optimized based on the given resource constraints.

Server partitioning technologies offer unique advantages to information technol-
ogy departments. It allows system administrators to host diversified applications on
different partitions within a single server [17]. It allows administrators to consoli-
date multiple applications into one physical server box, thereby promoting centralized
server management, saving space, and reducing administrative andmanagement costs.
It allows companies to consolidate the work previously done by multiple independent
servers for different types of workloads into a single server. Server partitioning tech-
nology has been around for a while in the mainframe space and large-scale parallel
processing systems [11,16,18], but it started to gain attention in distributed, grid,
Internet computing only in the past few years. The trend toward server consolidation
has driven much of the interest in server partitioning, which is likely to be adopted
in future cloud computing, where server partitioning also implements virtual server
configuration and provision.

In this paper, we consider the problem of optimal partitioning of a multicore server
processor in a cloud computing environment, i.e., optimal system (virtual server)
configuration for some given types of applications [9,12,20,21]. Such optimization
is important for dynamic resource provision and on-demand server customization
in a cloud computing environment for certain specific types of applications, such
that the overall system performance is optimized without exceeding certain energy
consumption budget. A multicore server processor is treated as a group of queueing
systemswithmultiple servers, i.e.,M/M/mqueueing systems.The systemperformance
measures are the average task response time and the average power consumption. Two
core speed and power consumption models are considered, namely, the idle-speed
model and the constant-speed model.

Three problems are formulated and solved.

• Optimalmulticore server processor partitioning—given task arrival rates andmean
task execution requirements for several types of applications, the number of avail-
able cores, and core speed, we find the server sizes such that the average task
response time of all applications is minimized.

• Optimalmulticore server processor partitioningwith power constraint—given task
arrival rates andmean task execution requirements for several types of applications,
the number of available cores, and the total available power, we find the server sizes
and the server speeds such that the average task response time of all applications
is minimized and that the total average power consumption does not exceed the
total available power.

• Optimal power allocation—given task arrival rates and mean task execution
requirements for several types of applications, the server sizes, and the total avail-
able power, we find the server speeds such that the average task response time of
all applications is minimized and that the total average power consumption does
not exceed the total available power.

All the above problems arewell-defined optimization problems.We show that although
these problems are sophisticated, they can be solved by numerical algorithms. We
demonstrate numerical data for each problem.
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Optimal partitioning of a multicore server processor 3747

It has come to the author’s attention thatwhile server partitioning is critical to virtual
server configuration and provision, the problem of optimal partitioning of a multicore
server processor in a cloud computing environment has not been treated rigorously
in an analytical way. Our investigation in this paper makes effort in this direction,
and the method can be applied to dynamic resource provision, system performance
optimization, and energy consumption reduction in cloud computing.

2 Modeling a multicore server processor

Assume that a multicore server processor S has m identical cores. In this paper, a
multicore server processor is treated as anM/M/mqueueing systemwhich is elaborated
as follows [14]. There is a Poisson stream of tasks with arrival rate λ, i.e., the inter-
arrival times are independent and identically distributed (i.i.d.) exponential random
variables withmean 1/λ. Amulticore server Smaintains a queue with infinite capacity
for waiting tasks when all the m cores are busy. The first-come-first-served (FCFS)
queueing discipline is adopted. The task execution requirements (measured by the
number of instructions to be executed) are i.i.d. exponential random variables r with
mean r̄ . The m cores of server S have identical execution speed s (measured by
the number of instructions that can be executed in one unit of time). Hence, the task
execution times on the cores of server S are i.i.d. exponential randomvariables x = r/s
with mean x̄ = r̄/s.

Let μ = 1/x̄ = s/r̄ be the average service rate, i.e., the average number of tasks
that can be finished by a processor core of server S in one unit of time. The core
utilization is

ρ = λ

mμ
= λx̄

m
= λ

m
· r̄
s
,

which is the average percentage of time that a core of S is busy. Let pk denote the
probability that there are k tasks (waiting or being processed) in the M/M/m system
for S. Then, we have ([13], p. 102)

pk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p0
(mρ)k

k! , k ≤ m;

p0
mmρk

m! , k ≥ m;

where

p0 =
(
m−1∑

k=0

(mρ)k

k! + (mρ)m

m! · 1

1 − ρ

)−1

.

The probability of queueing (i.e., the probability that a newly arrived task must wait
because all processor cores are busy) is
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Pq = pm
1 − ρ

= p0
(mρ)m

m! · 1

1 − ρ
.

The average number of tasks (in waiting or in execution) in S is

N̄ =
∞∑

k=0

kpk = mρ + ρ

1 − ρ
Pq .

Applying Little’s result, we get the average task response time as

T = N̄

λ
= x̄ + Pq

m(1 − ρ)
x̄ = x̄

(

1 + Pq
m(1 − ρ)

)

= x̄

(

1 + pm
m(1 − ρ)2

)

.

To formulate and solve our optimization problems analytically, we need a closed-
form expression of T . To this end, let us use the following closed-form approximation,

m−1∑

k=0

(mρ)k

k! ≈ emρ,

which is very accurate when m is not too small and ρ is not too large. We also need
Stirling’s approximation of m!, i.e.,

m! ≈ √
2πm

(m

e

)m
.

Therefore, we get the following closed-form approximation of p0,

p0 ≈
(

emρ + (eρ)m√
2πm

· 1

1 − ρ

)−1

,

and the following closed-form approximation of pm ,

pm ≈
(eρ)m√
2πm

emρ + (eρ)m√
2πm

· 1
1−ρ

,

namely,

pm ≈ 1 − ρ√
2πm(1 − ρ)(eρ/eρ)m + 1

.

Using the above closed-form expression of pm , we get a closed-form approximation
of the average task response time as

T ≈ r̄

s

(

1 + 1

m(1 − ρ)(
√
2πm(1 − ρ)(eρ/eρ)m + 1)

)

.
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Optimal partitioning of a multicore server processor 3749

Our discussion in this paper is based on the above closed-form expression.
Power dissipation and circuit delay in digital CMOS circuits can be accuratelymod-

eled by simple equations, even for complex microprocessor circuits. CMOS circuits
have dynamic, static, and short-circuit power dissipation; however, the dominant com-
ponent in a well-designed circuit is dynamic power consumption P (i.e., the switching
component of power), which is approximately P = aCV 2 f , where a is an activity
factor, C is the loading capacitance, V is the supply voltage, and f is the clock fre-
quency [10]. Since s ∝ f , where s is the processor speed, and f ∝ V φ with 0 < φ ≤ 1
[22], which implies that V ∝ f 1/φ , we know that power consumption is P ∝ f α and
P ∝ sα , where α = 1 + 2/φ ≥ 3. For ease of discussion, we will assume that the
power allocated to a processor core with speed s is simply sα .

