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A B S T R A C T

A fleet of unmanned aerial vehicles (UAVs) provide a new and unique type of distributed computing paradigm
and platform. This is a distributed computing environment with mobile servers, where a server (i.e., a
UAV) moves around to process tasks. Task scheduling for UAVs has several unique characteristics, such as
heterogeneity, mobility, and locality. UAVs are heterogeneous in the sense that they have different initial
positions, flight speeds, and execution times. While task assignment and flight planning have been studied
extensively, there has been little research of task scheduling on heterogeneous UAVs within the framework of
combinatorial optimization, i.e., heuristic algorithms for NP-hard problems and their performance evaluation
when compared with optimal solutions. In this paper, we take a combinatorial optimization approach to
addressing the issues in task scheduling for heterogeneous UAVs. The main contributions are summarized as
follows. We define eight combinatorial optimization problems, i.e., four time-centric problems including the
completion time minimization problem, the total time minimization problem, the finished tasks maximization
with time constraint problem, the reward maximization with time constraint problem; and four distance-
centric problems including the longest distance minimization problem, the total distance minimization
problem, the finished tasks maximization with distance constraint problem, the reward maximization with
distance constraint problem. We prove that all these problems are NP-hard. We develop two efficient and
effective heuristic algorithmic frameworks to solve our problems, one for minimization problems and one for
maximization problems. We derive lower/upper bounds for the optimal solutions. We evaluate the performance
of our heuristic algorithms by comparing their solutions with optimal solutions and show that they are able
to produce near-optimal solutions. To the best of the author’s knowledge, this is the first paper which studies
task scheduling on heterogeneous UAVs using a combinatorial optimization approach.
1. Introduction

1.1. Background and motivation

Unmanned aerial vehicles (UAVs) have been extensively used in
military applications such as searching, recognizing, interfering, and
attacking targets [1,2], reconnaissance missions [3], and civilian ap-
plications such as search and rescue missions [4,5], agricultural farm-
ing [6], forest fire detection [7], intelligent ocean control [8], and
disaster relief [9].

A fleet of UAVs provide a new and unique type of distributed
computing paradigm and platform. This is a distributed computing
environment with mobile servers, where a server (i.e., a UAV) moves
around to process tasks. Task scheduling for UAVs has several unique
characteristics, such as heterogeneity, mobility, and locality. UAVs are
heterogeneous in the sense that they have different initial positions,
flight speeds, and execution times. A UAV is actually a mobile server,
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which moves to the position of a task to process the task, and then
moves to the position of the next task. A UAV tends to serve tasks
nearby rather than remote tasks to void long flight time and to reduce
task processing time. (Notice that the above description includes multi-
ple tasks at the same location and the same task distributed at various
locations as special cases.)

There are two subproblems in task scheduling on UAVs [10–12].
The first subproblem is task assignment, i.e., to divide a set of tasks into
disjoint subsets and to assign each subset of tasks to a UAV, so that
the completion time of all tasks is minimized. This subproblem alone
(when all UAVs and tasks are at the same location) is NP-hard even for
two homogeneous UAVs (see Section 2.3). The second subproblem is
flight planning, i.e., to decide a flight route (i.e., a sequence of tasks) for
each UAV, so that the length of the route is minimized. This subproblem
alone (when all task execution times are zero) is NP-hard even for one
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UAV to traverse all task locations, where each task is visited exactly
once (see Section 2.3).

While task assignment and flight planning have been studied ex-
tensively, there has been little research of task scheduling on hetero-
geneous UAVs within the framework of combinatorial optimization,
i.e., heuristic algorithms for NP-hard problems and their performance
evaluation when compared with optimal solutions. The motivation of
this paper is to explore in this direction.

As in all task scheduling systems, performance and cost are two
main considerations. For task scheduling on UAVs, performance is
mainly task processing time, and cost is essentially drone flight dis-
tance. We consider two types of combinatorial optimization problems.
The first type is the class of time-centric problems (Section 4). In these
problems, either processing time related metrics are optimized, or
other metrics are optimized with processing time constraint. Time-
centric optimization problems concentrate on scheduling performance
enhancement. The second type is the class of distance-centric problems
(Section 5). In these problems, either flight distance related metrics
are optimized, or other metrics are optimized with flight distance
constraint. Distance-centric optimization problems focus on resource
consumption reduction. It is interesting and important to notice that
task processing time and drone flight distance are positively correlated,
since processing time includes flight time, which depends on the flight
distance.

1.2. New contributions

In this paper, we take a combinatorial optimization approach to
addressing the issues in task scheduling for heterogeneous UAVs. The
main contributions are summarized as follows.

• We define eight combinatorial optimization problems, i.e., four
time-centric problems including the completion time minimiza-
tion (CTM) problem, the total time minimization (TTM) problem,
the finished tasks maximization with time constraint (FTM-TC)
problem, the reward maximization with time constraint (RM-TC)
problem; and four distance-centric problems including the longest
distance minimization (LDM) problem, the total distance mini-
mization (TDM) problem, the finished tasks maximization with
distance constraint (FTM-DC) problem, the reward maximization
with distance constraint (RM-DC) problem. (Note: The reason we
consider eight problems is that they can all be solved using our
algorithmic frameworks.)

• We prove that all these problems are NP-hard.
• We develop two efficient and effective heuristic algorithmic

frameworks to solve our problems, one for minimization problems
(e.g., CTM, TTM, LDM, TDM) and one for maximization problems
(e.g., FTM-TC, RM-TC, FTM-DC, RM-DC).

• We derive lower/upper bounds for the optimal solutions.
• We evaluate the performance of our heuristic algorithms by

comparing their solutions with optimal solutions (actually, the
lower/upper bounds) and show that they are able to produce
near-optimal solutions.

To the best of the author’s knowledge, this is the first paper which
studies task scheduling on heterogeneous UAVs using a combinatorial
optimization approach.

Our study in this paper has two unique features. First, we develop
two algorithmic frameworks which are likely to be applicable to a
variety of optimization problems of task scheduling on UAVs. Second,
the performance of each heuristic algorithm is evaluated in such a way
that its solution is compared with an optimal solution (actually, its
lower or upper bound). Such an efficacious approach has not been seen
in the existing literature for task scheduling on UAVs. Therefore, our
investigation in this paper has made significant contributions to the
field of task scheduling on heterogeneous UAVs.
2

The rest of the paper is organized as follows. In Section 2, we
present preliminary discussion, including a task scheduling model on
UAVs, a graph-theoretical formulation of a UAV, the traveling salesman
path problem, and performance measures for heuristic algorithms. In
Section 3, we develop our algorithmic frameworks, one for minimiza-
tion problems and one for maximization problems. In Sections 4 and 5,
we deal with time-centric optimization problems and distance-centric
optimization problems respectively. For each problem, we give its
definition, prove its NP-hardness, present a heuristic algorithm, derive
a lower bound (for a minimization problem) or an upper bound (for a
maximization problem), and evaluate its performance. In Section 6, we
review related research. In Section 7, we conclude the paper.

2. Preliminaries

In this section, we present preliminary discussion, including a task
scheduling model on UAVs, a graph-theoretical formulation of a UAV,
the traveling salesman path problem, and performance measures for
heuristic algorithms.

2.1. Task scheduling on UAVs

In this section, we describe our task scheduling model on heteroge-
neous UAVs (see Fig. 1 for an illustration).

Let 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚} be a set of heterogeneous UAVs, and 𝑇 =
{𝑡1, 𝑡2,… , 𝑡𝑛} be a set of tasks. For all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗, 𝑗′ ≤ 𝑛,
we define the following quantities. (The Appendix provides a list of
notations and their definitions in the order introduced in this paper.)

• 𝑝𝑜𝑠(𝑢𝑖) = (𝑥(𝑢𝑖), 𝑦(𝑢𝑖), 𝑧(𝑢𝑖)) is the position (i.e., the initial location)
of 𝑢𝑖.

• 𝑝𝑜𝑠(𝑡𝑗 ) = (𝑥(𝑡𝑗 ), 𝑦(𝑡𝑗 ), 𝑧(𝑡𝑗 )) is the position of 𝑡𝑗 .
• 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ) is the distance between 𝑝𝑜𝑠(𝑢𝑖) and 𝑝𝑜𝑠(𝑡𝑗 ).
• 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ) is the distance between 𝑝𝑜𝑠(𝑡𝑗 ) and 𝑝𝑜𝑠(𝑡𝑗′ ).
• 𝑣𝑒𝑙(𝑢𝑖) is the flight velocity of 𝑢𝑖.
• 𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) = 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )∕𝑣𝑒𝑙(𝑢𝑖) is the flight time of 𝑢𝑖 from 𝑝𝑜𝑠(𝑢𝑖)

to 𝑝𝑜𝑠(𝑡𝑗 ).
• 𝑓𝑡𝑖𝑚𝑒𝑖(𝑡𝑗 , 𝑡𝑗′ ) = 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ )∕𝑣𝑒𝑙(𝑢𝑖) is the flight time of 𝑢𝑖 from
𝑝𝑜𝑠(𝑡𝑗 ) to 𝑝𝑜𝑠(𝑡𝑗′ ).

• 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) is the execution time of 𝑢𝑖 to process 𝑡𝑗 .
• 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗 ) is the reward (related to urgency, priority, deadline,

etc.) to finish 𝑡𝑗 .

All positions are fixed and do not change. However, UAVs change
their locations (see Section 3).

The UAVs are heterogeneous in the sense that they have different
flight velocities and execution speeds. The UAVs are homogeneous if
they have the same flight velocity and identical execution time for the
same task, i.e., 𝑣𝑒𝑙(𝑢𝑖) = 𝑣𝑒𝑙 and 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) = 𝑒𝑡𝑖𝑚𝑒(𝑡𝑗 ), for all 1 ≤ 𝑖 ≤ 𝑚
and 1 ≤ 𝑗 ≤ 𝑛.

In general, due to the sophistication of a real physical environment
(e.g., objects and obstacles in between), we do not make any assump-
tion on the distance between two identities. The distance between two
identities can be asymmetric, e.g., 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ) ≠ 𝑑𝑖𝑠𝑡(𝑡𝑗′ , 𝑡𝑗 ).

The distance between two positions may not be analytically related
to their positions. As a special case, the distance between two positions
𝑝𝑜𝑠 = (𝑥, 𝑦, 𝑧) and 𝑝𝑜𝑠′ = (𝑥′, 𝑦′, 𝑧′) can be Euclidean, i.e.,

𝑑𝑖𝑠𝑡(𝑝𝑜𝑠, 𝑝𝑜𝑠′) =
√

(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2.

Let 𝑇𝑖 = {𝑡𝑗1 , 𝑡𝑗2 ,… , 𝑡𝑗𝑛𝑖 } be a set of tasks assigned to 𝑢𝑖. Note that
(𝑇1, 𝑇2,… , 𝑇𝑚), where the 𝑇𝑖’s are disjoint and 𝑇1 ∪ 𝑇2 ∪ ⋯ ∪ 𝑇𝑚 = 𝑇 ,
is actually a schedule of 𝑇 on the 𝑚 UAVs. For convenience, 𝑇𝑖 =
(𝑡𝑗1 , 𝑡𝑗2 ,… , 𝑡𝑗𝑛𝑖 ) is also treated as a sequence of tasks, so that we can get

a flight route of 𝑢𝑖: (𝑢𝑖, 𝑡𝑗1 , 𝑡𝑗2 ,… , 𝑡𝑗𝑛𝑖 ). Hence, a schedule is a solution to

the subproblems of task assignment and flight planning simultaneously.
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Fig. 1. Task scheduling on heterogeneous UAVs.

The processing time of a task is the flight time to reach the task plus
ts execution time, i.e.,

𝑡𝑖𝑚𝑒(𝑡𝑗1 ) = 𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗1 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗1 ),

and

𝑝𝑡𝑖𝑚𝑒(𝑡𝑗𝑘 ) = 𝑓𝑡𝑖𝑚𝑒𝑖(𝑡𝑗𝑘−1 , 𝑡𝑗𝑘 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗𝑘 ),

for all 2 ≤ 𝑘 ≤ 𝑛𝑖.
The time for 𝑢𝑖 to process tasks in 𝑇𝑖 is the total processing time,

i.e.,

𝑡𝑖𝑚𝑒(𝑢𝑖) =
𝑛𝑖
∑

𝑘=1
𝑝𝑡𝑖𝑚𝑒(𝑡𝑗𝑘 ),

which is the total flight time plus the total execution time, i.e.,

𝑡𝑖𝑚𝑒(𝑢𝑖) = 𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗1 ) +
𝑛𝑖
∑

𝑘=2
𝑓𝑡𝑖𝑚𝑒𝑖(𝑡𝑗𝑘−1 , 𝑡𝑗𝑘 ) +

𝑛𝑖
∑

𝑘=1
𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗𝑘 ),

which is

𝑡𝑖𝑚𝑒(𝑢𝑖) =
1

𝑣𝑒𝑙(𝑢𝑖)

(

𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗1 ) +
𝑛𝑖
∑

𝑘=2
𝑑𝑖𝑠𝑡(𝑡𝑗𝑘−1 , 𝑡𝑗𝑘 )

)

+
𝑛𝑖
∑

𝑘=1
𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗𝑘 ),

and

𝑡𝑖𝑚𝑒(𝑢𝑖) =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖)

𝑣𝑒𝑙(𝑢𝑖)
+

𝑛𝑖
∑

𝑘=1
𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗𝑘 ),

where

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) = 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗1 ) +
𝑛𝑖
∑

𝑘=2
𝑑𝑖𝑠𝑡(𝑡𝑗𝑘−1 , 𝑡𝑗𝑘 )

s the flight distance of 𝑢𝑖.
The completion time of 𝑇 is

𝑡𝑖𝑚𝑒(𝑇 ) = max{𝑡𝑖𝑚𝑒(𝑢1), 𝑡𝑖𝑚𝑒(𝑢2),… , 𝑡𝑖𝑚𝑒(𝑢𝑚)},

which is the maximum processing time of all UAVs, and 𝑐𝑡𝑖𝑚𝑒(𝑇 ) is
actually the makespan of the schedule. The total time of 𝑇 is

𝑡𝑡𝑖𝑚𝑒(𝑇 ) = 𝑡𝑖𝑚𝑒(𝑢1) + 𝑡𝑖𝑚𝑒(𝑢2) +⋯ + 𝑡𝑖𝑚𝑒(𝑢𝑚),

which is the total processing time of all UAVs.
The longest distance of 𝑇 is

𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ) = max{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢1), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢2),… , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑚)},

which is the longest flight distance of all UAVs. The total distance of 𝑇
is

𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢1) + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢2) +⋯ + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑚),

which is the total flight distance of all UAVs.
The reward of 𝑢𝑖 is the total reward of tasks in 𝑇𝑖:

𝑟𝑒𝑤𝑎𝑟𝑑(𝑢𝑖) =
𝑛𝑖
∑

𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗𝑘 ).
3

𝑘=1
2.2. A graph-theoretical formulation

In this section, we give a graph-theoretical formulation of a UAV,
which is applicable to all our combinatorial optimization problems.

Let us consider a weighted directed graph 𝐺 = (𝑈 ∪ 𝑇 ,𝐸, 𝑑𝑖𝑠𝑡),
where 𝑈 ∪ 𝑇 is the set of vertices, 𝐸 = (𝑈 ∪ 𝑇 ) × 𝑇 is the set of edges,
and 𝑑𝑖𝑠𝑡 gives the weights of the edges. UAV flight velocities 𝑣𝑒𝑙 and
task execution times 𝑒𝑡𝑖𝑚𝑒 are ignored here, or, one can simply assume
that 𝑣𝑒𝑙(𝑢𝑖) = 1 and 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) = 0, for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. For
a set (or sequence) of vertices 𝑇𝑖 = (𝑡𝑗1 , 𝑡𝑗2 ,… , 𝑡𝑗𝑛𝑖 ) assigned to 𝑢𝑖, the
length of the path (i.e., flight route) 𝑃𝑖 = (𝑢𝑖, 𝑡𝑗1 , 𝑡𝑗2 ,… , 𝑡𝑗𝑛𝑖 ) is

𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑖) = 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗1 ) +
𝑛𝑖
∑

𝑘=2
𝑑𝑖𝑠𝑡(𝑡𝑗𝑘−1 , 𝑡𝑗𝑘 ),

which is actually the same as 𝑡𝑖𝑚𝑒(𝑢𝑖) and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖).
Our combinatorial optimization problems are typically to determine

a partition of 𝑇 into 𝑚 disjoint subsets 𝑇1, 𝑇2,… , 𝑇𝑚, where 𝑇𝑖 is
assigned to 𝑢𝑖 and 𝑇1 ∪ 𝑇2 ∪ ⋯ ∪ 𝑇𝑚 = 𝑇 , such that the longest path
length, i.e.,

𝑙𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 ) = max
1≤𝑖≤𝑚

{𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑖)},

or the total path length, i.e.,

𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 ) =
𝑚
∑

𝑖=1
𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑖),

is minimized.
When 𝑚 = 1, i.e., there is only one UAV and 𝑈 = {𝑢}, mini-

mizing both 𝑙𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 ) and 𝑡𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 ) is equivalent to determining a
permutation of 𝑇 , i.e., (𝑡𝑗1 , 𝑡𝑗2 ,… , 𝑡𝑗𝑛 ), such that the length of the path
𝑃 = (𝑢, 𝑡𝑗1 , 𝑡𝑗2 ,… , 𝑡𝑗𝑛 ) is minimized.

Given a weighted directed graph 𝐺 = (𝑉 ,𝐸, 𝑑𝑖𝑠𝑡), where 𝑉 =
{𝑣0, 𝑣1, 𝑣2,… , 𝑣𝑛}, a traveling salesman path starting from 𝑣0 is 𝑃 =
(𝑣0, 𝑣𝑗1 , 𝑣𝑗2 ,… , 𝑣𝑗𝑛 ), which is actually a permutation of 𝑣1, 𝑣2,… , 𝑣𝑛
(i.e., (𝑣𝑗1 , 𝑣𝑗2 ,… , 𝑣𝑗𝑛 )), such that each vertex in the graph is visited
exactly once. We will show that it is NP-hard to find a shortest traveling
salesman path, which forms the basis of the NP-hardness of all our
combinatorial optimization problems.

2.3. The traveling salesman path problem

In this section, we prove the NP-hardness of the traveling salesman
path problem.

For a weighted directed graph 𝐺 = (𝑉 ,𝐸, 𝑑𝑖𝑠𝑡), where 𝑉 = {𝑣1, 𝑣2,
… , 𝑣𝑛}, a traveling salesman loop is 𝐿 = (𝑣𝑗1 , 𝑣𝑗2 ,… , 𝑣𝑗𝑛 , 𝑣𝑗1 ), which is
actually a permutation of 𝑣1, 𝑣2,… , 𝑣𝑛 (i.e., (𝑣𝑗1 , 𝑣𝑗2 ,… , 𝑣𝑗𝑛 )), such that
each vertex in the graph is visited exactly once. Given a weighted
directed graph 𝐺 = (𝑉 ,𝐸, 𝑑𝑖𝑠𝑡), the traveling salesman problem (TSP) is
to find a traveling salesman loop 𝐿 = (𝑣𝑗1 , 𝑣𝑗2 ,… , 𝑣𝑗𝑛 , 𝑣𝑗1 ), such that the
length of the loop, i.e.,

𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) =
𝑛−1
∑

𝑘=1
𝑑𝑖𝑠𝑡(𝑣𝑗𝑘 , 𝑣𝑗𝑘+1 ) + 𝑑𝑖𝑠𝑡(𝑣𝑗𝑛 , 𝑣𝑗1 ),

is minimized.
Given two vertices 𝑣𝑗 and 𝑣𝑗′ , a traveling salesman path between

the two vertices is a path 𝑃 = (𝑣𝑗 , 𝑣𝑗1 ,… , 𝑣𝑗𝑛−2 , 𝑣𝑗′ ), where (𝑗1,… , 𝑗𝑛−2)

is a permutation of the indices in {1, 2,… , 𝑛}−{𝑗, 𝑗′}. Given a weighted
directed graph 𝐺 = (𝑉 ,𝐸, 𝑑𝑖𝑠𝑡) and two vertices 𝑣𝑗 and 𝑣𝑗′ , the traveling
salesman path problem (TSPP) is to find a traveling salesman path 𝑃 =
(𝑣𝑗 , 𝑣𝑗1 ,… , 𝑣𝑗𝑛−2 , 𝑣𝑗′ ), such that the length of the path, i.e.,

𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 ) = 𝑑𝑖𝑠𝑡(𝑣𝑗 , 𝑣𝑗1 ) +
𝑛−3
∑

𝑘=1
𝑑𝑖𝑠𝑡(𝑣𝑗𝑘 , 𝑣𝑗𝑘+1 ) + 𝑑𝑖𝑠𝑡(𝑣𝑗𝑛−2 , 𝑣𝑗′ ),

is minimized.
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Fig. 2. Reductions among the problems in their NP-hardness proofs.

Theorem 0. The TSPP problem is NP-hard.

Proof. We show that the TSPP is NP-hard by a Turing reduction
(Cook reduction) from the TSP, which is well known to be NP-hard
([13], p. 211). Consider any edge (𝑣𝑗′ , 𝑣𝑗 ). If (𝑣𝑗′ , 𝑣𝑗 ) is on a traveling
salesman loop, then we only need to find a traveling salesman path
between 𝑣𝑗 and 𝑣𝑗′ , i.e., 𝑃 = (𝑣𝑗 , 𝑣𝑗1 ,… , 𝑣𝑗𝑛−2 , 𝑣𝑗′ ), with the minimum
length. The path can be extended to a traveling salesman loop 𝐿 =
(𝑣𝑗 , 𝑣𝑗1 ,… , 𝑣𝑗𝑛−2 , 𝑣𝑗′ , 𝑣𝑗 ) with

𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 ) + 𝑑𝑖𝑠𝑡(𝑣𝑗′ , 𝑣𝑗 ).

Hence, if there is a polynomial time algorithm 𝐴 for the TSPP, then we
can run the algorithm for each edge (𝑣𝑗′ , 𝑣𝑗 ), obtain a traveling salesman
path 𝑃 = (𝑣𝑗 , 𝑣𝑗1 ,… , 𝑣𝑗𝑛−2 , 𝑣𝑗′ ), and calculate the length of the loop
𝐿 = (𝑣𝑗 , 𝑣𝑗1 ,… , 𝑣𝑗𝑛−2 , 𝑣𝑗′ , 𝑣𝑗 ). After executing algorithm 𝐴 for 𝑛(𝑛 − 1)
times, once for each edge, we can choose the loop with the minimum
length, and solve the TSP. If 𝐴 has polynomial time complexity 𝑇 (𝑛),
then the above algorithm for the TSP has time complexity 𝑂(𝑛2𝑇 (𝑛)),
which is also a polynomial. □

Fig. 2 shows reductions among the problems in their NP-hardness
proofs. We would like to emphasize that all our combinatorial optimiza-
tion problems studied in this paper remain NP-hard for a single UAV,
homogeneous UAVs, and zero execution times. Furthermore, since the
TSP is also NP-hard for weighted undirected graphs ([13], p. 211)
and Euclidean distances ([13], p. 212), so are our problems. We also
mention that even when all UAVs and tasks are at the same position
(i.e., no movement is required), all our combinatorial optimization
problems remain NP-hard for two homogeneous UAVs. This can be
proved using a reduction from the multiprocessor scheduling problem
([13], p. 238).

2.4. Performance measures

In this section, we define our performance measures for heuristic
algorithms.

Let 𝐴(𝐼) be the solution of a heuristic algorithm 𝐴 for an instance
𝐼 , and Opt(𝐼) be the optimal solution of 𝐼 .

For a minimization problem, we say that 𝐵 is a performance bound
if
𝐴(𝐼)

Opt(𝐼) ≤ 𝐵,

for all 𝐼 . When 𝐼 is randomized, if
[

𝐴(𝐼)
]

≤ 𝐵,
4

Opt(𝐼)
𝐵 is an expected performance bound.
For a maximization problem, we say that 𝐵 is a performance bound

if
𝐴(𝐼)

Opt(𝐼) ≥ 𝐵,

or all 𝐼 . When 𝐼 is randomized, if
[

𝐴(𝐼)
Opt(𝐼)

]

≥ 𝐵,

𝐵 is an expected performance bound.

3. Algorithmic frameworks

In this section, we develop our algorithmic frameworks, one for
minimization problems (e.g., CTM, TTM, LDM, TDM) and one for
maximization problems (e.g., FTM-TC, RM-TC, FTM-DC, RM-DC).

(Note: We present our algorithmic frameworks before we define our
combinatorial optimization problems, since all our heuristic algorithms
follow these frameworks. The reader may read Sections 4.𝑠.1 and 5.𝑠.1
(1 ≤ 𝑠 ≤ 4) for problem definitions and then read this section.
Section 3.1 should be read together with Sections 4.1.3, 4.2.3, 5.1.3,
5.2.3, and 3.2 should be read together with Sections 4.3.3, 4.4.3, 5.3.3,
5.4.3).

3.1. An algorithmic framework for minimization problems

In this section, we develop an algorithmic framework for all our
minimization problems.

Algorithmic Framework for Minimization Problems (AF-Min)

for (𝑖 = 1; 𝑖 ≤ 𝑚; 𝑖++) do (1)
𝑇𝑖 ← ∅; (2)
𝑡𝑖𝑚𝑒(𝑢𝑖) ← 0; (3)
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) ← 0; (4)
𝑙𝑜𝑐(𝑢𝑖) ← 0; (5)

end do; (6)
for (𝑗 = 1; 𝑗 ≤ 𝑛; 𝑗++) do (7)

𝑏𝑒𝑠𝑡(𝑡𝑗 ) ← argmin1≤𝑖≤𝑚{problem-dependent expression}; (8)
end do; (9)
while (𝑇 ≠ ∅) do (10)

𝑡𝑗 ← argmin𝑡𝑗′∈𝑇 {problem-dependent expression}; (11)
𝑖 ← 𝑏𝑒𝑠𝑡(𝑡𝑗 ); (12)
𝑇𝑖 ← 𝑇𝑖 ∪ {𝑗}; (13)
𝑇 ← 𝑇 − {𝑗}; (14)
𝑡𝑖𝑚𝑒(𝑢𝑖) ← 𝑡𝑖𝑚𝑒(𝑢𝑖) + 𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ); (15)
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) + 𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ); (16)
𝑙𝑜𝑐(𝑢𝑖) ← 𝑗; (17)
for (each 𝑡𝑗′ ∈ 𝑇 ) do (18)

𝑏𝑒𝑠𝑡(𝑡𝑗′ ) ← argmin1≤𝑖≤𝑚{problem-dependent exp}; (19)
end do; (20)

end do; (21)
return 𝑇1, 𝑇2, ..., 𝑇𝑚. (22)

Each 𝑢𝑖 is a mobile server. The current location of 𝑢𝑖 is 𝑙𝑜𝑐(𝑢𝑖) ∈
{0, 1, 2,… , 𝑛}. Initially, 𝑙𝑜𝑐(𝑢𝑖) = 0 (line (5)), which means that 𝑢𝑖 is at
𝑝𝑜𝑠(𝑢𝑖). After 𝑢𝑖 reaches 𝑡𝑗 and processes 𝑡𝑗 , 𝑙𝑜𝑐(𝑢𝑖) = 𝑗 (line (17)), which
means that 𝑢𝑖 is at 𝑝𝑜𝑠(𝑡𝑗 ).

Let 𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) denote the processing time of 𝑢𝑖 for 𝑡𝑗 , which is

𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) =

{

𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ), if 𝑙𝑜𝑐(𝑢𝑖) = 0;
𝑓𝑡𝑖𝑚𝑒𝑖(𝑡𝑙𝑜𝑐(𝑢𝑖), 𝑡𝑗 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ), if 𝑙𝑜𝑐(𝑢𝑖) ≠ 0.

Let 𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ) denote the flight distance from 𝑢𝑖 to 𝑡𝑗 , which is

𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ) =

{

𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ), if 𝑙𝑜𝑐(𝑢𝑖) = 0;

𝑑𝑖𝑠𝑡(𝑡𝑙𝑜𝑐(𝑢𝑖), 𝑡𝑗 ), if 𝑙𝑜𝑐(𝑢𝑖) ≠ 0.
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Let 𝑇𝑖 be the set of tasks allocated to 𝑢𝑖 so far. Let 𝑡𝑖𝑚𝑒(𝑢𝑖) be the
otal processing time of tasks in 𝑇𝑖 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) be the total flight
istance for tasks in 𝑇𝑖. Initially, 𝑇𝑖 = ∅, 𝑡𝑖𝑚𝑒(𝑢𝑖) = 0, and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) = 0
lines (2)–(4)).

Each task 𝑡𝑗 has a 𝑏𝑒𝑠𝑡(𝑡𝑗 ) value, where 𝑏𝑒𝑠𝑡(𝑡𝑗 ) ∈ {1, 2,… , 𝑚}, which
gives the best 𝑢𝑖 that processes 𝑡𝑗 , and is initialized in line (8) and
updated in line (19). The definition of 𝑏𝑒𝑠𝑡(𝑡𝑗 ) is problem-dependent.