We will consider two types of core speed models. In the idle-speed model, a core
runs at zero speed when there is no task to perform. Since the power for speed s is sα ,
the average amount of energy consumed by a core in one unit of time is

ρsα = λ

m
r̄sα−1,

where we notice that the speed of a core is zero when it is idle. The average amount
of energy consumed by an m-core server S in one unit of time, i.e., the power supply
to server S, is

P = mρsα = λr̄ sα−1,

where mρ = λx̄ is the average number of busy cores in S. Since a processor core
still consumes some amount of power P∗ even when it is idle (assume that an idle
core consumes certain base power P∗, which includes static power dissipation, short-
circuit power dissipation, and other leakage and wasted power [2]), we will include
P∗ in P , i.e.,

P = m(ρsα + P∗) = λr̄ sα−1 + mP∗.

Notice that when P∗ = 0, the above P is independent of m.
In the constant-speed model, all cores run at the speed s even if there is no task

to perform. Again, we use P to represent the power allocated to server S. Since the
power for speed s is sα , the power allocated to server S is P = m(sα + P∗).

Notice that the above two core speed models which characterize different ways of
power consumption have been used in studying various aspects of multicore server
processors [7,8,14].

3 Optimal processor partitioning

Assume that we have a multicore server processor with m cores of the same speed
s. There are n types of applications, such that the task arrival rate of the i th type is
λi , and the task execution requirements of the i th type are i.i.d. exponential random
variables with mean r̄i , where 1 ≤ i ≤ n. Let λ = λ1+λ2+· · ·+λn . We divide them
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S1

S2

S3

S4

S5

S6

Fig. 1 A multicore server processor partitioned into several servers

cores into n servers S1, S2, . . . , Sn , such that Si contains mi cores, where 1 ≤ i ≤ n,
andm1+m2+· · ·+mn = m. In Fig. 1, we illustrate a 64-core server processor which
is divided into several servers. The average task response time of Si is

Ti = r̄i
s

(

1 + 1

mi (1 − ρi )(
√
2πmi (1 − ρi )(eρi /eρi )mi + 1)

)

,

where

ρi = λi r̄i
mi s

.

The average task response time of all the n types of applications is

T = λ1

λ
T1 + λ2

λ
T2 + · · · + λn

λ
Tn .

Our optimal multicore server processor partitioning problem can be formally
defined as follows.Given task arrival ratesλ1, λ2, . . . , λn ,mean task execution require-
ments r̄1, r̄2, . . . , r̄n , the number of available cores m, and core speed s, we find
m1,m2, . . . ,mn such that T is minimized subject to the constraint that

J (m1,m2, . . . ,mn) = m,
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Optimal partitioning of a multicore server processor 3751

where

J (m1,m2, . . . ,mn) = m1 + m2 + · · · + mn .

We can minimize T using the method of Lagrange multiplier, namely,

∇T (m1,m2, . . . ,mn) = φ∇ J (m1,m2, . . . ,mn),

that is,

∂T

∂mi
= φ

∂ J

∂mi
= φ,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier.
Strictly speaking, the above problem and the problem of the next section are discrete

and combinatorial optimization problems, since the mi s are integers. It is not clear
whether there exist any efficient algorithms to solve these problems. Our strategy to
solve the problems is a two-step process. First, we treat themi s as real numbers and the
problems as continuous andmulti-variable optimization problems, so that the problems
can be solved using standard methods from multi-variable calculus. Second, once the
optimal real values of themi s are obtained, they are rounded to the nearest integers. In
addition, for the purpose of formulating our multi-variable optimization problems, we
employ a closed-form approximation of the average task response time, as we have
done in Sect. 2. Although there is no rigorous proof of the ultimate optimality of our
approach, our extensive numerical calculations demonstrate its effectiveness.

Let us rewrite Ti as

Ti = r̄i
s

(1 + Fi ),

where

Fi = 1

mi (1 − ρi )(
√
2πmi (1 − ρi )(eρi /eρi )mi + 1)

.

It is clear that

∂T

∂mi
= λi

λ
· ∂Ti
∂mi

= λi

λ
· r̄i
s

· ∂Fi
∂mi

= miρi

λ
· ∂Fi
∂mi

,

for all 1 ≤ i ≤ n.
We rewrite Fi as

Fi = 1

mi (1 − ρi )(
√
2πmi (1 − ρi )Gi + 1)

= 1√
2πm3/2

i (1 − ρi )2Gi + mi (1 − ρi )
,
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3752 K. Li

where

Gi = (eρi /eρi )
mi .

Notice that

lnGi = mi ln(e
ρi /eρi ) = mi (ρi − ln ρi − 1).

Since

∂ρi

∂mi
= −λi r̄i

m2
i s

= − ρi

mi
,

we get

1

Gi

∂Gi

∂mi
= (ρi − ln ρi − 1) + mi

(

1 − 1

ρi

)
∂ρi

∂mi
= − ln ρi ,

and

∂Gi

∂mi
= −Gi ln ρi .

Now, we have

∂Fi
∂mi

= −F2
i

(√
2π

(
3

2

√
mi (1 − ρi )

2Gi + m3/2
i 2(1 − ρi )

(

− ∂ρi

∂mi

)

Gi + m3/2
i (1 − ρi )

2 ∂Gi

∂mi

)

+ (1 − ρi ) + mi

(

− ∂ρi

∂mi

))

= −F2
i

(√
2π

(
3

2

√
mi (1 − ρi )

2Gi + √
mi2ρi (1 − ρi )Gi − m3/2

i (ln ρi )(1 − ρi )
2Gi

)

+ (1 − ρi ) + ρi

)

= −F2
i

(
√
2πmi (1 − ρi )

(
3

2
(1 − ρi ) + 2ρi − mi (ln ρi )(1 − ρi )

)

Gi + 1

)

= −F2
i

(
√
2πmi (1 − ρi )

(
ρi + 3

2
− mi (ln ρi )(1 − ρi )

)

Gi + 1

)

,

for all 1 ≤ i ≤ n.
Summarizing the above discussion, we get

∂T

∂mi
= −miρi

λ
F2
i (

√
2πmi (1 − ρi )((ρi + 3)/2 − mi (ln ρi )(1 − ρi ))Gi + 1) = φ,

for all 1 ≤ i ≤ n. Hence, we get a nonlinear system of (n + 1) equations specified in
the last equation and the constraint J (m1,m2, . . . ,mn) = m. It is unlikely that this
nonlinear system of equations accommodates any analytical solution.
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Optimal partitioning of a multicore server processor 3753

To solve the above equations numerically, we notice that ∂T/∂mi < 0 (i.e., T is
a decreasing function of mi ) and is an increasing function of mi (i.e., T is a convex
function ofmi ). Hence, given λi , r̄i , s, λ, andφ, we can findmi that satisfies ∂T/∂mi =
φ using the classic bisection method, i.e., searching for mi in an interval [lb, ub]. The
lower bound is simply lb = 0. The upper bound ub should be some value greater than
λi r̄i/s such that ρi < 1 and should be large enough such that ∂T/∂mi with mi = ub
is greater than φ.

Given n, m, λ1, λ2, . . . , λn , r̄1, r̄2, . . . , r̄n , and s, the optimal multicore server
processor partitioning problem can be solved as follows. Again, we find φ using
the bisection method, i.e., searching for φ in an interval [lb, ub]. Since ∂T/∂mi < 0
for all 1 ≤ i ≤ n, the upper bound is simply ub = 0. The lower bound lb is cho-
sen such that m1 + m2 + · · · + mn < m, where mi is determined with φ = lb. As
the search interval [lb, ub] shrinks, we will eventually obtain the mi s which satisfy
J (m1,m2, . . . ,mn) = m with arbitrary numerical accuracy.