The greedy algorithm repeatedly chooses the next task to process
(lines (10)–(21)). The next task 𝑡𝑗 is chosen in such a way that it
has the minimum 𝑏𝑒𝑠𝑡(𝑡𝑗 ) value (line (11)). Task 𝑡𝑗 is assigned to the
corresponding 𝑢𝑖 (lines (12)–(14)). Then, the total processing time, the
total flight distance, and the location of 𝑢𝑖 are updated (lines (15)–(17)).
Once 𝑢𝑖 moves to 𝑡𝑗 , the 𝑏𝑒𝑠𝑡(𝑡𝑗′ ) value of each remaining task 𝑡𝑗′ is
possibly modified (lines (18)–(20)).

Note: All problem-dependent expressions in lines (8), (11), (19) will
be specified in Sections 4.1.3, 4.2.3, 5.1.3, 5.2.3 for specific minimiza-
tion problems.

The time complexity of AF-Min is analyzed as follows. The for-loop
in lines (1)–(6) takes 𝑂(𝑚) time. The for-loop in lines (7)–(9) takes
𝑂(𝑚𝑛) time. The for-loop in lines (10)–(21) is repeated 𝑛 times. Line
(11) takes 𝑂(𝑛) time. Line (19) takes 𝑂(𝑚) time, and the for-loop in lines
(18)–(20) takes 𝑂(𝑚𝑛) time. Therefore, the for-loop in lines (10)–(21)
takes 𝑂(𝑚𝑛2) time. The overall time complexity of AF-Min is 𝑂(𝑚𝑛2).

3.2. An algorithmic framework for maximization problems

Algorithmic Framework for Maximization Problems (AF-Max)

for (𝑖 = 1; 𝑖 ≤ 𝑚; 𝑖++) do (1)
𝑇𝑖 ← ∅; (2)
𝑡𝑖𝑚𝑒(𝑢𝑖) ← 0; (3)
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) ← 0; (4)
𝑙𝑜𝑐(𝑢𝑖) ← 0; (5)

end do; (6)
for (𝑗 = 1; 𝑗 ≤ 𝑛; 𝑗++) do (7)

𝑢𝑎𝑣(𝑡𝑗 ) ← {𝑖 | problem-dependent condition}; (8)
𝑏𝑒𝑠𝑡(𝑡𝑗 ) ← argmin∕argmax𝑖∈𝑢𝑎𝑣(𝑡𝑗 )

{problem-dependent expression}, if 𝑢𝑎𝑣(𝑡𝑗 ) ≠ ∅; (9)
end do; (10)
while (𝑇 ≠ ∅) do (11)

if (𝑢𝑎𝑣(𝑡𝑗 ) = ∅ for all 𝑡𝑗 ∈ 𝑇 ) then break; (12)
𝑡𝑗 ← argmin∕argmax𝑡𝑗′∈𝑇 and 𝑢𝑎𝑣(𝑡𝑗′ )≠∅

{problem-dependent expression}; (13)
𝑖 ← 𝑏𝑒𝑠𝑡(𝑡𝑗 ); (14)
𝑇𝑖 ← 𝑇𝑖 ∪ {𝑗}; (15)
𝑇 ← 𝑇 − {𝑗}; (16)
𝑡𝑖𝑚𝑒(𝑢𝑖) ← 𝑡𝑖𝑚𝑒(𝑢𝑖) + 𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ); (17)
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) + 𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ); (18)
𝑙𝑜𝑐(𝑢𝑖) ← 𝑗; (19)
for (each 𝑡𝑗′ ∈ 𝑇 ) do (20)
if (problem-dependent condition) then (21)

𝑢𝑎𝑣(𝑡𝑗′ ) ← 𝑢𝑎𝑣(𝑡𝑗′ ) ∪ {𝑖}; (22)
else (23)
𝑢𝑎𝑣(𝑡𝑗′ ) ← 𝑢𝑎𝑣(𝑡𝑗′ ) − {𝑖}; (24)

𝑏𝑒𝑠𝑡(𝑡𝑗′ ) ← argmin∕argmax𝑖∈𝑢𝑎𝑣(𝑡𝑗′ )
{problem-dependent exp}, if 𝑢𝑎𝑣(𝑡𝑗′ ) ≠ ∅; (25)

end do; (26)
end do; (27)
return 𝑇1, 𝑇2, ..., 𝑇𝑚. (28)

In this section, we develop an algorithmic framework for all our
aximization problems.

Due to various performance and resource constraints in our maxi-
ization problems, not every 𝑢𝑖 can process every 𝑡𝑗 . Therefore, each

task 𝑡 has a 𝑢𝑎𝑣(𝑡 ) value, which is the set of 𝑢 ’s that can still
5

𝑗 𝑗 𝑖
accommodate 𝑡𝑗 within its performance or resource constraint. The
𝑎𝑣(𝑡𝑗 ) value is initialized in line (8) and updated in lines (21)–(24).
he definition of 𝑢𝑎𝑣(𝑡𝑗 ) is problem-dependent.

AF-Max follows the same structure as that of AF-Min. In each
epetition of the loop in lines (11)–(27), we first check whether there
s still any task which can be accommodated within the performance
r resource constraint (line (12)). If so, the task 𝑡𝑗 which has the
inimum or maximum 𝑏𝑒𝑠𝑡(𝑡𝑗 ) value (line (13)) is assigned to the

orresponding 𝑢𝑖 (lines (14)–(19)). Then, the 𝑢𝑎𝑣(𝑡𝑗′ ) and 𝑏𝑒𝑠𝑡(𝑡𝑗′ ) values
of each remaining task 𝑡𝑗′ are possibly modified (lines (20)–(26)). The
algorithm terminates if no task can be accommodated any more (line
(12)) or all tasks are finished (line (11)).

Note: All problem-dependent conditions in lines (8), (21), and all
problem-dependent expressions in lines (9), (13), (25) will be specified
in Sections 4.3.3, 4.4.3, 5.3.3, 5.4.3 for specific maximization problems.

The time complexity of AF-Max is analyzed as follows. The for-loop
in lines (1)–(6) takes 𝑂(𝑚) time. The for-loop in lines (7)–(10) takes
(𝑚𝑛) time. The for-loop in lines (11)–(27) is repeated at most 𝑛 times.
ines (12)–(13) take 𝑂(𝑛) time. Line (25) takes 𝑂(𝑚) time, and the for-
oop in lines (20)–(26) takes 𝑂(𝑚𝑛) time. Therefore, the for-loop in lines
11)–(27) takes 𝑂(𝑚𝑛2) time. The overall time complexity of AF-Max is
(𝑚𝑛2).

. Time-centric problems

In this section, we deal with time-centric optimization problems, in-
luding the completion time minimization problem, the total time mini-
ization problem, the finished tasks maximization with time constraint
roblem, and the reward maximization with time constraint problem.
or each problem, we give its definition, prove its NP-hardness, present
heuristic algorithm, derive a lower bound (for a minimization prob-

em) or an upper bound (for a maximization problem), and evaluate its
erformance.

.1. Completion Time Minimization (CTM)

In this section, we address the completion time minimization prob-
em.

.1.1. Problem definition
The completion time minimization problem is to minimize the

ompletion time of a set of tasks.

roblem 1 (Completion Time Minimization). Given a set of heteroge-
eous UAVs 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚}, and a set of tasks 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛}, the
ompletion time minimization (CTM) problem is to determine a partition
f 𝑇 into 𝑚 disjoint subsets 𝑇1, 𝑇2,… , 𝑇𝑚, where 𝑇𝑖 is assigned to 𝑢𝑖 and
1 ∪ 𝑇2 ∪⋯ ∪ 𝑇𝑚 = 𝑇 , such that the completion time of 𝑇 , i.e.,

𝑡𝑖𝑚𝑒(𝑇 ) = max
1≤𝑖≤𝑚

{𝑡𝑖𝑚𝑒(𝑢𝑖)},

s minimized.

.1.2. NP-hardness

heorem 1A. The CTM problem is NP-hard.

roof. We show the NP-hardness of the CTM problem using a Karp
eduction (polynomial-time reduction) from the TSPP. Recall from the
iscussion in Section 2.2 that given a weighted directed graph 𝐺 =
𝑉 ,𝐸, 𝑑𝑖𝑠𝑡) and a starting vertex 𝑣𝑗 , our special case of the CTM problem
i.e., 𝑚 = 1, 𝑣𝑒𝑙(𝑢𝑖) = 1 and 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) = 0, for all 1 ≤ 𝑖 ≤ 𝑚
nd 1 ≤ 𝑗 ≤ 𝑛) is to find a traveling salesman path starting from 𝑣𝑗 ,
.e., 𝑃 = (𝑣𝑗 , 𝑣𝑗1 ,… , 𝑣𝑗𝑛−1 ) with the minimum length. This problem is
imilar but not identical to the TSPP, since TSPP specifies 𝑣𝑗 and 𝑣𝑗′

(i.e., a path must start from 𝑣𝑗 and finish at 𝑣𝑗′ ), and CTM only specifies

𝑣𝑗 (i.e., a path must start from 𝑣𝑗 but finish at any vertex).
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Given an instance of the TSPP, i.e., 𝐺 = (𝑉 ,𝐸, 𝑑𝑖𝑠𝑡) and 𝑣𝑗 and 𝑣𝑗′ ,
e construct an instance of the CTM problem, i.e., 𝐺′ = (𝑉 ∪ 𝑣, 𝐸 ∪
𝑣𝑗′ , 𝑣}, 𝑑𝑖𝑠𝑡′) and 𝑣𝑗 , where 𝑑𝑖𝑠𝑡′ is the same as 𝑑𝑖𝑠𝑡 with the following
xtension, i.e., 𝑑𝑖𝑠𝑡′(𝑣𝑗′ , 𝑣) = 0. Then, a traveling salesman path in 𝐺′

tarting at 𝑣𝑗 with the minimum length must be 𝑃 ′ = (𝑣𝑗 ,… , 𝑣𝑗′ , 𝑣).
he reason is that if (𝑣𝑗′ , 𝑣) is not the last edge in a path, the path looks

ike (𝑣𝑗 ,… , 𝑣𝑗𝑘 , 𝑣, 𝑣𝑗𝑘+1 ,… , 𝑣𝑗′ ), and there must be two edges (𝑣𝑗𝑘 , 𝑣) and
𝑣, 𝑣𝑗𝑘+1 ); however, these edges do not even exist in 𝐺′. Furthermore,
he path 𝑃 = (𝑣𝑗 ,… , 𝑣𝑗′ ) must be the shortest path from 𝑣𝑗 to 𝑣𝑗′ in 𝐺′,
hich is also the shortest path from 𝑣𝑗 to 𝑣𝑗′ in 𝐺. In addition, we have

𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 ) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 ′). Hence, finding a shortest traveling salesman
ath from 𝑣𝑗 to 𝑣𝑗′ in 𝐺 is equivalent to finding a shortest traveling
alesman path starting from 𝑣𝑗 in 𝐺′. If the CTM problem can be solved

in polynomial time 𝑇 (𝑛), so is TSPP.
To summarize, we have shown a Karp reduction from the TSPP (and

a Turing reduction from the TSP) to the CTM problem. Any polynomial
time algorithm with time complexity 𝑇 (𝑛) for the CTM problem can be
used to solve the TSPP with the same time complexity, and can also be
used to solve the TSP with time complexity 𝑂(𝑛2𝑇 (𝑛)). This completes
the proof of the theorem. □

4.1.3. A heuristic algorithm
Our heuristic algorithm to solve the CTM problem is presented in

Algorithm 1.
We define

𝑏𝑒𝑠𝑡(𝑡𝑗 ) = argmin
1≤𝑖≤𝑚

{𝑡𝑖𝑚𝑒(𝑢𝑖) + 𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )},

which decides the 𝑢𝑖, such that if 𝑢𝑖 processes 𝑡𝑗 , the new processing
time of 𝑢𝑖 is the shortest among all UAVs (line (19)). Initially (line (8)),

𝑏𝑒𝑠𝑡(𝑡𝑗 ) = argmin
1≤𝑖≤𝑚

{𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )}.

The key idea of Algorithm 1 is in line (11), i.e., the next task 𝑡𝑗
is chosen and assigned to 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ), such that the new processing time
of 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ) (after 𝑡𝑗 is processed) is the minimum among all remaining

tasks. This can make 𝑐𝑡𝑖𝑚𝑒(𝑇 ) to increase slowly.

Algorithm 1: Completion Time Minimization

Input: 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑚}, 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, and 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ), 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ),
𝑣𝑒𝑙(𝑢𝑖), 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ), for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗, 𝑗′ ≤ 𝑛.
Output: 𝑇1, 𝑇2, ..., 𝑇𝑚, such that 𝑐𝑡𝑖𝑚𝑒(𝑇 ) is minimized.

The algorithm follows AF-Min with the following details in lines (8),
(11), (19):

𝑏𝑒𝑠𝑡(𝑡𝑗 ) ← argmin1≤𝑖≤𝑚{𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )}; (8)
𝑡𝑗 ← argmin𝑡𝑗′∈𝑇 {𝑡𝑖𝑚𝑒(𝑢𝑏𝑒𝑠𝑡(𝑡𝑗′ )) + 𝑝𝑡𝑖𝑚𝑒(𝑢𝑏𝑒𝑠𝑡(𝑡𝑗′ ), 𝑡𝑗′ )}; (11)

𝑏𝑒𝑠𝑡(𝑡𝑗′ ) ← argmin1≤𝑖≤𝑚{𝑡𝑖𝑚𝑒(𝑢𝑖) + 𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗′ )}; (19)

4.1.4. A lower bound
Let 𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑗 ) be the minimum possible processing time of 𝑡𝑗 . For

heterogeneous UAVs,

𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑗 ) = min
1≤𝑖≤𝑚

{

1
𝑣𝑒𝑙(𝑢𝑖)

min
{

min
1≤𝑖≤𝑚

{𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )},min
𝑗′≠𝑗

{𝑑𝑖𝑠𝑡(𝑡𝑗′ , 𝑡𝑗 )}
}

+ 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )
}

.

For homogeneous UAVs,

𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑗 ) =
1 min

{

min {𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )},min{𝑑𝑖𝑠𝑡(𝑡𝑗′ , 𝑡𝑗 )}
}

+ 𝑒𝑡𝑖𝑚𝑒(𝑡𝑗 ).
6

𝑣𝑒𝑙 1≤𝑖≤𝑚 𝑗′≠𝑗 r
Table 1A
Simulation results of completion time minimization (Homogeneous UAVs, 99%
confidence interval = ±0.64542%).
𝑛 𝜏 = 30 𝜏 = 50 𝜏 = 70 𝜏 = 90

10 1.36479 1.27578 1.23612 1.21343
20 1.26453 1.20056 1.16705 1.14718
30 1.21928 1.16558 1.13613 1.12090
40 1.19118 1.14534 1.12168 1.10443
50 1.17086 1.13277 1.10961 1.09579
60 1.15842 1.12286 1.10142 1.08769
70 1.14756 1.11417 1.09571 1.08233
80 1.14059 1.10901 1.08964 1.07836
90 1.13309 1.10317 1.08604 1.07416
100 1.12753 1.09808 1.08269 1.07178

Table 1B
Simulation results of completion time minimization (Heterogeneous UAVs, 99%
confidence interval = ±0.72353%).
𝑛 𝜏 = 30 𝜏 = 50 𝜏 = 70 𝜏 = 90

10 1.57959 1.47121 1.41077 1.38262
20 1.43992 1.35168 1.30632 1.27778
30 1.37605 1.29843 1.25561 1.22829
40 1.33650 1.26203 1.22473 1.20242
50 1.30944 1.23744 1.20254 1.18047
60 1.28857 1.22151 1.18741 1.16466
70 1.27148 1.20617 1.17343 1.15324
80 1.25785 1.19658 1.16398 1.14467
90 1.24708 1.18704 1.15646 1.13642
100 1.23656 1.17766 1.14943 1.13068

Theorem 1B. A lower bound for the optimal solution of the CTM problem
is

Opt(𝐼) ≥ 𝑐𝑡𝑖𝑚𝑒∗(𝑇 ) = 1
𝑚

𝑛
∑

𝑗=1
𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑗 ).

Proof. The above lower bound can be justified as follows. The optimal
completion time cannot be shorter than the total processing time
divided by 𝑚, while the total processing time cannot be shorter than
𝑛
∑

𝑗=1
𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑗 ),

ince the processing time of 𝑡𝑗 is at least 𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑗 ). □

Let 𝐼 be an instance of the CTM problem. Then, we have
𝐴1(𝐼)
Opt(𝐼) ≤

𝐴1(𝐼)
𝑐𝑡𝑖𝑚𝑒∗(𝑇 )

.

Therefore,

𝐵1 = 𝑬
[

𝐴1(𝐼)
𝑐𝑡𝑖𝑚𝑒∗(𝑇 )

]

can be considered as an expected performance bound of Algorithm 1.

4.1.5. Performance evaluation
We consider a UAV task processing environment with 𝑚 = 5 UAVs.

All UAVs are randomly, uniformly, and independently distributed in a
1000 m × 1000 m × 200 m three dimensional space. The UAV flight
velocities are randomly, uniformly, and independently distributed in
the range [20, 30] m∕s, equivalent to approximately [45, 67] mph.

All tasks are also randomly, uniformly, and independently dis-
tributed in a 1000 m × 1000 m × 200 m three dimensional space.
Task execution times are randomly, uniformly, and independently dis-
tributed in the range [𝜏, 2𝜏], where 𝜏 = 30, 50, 70, 90 s. Task rewards are
randomly, uniformly, and independently distributed in {1, 2, 3,… , 10}.

We use the Euclidean distance for any two positions.
Tables 1A and 1B demonstrate our simulation results of completion

ime minimization for both homogeneous and heterogeneous UAVs

espectively. The number of tasks is 𝑛 = 10, 20,… , 100. For each
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combination of 𝑛 and 𝜏, we generate 𝑀 = 1000 random instances
f the CTM problem. For each instance 𝐼 , we apply Algorithm 1 to
btain 𝐴1(𝐼), calculate the lower bound 𝑐𝑡𝑖𝑚𝑒∗(𝑇 ), and record the ratio
1(𝐼)∕𝑐𝑡𝑖𝑚𝑒∗(𝑇 ). The average of the 𝑀 ratios is reported as 𝐵1, with
9% confidence interval of ±0.64542% and ±0.72353% respectively.
e have the following important observations.

• The performance bound 𝐵1 is very close to one. This means that
Algorithm 1 is able to efficiently find an assignment of the 𝑛 tasks
to the 𝑚 UAVs and a flight route for each UAV, and to effectively
reduce the complete time.

• The performance bound 𝐵1 is closer to one as the number of tasks
increases and/or as the task execution times become longer. This
means that when there are many tasks, Algorithm 1 can more
effectively and efficiently minimize the complete time. Further-
more, as task execution times become longer, since the impact of
route planning becomes smaller, Algorithm 1 can perform better.

• Algorithm 1 performs better for homogeneous UAVs than hetero-
geneous UAVs, primarily due to less randomness and variability
of flight velocities and execution times.

.2. Total Time Minimization (TTM)

In this section, we address the total time minimization problem.

.2.1. Problem definition
The total time minimization problem is to minimize the total time

f a set of tasks.

roblem 2 (Total Time Minimization). Given a set of heterogeneous
AVs 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚}, and a set of tasks 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛}, the
otal time minimization (TTM) problem is to determine a partition of

into 𝑚 disjoint subsets 𝑇1, 𝑇2,… , 𝑇𝑚, where 𝑇𝑖 is assigned to 𝑢𝑖 and
1 ∪ 𝑇2 ∪⋯ ∪ 𝑇𝑚 = 𝑇 , such that the total time of 𝑇 , i.e.,

𝑡𝑖𝑚𝑒(𝑇 ) =
𝑚
∑

𝑖=1
𝑡𝑖𝑚𝑒(𝑢𝑖),

is minimized.

4.2.2. NP-hardness

Theorem 2A. The TTM problem is NP-hard.

Proof. When 𝑚 = 1, the TTM problem is identical to the CTM problem,
which is already known to be NP-hard when 𝑚 = 1 using a reduction
from the TSPP. □

4.2.3. A heuristic algorithm
Our heuristic algorithm to solve the TTM problem is presented in

Algorithm 2.

Algorithm 2: Total Time Minimization

Input: 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑚}, 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, and 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ), 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ),
𝑣𝑒𝑙(𝑢𝑖), 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ), for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗, 𝑗′ ≤ 𝑛.
Output: 𝑇1, 𝑇2, ..., 𝑇𝑚, such that 𝑡𝑡𝑖𝑚𝑒(𝑇 ) is minimized.

The algorithm follows AF-Min with the following details in lines (8),
(11), (19):

𝑏𝑒𝑠𝑡(𝑡𝑗 ) ← argmin1≤𝑖≤𝑚{𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )}; (8)
𝑡𝑗 ← argmin𝑡𝑗′∈𝑇 {𝑝𝑡𝑖𝑚𝑒(𝑢𝑏𝑒𝑠𝑡(𝑡𝑗′ ), 𝑡𝑗′ )}; (11)

𝑏𝑒𝑠𝑡(𝑡𝑗′ ) ← argmin1≤𝑖≤𝑚{𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗′ )}; (19)
7

We define

𝑏𝑒𝑠𝑡(𝑡𝑗 ) = argmin
1≤𝑖≤𝑚

{𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )},

which decides the 𝑢𝑖 that has the shortest processing time for 𝑡𝑗 among
all UAVs (line (19)). Initially (line (8)),

𝑏𝑒𝑠𝑡(𝑡𝑗 ) = argmin
1≤𝑖≤𝑚

{𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )}.

The key idea of Algorithm 2 is in line (11), i.e., the next task 𝑡𝑗 is
chosen and assigned to 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ), such that the processing time of 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 )
for 𝑡𝑗 is the minimum among all remaining tasks. This can make 𝑡𝑡𝑖𝑚𝑒(𝑇 )
to increase slowly. Since we are only interested in the total time, the
processing time 𝑡𝑖𝑚𝑒(𝑢𝑖) of each individual 𝑢𝑖 really does not matter.

4.2.4. A lower bound

Theorem 2B. A lower bound for the optimal solution of the TTM problem
is

Opt(𝐼) ≥ 𝑡𝑡𝑖𝑚𝑒∗(𝑇 ) =
𝑛
∑

𝑗=1
𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑗 ).

Proof. The above lower bound can be justified as follows. The optimal
total time cannot be shorter than the total minimum possible processing
time of all tasks. □

Let 𝐼 be an instance of the TTM problem. Then, we have
𝐴2(𝐼)
Opt(𝐼) ≤

𝐴2(𝐼)
𝑡𝑡𝑖𝑚𝑒∗(𝑇 )

.

Therefore,

𝐵2 = 𝑬
[

𝐴2(𝐼)
𝑡𝑡𝑖𝑚𝑒∗(𝑇 )

]

an be considered as an expected performance bound of Algorithm 2.

.2.5. Performance evaluation
We use the same parameter setting as that in Section 4.1.5.
Tables 2A and 2B demonstrate our simulation results of total time

inimization for both homogeneous and heterogeneous UAVs respec-
ively. The number of tasks is 𝑛 = 10, 20,… , 100. For each com-

bination of 𝑛 and 𝜏, we generate 𝑀 = 1000 random instances of
the TTM problem. For each instance 𝐼 , we apply Algorithm 2 to
obtain 𝐴2(𝐼), calculate the lower bound 𝑡𝑡𝑖𝑚𝑒∗(𝑇 ), and record the ratio
𝐴2(𝐼)∕𝑡𝑡𝑖𝑚𝑒∗(𝑇 ). The average of the 𝑀 ratios is reported as 𝐵2, with
9% confidence interval of ±0.14930% and ±0.32858% respectively.
e have the following important observations.

• The performance bound 𝐵2 is extremely close to one. This means
that Algorithm 2 is able to efficiently find an assignment of the
𝑛 tasks to the 𝑚 UAVs and a flight route for each UAV, and to
effectively reduce the total time.

• The performance bound 𝐵2 is closer to one as the number of
tasks increases and/or as the task execution times become longer.
(Actually, for homogeneous UAVs, when 𝑛 is small, 𝐵2 may
increase as 𝑛 increases; however, 𝐵2 eventually decreases as 𝑛
becomes big.) This means that when there are many tasks, Al-
gorithm 2 can more effectively and efficiently minimize the total
time. Furthermore, as task execution times become longer, since
the impact of route planning becomes smaller, Algorithm 2 can
perform better.

• Algorithm 2 performs better for homogeneous UAVs than hetero-
geneous UAVs, primarily due to less randomness and variability
of flight velocities and execution times.
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Table 2A
Simulation results of total time minimization (Homogeneous UAVs, 99% confidence
interval = ±0.14930%).
𝑛 𝜏 = 30 𝜏 = 50 𝜏 = 70 𝜏 = 90

10 1.04732 1.03330 1.02563 1.02089
20 1.06041 1.04282 1.03323 1.02719
30 1.06588 1.04789 1.03737 1.03025
40 1.06868 1.04937 1.03866 1.03179
50 1.06951 1.05027 1.03917 1.03267
60 1.07044 1.05076 1.03968 1.03271
70 1.07060 1.05080 1.04013 1.03311
80 1.07031 1.05080 1.04016 1.03349
90 1.07029 1.05055 1.04024 1.03349
100 1.06935 1.05049 1.04033 1.03350

Table 2B
Simulation results of total time minimization (Heterogeneous UAVs, 99% confidence
interval = ±0.32858%).
𝑛 𝜏 = 30 𝜏 = 50 𝜏 = 70 𝜏 = 90

10 1.19104 1.14690 1.11796 1.09864
20 1.20495 1.15258 1.12240 1.10255
30 1.20480 1.15059 1.12022 1.10032
40 1.20197 1.14814 1.11712 1.09850
50 1.19958 1.14537 1.11457 1.09620
60 1.19567 1.14230 1.11228 1.09436
70 1.19260 1.13862 1.10992 1.09215
80 1.18927 1.13694 1.10805 1.09026
90 1.18605 1.13369 1.10603 1.08830
100 1.18297 1.13116 1.10400 1.08701

4.3. Finished Tasks Maximization with Time Constraint (FTM-TC)

In this section, we address the finished tasks maximization with time
constraint problem.

4.3.1. Problem definition
The finished tasks maximization with time constraint problem is to

maximize the number of finished tasks within certain time deadline.

Problem 3 (Finished Tasks Maximization with Time Constraint). Given
set of heterogeneous UAVs 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚}, a set of tasks 𝑇 =

{𝑡1, 𝑡2,… , 𝑡𝑛}, and a time deadline 𝐷, the finished tasks maximization
with time constraint (FTM-TC) problem is to determine 𝑚 disjoint subsets
𝑇1, 𝑇2,… , 𝑇𝑚, where 𝑇𝑖 is assigned to 𝑢𝑖 and 𝑇1 ∪ 𝑇2 ∪⋯ ∪ 𝑇𝑚 ⊆ 𝑇 , such
that the time of 𝑢𝑖 does not exceed 𝐷, i.e., 𝑡𝑖𝑚𝑒(𝑢𝑖) ≤ 𝐷, for all 1 ≤ 𝑖 ≤ 𝑚,
and the number of finished tasks, i.e.,

𝑁𝑡 = |𝑇1| + |𝑇2| +⋯ + |𝑇𝑚|,

is maximized.

4.3.2. NP-hardness

Theorem 3A. The FTM-TC problem is NP-hard.

Proof. We provide a Turing reduction from the CTM problem to the
FTM-TC problem. Let 𝑑 be the longest distance:

𝑑 = max
{

max
1≤𝑖≤𝑚,1≤𝑗≤𝑛

{𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )}, max
1≤𝑗,𝑗′≤𝑛

{𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ )}
}

,

and 𝑒, 𝑓 be the maximum execution time and the maximum flight time
respectively:

𝑒 = max
1≤𝑖≤𝑚,1≤𝑗≤𝑛

{𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )}, 𝑓 = 𝑑∕ min
1≤𝑖≤𝑚

{𝑣𝑒𝑙(𝑢𝑖)},

and 𝐵 = 𝑛(𝑒 + 𝑓 ) be an upper bound on the completion time 𝑐𝑡𝑖𝑚𝑒(𝑇 ).
It is clear that the CTM problem is basically to find the minimum 𝐷,
uch that all tasks can be finished by the deadline 𝐷. Such 𝐷 can

be found by a binary search in the range [0, 𝐵]. Given any algorithm
8

𝐴 for the FTM-TC problem with time complexity 𝑇 (𝑛), we can run
algorithm 𝐴 multiple times to find 𝐷. Initially, we set 𝐷 = 𝐵∕2. After
each execution, we check whether all tasks can be finished, and adjust
𝐷 accordingly. The number of times to run algorithm 𝐴 is linearly
proportional to the input size of 𝐵 (its magnitude and precision).
Therefore, we obtain an algorithm for the CTM problem with time
complexity 𝑂((the input size of 𝐵)𝑇 (𝑛)), which is a polynomial of the
input size. □

4.3.3. A heuristic algorithm
Our heuristic algorithm to solve the FTM-TC problem is presented

in Algorithm 3.