Example 1 Let us considerm = 64 cores to be partitioned into n = 8 subsystems. The
core speed is s = 1. The task arrival rates are λi = ((i + 5)/76)λ, for all 1 ≤ i ≤ n,
where λ = 12, 24, 36, 48, 60. The mean task execution requirements are r̄i = 1 for
all 1 ≤ i ≤ n. In Table 1, for each λ, we show λi , mi , ρi , and Ti , for all 1 ≤ i ≤ n,
as well as the minimized average task response time T . All the data are calculated
with the length of a search interval reduced to no longer than 10−14. Notice that all
the Ti s and T are calculated based on the mi s which are not integers. In reality, such
fractional servers cannot be implemented. Hence, the mi s should be rounded to the
nearest integers, and the Ti s and T need to be re-calculated. In Table 2, we demonstrate
the same information as Table 1 after the mi s are rounded to the nearest integers. It is
observed that rounding the mi s damages the data smooth. For instances, the ρi s are
no longer increasing with i and the Ti s are no longer decreasing with i . Furthermore,
when λ is large, such rounding may cause significant increment of some ρi (e.g., when
λ = 60, ρ5 is over 98%). Since Ti has sharp turn and dramatic increase when ρi is
close to 1, such increment of ρi may cause significant increment of Ti and T as well
(e.g., when λ = 60, T5 increases from 2.3303738 to 9.6888741, and T increases from
2.3551706 to 3.3894671).

To demonstrate the optimality of our solution, we perform extra computation as
follows. Let us consider the case when λ = 48. For each mi , its fraction part is
truncated, and we obtain

(m1,m2,m3,m4,m5,m6,m7,m8) = (5, 6, 6, 7, 8, 9, 9, 10).

The four additional cores are allocated to the eight servers in the following way, i.e.,
we choose four servers out of the eight and allocate one extra core to each server. It is
clear that there are

(8
4

) = 70 different ways. For all these 70 different partitions of the
m cores, we calculate the average task response time and show the results in Table 3.
It can be seen that the optimal partition is indeed No. 18 (in boldface):

(m1,m2,m3,m4,m5,m6,m7,m8) = (5, 6, 7, 8, 8, 9, 10, 11),
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Table 1 Numerical data for
Example 1 (nonintegral mi s)

i λi mi ρi Ti

λ = 12.0, T = 1.0000250

1 0.9473684 6.4514121 0.1468467 1.0000347

2 1.1052632 6.9331540 0.1594171 1.0000311

3 1.2631579 7.3905088 0.1709162 1.0000283

4 1.4210526 7.8281601 0.1815309 1.0000261

5 1.5789474 8.2494732 0.1913998 1.0000242

6 1.7368421 8.6569601 0.2006296 1.0000227

7 1.8947368 9.0525537 0.2093041 1.0000214

8 2.0526316 9.4377781 0.2174910 1.0000202

λ = 24.0, T = 1.0024579

1 1.8947368 6.0226870 0.3145999 1.0033208

2 2.2105263 6.6205406 0.3338891 1.0030055

3 2.5263158 7.1980626 0.3509716 1.0027585

4 2.8421053 7.7590715 0.3662945 1.0025589

5 3.1578947 8.3063258 0.3801795 1.0023937

6 3.4736842 8.8418950 0.3928665 1.0022541

7 3.7894737 9.3673778 0.4045394 1.0021344

8 4.1052632 9.8840397 0.4153426 1.0020304

λ = 36.0, T = 1.0267450

1 2.8421053 5.6823799 0.5001611 1.0354128

2 3.3157895 6.3688886 0.5206229 1.0322786

3 3.7894737 7.0404076 0.5382463 1.0298051

4 4.2631579 7.6997116 0.5536776 1.0277928

5 4.7368421 8.3488133 0.5673671 1.0261168

6 5.2105263 8.9892273 0.5796412 1.0246943

7 5.6842105 9.6221272 0.5907436 1.0234686

8 6.1578947 10.2484443 0.6008614 1.0223988

λ = 48.0, T = 1.1439974

1 3.7894737 5.3952278 0.7023751 1.1864634

2 4.4210526 6.1537637 0.7184307 1.1713207

3 5.0526316 6.9035007 0.7318941 1.1592493

4 5.6842105 7.6460485 0.7434181 1.1493436

5 6.3157895 8.3825789 0.7534423 1.1410311

6 6.9473684 9.1139761 0.7622764 1.1339298

7 7.5789474 9.8409269 0.7701457 1.1277743

8 8.2105263 10.5639775 0.7772192 1.1223737

λ = 60.0, T = 2.3551706

1 4.7368421 5.1370964 0.9220855 2.7230421

2 5.5263158 5.9586854 0.9274388 2.5935556

3 6.3157895 6.7780520 0.9318001 2.4893641

4 7.1052632 7.5956024 0.9354443 2.4031870
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Optimal partitioning of a multicore server processor 3755

Table 1 continued
i λi mi ρi Ti

5 7.8947368 8.4116321 0.9385499 2.3303738

6 8.6842105 9.2263644 0.9412386 2.2677971

7 9.4736842 10.0399726 0.9435966 2.2132661

8 10.2631579 10.8525947 0.9456870 2.1651942

Table 2 Numerical data for
Example 1 (integral mi s)

i λi mi ρi Ti

λ = 12.0, T = 1.0000364

1 0.9473684 6.0000000 0.1578947 1.0000927

2 1.1052632 7.0000000 0.1578947 1.0000270

3 1.2631579 7.0000000 0.1804511 1.0000619

4 1.4210526 8.0000000 0.1776316 1.0000186

5 1.5789474 8.0000000 0.1973684 1.0000387

6 1.7368421 9.0000000 0.1929825 1.0000120

7 1.8947368 9.0000000 0.2105263 1.0000235

8 2.0526316 9.0000000 0.2280702 1.0000431

λ = 24.0, T = 1.0025887

1 1.8947368 6.0000000 0.3157895 1.0034388

2 2.2105263 7.0000000 0.3157895 1.0017184

3 2.5263158 7.0000000 0.3609023 1.0036278

4 2.8421053 8.0000000 0.3552632 1.0018526

5 3.1578947 8.0000000 0.3947368 1.0035339

6 3.4736842 9.0000000 0.3859649 1.0018521

7 3.7894737 9.0000000 0.4210526 1.0033011

8 4.1052632 10.0000000 0.4105263 1.0017737

λ = 36.0, T = 1.0278840

1 2.8421053 6.0000000 0.4736842 1.0240583

2 3.3157895 6.0000000 0.5526316 1.0491241

3 3.7894737 7.0000000 0.5413534 1.0311350

4 4.2631579 8.0000000 0.5328947 1.0203740

5 4.7368421 8.0000000 0.5921053 1.0368101

6 5.2105263 9.0000000 0.5789474 1.0244432

7 5.6842105 10.0000000 0.5684211 1.0165795

8 6.1578947 10.0000000 0.6157895 1.0278915

λ = 48.0, T = 1.1525194

1 3.7894737 5.0000000 0.7578947 1.3156170

2 4.4210526 6.0000000 0.7368421 1.2055178

3 5.0526316 7.0000000 0.7218045 1.1435108

4 5.6842105 8.0000000 0.7105263 1.1048626

5 6.3157895 8.0000000 0.7894737 1.2093855

6 6.9473684 9.0000000 0.7719298 1.1493165
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Table 2 continued
i λi mi ρi Ti