Algorithm 3: Finished Tasks Maximization with Time Constraint

Input: 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑚}, 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, and 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ), 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ),
𝑣𝑒𝑙(𝑢𝑖), 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ), for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗, 𝑗′ ≤ 𝑛, and a time deadline
𝐷.
Output: 𝑇1, 𝑇2, ..., 𝑇𝑚, such that 𝑡𝑖𝑚𝑒(𝑢𝑖) ≤ 𝐷, for all 1 ≤ 𝑖 ≤ 𝑚, and 𝑁𝑡 is
maximized.

The algorithm follows AF-Max with the following details in lines (8), (9),
(13), (21), (25):

𝑢𝑎𝑣(𝑡𝑗 ) ← {𝑖 | 𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) ≤ 𝐷}; (8)
𝑏𝑒𝑠𝑡(𝑡𝑗 ) ← argmin𝑖∈𝑢𝑎𝑣(𝑡𝑗 ){𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )}, if 𝑢𝑎𝑣(𝑡𝑗 ) ≠ ∅; (9)
𝑡𝑗 ← argmin𝑡𝑗′∈𝑇 and 𝑢𝑎𝑣(𝑡𝑗′ )≠∅{𝑝𝑡𝑖𝑚𝑒(𝑢𝑏𝑒𝑠𝑡(𝑡𝑗′ ), 𝑡𝑗′ )}; (13)
if (𝑡𝑖𝑚𝑒(𝑢𝑖) + 𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗′ ) ≤ 𝐷) then (21)
𝑏𝑒𝑠𝑡(𝑡𝑗′ ) ← argmin𝑖∈𝑢𝑎𝑣(𝑡𝑗′ ){𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗′ )}, if 𝑢𝑎𝑣(𝑡𝑗′ ) ≠ ∅; (25)

Let us define

𝑢𝑎𝑣(𝑡𝑗 ) = {𝑖 ∣ 𝑡𝑖𝑚𝑒(𝑢𝑖) + 𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) ≤ 𝐷},

which is the set of 𝑢𝑖’s that can still accommodate 𝑡𝑗 within the time
deadline 𝐷 (line (21)). Initially (line (8)),

𝑢𝑎𝑣(𝑡𝑗 ) = {𝑖 ∣ 𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) ≤ 𝐷}.

The definition of 𝑏𝑒𝑠𝑡(𝑡𝑗 ) is given as

𝑏𝑒𝑠𝑡(𝑡𝑗 ) = argmin
𝑖∈𝑢𝑎𝑣(𝑡𝑗 )

{𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )}, if 𝑢𝑎𝑣(𝑡𝑗 ) ≠ ∅.

The 𝑏𝑒𝑠𝑡(𝑡𝑗 ) value decides the 𝑢𝑖, such that 𝑢𝑖 still has time to execute 𝑡𝑗
before the deadline and has the shortest processing time for 𝑡𝑗 among
all UAVs which can execute 𝑡𝑗 (lines (9) and (25)).

The key idea of Algorithm 3 is in line (13), i.e., the next task 𝑡𝑗 is
chosen and assigned to 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ), such that the processing time of 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 )
for 𝑡𝑗 is the minimum among all remaining tasks. This is to process as
many tasks as possible within the time deadline.

4.3.4. An upper bound
Let tasks be arranged in such a way that

𝑝𝑡𝑖𝑚𝑒∗(𝑡1) ≤ 𝑝𝑡𝑖𝑚𝑒∗(𝑡2) ≤ ⋯ ≤ 𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑛).

Theorem 3B. An upper bound for the optimal solution of the FTM-TC
problem is

Opt(𝐼) ≤ 𝑁∗
𝑡 = 𝑘,

where 𝑘 is the largest integer satisfying

𝑝𝑡𝑖𝑚𝑒∗(𝑡1) + 𝑝𝑡𝑖𝑚𝑒∗(𝑡2) +⋯ + 𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑘) ≤ 𝑚𝐷.

Proof. The above upper bound can be justified as follows. The total
time of all UAVs cannot be greater than 𝑚𝐷. To finish as many tasks
as possible within the time deadline, we need to execute tasks with



Journal of Systems Architecture 140 (2023) 102895K. Li

T

𝐵

c

4

𝐷

Table 3A
Simulation results of finished tasks maximization with time constraint (Homogeneous
UAVs, 99% confidence interval = ±0.96797%).
𝑛 𝜏 = 30 𝜏 = 50 𝜏 = 70 𝜏 = 90

15 0.67670 0.69804 0.70533 0.71449
30 0.82486 0.84531 0.85701 0.86214
45 0.86326 0.88450 0.89473 0.90155
60 0.88153 0.90026 0.91090 0.91731
75 0.89412 0.91218 0.92109 0.92746
90 0.90186 0.91901 0.92828 0.93451
105 0.90875 0.92550 0.93400 0.93966
120 0.91228 0.92845 0.93850 0.94377
135 0.91642 0.93279 0.94174 0.94714
150 0.91932 0.93544 0.94388 0.94938

as short processing time as possible. According to the definition of 𝑘,
it is the maximum possible number of finished tasks within the time
deadline. □

Let 𝐼 be an instance of the FTM-TC problem. Then, we have
𝐴3(𝐼)
Opt(𝐼) ≥

𝐴3(𝐼)
𝑁∗

𝑡
.

herefore,

3 = 𝑬
[

𝐴3(𝐼)
𝑁∗

𝑡

]

an be considered as an expected performance bound of Algorithm 3.

.3.5. Performance evaluation
We use the same parameter setting as that in Section 4.1.5.
The time deadline is set as

= 1
𝑚

×
(

2
3
𝑛
)

× 0.85(10.0 + 1.5𝜏),

such that the number of finished tasks is roughly (2∕3)𝑛.
Tables 3A and 3B demonstrate our simulation results of finished

tasks maximization with time constraint for both homogeneous and
heterogeneous UAVs respectively. The number of tasks is 𝑛 = 15, 30,… ,
150. For each combination of 𝑛 and 𝜏, we generate 𝑀 = 1000 random
instances of the FTM-TC problem. For each instance 𝐼 , we apply
Algorithm 3 to obtain 𝐴3(𝐼), calculate the upper bound 𝑁∗

𝑡 , and record
the ratio 𝐴3(𝐼)∕𝑁∗

𝑡 . The average of the 𝑀 ratios is reported as 𝐵3, with
99% confidence interval of ±0.96797% and ±1.03438% respectively.
We have the following important observations.

• The performance bound 𝐵3 is very close to one. This means that
Algorithm 3 is able to efficiently find an assignment of the 𝑛 tasks
to the 𝑚 UAVs and a flight route for each UAV, and to effectively
increase the number of finished tasks.

• The performance bound 𝐵3 is closer to one as the number of
tasks increases and/or as the task execution times become longer.
This means that when there are many tasks, Algorithm 3 can
more effectively and efficiently maximize the number of finished
tasks for a given time deadline. Furthermore, as task execution
times become longer, since the impact of route planning becomes
smaller, Algorithm 3 can perform better.

• Algorithm 3 performs better for homogeneous UAVs than hetero-
geneous UAVs, primarily due to less randomness and variability
of flight velocities and execution times.

4.4. Reward Maximization with Time Constraint (RM-TC)

In this section, we address the reward maximization with time
9

constraint problem. (
Table 3B
Simulation results of finished tasks maximization with time constraint (Heterogeneous
UAVs, 99% confidence interval = ±1.03438%).
𝑛 𝜏 = 30 𝜏 = 50 𝜏 = 70 𝜏 = 90

15 0.63610 0.69591 0.74025 0.77025
30 0.75188 0.79260 0.81743 0.83192
45 0.78364 0.81869 0.84005 0.85134
60 0.80677 0.84145 0.86108 0.87315
75 0.82155 0.85620 0.87568 0.88781
90 0.83161 0.86520 0.88400 0.89612
105 0.84021 0.87298 0.89207 0.90329
120 0.84703 0.87918 0.89723 0.90903
135 0.85284 0.88455 0.90172 0.91329
150 0.85772 0.88903 0.90582 0.91676

4.4.1. Problem definition
The reward maximization with time constraint problem is to maxi-

mize the total reward of finished tasks within certain time deadline.

Problem 4 (Reward Maximization with Time Constraint). Given a set
of heterogeneous UAVs 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚}, a set of tasks 𝑇 =
{𝑡1, 𝑡2,… , 𝑡𝑛}, and a time deadline 𝐷, the reward maximization with
time constraint (RM-TC) problem is to determine 𝑚 disjoint subsets
𝑇1, 𝑇2,… , 𝑇𝑚, where 𝑇𝑖 is assigned to 𝑢𝑖 and 𝑇1 ∪ 𝑇2 ∪ ⋯ ∪ 𝑇𝑚 ⊆ 𝑇 ,
such that the time of 𝑢𝑖 does not exceed 𝐷, i.e., 𝑡𝑖𝑚𝑒(𝑢𝑖) ≤ 𝐷, for all
1 ≤ 𝑖 ≤ 𝑚, and the total reward of finished tasks, i.e.,

𝑅𝑡 =
𝑚
∑

𝑖=1
𝑟𝑒𝑤𝑎𝑟𝑑(𝑢𝑖),

is maximized.

4.4.2. NP-hardness

Theorem 4A. The RM-TC problem is NP-hard.

Proof. If all tasks have the same reward: 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡1) = 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡2) =
⋯ = 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑛), the RM-TC problem is identical to the FTM-TC prob-
lem. In other words, the FTM-TC problem is a special case of the RM-TC
problem. □

4.4.3. A heuristic algorithm
Our heuristic algorithm to solve the RM-TC problem is presented in

Algorithm 4.

Algorithm 4: Reward Maximization with Time Constraint

Input: 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑚}, 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, and 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ), 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ),
𝑣𝑒𝑙(𝑢𝑖), 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ), 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗 ), for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗, 𝑗′ ≤ 𝑛, and a
time deadline 𝐷.
Output: 𝑇1, 𝑇2, ..., 𝑇𝑚, such that 𝑡𝑖𝑚𝑒(𝑢𝑖) ≤ 𝐷, for all 1 ≤ 𝑖 ≤ 𝑚, and 𝑅𝑡 is
maximized.

The algorithm follows AF-Max with the following details in lines (8), (9),
(13), (21), (25):

𝑢𝑎𝑣(𝑡𝑗 ) ← {𝑖 | 𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) + 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) ≤ 𝐷}; (8)
𝑏𝑒𝑠𝑡(𝑡𝑗 ) ← argmax𝑖∈𝑢𝑎𝑣(𝑡𝑗 ){𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗 )∕𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )},

if 𝑢𝑎𝑣(𝑡𝑗 ) ≠ ∅; (9)
𝑡𝑗 ← argmax𝑡𝑗′∈𝑇 and 𝑢𝑎𝑣(𝑡𝑗′ )≠∅

{𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗′ )∕𝑝𝑡𝑖𝑚𝑒(𝑢𝑏𝑒𝑠𝑡(𝑡𝑗′ ), 𝑡𝑗′ )}; (13)
if (𝑡𝑖𝑚𝑒(𝑢𝑖) + 𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗′ ) ≤ 𝐷) then (21)
𝑏𝑒𝑠𝑡(𝑡𝑗′ ) ← argmax𝑖∈𝑢𝑎𝑣(𝑡𝑗′ ){𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗′ )∕𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗′ )},

if 𝑢𝑎𝑣(𝑡𝑗′ ) ≠ ∅; (25)

The definition of 𝑢𝑎𝑣(𝑡𝑗 ) is the same as that in Section 4.3.3 (lines
8) and (21)).
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The definition of 𝑏𝑒𝑠𝑡(𝑡𝑗 ) is modified as

𝑏𝑒𝑠𝑡(𝑡𝑗 ) = argmax
𝑖∈𝑢𝑎𝑣(𝑡𝑗 )

{ 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗 )
𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 )

}

, if 𝑢𝑎𝑣(𝑡𝑗 ) ≠ ∅.

The 𝑏𝑒𝑠𝑡(𝑡𝑗 ) value decides the 𝑢𝑖, such that 𝑢𝑖 still has time to execute 𝑡𝑗
efore the deadline and has the highest reward per unit of processing
ime for 𝑡𝑗 among all UAVs which can execute 𝑡𝑗 (lines (9) and (25)).

The key idea of Algorithm 4 is in line (13), i.e., the next task 𝑡𝑗 is
hosen and assigned to 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ), such that 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ) has the highest reward

er unit of processing time for 𝑡𝑗 among all remaining tasks. This is to
et the highest reward within the time deadline.

.4.4. An upper bound
Let tasks be arranged in such a way that

𝑟𝑒𝑤𝑎𝑟𝑑(𝑡1)
𝑝𝑡𝑖𝑚𝑒∗(𝑡1)

≥
𝑟𝑒𝑤𝑎𝑟𝑑(𝑡2)
𝑝𝑡𝑖𝑚𝑒∗(𝑡2)

≥ ⋯ ≥
𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑛)
𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑛)

.

heorem 4B. An upper bound for the optimal solution of the RM-TC
roblem is

pt(𝐼) ≤ 𝑅∗
𝑡 =

𝑘
∑

𝑗=1
𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗 ) +

𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑘+1)
𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑘+1)

(

𝑚𝐷 −
𝑘
∑

𝑗=1
𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑗 )

)

,

here 𝑘 is the largest integer satisfying

𝑡𝑖𝑚𝑒∗(𝑡1) + 𝑝𝑡𝑖𝑚𝑒∗(𝑡2) +⋯ + 𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑘) ≤ 𝑚𝐷.

Proof. The above upper bound can be justified as follows. The total
time of all UAVs cannot be greater than 𝑚𝐷. To maximize the total
reward of finished tasks, we need to maximize the reward per unit of
processing time. According to the definition of 𝑘, 𝑅∗

𝑡 is the maximum
possible reward of finished tasks within the time deadline. □

Let 𝐼 be an instance of the RM-TC problem. Then, we have
𝐴4(𝐼)
Opt(𝐼) ≥

𝐴4(𝐼)
𝑅∗
𝑡

.

Therefore,

𝐵4 = 𝑬
[

𝐴4(𝐼)
𝑅∗
𝑡

]

can be considered as an expected performance bound of Algorithm 4.

4.4.5. Performance evaluation
We use the same parameter setting as that in Sections 4.1.5 and

4.3.5.
Tables 4A and 4B demonstrate our simulation results of reward

maximization with time constraint for both homogeneous and heteroge-
neous UAVs respectively. The number of tasks is 𝑛 = 15, 30,… , 150. For
ach combination of 𝑛 and 𝜏, we generate 𝑀 = 1000 random instances
f the RM-TC problem. For each instance 𝐼 , we apply Algorithm 4
o obtain 𝐴4(𝐼), calculate the upper bound 𝑅∗

𝑡 , and record the ratio
𝐴4(𝐼)∕𝑅∗

𝑡 . The average of the 𝑀 ratios is reported as 𝐵4, with 99%
confidence interval of ±0.76493% and ±0.88322 respectively. We have
the following important observations.