7 7.5789474 10.0000000 0.7578947 1.1108489

8 8.2105263 11.0000000 0.7464115 1.0846752

λ = 60.0, T = 3.3894671

1 4.7368421 5.0000000 0.9473684 3.9295564

2 5.5263158 6.0000000 0.9210526 2.4126818

3 6.3157895 7.0000000 0.9022556 1.8742025

4 7.1052632 8.0000000 0.8881579 1.6083999

5 7.8947368 8.0000000 0.9868421 9.6888741

6 8.6842105 9.0000000 0.9649123 3.5025880

7 9.4736842 10.0000000 0.9473684 2.3349963

8 10.2631579 11.0000000 0.9330144 1.8636161

Table 3 Optimality of Example 1

Number (m1,m2, . . . ,m8) T (approximation) T (original) Relative error (%)

1 (5, 6, 6, 7, 9, 10, 10, 11) 1.1861112 1.2280137 3.4122167

2 (5, 6, 6, 8, 8, 10, 10, 11) 1.1787331 1.2185658 3.2688176

3 (5, 6, 6, 8, 9, 9, 10, 11) 1.1743611 1.2128488 3.1733333

4 (5, 6, 6, 8, 9, 10, 9, 11) 1.1914442 1.2346613 3.5003177

5 (5, 6, 6, 8, 9, 10, 10, 10) 1.1824834 1.2233516 3.3406813

6 (5, 6, 7, 7, 8, 10, 10, 11) 1.1642696 1.2007067 3.0346368

7 (5, 6, 7, 7, 9, 9, 10, 11) 1.1598976 1.1949897 2.9366052

8 (5, 6, 7, 7, 9, 10, 9, 11) 1.1769807 1.2168022 3.2726324

9 (5, 6, 7, 7, 9, 10, 10, 10) 1.1680199 1.2054926 3.1084949

10 (5, 7, 6, 7, 8, 10, 10, 11) 1.1906762 1.2339132 3.5040558

11 (5, 7, 6, 7, 9, 9, 10, 11) 1.1863042 1.2281962 3.4108597

12 (5, 7, 6, 7, 9, 10, 9, 11) 1.2033873 1.2500087 3.7296846

13 (5, 7, 6, 7, 9, 10, 10, 10) 1.1944265 1.2386991 3.5741203

14 (6, 6, 6, 7, 8, 10, 10, 11) 1.1856146 1.2272941 3.3960509

15 (6, 6, 6, 7, 9, 9, 10, 11) 1.1812425 1.2215771 3.3018443

16 (6, 6, 6, 7, 9, 10, 9, 11) 1.1983257 1.2433896 3.6242789

17 (6, 6, 6, 7, 9, 10, 10, 10) 1.1893648 1.2320800 3.4669112

18 (5, 6, 7, 8, 8, 9, 10, 11) 1.1525194 1.1855418 2.7854213

19 (5, 6, 7, 8, 8, 10, 9, 11) 1.1696026 1.2073542 3.1268094

20 (5, 6, 7, 8, 8, 10, 10, 10) 1.1606417 1.1960446 2.9599964

21 (5, 6, 7, 8, 9, 9, 9, 11) 1.1652305 1.2016373 3.0297586

22 (5, 6, 7, 8, 9, 9, 10, 10) 1.1562697 1.1903276 2.8612224

23 (5, 6, 7, 8, 9, 10, 9, 10) 1.1733529 1.2121401 3.1998984

24 (5, 7, 6, 8, 8, 9, 10, 11) 1.1789260 1.2187483 3.2674716

25 (5, 7, 6, 8, 8, 10, 9, 11) 1.1960092 1.2405608 3.5912458
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Table 3 continued

Number (m1,m2, . . . ,m8) T (approximation) T (original) Relative error (%)

26 (5, 7, 6, 8, 8, 10, 10, 10) 1.1870483 1.2292511 3.4332120

27 (5, 7, 6, 8, 9, 9, 9, 11) 1.1916371 1.2348438 3.4989550

28 (5, 7, 6, 8, 9, 9, 10, 10) 1.1826763 1.2235342 3.3393298

29 (5, 7, 6, 8, 9, 10, 9, 10) 1.1997595 1.2453466 3.6606011

30 (5, 7, 7, 7, 8, 9, 10, 11) 1.1644626 1.2008892 3.0333064

31 (5, 7, 7, 7, 8, 10, 9, 11) 1.1815457 1.2227017 3.3659871

32 (5, 7, 7, 7, 8, 10, 10, 10) 1.1725849 1.2113921 3.2035205

33 (5, 7, 7, 7, 9, 9, 9, 11) 1.1771737 1.2169847 3.2712838

34 (5, 7, 7, 7, 9, 9, 10, 10) 1.1682128 1.2056751 3.1071585

35 (5, 7, 7, 7, 9, 10, 9, 10) 1.1852960 1.2274876 3.4372298

36 (6, 6, 6, 8, 8, 9, 10, 11) 1.1738644 1.2121291 3.1568234

37 (6, 6, 6, 8, 8, 10, 9, 11) 1.1909475 1.2339416 3.4842904

38 (6, 6, 6, 8, 8, 10, 10, 10) 1.1819867 1.2226320 3.3244117

39 (6, 6, 6, 8, 9, 9, 9, 11) 1.1865755 1.2282246 3.3910044

40 (6, 6, 6, 8, 9, 9, 10, 10) 1.1776147 1.2169150 3.2295077

41 (6, 6, 6, 8, 9, 10, 9, 10) 1.1946978 1.2387275 3.5544295

42 (6, 6, 7, 7, 8, 9, 10, 11) 1.1594009 1.1942701 2.9197058

43 (6, 6, 7, 7, 8, 10, 9, 11) 1.1764840 1.2160826 3.2562349

44 (6, 6, 7, 7, 8, 10, 10, 10) 1.1675232 1.2047729 3.0918454

45 (6, 6, 7, 7, 9, 9, 9, 11) 1.1721120 1.2103656 3.1604953

46 (6, 6, 7, 7, 9, 9, 10, 10) 1.1631512 1.1990559 2.9944190

47 (6, 6, 7, 7, 9, 10, 9, 10) 1.1802343 1.2208684 3.3282941

48 (6, 7, 6, 7, 8, 9, 10, 11) 1.1858075 1.2274766 3.3946955

49 (6, 7, 6, 7, 8, 10, 9, 11) 1.2028907 1.2492891 3.7139863

50 (6, 7, 6, 7, 8, 10, 10, 10) 1.1939298 1.2379795 3.5581881

51 (6, 7, 6, 7, 9, 9, 9, 11) 1.1985186 1.2435721 3.6229076

52 (6, 7, 6, 7, 9, 9, 10, 10) 1.1895578 1.2322625 3.4655507

53 (6, 7, 6, 7, 9, 10, 9, 10) 1.2066409 1.2540749 3.7823905

54 (5, 7, 7, 8, 8, 9, 9, 11) 1.1697955 1.2075368 3.1254723

55 (5, 7, 7, 8, 8, 9, 10, 10) 1.1608347 1.1962271 2.9586722

56 (5, 7, 7, 8, 8, 10, 9, 10) 1.1779178 1.2180396 3.2939628

57 (5, 7, 7, 8, 9, 9, 9, 10) 1.1735458 1.2123226 3.1985557

58 (6, 6, 7, 8, 8, 9, 9, 11) 1.1647339 1.2009176 3.0130085

59 (6, 6, 7, 8, 8, 9, 10, 10) 1.1557730 1.1896080 2.8442111

60 (6, 6, 7, 8, 8, 10, 9, 10) 1.1728562 1.2114205 3.1833946

61 (6, 6, 7, 8, 9, 9, 9, 10) 1.1684841 1.2057035 3.0869395

62 (6, 7, 6, 8, 8, 9, 9, 11) 1.1911405 1.2341241 3.4829293

63 (6, 7, 6, 8, 8, 9, 10, 10) 1.1821796 1.2228145 3.3230619

64 (6, 7, 6, 8, 8, 10, 9, 10) 1.1992628 1.2446270 3.6448040

65 (6, 7, 6, 8, 9, 9, 9, 10) 1.1948907 1.2389100 3.5530634
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Table 3 continued

Number (m1,m2, . . . ,m8) T (approximation) T (original) Relative error (%)

66 (6, 7, 7, 7, 8, 9, 9, 11) 1.1766770 1.2162651 3.2548880

67 (6, 7, 7, 7, 8, 9, 10, 10) 1.1677162 1.2049554 3.0905108

68 (6, 7, 7, 7, 8, 10, 9, 10) 1.1847993 1.2267679 3.4210717

69 (6, 7, 7, 7, 9, 9, 9, 10) 1.1804273 1.2210509 3.3269417

70 (6, 7, 7, 8, 8, 9, 9, 10) 1.1730491 1.2116030 3.1820536

which leads to T = 1.1525194, as obtained in Table 2.
Furthermore, for each case of Table 3, we also display the T obtained from the

original expression, and the relative error of our closed-form approximation of T . It
is clear that for No. 18, T obtained from the original expression is 1.1855418, and
the relative error of our closed-form approximation of T is 2.7854213%, which is the
smallest among all the 70 cases. 
�

4 Optimal processor partitioning with power constraint

We extend the optimal multicore server processor partitioning problem by allowing
each server Si to have its own speed si . The average task response time of Si is

Ti = r̄i
si

(

1 + 1

mi (1 − ρi )(
√
2πmi (1 − ρi )(eρi /eρi )mi + 1)

)

,

where

ρi = λi r̄i
mi si

,

for all 1 ≤ i ≤ n.
Our optimal multicore server processor partitioning with power constraint problem

can be formally defined as follows. Given task arrival rates λ1, λ2, . . . , λn , mean task
execution requirements r̄1, r̄2, . . . , r̄n , the number of available coresm, the base power
supply P∗, and the total available power P , we find m1,m2, . . . ,mn and the server
speeds s1, s2, . . . , sn , such that T is minimized subject to the constraint that

J (m1,m2, . . . ,mn) = m,

where

J (m1,m2, . . . ,mn) = m1 + m2 + · · · + mn,

and the constraint that

K (s1, s2, . . . , sn) = P,
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Server S1
(m1,s1)

(λ1,
– – –r1)

Server S2
(m2,s2)

(λ2,r2)

Server Sn
(mn,sn)

(λn,rn)

Fig. 2 Processor partitioning with power constraint

where

K (s1, s2, . . . , sn) =
n∑

i=1

mi (ρi s
α
i + P∗) =

n∑

i=1

λi r̄i s
α−1
i + mP∗,

for the idle-speed model, and the constraint that

K (m1,m2, . . . ,mn, s1, s2, . . . , sn) = P,

where

K (m1,m2, . . . ,mn, s1, s2, . . . , sn) =
n∑

i=1

mi (s
α
i + P∗) =

n∑

i=1

mis
α
i + mP∗,

for the constant-speed model. An illustration of the problem is given in Fig. 2.
We can minimize T using the method of Lagrange multiplier. For the idle-speed

model, we have

∇T (m1,m2, . . . ,mn, s1, s2, . . . , sn) = φ∇ J (m1,m2, . . . ,mn)

+ψ∇K (s1, s2, . . . , sn),

that is,

∂T

∂mi
= φ

∂ J

∂mi
= φ,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier, and

∂T

∂si
= ψ

∂K

∂si
= ψλi r̄i (α − 1)sα−2

i ,
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for all 1 ≤ i ≤ n, where ψ is another Lagrange multiplier. For the constant-speed
model, we have

∇T (m1,m2, . . . ,mn, s1, s2, . . . , sn) = φ∇ J (m1,m2, . . . ,mn)

+ψ∇K (m1,m2, . . . ,mn, s1, s2, . . . , sn),

that is,

∂T

∂mi
= φ

∂ J

∂mi
+ ψ

∂K

∂mi
= φ + ψsα

i ,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier, and

∂T

∂si
= ψ

∂K

∂si
= ψmiαs

α−1
i ,

for all 1 ≤ i ≤ n, where ψ is another Lagrange multiplier.
Using the same calculation in the last section, we get

∂T

∂mi
= −λi r̄i

λsi
F2
i

(
√
2πmi (1 − ρi )

(
ρi + 3

2
− mi (ln ρi )(1 − ρi )

)

Gi + 1

)

,

where

Gi =
(
eρi

eρi

)mi

,

for all 1 ≤ i ≤ n.
To calculate ∂T/∂si , we rewrite Ti as

Ti = r̄i
si

(1 + Fi ),

where

Fi = 1

mi (1 − ρi )(
√
2πmi (1 − ρi )(eρi /eρi )mi + 1)

.

It is clear that

∂T

∂si
= λi

λ
· ∂Ti

∂si
= λi r̄i

λ

(

−1 + Fi
s2i

+ 1

si
· ∂Fi

∂si

)

= λi r̄i
λsi

(

−1 + Fi
si

+ ∂Fi
∂si

)

,

for all 1 ≤ i ≤ n.
Again, we rewrite Fi as

Fi = 1

mi (1 − ρi )(
√
2πmi (1 − ρi )Gi + 1)

= 1√
2πm3/2

i (1 − ρi )2Gi + mi (1 − ρi )
.
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Notice that

lnGi = mi ln(e
ρi /eρi ) = mi (ρi − ln ρi − 1).

Since

∂ρi

∂si
= − λi r̄i

mi s2s
= −ρi

si
,

we get

1

Gi

∂Gi

∂si
= mi

(

1 − 1

ρi

)
∂ρi

∂si
= mi (1 − ρi )

si
,

and

∂Gi

∂si
=

(
mi (1 − ρi )

si

)

Gi .