• The performance bound 𝐵4 is very close to one. This means that
Algorithm 4 is able to efficiently find an assignment of the 𝑛 tasks
to the 𝑚 UAVs and a flight route for each UAV, and to effectively
increase the reward of finished tasks.

• The performance bound 𝐵4 is closer to one as the number of
tasks increases and/or as the task execution times become longer.
This means that when there are many tasks, Algorithm 4 can
more effectively and efficiently maximize the reward of finished
tasks within a time constraint. Furthermore, as task execution
times become longer, since the impact of route planning becomes
smaller, Algorithm 4 can perform better.
10
Table 4A
Simulation results of reward maximization with time constraint (Homogeneous UAVs,
99% confidence interval = ±0.76493%).
𝑛 𝜏 = 30 𝜏 = 50 𝜏 = 70 𝜏 = 90

15 0.71232 0.73766 0.75129 0.76104
30 0.85603 0.87823 0.89113 0.90006
45 0.88957 0.90915 0.91942 0.92730
60 0.90563 0.92312 0.93344 0.94006
75 0.91531 0.93187 0.94216 0.94769
90 0.92094 0.93752 0.94664 0.95306
105 0.92503 0.94120 0.95030 0.95614
120 0.92825 0.94455 0.95354 0.95900
135 0.93138 0.94637 0.95501 0.96101
150 0.93413 0.94832 0.95695 0.96260

Table 4B
Simulation results of reward maximization with time constraint (Heterogeneous UAVs,
99% confidence interval = ±0.88322%).
𝑛 𝜏 = 30 𝜏 = 50 𝜏 = 70 𝜏 = 90

15 0.66862 0.71060 0.74475 0.77675
30 0.80306 0.83228 0.85493 0.87050
45 0.83836 0.86287 0.88325 0.89573
60 0.85456 0.88084 0.89658 0.90749
75 0.86555 0.88967 0.90530 0.91489
90 0.87133 0.89539 0.91051 0.92129
105 0.87821 0.90025 0.91565 0.92499
120 0.88223 0.90415 0.91874 0.92794
135 0.88578 0.90777 0.92150 0.93143
150 0.89000 0.91098 0.92444 0.93343

• Algorithm 4 performs better for homogeneous UAVs than hetero-
geneous UAVs, primarily due to less randomness and variability
of flight velocities and execution times.

5. Distance-centric problems

In this section, we deal with distance-centric optimization problems,
including the longest distance minimization problem, the total dis-
tance minimization problem, the finished tasks maximization with dis-
tance constraint problem, and the reward maximization with distance
constraint problem. For each problem, we give its definition, prove
its NP-hardness, present a heuristic algorithm, derive a lower bound
(for a minimization problem) or an upper bound (for a maximization
problem), and evaluate its performance.

5.1. Longest Distance Minimization (LDM)

In this section, we address the longest distance minimization prob-
lem.

5.1.1. Problem definition
The longest distance minimization problem is to minimize the

longest distance of a set of tasks.

Problem 5 (Longest Distance Minimization). Given a set of heteroge-
neous UAVs 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚}, and a set of tasks 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛}, the
longest distance minimization (LDM) problem is to determine a partition
of 𝑇 into 𝑚 disjoint subsets 𝑇1, 𝑇2,… , 𝑇𝑚, where 𝑇𝑖 is assigned to 𝑢𝑖 and
𝑇1 ∪ 𝑇2 ∪⋯ ∪ 𝑇𝑚 = 𝑇 , such that the longest distance of 𝑇 , i.e.,

𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ) = max
1≤𝑖≤𝑚

{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖)},

is minimized.
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5.1.2. NP-hardness

Theorem 5A. The LDM problem is NP-hard.

roof. As mentioned in Section 2.2, when 𝑣𝑒𝑙(𝑢𝑖) = 1 and 𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) =
0, for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛, we have 𝑡𝑖𝑚𝑒(𝑢𝑖) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖).
Hence, in this special case, the LDM problem is identical to the CTM
problem, which is already known to be NP-hard even when 𝑚 = 1 using
a reduction from the TSPP. □

5.1.3. A heuristic algorithm
Our heuristic algorithm to solve the LDM problem is presented in

Algorithm 5.

Algorithm 5: Longest Distance Minimization

Input: 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑚}, 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, and 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ), 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ), for
all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗, 𝑗′ ≤ 𝑛.
Output: 𝑇1, 𝑇2, ..., 𝑇𝑚, such that 𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ) is minimized.

The algorithm follows AF-Min with the following details in lines (8),
(11), (19):

𝑏𝑒𝑠𝑡(𝑡𝑗 ) ← argmin1≤𝑖≤𝑚{𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )}; (8)
𝑡𝑗 ← argmin𝑡𝑗′∈𝑇 {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑏𝑒𝑠𝑡(𝑡𝑗′ )) + 𝑓𝑑𝑖𝑠𝑡(𝑢𝑏𝑒𝑠𝑡(𝑡𝑗′ ), 𝑡𝑗′ )}; (11)

𝑏𝑒𝑠𝑡(𝑡𝑗′ ) ← argmin1≤𝑖≤𝑚{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) + 𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗′ )}; (19)

We define

𝑒𝑠𝑡(𝑡𝑗 ) = argmin
1≤𝑖≤𝑚

{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) + 𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )},

which decides the 𝑢𝑖, such that if 𝑢𝑖 processes 𝑡𝑗 , the new flight distance
of 𝑢𝑖 is the shortest among all UAVs (line (19)). Initially (line (8)),

𝑏𝑒𝑠𝑡(𝑡𝑗 ) = argmin
1≤𝑖≤𝑚

{𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )}.

The key idea of Algorithm 5 is in line (11), i.e., the next task 𝑡𝑗
s chosen and assigned to 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ), such that the new flight distance of

𝑏𝑒𝑠𝑡(𝑡𝑗 ) (after 𝑡𝑗 is processed) is the minimum among all remaining tasks.
his can make 𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ) to increase slowly.

.1.4. A lower bound
Let 𝑑𝑖𝑠𝑡∗(𝑡𝑗 ) be the minimum flight distance to reach 𝑡𝑗 :

𝑖𝑠𝑡∗(𝑡𝑗 ) = min
{

min
1≤𝑖≤𝑚

{𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )},min
𝑗′≠𝑗

{𝑑𝑖𝑠𝑡(𝑡𝑗′ , 𝑡𝑗 )}
}

.

heorem 5B. A lower bound for the optimal solution of the LDM problem
s

pt(𝐼) ≥ 𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 ) = 1
𝑚

𝑛
∑

𝑗=1
𝑑𝑖𝑠𝑡∗(𝑡𝑗 ).

Proof. The above lower bound can be justified as follows. The optimal
longest distance cannot be shorter than the total distance divided by 𝑚,
while the total distance cannot be shorter than
𝑛
∑

𝑗=1
𝑑𝑖𝑠𝑡∗(𝑡𝑗 ),

since the flight distance to reach 𝑡𝑗 is at least 𝑑𝑖𝑠𝑡∗(𝑡𝑗 ). □

Let 𝐼 be an instance of the LDM problem. Then, we have
𝐴5(𝐼) ≤

𝐴5(𝐼) .
11

Opt(𝐼) 𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 ) f
Table 5
Simulation results of longest distance minimization (99% confidence interval =
±1.70573%).
𝑛 𝑚 = 3 𝑚 = 5 𝑚 = 7 𝑚 = 9

15 1.83001 2.15761 2.46208 2.76499
30 1.76137 1.93912 2.16648 2.34352
45 1.73176 1.86453 2.00664 2.16382
60 1.70407 1.82211 1.92672 2.06167
75 1.67991 1.79521 1.87785 2.00090
90 1.66439 1.76451 1.85102 1.94942
105 1.65486 1.74373 1.82498 1.91043
120 1.63568 1.72506 1.80488 1.87775
135 1.63284 1.70645 1.78087 1.85071
150 1.62526 1.69886 1.76536 1.83470

Therefore,

𝐵5 = 𝑬
[

𝐴5(𝐼)
𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 )

]

an be considered as an expected performance bound of Algorithm 5.

.1.5. Performance evaluation
We use the same parameter setting as that in Section 4.1.5.
Table 5 demonstrates our simulation results of longest distance

inimization. Since flight velocities and execution speeds are not con-
idered, we do not distinguish homogeneous and heterogeneous UAVs.
he number of tasks is 𝑛 = 15, 30,… , 150. The number of UAVs is

𝑚 = 3, 5, 7, 9. For each combination of 𝑛 and 𝑚, we generate 𝑀 = 1000
andom instances of the LDM problem. For each instance 𝐼 , we apply

Algorithm 5 to obtain 𝐴5(𝐼), calculate the lower bound 𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 ),
and record the ratio 𝐴5(𝐼)∕𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 ). The average of the 𝑀 ratios is
eported as 𝐵5, with 99% confidence interval of ±1.70573%. We have
he following important observations.

• The performance bound 𝐵5 is moderately close to one. Further im-
provement is possible by tightening the lower bound and finding
a more effective heuristic algorithm.

• The performance bound 𝐵5 increases as the number of UAVs
increases. This means that it is more difficult to manage more
UAVs in reducing the longest distance.

• The performance bound 𝐵5 decreases as the number of tasks in-
creases. This means that when there are many tasks, Algorithm 5
can more effectively and efficiently minimize the longest distance.

.2. Total Distance Minimization (TDM)

In this section, we address the total distance minimization problem.

.2.1. Problem definition
The total distance minimization problem is to minimize the total

istance of a set of tasks.

roblem 6 (Total Distance Minimization). Given a set of heterogeneous
UAVs 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚}, and a set of tasks 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛}, the
total distance minimization (TDM) problem is to determine a partition
of 𝑇 into 𝑚 disjoint subsets 𝑇1, 𝑇2,… , 𝑇𝑚, where 𝑇𝑖 is assigned to 𝑢𝑖 and
𝑇1 ∪ 𝑇2 ∪⋯ ∪ 𝑇𝑚 = 𝑇 , such that the total distance of 𝑇 , i.e.,

𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ) =
𝑚
∑

𝑖=1
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖),

is minimized.

5.2.2. NP-hardness

Theorem 6A. The TDM problem is NP-hard.

Proof. When 𝑚 = 1, the TDM problem is identical to the LDM problem,
which is already known to be NP-hard when 𝑚 = 1 using a reduction

rom the TSPP. □
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5.2.3. A heuristic algorithm
Our heuristic algorithm to solve the TDM problem is presented in

Algorithm 6.

Algorithm 6: Total Distance Minimization

Input: 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑚}, 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, and 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ), 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ), for
all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗, 𝑗′ ≤ 𝑛.
Output: 𝑇1, 𝑇2, ..., 𝑇𝑚, such that 𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ) is minimized.

The algorithm follows AF-Min with the following details in lines (8),
(11), (19):

𝑏𝑒𝑠𝑡(𝑡𝑗 ) ← argmin1≤𝑖≤𝑚{𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )}; (8)
𝑡𝑗 ← argmin𝑡𝑗′∈𝑇 {𝑓𝑑𝑖𝑠𝑡(𝑢𝑏𝑒𝑠𝑡(𝑡𝑗′ ), 𝑡𝑗′ )}; (11)

𝑏𝑒𝑠𝑡(𝑡𝑗′ ) ← argmin1≤𝑖≤𝑚{𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗′ )}; (19)

We define

𝑒𝑠𝑡(𝑡𝑗 ) = argmin
1≤𝑖≤𝑚

{𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )},

which decides the 𝑢𝑖 that has the shortest flight distance to 𝑡𝑗 among
ll UAVs (line (19)). Initially (line (8)),

𝑒𝑠𝑡(𝑡𝑗 ) = argmin
1≤𝑖≤𝑚

{𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )}.

The key idea of Algorithm 6 is in line (11), i.e., the next task 𝑡𝑗
s chosen and assigned to 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ), such that the flight distance from
𝑏𝑒𝑠𝑡(𝑡𝑗 ) to 𝑡𝑗 is the minimum among all remaining tasks. This can make
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ) to increase slowly. Since we are only interested in the total
istance, the flight distance 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) of each individual 𝑢𝑖 really does
ot matter.

.2.4. A lower bound

heorem 6B. A lower bound for the optimal solution of the TDM problem
s

pt(𝐼) ≥ 𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 ) =
𝑛
∑

𝑗=1
𝑑𝑖𝑠𝑡∗(𝑡𝑗 ).

roof. The above lower bound can be justified as follows. The optimal
otal distance cannot be shorter than the total minimum distance to
each tasks. □

Let 𝐼 be an instance of the TDM problem. Then, we have
𝐴6(𝐼)
Opt(𝐼) ≤

𝐴6(𝐼)
𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 )

.

herefore,

6 = 𝑬
[

𝐴2(𝐼)
𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 )

]

an be considered as an expected performance bound of Algorithm 6.

.2.5. Performance evaluation
We use the same parameter setting as that in Section 4.1.5.
Table 6 demonstrates our simulation results of total distance mini-

ization. Since flight velocities and execution speeds are not consid-
red, we do not distinguish homogeneous and heterogeneous UAVs.
he number of tasks is 𝑛 = 15, 30,… , 150. The number of UAVs is
= 3, 5, 7, 9. For each combination of 𝑛 and 𝑚, we generate 𝑀 = 1000

random instances of the TDM problem. For each instance 𝐼 , we apply
Algorithm 6 to obtain 𝐴6(𝐼), calculate the lower bound 𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 ),
nd record the ratio 𝐴6(𝐼)∕𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 ). The average of the 𝑀 ratios is
eported as 𝐵6, with 99% confidence interval of ±0.71157%. We have
12

he following important observations.
Table 6
Simulation results of total distance minimization (99% confidence interval =
±0.71157%).
𝑛 𝑚 = 3 𝑚 = 5 𝑚 = 7 𝑚 = 9

15 1.34176 1.26310 1.21041 1.18239
30 1.39468 1.32278 1.27797 1.24838
45 1.41577 1.35765 1.31882 1.28146
60 1.42891 1.37747 1.33921 1.30910
75 1.43934 1.38952 1.35535 1.32930
90 1.44793 1.39915 1.36759 1.34036
105 1.44796 1.40579 1.37606 1.35304
120 1.45360 1.41375 1.38404 1.36153
135 1.45393 1.41833 1.38969 1.36821
150 1.45616 1.41968 1.39334 1.37425

• The performance bound 𝐵6 is reasonably close to one. Further im-
provement is possible by tightening the lower bound and finding
a more effective heuristic algorithm.

• The performance bound 𝐵6 decreases as the number of UAVs
increases. This means that Algorithm 6 is more effective and
efficient in managing more UAVs to reduce the total distance.

• The performance bound 𝐵6 increases as the number of tasks
increases. This means that it is more difficult to handle more tasks
in reducing the total distance.