Now, we have

∂Fi
∂si

= −F2
i

(√
2πm3/2

i

(

−2(1 − ρi )
∂ρi

∂si
Gi + (1 − ρi )

2 ∂Gi

∂si

)

− mi
∂ρi

∂si

)

= −F2
i

(√
2πm3/2

i

(
2ρi (1 − ρi )

si
+ mi (1 − ρi )

3

si

)

Gi + miρi

si

)

= − F2
i mi

si

(√
2πmi (1 − ρi )

(
2ρi + mi (1 − ρi )

2
)
Gi + ρi

)
,

for all 1 ≤ i ≤ n.
As for ∂T/∂si , we have

∂T

∂si
= −λi r̄i

λs2i
(1 + Fi + F2

i mi (
√
2πmi (1 − ρi )(2ρi + mi (1 − ρi )

2)Gi + ρi )),

for all 1 ≤ i ≤ n.

4.1 The idle-speed model

For the idle-speed model, we have

∂T

∂mi
= −miρi

λ
F2
i (

√
2πmi (1 − ρi )((ρi + 3)/2 − mi (ln ρi )(1 − ρi ))Gi + 1) = φ,

(1)
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for all 1 ≤ i ≤ n. Also, we have

∂T

∂si
= −λi r̄i

λs2i
(1 + Fi + F2

i mi (
√
2πmi (1 − ρi )(2ρi + mi (1 − ρi )

2)Gi + ρi ))

= ψλi r̄i (α − 1)sα−2
i ,

that is,

si =
(

− 1

ψλ(α − 1)
(1 + Fi + F2

i mi (
√
2πmi (1 − ρi )(2ρi + mi (1 − ρi )

2)Gi + ρi ))

)1/α
,

(2)
for all 1 ≤ i ≤ n. Hence, we get a nonlinear system of (2n+2) equations specified in
(1) and (2) and the two constraints J (m1,m2, . . . ,mn) = m and K (s1, s2, . . . , sn) =
P .

4.2 The constant-speed model

For the constant-speed model, we have

∂T

∂mi
= −miρi

λ
F2
i (

√
2πmi (1 − ρi ) ((ρi + 3)/2 − mi (ln ρi )(1 − ρi ))Gi + 1) = φ + ψsαi ,

(3)
for all 1 ≤ i ≤ n. Also, we have

∂T

∂si
= −λi r̄i

λs2i
(1 + Fi + F2

i mi (
√
2πmi (1 − ρi )(2ρi + mi (1 − ρi )

2)Gi + ρi ))

= ψmiαs
α−1
i ,

that is,

si =
(

− ρi

ψλα
(1 + Fi + F2

i mi (
√
2πmi (1 − ρi )(2ρi + mi (1 − ρi )

2)Gi + ρi ))

)1/α

,

(4)
for all 1 ≤ i ≤ n. Hence, we get a nonlinear system of (2n + 2) equations
specified in (3) and (4) and the two constraints J (m1,m2, . . . ,mn) = m and
K (m1,m2, . . . ,mn, s1, s2, . . . , sn) = P .

4.3 A numerical procedure

The above nonlinear systems of equations are extremely sophisticated to solve. A
special numerical procedure consisting of four subalgorithms A1, A2, A2, and A4 has
been developed to solve the equations.

• (A1) First, we notice that the right-hand side of (2) or (4) is a decreasing function
of si . Thus, given mi , λi , r̄i , λ, and ψ , we can find si using the bisection method
in an appropriately chosen interval [lb1, ub1], for all 1 ≤ i ≤ n.
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• (A2) Second, we notice that the left-hand side of (1) (i.e., ∂T/∂mi ) or ∂T/∂mi −
ψsα

i from (3) is an increasing function of mi . Thus, given λi , r̄i , λ, φ, and ψ ,
we can find mi using the bisection method in an appropriately chosen interval
[lb2, ub2], for all 1 ≤ i ≤ n.

• (A3) Third, we notice that for a given φ, J (m1,m2, . . . ,mn) is a decreasing func-
tion of ψ . Thus, given the λi s, r̄i s, m, and φ, we can find ψ using the bisection
method in an appropriately chosen interval [lb3, ub3].

• (A4) Finally,we notice that K (s1, s2, . . . , sn) or K (m1,m2, . . .,mn, s1, s2, . . ., sn)
is an increasing function of φ. Thus, given the λi s, r̄i s, m, P∗, and P , we can find
φ using the bisection method in an appropriately chosen interval [lb4, ub4].

In the above algorithm, all the intervals for the bisection method should be carefully
determined and they are very sensitive to the input data. The subalgorithm A j calls
A j−1 for all 2 ≤ j ≤ 4.

Example 2 Let us considerm = 42 cores to be partitioned into n = 7 subsystems. The
task arrival rates are λi = ((i + 5)/63)λ, for all 1 ≤ i ≤ n, where λ = 35. The mean
task execution requirements are r̄i = 1 for all 1 ≤ i ≤ n. The base power is P∗ = 2 and
the total power is P = 160. In Table 4, for both idle-speed model and constant-speed
model, we show λi ,mi , ρi , and Ti , for all 1 ≤ i ≤ n, as well as the minimized average
task response time T . The intervals are set as [lb1, ub1] = [0.5, 10.0], [lb2, ub2] =
[0.55, 15.0] for the idle-speed model and [lb2, ub2] = [0.65, 13.0] for the constant-
speed model, [lb3, ub3] = [−0.008,−0.001], and [lb4, ub4] = [−0.007,−0.005].
All the data are calculated with the length of a search interval reduced to no longer
than 10−14. It is observed that the two speed models do yield different results. For

Table 4 Numerical data for Example 2

i λi mi si ρi Ti

Idle-speed model, T = 0.7148433

1 3.3333333 4.4055420 1.4824260 0.5103950 0.7207803

2 3.8888889 4.9528719 1.4789350 0.5309081 0.7183528

3 4.4444444 5.4889139 1.4761277 0.5485385 0.7164583

4 5.0000000 6.0157562 1.4738066 0.5639483 0.7149322

5 5.5555556 6.5349134 1.4718461 0.5775974 0.7136725

6 6.1111111 7.0475257 1.4701614 0.5898186 0.7126121

7 6.6666667 7.5544769 1.4686936 0.6008598 0.7117052

Constant-speed model, T = 0.9306993

1 3.3333333 4.4096443 1.1907179 0.6348429 0.9753489

2 3.8888889 4.9538643 1.2014184 0.6534121 0.9579657

3 4.4444444 5.4880227 1.2103478 0.6691006 0.9438416

4 5.0000000 6.0139980 1.2179592 0.6826121 0.9320632

5 5.5555556 6.5331488 1.2245561 0.6944264 0.9220409

6 6.1111111 7.0464954 1.2303514 0.7048843 0.9133744

7 6.6666667 7.5548266 1.2354991 0.7142361 0.9057812
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instance, the server speed si decreases with i for the idle-speed model while increases
with i for the constant-speed model. Notice that all the Ti s and T are calculated based
on the mi s which are not integers. In reality, the mi s should be rounded to the nearest
integers. Based on the new mi s, the core speeds s1, s2, . . . , sn and the Ti s and T need
to be re-calculated. This is a new problem called optimal power allocation, which we
address in the next section. 
�

5 Optimal power allocation

Given task arrival rates λ1, λ2, . . . , λn , mean task execution requirements r̄1, r̄2, . . . ,
r̄n , the server sizes m1,m2, . . . ,mn , the base power supply P∗, and the total avail-
able power P , the optimal power allocation problem is to find the server speeds
s1, s2, . . . , sn , such that T is minimized subject to the constraint that

K (s1, s2, . . . , sn) = P,

where

K (s1, s2, . . . , sn) =
n∑

i=1

mi (ρi s
α
i + P∗) =

n∑

i=1

λi r̄i s
α−1
i + mP∗,

for the idle-speed model, and

K (s1, s2, . . . , sn) =
n∑

i=1

mi (s
α
i + P∗) =

n∑

i=1

mis
α
i + mP∗,

for the constant-speed model.
We can minimize T using the method of Lagrange multiplier, namely,

∇T (s1, s2, . . . , sn) = ψ∇K (s1, s2, . . . , sn),

that is,

∂T

∂si
= ψ

∂K

∂si
= ψλi r̄i (α − 1)sα−2

i ,

for all 1 ≤ i ≤ n and the idle-speed model, and

∂T

∂si
= ψ

∂K

∂si
= ψmiαs

α−1
i ,

for all 1 ≤ i ≤ n and the constant-speed model, where ψ is a Lagrange multiplier.
Following the same derivations of the last section, we reach (2) and (4). Hence, we
can use A1 to find the si s and a method similar to A4 to find ψ by noticing that
K (m1,m2, . . . ,mn) is an increasing function of ψ .
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Table 5 Numerical data for Example 3

i λi mi si ρi Ti

Idle-speed model, T = 0.7169628

1 3.3333333 4.0000000 1.5354778 0.5427192 0.7191793

2 3.8888889 5.0000000 1.4720125 0.5283772 0.7200782

3 4.4444444 5.0000000 1.5294003 0.5812009 0.7121010

4 5.0000000 6.0000000 1.4732169 0.5656556 0.7159418

5 5.5555556 7.0000000 1.4358554 0.5527373 0.7205760

6 6.1111111 7.0000000 1.4719721 0.5930927 0.7131587

7 6.6666667 8.0000000 1.4372932 0.5797936 0.7185203

Constant-speed model, T = 0.9337903

1 3.3333333 4.0000000 1.2662899 0.6580905 0.9632283

2 3.8888889 5.0000000 1.1934519 0.6517043 0.9609477

3 4.4444444 5.0000000 1.2858668 0.6912760 0.9284561

4 5.0000000 6.0000000 1.2188160 0.6837237 0.9327767

5 5.5555556 7.0000000 1.1711067 0.6776930 0.9397011

6 6.1111111 7.0000000 1.2347930 0.7070139 0.9129517

7 6.6666667 8.0000000 1.1894521 0.7006027 0.9217223

Example 3 Let us consider n = 7 servers with sizes

(m1,m2,m3,m4,m5,m6,m7) = (4, 5, 5, 6, 7, 7, 8),

which are obtained by rounding themi s in Example 2 to the nearest integers. All other
parameters are the same as those in Example 2. In Table 5, for both idle-speed model
and constant-speed model, we show λi ,mi , ρi , and Ti , for all 1 ≤ i ≤ n, as well as the
minimized average task response time T . All the data are calculated with the length
of a search interval reduced to no longer than 10−14. It is observed that for moderate
server utilization, rounding the mi s slightly increases T .

To demonstrate the optimality of our solution, we perform extra computation as
follows. For each mi , its fraction part is truncated, and we obtain

(m1,m2,m3,m4,m5,m6,m7) = (4, 4, 5, 6, 6, 7, 7).

The three additional cores are allocated to the seven servers in the following way, i.e.,
we choose three servers out of the seven and allocate one extra core to each server.
It is clear that there are

(7
3

) = 35 different ways. For all these 35 different partitions
of the m cores, we calculate the average task response time and show the results in
Tables 6 and 7. It can be seen that for the idle-speed model, the optimal partition is
indeed No. 9 (in boldface):

(m1,m2,m3,m4,m5,m6,m7) = (4, 5, 5, 6, 7, 7, 8),
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Table 6 Optimality of Examples 2 and 3 (idle-speed model)

Number (m1,m2, . . . ,m7) T (approximation) T (original) Relative error (%)