5.3. Finished Tasks Maximization with Distance Constraint (FTM-DC)

In this section, we address the finished tasks maximization with
distance constraint problem.

5.3.1. Problem definition
The finished tasks maximization with distance constraint problem

is to maximize the number of finished tasks within certain distance
limitation.

Problem 7 (Finished Tasks Maximization with Distance Constraint). Given
a set of heterogeneous UAVs 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚}, a set of tasks 𝑇 =
{𝑡1, 𝑡2,… , 𝑡𝑛}, and a distance limitation 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖) for each 𝑢𝑖, the
finished tasks maximization with distance constraint (FTM-DC) problem
is to determine 𝑚 disjoint subsets 𝑇1, 𝑇2,… , 𝑇𝑚, where 𝑇𝑖 is assigned to
𝑢𝑖 and 𝑇1 ∪ 𝑇2 ∪⋯ ∪ 𝑇𝑚 ⊆ 𝑇 , such that the flight distance of 𝑢𝑖 does not
exceed 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖), i.e., 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖), for all 1 ≤ 𝑖 ≤ 𝑚, and
the number of finished tasks, i.e.,

𝑁𝑑 = |𝑇1| + |𝑇2| +⋯ + |𝑇𝑚|,

is maximized.

5.3.2. NP-hardness

Theorem 7A. The FTM-DC problem is NP-hard.

Proof. We provide a Turing reduction from the LDM problem to the
FTM-DC problem. Let 𝑑 be the longest distance defined in the proof of
Theorem 3A, and 𝐵 = 𝑛𝑑 be an upper bound on the longest distance
𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ). Assume that 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖) = 𝐷 for all 1 ≤ 𝑖 ≤ 𝑚. It is
clear that the LDM problem is basically to find the minimum 𝐷, such
that all tasks can be finished within the distance limitation 𝐷. Such
𝐷 can be found by a binary search in the range [0, 𝐵]. Given any
algorithm 𝐴 for the FTM-DC problem with time complexity 𝑇 (𝑛), we
can run algorithm 𝐴 multiple times to find 𝐷. The number of times
to run algorithm 𝐴 is linearly proportional to the input size of 𝐵 (its
magnitude and precision). Therefore, we obtain an algorithm for the
LDM problem with time complexity 𝑂((the input size of 𝐵)𝑇 (𝑛)), which
is a polynomial of the input size. □
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Algorithm 7: Finished Tasks Maximization with Distance Constraint

Input: 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑚}, 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, and 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ), 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ),
𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖), for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗, 𝑗′ ≤ 𝑛.
Output: 𝑇1, 𝑇2, ..., 𝑇𝑚, such that 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖), for all 1 ≤ 𝑖 ≤ 𝑚,
and 𝑁𝑑 is maximized.

The algorithm follows AF-Max with the following details in lines (8), (9),
(13), (21), (25):

𝑢𝑎𝑣(𝑡𝑗 ) ← {𝑖 | 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ) ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖)}; (8)
𝑏𝑒𝑠𝑡(𝑡𝑗 ) ← argmin𝑖∈𝑢𝑎𝑣(𝑡𝑗 ){𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )}, if 𝑢𝑎𝑣(𝑡𝑗 ) ≠ ∅; (9)
𝑡𝑗 ← argmin𝑡𝑗′∈𝑇 and 𝑢𝑎𝑣(𝑡𝑗′ )≠∅{𝑓𝑑𝑖𝑠𝑡(𝑢𝑏𝑒𝑠𝑡(𝑡𝑗′ ), 𝑡𝑗′ )}; (13)
if (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) + 𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗′ ) ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖)) then (21)
𝑏𝑒𝑠𝑡(𝑡𝑗′ ) ← argmin𝑖∈𝑢𝑎𝑣(𝑡𝑗′ ){𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗′ )}, if 𝑢𝑎𝑣(𝑡𝑗′ ) ≠ ∅; (25)

5.3.3. A heuristic algorithm
Our heuristic algorithm to solve the FTM-DC problem is presented

in Algorithm 7.
Let us define

𝑢𝑎𝑣(𝑡𝑗 ) = {𝑖 ∣ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) + 𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ) ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖)},

which is the set of 𝑢𝑖’s that can still accommodate 𝑡𝑗 within the distance
limitation 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖) (line (21)). Initially (line (8)),

𝑢𝑎𝑣(𝑡𝑗 ) = {𝑖 ∣ 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ) ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖)}.

The definition of 𝑏𝑒𝑠𝑡(𝑡𝑗 ) is given as

𝑏𝑒𝑠𝑡(𝑡𝑗 ) = argmin
𝑖∈𝑢𝑎𝑣(𝑡𝑗 )

{𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )}, if 𝑢𝑎𝑣(𝑡𝑗 ) ≠ ∅.

The 𝑏𝑒𝑠𝑡(𝑡𝑗 ) value decides the 𝑢𝑖, such that 𝑢𝑖 still has distance to execute
𝑡𝑗 before the limit and has the shortest flight distance to 𝑡𝑗 among all
UAVs which can execute 𝑡𝑗 (lines (9) and (25)).

The key idea of Algorithm 7 is in line (13), i.e., the next task 𝑡𝑗 is
chosen and assigned to 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ), such that the flight distance from 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 )
to 𝑡𝑗 is the minimum among all remaining tasks. This is to process as
many tasks as possible within the distance limitation.

5.3.4. An upper bound
Let tasks be arranged in such a way that

𝑑𝑖𝑠𝑡∗(𝑡1) ≤ 𝑑𝑖𝑠𝑡∗(𝑡2) ≤ ⋯ ≤ 𝑑𝑖𝑠𝑡∗(𝑡𝑛).

Theorem 7B. An upper bound for the optimal solution of the FTM-DC
problem is

Opt(𝐼) ≤ 𝑁∗
𝑑 = 𝑘,

where 𝑘 is the largest integer satisfying

𝑑𝑖𝑠𝑡∗(𝑡1) + 𝑑𝑖𝑠𝑡∗(𝑡2) +⋯ + 𝑑𝑖𝑠𝑡∗(𝑡𝑘) ≤
𝑚
∑

𝑖=1
𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖).

Proof. The above upper bound can be justified as follows. The total
distance of all UAVs cannot be greater than
𝑚
∑

𝑖=1
𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖).

To finish as many tasks as possible within the distance limitation, we
need to execute tasks with as short flight distance as possible. According
to the definition of 𝑘, it is the maximum possible number of finished
13

tasks within the distance limitation. □
Table 7
Simulation results of finished tasks maximization with distance constraint (99%
confidence interval = ±2.07925%).
𝑛 𝑚 = 3 𝑚 = 5 𝑚 = 7 𝑚 = 9

15 0.47986 0.50554 0.55025 0.62380
30 0.54513 0.57617 0.61219 0.68270
45 0.56640 0.60623 0.64165 0.72209
60 0.58357 0.62614 0.66584 0.74911
75 0.59626 0.63837 0.68421 0.77829
90 0.60258 0.65440 0.70408 0.80321
105 0.61041 0.66042 0.71631 0.82365
120 0.61858 0.67084 0.73940 0.84820
135 0.62481 0.67861 0.75387 0.86660
150 0.62910 0.68571 0.77121 0.88617

Let 𝐼 be an instance of the FTM-DC problem. Then, we have
𝐴7(𝐼)
Opt(𝐼) ≥

𝐴7(𝐼)
𝑁∗

𝑑
.

Therefore,

𝐵7 = 𝑬
[

𝐴7(𝐼)
𝑁∗

𝑑

]

can be considered as an expected performance bound of Algorithm 7.

5.3.5. Performance evaluation
We use the same parameter setting as that in Section 4.1.5.
Task distance limitations are randomly, uniformly, and indepen-

dently distributed in the range 0.8𝐷 ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖) < 1.2𝐷, where
= 7𝑛 + 150.
Table 7 demonstrates our simulation results of finished tasks maxi-

ization with distance constraint. Since flight velocities and execution
peeds are not considered, we do not distinguish homogeneous and
eterogeneous UAVs. The number of tasks is 𝑛 = 15, 30,… , 150. The
umber of UAVs is 𝑚 = 3, 5, 7, 9. For each combination of 𝑛 and 𝜏, we
enerate 𝑀 = 1000 random instances of the FTM-DC problem. For each
nstance 𝐼 , we apply Algorithm 7 to obtain 𝐴7(𝐼), calculate the upper
ound 𝑁∗

𝑑 , and record the ratio 𝐴7(𝐼)∕𝑁∗
𝑑 . The average of the 𝑀 ratios

s reported as 𝐵7, with 99% confidence interval of ±2.07925%. We have
he following important observations.

• The performance bound 𝐵7 is moderately close to one. Further im-
provement is possible by tightening the upper bound and finding
a more effective heuristic algorithm.

• The performance bound 𝐵7 increases as the number of UAVs
increases. This means that Algorithm 7 is more effective and
efficient in managing more UAVs to maximize the number of
finished tasks within given distance limitation.

• The performance bound 𝐵7 increases as the number of tasks
increases. This means that when there are many tasks, Algorithm
7 can more effectively and efficiently maximize the number of
finished tasks.

.4. Reward Maximization with Distance Constraint (RM-DC)

In this section, we address the reward maximization with distance
onstraint problem.

.4.1. Problem definition
The reward maximization with distance constraint problem is to

aximize the total reward of finished tasks within certain distance
imitation.

roblem 8 (Reward Maximization with Distance Constraint). Given a
et of heterogeneous UAVs 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚}, a set of tasks 𝑇 =
𝑡1, 𝑡2,… , 𝑡𝑛}, and a distance limitation 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖) for each 𝑢𝑖, the
eward maximization with distance constraint (RM-DC) problem is to
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determine 𝑚 disjoint subsets 𝑇1, 𝑇2,… , 𝑇𝑚, where 𝑇𝑖 is assigned to 𝑢𝑖
and 𝑇1 ∪ 𝑇2 ∪ ⋯ ∪ 𝑇𝑚 ⊆ 𝑇 , such that the flight distance of 𝑢𝑖 does not
exceed 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖), i.e., 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖), for all 1 ≤ 𝑖 ≤ 𝑚, and
the total reward of finished tasks, i.e.,

𝑅𝑑 =
𝑚
∑

𝑖=1
𝑟𝑒𝑤𝑎𝑟𝑑(𝑢𝑖),

is maximized.

5.4.2. NP-hardness

Theorem 8A. The RM-DC problem is NP-hard.

Proof. If all tasks have the same reward: 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡1) = 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡2) =
⋯ = 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑛), the RM-DC problem is identical to the FTM-DC
problem. In other words, the FTM-DC problem is a special case of the
RM-DC problem. □

5.4.3. A heuristic algorithm
Our heuristic algorithm to solve the RM-DC problem is presented in

Algorithm 8.
The definition of 𝑢𝑎𝑣(𝑡𝑗 ) is the same as that in Section 5.3.3 (lines

(8) and (21)).
The definition of 𝑏𝑒𝑠𝑡(𝑡𝑗 ) is modified as

𝑏𝑒𝑠𝑡(𝑡𝑗 ) = argmax
𝑖∈𝑢𝑎𝑣(𝑡𝑗 )

{ 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗 )
𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )

}

, if 𝑢𝑎𝑣(𝑡𝑗 ) ≠ ∅.

The 𝑏𝑒𝑠𝑡(𝑡𝑗 ) value decides the 𝑢𝑖, such that 𝑢𝑖 still has distance to execute
𝑡𝑗 before the limit and has the highest reward per unit of flight distance
for 𝑡𝑗 among all UAVs which can execute 𝑡𝑗 (lines (9) and (25)).

Algorithm 8: Reward Maximization with Distance Constraint

Input: 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑚}, 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, and 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ), 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ),
𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖), 𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗 ), for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗, 𝑗′ ≤ 𝑛.
Output: 𝑇1, 𝑇2, ..., 𝑇𝑚, such that 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖), for all 1 ≤ 𝑖 ≤ 𝑚,
and 𝑅𝑑 is maximized.

The algorithm follows AF-Max with the following details in lines (8), (9),
(13), (21), (25):

𝑢𝑎𝑣(𝑡𝑗 ) ← {𝑖 | 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ) ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖)}; (8)
𝑏𝑒𝑠𝑡(𝑡𝑗 ) ← argmax𝑖∈𝑢𝑎𝑣(𝑡𝑗 ){𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗 )∕𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )},

if 𝑢𝑎𝑣(𝑡𝑗 ) ≠ ∅; (9)
𝑡𝑗 ← argmax𝑡𝑗′∈𝑇 and 𝑢𝑎𝑣(𝑡𝑗′ )≠∅

{𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗′ )∕𝑓𝑑𝑖𝑠𝑡(𝑢𝑏𝑒𝑠𝑡(𝑡𝑗′ ), 𝑡𝑗′ )}; (13)
if (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) + 𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗′ ) ≤ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖)) then (21)
𝑏𝑒𝑠𝑡(𝑡𝑗′ ) ← argmax𝑖∈𝑢𝑎𝑣(𝑡𝑗′ ){𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗′ )∕𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗′ )},

if 𝑢𝑎𝑣(𝑡𝑗′ ) ≠ ∅; (25)

The key idea of Algorithm 8 is in line (13), i.e., the next task 𝑡𝑗 is
hosen and assigned to 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ), such that 𝑢𝑏𝑒𝑠𝑡(𝑡𝑗 ) has the highest reward
er unit of flight distance for 𝑡𝑗 among all remaining tasks. This is to
et the highest reward within the distance limitation.

.4.4. An upper bound
Let tasks be arranged in such a way that

𝑟𝑒𝑤𝑎𝑟𝑑(𝑡1)
𝑑𝑖𝑠𝑡∗(𝑡1)

≥
𝑟𝑒𝑤𝑎𝑟𝑑(𝑡2)
𝑑𝑖𝑠𝑡∗(𝑡2)

≥ ⋯ ≥
𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑛)
𝑑𝑖𝑠𝑡∗(𝑡𝑛)

.

heorem 8B. An upper bound for the optimal solution of the RM-DC
roblem is

pt(𝐼) ≤ 𝑅∗
𝑑 =

𝑘
∑

𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗 )
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𝑗=1
Table 8
Simulation results of reward maximization with distance constraint (99% confidence
interval = ±2.17163%).
𝑛 𝑚 = 3 𝑚 = 5 𝑚 = 7 𝑚 = 9

15 0.45966 0.51446 0.58855 0.67071
30 0.51881 0.57561 0.64769 0.73373
45 0.54231 0.60765 0.68296 0.76891
60 0.55706 0.62768 0.70289 0.79266
75 0.56849 0.64233 0.72570 0.81550
90 0.58355 0.65304 0.74287 0.83600
105 0.58845 0.66675 0.75697 0.85129
120 0.59553 0.67802 0.77154 0.86597
135 0.60281 0.68770 0.78707 0.87921
150 0.60854 0.69536 0.79796 0.89105

+
𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑘+1)
𝑑𝑖𝑠𝑡∗(𝑡𝑘+1)

( 𝑚
∑

𝑖=1
𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖) −

𝑘
∑

𝑗=1
𝑑𝑖𝑠𝑡∗(𝑡𝑗 )

)

,

here 𝑘 is the largest integer satisfying

𝑖𝑠𝑡∗(𝑡1) + 𝑑𝑖𝑠𝑡∗(𝑡2) +⋯ + 𝑑𝑖𝑠𝑡∗(𝑡𝑘) ≤
𝑚
∑

𝑖=1
𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖).

roof. The above upper bound can be justified as follows. The total
istance of all UAVs cannot be greater than
𝑚

𝑖=1
𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖).

o maximize the total reward of finished tasks, we need to maximize
he reward per unit of flight distance. According to the definition of
, 𝑅∗

𝑑 is the maximum possible reward of finished tasks within the
istance limitation. □

Let 𝐼 be an instance of the RM-DC problem. Then, we have
𝐴8(𝐼)
Opt(𝐼) ≥

𝐴8(𝐼)
𝑅∗
𝑑

.