1 (4, 4, 5, 6, 7, 8, 8) 0.7220880 0.7276647 0.7663863

2 (4, 4, 5, 7, 6, 8, 8) 0.7243295 0.7304033 0.8315701

3 (4, 4, 5, 7, 7, 7, 8) 0.7223547 0.7279937 0.7745883

4 (4, 4, 5, 7, 7, 8, 7) 0.7243922 0.7304778 0.8331019

5 (4, 4, 6, 6, 6, 8, 8) 0.7222914 0.7279083 0.7716543

6 (4, 4, 6, 6, 7, 7, 8) 0.7203330 0.7255228 0.7153242

7 (4, 4, 6, 6, 7, 8, 7) 0.7223490 0.7279757 0.7729184

8 (4, 5, 5, 6, 6, 8, 8) 0.7188959 0.7237573 0.6716867

9 (4, 5, 5, 6, 7, 7, 8) 0.7169628 0.7214077 0.6161394

10 (4, 5, 5, 6, 7, 8, 7) 0.7189458 0.7238141 0.6725999

11 (5, 4, 5, 6, 6, 8, 8) 0.7227611 0.7284785 0.7848352

12 (5, 4, 5, 6, 7, 7, 8) 0.7207927 0.7260786 0.7280127

13 (5, 4, 5, 6, 7, 8, 7) 0.7228219 0.7285501 0.7862497

14 (4, 4, 6, 7, 6, 7, 8) 0.7225609 0.7282411 0.7799965

15 (4, 4, 6, 7, 6, 8, 7) 0.7246079 0.7307386 0.8389737

16 (4, 4, 6, 7, 7, 7, 7) 0.7226206 0.7283113 0.7813623

17 (4, 5, 5, 7, 6, 7, 8) 0.7191556 0.7240763 0.6795935

18 (4, 5, 5, 7, 6, 8, 7) 0.7211688 0.7265265 0.7374378

19 (4, 5, 5, 7, 7, 7, 7) 0.7192074 0.7241359 0.6806047

20 (4, 5, 6, 6, 6, 7, 8) 0.7171516 0.7216310 0.6207322

21 (4, 5, 6, 6, 6, 8, 7) 0.7191436 0.7240501 0.6776433

22 (4, 5, 6, 6, 7, 7, 7) 0.7171985 0.7216836 0.6214789

23 (5, 4, 5, 7, 6, 7, 8) 0.7230346 0.7288169 0.7933834

24 (5, 4, 5, 7, 6, 8, 7) 0.7250951 0.7313335 0.8530176

25 (5, 4, 5, 7, 7, 7, 7) 0.7230974 0.7288914 0.7949023

26 (5, 4, 6, 6, 6, 7, 8) 0.7209962 0.7263221 0.7332720

27 (5, 4, 6, 6, 6, 8, 7) 0.7230348 0.7288068 0.7919740

28 (5, 4, 6, 6, 7, 7, 7) 0.7210539 0.7263893 0.7345191

29 (5, 5, 5, 6, 6, 7, 8) 0.7176004 0.7221717 0.6329918

30 (5, 5, 5, 6, 6, 8, 7) 0.7196054 0.7246091 0.6905454

31 (5, 5, 5, 6, 7, 7, 7) 0.7176503 0.7222284 0.6338827

32 (4, 5, 6, 7, 6, 7, 7) 0.7194079 0.7243756 0.6857878

33 (5, 4, 6, 7, 6, 7, 7) 0.7233133 0.7291521 0.8007744

34 (5, 5, 5, 7, 6, 7, 7) 0.7198736 0.7249402 0.6988957

35 (5, 5, 6, 6, 6, 7, 7) 0.7178482 0.7224641 0.6389132

which leads to T = 0.7169628, as obtained in Table 5. For the constant-speed model,
the optimal partition is indeed No. 9 (in boldface):

(m1,m2,m3,m4,m5,m6,m7) = (4, 5, 5, 6, 7, 7, 8),
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Table 7 Optimality of Examples 2 and 3 (constant-speed model)

Number (m1,m2, . . . ,m7) T (approximation) T (original) Relative error (%)

1 (4, 4, 5, 6, 7, 8, 8) 0.9411695 0.9650705 2.4766035

2 (4, 4, 5, 7, 6, 8, 8) 0.9444952 0.9693359 2.5626486

3 (4, 4, 5, 7, 7, 7, 8) 0.9415750 0.9656583 2.4939775

4 (4, 4, 5, 7, 7, 8, 7) 0.9446116 0.9695176 2.5689079

5 (4, 4, 6, 6, 6, 8, 8) 0.9414687 0.9654968 2.4886806

6 (4, 4, 6, 6, 7, 7, 8) 0.9385720 0.9618472 2.4198514

7 (4, 4, 6, 6, 7, 8, 7) 0.9415758 0.9656673 2.4948000

8 (4, 5, 5, 6, 6, 8, 8) 0.9366506 0.9595204 2.3834575

9 (4, 5, 5, 6, 7, 7, 8) 0.9337903 0.9559134 2.3143358

10 (4, 5, 5, 6, 7, 8, 7) 0.9367436 0.9596739 2.3893882

11 (5, 4, 5, 6, 6, 8, 8) 0.9421207 0.9664011 2.5124582

12 (5, 4, 5, 6, 7, 7, 8) 0.9392065 0.9627301 2.4434230

13 (5, 4, 5, 6, 7, 8, 7) 0.9422347 0.9665802 2.5187261

14 (4, 4, 6, 7, 6, 7, 8) 0.9418804 0.9660926 2.5061985

15 (4, 4, 6, 7, 6, 8, 7) 0.9449347 0.9699735 2.5813905

16 (4, 4, 6, 7, 7, 7, 7) 0.9419922 0.9662690 2.5124262

17 (4, 5, 5, 7, 6, 7, 8) 0.9370440 0.9600936 2.4007700

18 (4, 5, 5, 7, 6, 8, 7) 0.9400466 0.9639140 2.4760937

19 (4, 5, 5, 7, 7, 7, 7) 0.9371415 0.9602530 2.4068102

20 (4, 5, 6, 6, 6, 7, 8) 0.9340647 0.9563099 2.3261573

21 (4, 5, 6, 6, 6, 8, 7) 0.9370349 0.9600913 2.4014855

22 (4, 5, 6, 6, 7, 7, 7) 0.9341533 0.9564583 2.3320490

23 (5, 4, 5, 7, 6, 7, 8) 0.9425412 0.9670083 2.5301791

24 (5, 4, 5, 7, 6, 8, 7) 0.9456204 0.9709198 2.6057155

25 (5, 4, 5, 7, 7, 7, 7) 0.9426600 0.9671934 2.5365557

26 (5, 4, 6, 6, 6, 7, 8) 0.9395088 0.9631608 2.4556726

27 (5, 4, 6, 6, 6, 8, 7) 0.9425546 0.9670325 2.5312420

28 (5, 4, 6, 6, 7, 7, 7) 0.9396183 0.9633347 2.4619076

29 (5, 5, 5, 6, 6, 7, 8) 0.9346817 0.9571719 2.3496528

30 (5, 5, 5, 6, 6, 8, 7) 0.9376759 0.9609830 2.4253458

31 (5, 5, 5, 6, 7, 7, 7) 0.9347769 0.9573287 2.3556964

32 (4, 5, 6, 7, 6, 7, 7) 0.9374390 0.9606784 2.4190540

33 (5, 4, 6, 7, 6, 7, 7) 0.9429865 0.9676541 2.5492168

34 (5, 5, 5, 7, 6, 7, 7) 0.9380888 0.9615814 2.4431209

35 (5, 5, 6, 6, 6, 7, 7) 0.9350712 0.9577504 2.3679671

which leads to T = 0.9337903, as obtained in Table 5.
Furthermore, for each case of Table 6, we also display the T obtained from the

original expression, and the relative error of our closed-form approximation of T . It
is clear that for No. 9, T obtained from the original expression is 0.7214077, and the
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relative error of our closed-form approximation of T is 0.6161394%, which is the
smallest among all the 35 cases.

Similarly, for each case of Table 7, we also display the T obtained from the original
expression, and the relative error of our closed-form approximation of T . It is clear
that for No. 9, T obtained from the original expression is 0.9559134, and the relative
error of our closed-form approximation of T is 2.3143358%, which is the smallest
among all the 35 cases. 
�

6 Conclusions

We have formulated and solved three optimization problems related to optimal system
(virtual server) configuration for some given types of applications in a cloud com-
puting environment, namely, optimal multicore server processor partitioning, optimal
multicore server processor partitioning with power constraint, and optimal power allo-
cation. Suchoptimalmulticore server processor partitioninghas important applications
in dynamic resource provision in a cloud computing environment for certain specific
types of applications, such that the overall system performance is optimized without
exceeding certain energy consumption budget. We provided numerical procedures to
solve the above complicated problems and demonstrated numerical data.

Our investigation in this paper implies that dynamic resource provision, system
performance optimization, and energy consumption reduction should be considered
in an integrated and analytical way.

Notice that in this paper, we have assumed that the size (i.e., the number of cores)
of a server can be any positive integer. Also, the speed of a server can be any positive
real number. In a real multicore server processor, the size of a server might only be
some pre-determined values. Furthermore, the speed of a server might only be some
pre-determined values, and becomes a discrete variable. In such circumstances, the
extension and optimality of our method in this paper need further investigation and
examination.

Finally, it would be interesting and important to test our method in a real data
center to find an optimal system partitioning for a real environment with given types
of applications. This will be our future effort and investigation.
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