Therefore,

𝐵8 = 𝑬
[

𝐴8(𝐼)
𝑅∗
𝑑

]

can be considered as an expected performance bound of Algorithm 8.

5.4.5. Performance evaluation
We use the same parameter setting as that in Sections 4.1.5 and

5.3.5.
Table 8 demonstrates our simulation results of reward maximization

with distance constraint. Since flight velocities and execution speeds
are not considered, we do not distinguish homogeneous and heteroge-
neous UAVs. The number of tasks is 𝑛 = 15, 30,… , 150. The number of
UAVs is 𝑚 = 3, 5, 7, 9. For each combination of 𝑛 and 𝜏, we generate
𝑀 = 1000 random instances of the RM-DC problem. For each instance
𝐼 , we apply Algorithm 8 to obtain 𝐴8(𝐼), calculate the upper bound
𝑅∗
𝑑 , and record the ratio 𝐴8(𝐼)∕𝑅∗

𝑑 . The average of the 𝑀 ratios is
reported as 𝐵8, with 99% confidence interval of ±2.17163%. We have
the following important observations.

• The performance bound 𝐵8 is moderately close to one. Further im-
provement is possible by tightening the upper bound and finding
a more effective heuristic algorithm.

• The performance bound 𝐵8 increases as the number of UAVs
increases. This means that Algorithm 8 is more effective and
efficient in managing more UAVs to maximize the reward of
finished tasks within given distance limitation.

• The performance bound 𝐵8 increases as the number of tasks
increases. This means that when there are many tasks, Algorithm
8 can more effectively and efficiently maximize the reward of

finished tasks.
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6. Related work

In this section, we review related research, which is briefly divided
into two categories, i.e., task assignment and flight planning.

6.1. Task assignment

Several researchers have investigated task allocation, task assign-
ment, and task scheduling on multiple UAVs.

Cui et al. proposed a distributed task allocation algorithm for het-
erogeneous UAVs to minimize the sum of task completion times with
constraints on execution capability, time window, and fuel consump-
tion [14]. Hu and Yang presented a decentralized auction algorithm
for multiple farming task assignment on heterogeneous agricultural
UAVs to maximize the total reward of task execution with a total
resource consumption constraint [6]. Mao et al. took a double-layer
deep reinforcement learning approach to task scheduling, so that homo-
geneous UAVs can maximize the total number of executed tasks with a
total flight distance constraint [15]. Schumacher et al. gave a mixed
integer linear program formulation for task assignment on homoge-
neous UAVs to minimize the total flight time, where tasks have timing
and precedence constraints [2]. Yi et al. addressed task allocation
on homogeneous UAVs to minimize the total flying distance between
drones and tasks, where each drone has certain maximum number
of tasks it can carry [16]. Zhang and Chen devised a clone selection
algorithm for task allocation on homogeneous UAVs, to maximize the
number of assigned tasks and the benefit of performing tasks, and to
minimize resource cost and time consumption, simultaneously [17].

Various other approaches to task allocation and task assignment
on multiple UAVs have also been investigated, e.g., leader–follower
coalition [18], distributed task inclusion and dynamic grouping allo-
cation [19], human-agent collaboration [20], negotiation [21], team-
based approach [22], quantum genetic algorithm [23].

6.2. Flight planning

Several researchers have studied path planning, trajectory planning,
mission planning, and route optimization for a single UAV and multiple
UAVs.

Bertuccelli et al. considered decentralized task assignment on het-
erogeneous UAVs to maximize the total path-dependent reward, with
extensions to obstacle region avoidance and sensing noise minimiza-
tion [24]. Fu et al. used an auction algorithm and a consensus algorithm
to find task sequences and paths for UAVs with certain resources, so
as to maximize the reward of finished tasks with resource require-
ments [1]. Geng et al. employed the particle swarm optimization
method to plan rescue routes, so as to maximize the number of sur-
vivors who have limited and different survival times [25]. Ozkan solved
the distance-constrained multi-based multi-UAV routing problem by
integrating simulated annealing and local search metaheuristics with
an integer linear programming model [7]. Sullivan et al. minimized
the energy and time required to complete all tasks in multi-robot
routing by using auction bidding and resolution algorithms [26]. Wang
et al. described several path planning algorithms based on distributed
particle swarm optimization for UAV swarms conducting a reconnais-
sance mission [3]. Yao and Ansari constructed an online algorithm
for a single drone to minimize its journey time (including transition
time, transmission time, and processing time) in traveling through all
locations of interest by fog node and flying speed optimization, with
an energy consumption constraint (including energy for wireless trans-
mission, propulsion, and hovering) and task completion deadlines [27].
Yin et al. designed a deep migration reinforcement learning algorithm
to find a distribution scheme (i.e., a mission plan) for a swarm of
15

heterogeneous UAVs to transport rescue materials to rescue areas with
different urgency and needs [9]. Zhou et al. developed a bat algorithm
to find an accident-free, short, and safe flight path for a single UAV in
a complex three-dimensional battlefield environment [28].

6.3. Comments on existing research

There has been none existing paper which studies UAV task schedul-
ing within the traditional framework of combinatorial optimization.
For instance, none existing studies have put makespan as the main
optimization objective. Furthermore, none existing studies are able
to compare the solutions of their algorithms with optimal solutions.
This paper is to make effort in this direction, which is the first paper
studying task scheduling on heterogeneous UAVs using a combinatorial
optimization approach.

7. Concluding remarks

We have proposed and solved several combinatorial optimization
problems for task scheduling on heterogeneous UAVs. These problems
aim to optimize various performance, cost, and other important con-
siderations, such as the maximum task processing time, the total task
processing time, the maximum flight distance, the total flight distance,
the number of finished tasks, and the total reward of finished tasks. We
have proved that all these problems are NP-hard using reductions from
the classic traveling salesman problem. We have developed efficient
and effective heuristic algorithms to solve these problems. All our
algorithms fit into two algorithmic frameworks, which can serve as
algorithmic templates for further heuristic algorithms to solve many
other problems. A unique feature of our study is to compare the per-
formance of our heuristic algorithms with optimal solutions. In doing
so, we have derived lower/upper bounds for the optimal solutions.
Our simulation results show that our heuristic algorithms are able to
produce near-optimal solutions. To the best of our knowledge, there
has been no similar study in the existing literature.

We would like to mention two possible directions for future re-
search. (1) First, there is still room for improving the performance
bounds of our algorithms, especially for distance-centric optimization
problems. There are two possible ways for performance bound improve-
ment. The first way is to design more effective heuristic algorithms,
which are likely to be more sophisticated than the greedy algorithms in
this paper. The second way is to discover tighter lower or upper bounds,
which need deeper insights to find. (2) Second, we may consider
task and mission scheduling for heterogeneous UAVs with multiple
(e.g., completion time, flight distance, and resource consumption) con-
straints. It is conceivable that such optimization problems are more
challenging and require harder investigation.
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Appendix. Notations and definitions

Notation Definition
𝑈 A set of heterogeneous/homogeneous UAVs
𝑢𝑖 A UAV
𝑇 A set of tasks
𝑡𝑗 A task
𝑝𝑜𝑠(𝑢𝑖) = (𝑥(𝑢𝑖), 𝑦(𝑢𝑖), 𝑧(𝑢𝑖)), the position (i.e., the initial

location) of 𝑢𝑖
𝑝𝑜𝑠(𝑡𝑗 ) = (𝑥(𝑡𝑗 ), 𝑦(𝑡𝑗 ), 𝑧(𝑡𝑗 )), the position of 𝑡𝑗
𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ) The distance between 𝑝𝑜𝑠(𝑢𝑖) and 𝑝𝑜𝑠(𝑡𝑗 )
𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ ) The distance between 𝑝𝑜𝑠(𝑡𝑗 ) and 𝑝𝑜𝑠(𝑡𝑗′ )
𝑣𝑒𝑙(𝑢𝑖) The flight velocity of 𝑢𝑖
𝑣𝑒𝑙 The flight velocity of homogeneous UAVs
𝑓𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) = 𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 )∕𝑣𝑒𝑙(𝑢𝑖), the flight time of 𝑢𝑖 from

𝑝𝑜𝑠(𝑢𝑖) to 𝑝𝑜𝑠(𝑡𝑗 )
𝑓𝑡𝑖𝑚𝑒𝑖(𝑡𝑗 , 𝑡𝑗′ ) = 𝑑𝑖𝑠𝑡(𝑡𝑗 , 𝑡𝑗′ )∕𝑣𝑒𝑙(𝑢𝑖), the flight time of 𝑢𝑖 from

𝑝𝑜𝑠(𝑡𝑗 ) to 𝑝𝑜𝑠(𝑡𝑗′ )
𝑒𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) The execution time of 𝑢𝑖 to process 𝑡𝑗
𝑒𝑡𝑖𝑚𝑒(𝑡𝑗 ) The execution time of 𝑡𝑗 for homogeneous UAVs
𝑟𝑒𝑤𝑎𝑟𝑑(𝑡𝑗 ) The reward to finish 𝑡𝑗
𝑇𝑖 = {𝑡𝑗1 , 𝑡𝑗2 ,… , 𝑡𝑗𝑛𝑖 }, a set of tasks assigned to 𝑢𝑖
𝑇𝑖 = (𝑡𝑗1 , 𝑡𝑗2 ,… , 𝑡𝑗𝑛𝑖 ), a sequence of tasks assigned to

𝑢𝑖 (i.e., a flight route of 𝑢𝑖)
(𝑇1, 𝑇2,… , 𝑇𝑚) A schedule of 𝑇 on the 𝑚 UAVs
𝑝𝑡𝑖𝑚𝑒(𝑡𝑗 ) The processing time of 𝑡𝑗
𝑡𝑖𝑚𝑒(𝑢𝑖) The time for 𝑢𝑖 to process tasks in 𝑇𝑖 (i.e., the

total processing time)
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖) The flight distance of 𝑢𝑖
𝑐𝑡𝑖𝑚𝑒(𝑇 ) = max{𝑡𝑖𝑚𝑒(𝑢1), 𝑡𝑖𝑚𝑒(𝑢2),… , 𝑡𝑖𝑚𝑒(𝑢𝑚)}, the

completion time of 𝑇
𝑡𝑡𝑖𝑚𝑒(𝑇 ) = 𝑡𝑖𝑚𝑒(𝑢1) + 𝑡𝑖𝑚𝑒(𝑢2) +⋯ + 𝑡𝑖𝑚𝑒(𝑢𝑚), the total time

of 𝑇
𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ) = max{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢1), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢2),… , 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑚)},

the longest distance of 𝑇
𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇 ) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢1) + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢2) +⋯ + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑚),

the total distance of 𝑇
𝑟𝑒𝑤𝑎𝑟𝑑(𝑢𝑖) The reward of 𝑢𝑖, i.e., the total reward of tasks in

𝑇𝑖
𝐺 A weighted directed graph
𝑃𝑖 = (𝑢𝑖, 𝑡𝑗1 , 𝑡𝑗2 ,… , 𝑡𝑗𝑛𝑖 ), a path
𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑖) The length of 𝑃𝑖
𝐿 = (𝑣𝑗1 , 𝑣𝑗2 ,… , 𝑣𝑗𝑛 , 𝑣𝑗1 ), a traveling salesman loop
𝑙𝑒𝑛𝑔𝑡ℎ(𝐿) The length of 𝐿
𝐼 An instance
𝐴(𝐼) The solution of a heuristic algorithm 𝐴 for 𝐼
Opt(𝐼) The optimal solution of 𝐼
𝐵 A performance bound or an expected performance

bound
𝑙𝑜𝑐(𝑢𝑖) ∈ {0, 1, 2,… , 𝑛}, the current location of 𝑢𝑖
𝑝𝑡𝑖𝑚𝑒(𝑢𝑖, 𝑡𝑗 ) The processing time of 𝑢𝑖 for 𝑡𝑗
𝑓𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑡𝑗 ) The flight distance from 𝑢𝑖 to 𝑡𝑗
𝑏𝑒𝑠𝑡(𝑡𝑗 ) The best 𝑢𝑖 that processes 𝑡𝑗
𝑢𝑎𝑣(𝑡𝑗 ) The set of 𝑢𝑖’s that can still accommodate 𝑡𝑗

within its performance or resource constraint
𝑝𝑡𝑖𝑚𝑒∗(𝑡𝑗 ) The minimum possible processing time of 𝑡𝑗
𝑐𝑡𝑖𝑚𝑒∗(𝑇 ) A lower bound for the optimal solution of the

CTM problem
𝑡𝑡𝑖𝑚𝑒∗(𝑇 ) A lower bound for the optimal solution of the

TTM problem
𝐷 Time deadline
𝑁𝑡, 𝑁𝑑 The number of finished tasks
16
𝑁∗
𝑡 , 𝑁

∗
𝑑 An upper bound for the optimal solution of the

FTM-TC and FTM-DC problems
𝑅𝑡, 𝑅𝑑 The total reward of finished tasks
𝑅∗
𝑡 , 𝑅

∗
𝑑 An upper bound for the optimal solution of the

RM-TC and RM-DC problems
𝑑𝑖𝑠𝑡∗(𝑡𝑗 ) The minimum flight distance to reach 𝑡𝑗
𝑙𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 ) A lower bound for the optimal solution of the

LDM problem
𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒∗(𝑇 ) A lower bound for the optimal solution of the

TDM problem
𝑚𝑎𝑥𝑑𝑖𝑠𝑡(𝑢𝑖) distance limitation for 𝑢𝑖
𝐵𝑟 An expected performance bound of Algorithm 𝑟,

1 ≤ 𝑟 ≤ 8
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