
Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Mobility -aware server placement and power allocation for randomly

walking mobile users

Keqin Li
Department of Computer Science, State University of New York, 12561, New Paltz, New York, USA

a r t i c l e i n f o

Keywords:
Average response time
Markov chain
Mobility-awareness
Power allocation
Queueing system
Random walk
Server placement
Task offloading

 a b s t r a c t

We systematically, quantitatively, and mathematically address the problems of optimal mobility-aware server
placement and optimal mobility-aware power allocation in mobile edge computing environments with randomly
walking mobile users. The new contributions of the paper are highlighted below. We establish a single-server
M/G/1 queueing system for mobile user equipment and a multiserver M/G/k queueing system for mobile edge
clouds. We consider both the synchronous mobility model and the asynchronous mobility model, which are de-
scribed by discrete-time Markov chains and continuous-time Markov chains respectively. We discuss two task
offloading strategies for user equipment in the same service area, i.e., the equal-response-time method and the
equal-load-fraction method. We formally and rigorously define the optimal mobility-aware server placement
problem and the optimal mobility-aware power allocation problem. We develop optimization algorithms to solve
the optimal mobility-aware server placement problem and the optimal mobility-aware power allocation problem.
We demonstrate numerical data for optimal mobility-aware server placement and optimal mobility-aware power
allocation with two mobility models, two task offloading strategies, and two power consumption models. The
significance of the paper can be seen from the fact that the above analytical and algorithmic discussion of opti-
mal mobility-aware server placement and optimal mobility-aware power allocation for mobile edge computing
environments with randomly walking mobile users has rarely been seen in the existing literature.

1. Introduction

1.1. Background information

The problem of server placement in mobile edge computing refers to
the strategic assignment of computing resources (servers) to various ser-
vice areas, where multiserver systems are deployed to support randomly
walking mobile users [1]. The goal of server placement is to position
these resources closer to end-users to minimize latency, optimize ser-
vice quality, and maximize resource utilization. An appropriate server
placement ensures higher-speed computation and lower-latency com-
munication for real-time applications such as augmented reality, online
gaming, and video streaming. A proper server placement assures bal-
anced resource utilization across servers, avoiding overloading certain
servers while others remain underutilized.

The problem of power allocation in mobile edge computing involves
distributing certain available power resources among servers in vari-
ous service areas [2–4]. Since the server computation speeds determine
power consumption, an appropriate power allocation ensures the best
choice of server speeds, and thus, optimizing the overall performance
of multiple multiserver systems, such as minimizing latency and max-

 E-mail address: lik@newpaltz.edu

imizing throughput. A good power allocation method should consider
different power consumption models for realistic applications.

1.2. Challenges and motivation

There are several critical and challenging aspects in the serious and
systematic study of optimal mobility-aware server placement and opti-
mal mobility-aware power allocation. First, since both user equipment
and mobile edge clouds have computation and communication capabil-
ities, they need to be specified formally as server systems using queue-
ing theory. Second, since the random mobility of mobile users affects
server placement and power allocation, it should be characterized math-
ematically using probability theory. Third, since multiple mobile user
equipment in the same service area share and compete for server re-
sources, their interaction needs to be studied analytically in the con-
text of task offloading. Fourth, the optimization goals of optimal server
placement and optimal power allocation must be described quantita-
tively. Fifth, the problems of optimal mobility-aware server placement
and optimal mobility-aware power allocation should be clearly formu-
lated and rigorously defined. Sixth, the problems of optimal mobility-

https://doi.org/10.1016/j.jpdc.2025.105216
Received 25 January 2025; Received in revised form 5 November 2025; Accepted 24 December 2025

Journal of Parallel and Distributed Computing 210 (2026) 105216

Available online 6 January 2026
0743-7315/© 2026 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/jpdc
https://www.elsevier.com/locate/jpdc
https://orcid.org/0000-0001-5224-4048

$_0$

$_1$

$_{m-1}$

$_0$

$_1$

$_{n-1}$

$_j$

$_j$

k_j

$_0$

$_1$

$_{n-1}$

$_j$

$_j$

$0\le j\le n-1$

$I_0=\{1,4,7\}$

$I_1=\{5,8\}$

$I_2=\{9\}$

$I_3=\{2,6\}$

$I_4=\{0,3\}$

$_i$

$0\le i\le m-1$

$_j$

$_{i_1}$

$_{i_2}$

$_{i_b}$

$_j$

k_j

$S_{j,1},S_{j,2},\ldots ,S_{j,k_j}$

$_i$

$_j$

$_i$

$\lambda _i$

$\overline {r_i}$

$\overline {r_i^2}$

$\overline {d_i}$

$\overline {d_i^2}$

$_i$

$\lambda _i$

r_i

$\overline {r_i}$

$\overline {r_i^2}$

$\overline {z}$

$\overline {z^2}$

z

d_i

$\overline {d_i}$

$\overline {d_i^2}$

r_i

d_i

$_i$

s_i

$_i$

$_i$

\begin {equation*}x_i={r_i\over s_i},\end {equation*}

\begin {equation*}\overline {x_i}={\overline {r_i}\over s_i},\end {equation*}

\begin {equation*}\overline {x_i^2}={\overline {r_i^2}\over s_i^2},\end {equation*}

$0\le i\le m-1$

$_j$

$0\le j\le n-1$

k_j

$S_{j,1},S_{j,2},\ldots ,S_{j,k_j}$

$_i$

$_j$

$_i$

$_j$

$_i$

$_i$

$\lambda _i-\lambdah _i$

$_j$

$\lambdah _i$

I_0,I_1,\ldots ,I_{n-1}

$I_j=\{i\;|\;\hbox {UE$_i$ is in SA$_j$}\}$

$_j$

$_j$

$_j$

\begin {equation*}\lambdat _j=\sum _{i\in I_j}\lambdah _i,\end {equation*}

$0\le j\le n-1$

$_j$

$\st _j$

$_i$

$_j$

$c_{i,j}$

$_i$

$_j$

$_i$

$_j$

\begin {equation*}\xt _{i,j}={r_i\over \st _j}+{d_i\over c_{i,j}},\end {equation*}

$r_i/\st _j$

$d_i/c_{i,j}$

\begin {equation*}\overline {\xt _{i,j}}={\overline {r_i}\over \st _j}+{\overline {d_i}\over c_{i,j}},\end {equation*}

\begin {equation*}\overline {\xt _{i,j}^2}={\overline {r_i^2}\over \st _j^2}+2{\overline {r_i}\overline {d_i}\over \st _jc_{i,j}}+{\overline {d_i^2}\over c_{i,j}^2},\end {equation*}

$0\le i\le m-1$

$0\le j\le n-1$

k_0,k_1,\ldots ,k_{n-1}

$\st _0,\st _1,\ldots ,\st _{n-1}$

$_i$

$_i$

$_j$

$_j$

$_i$

$_j$

$_{j'}$

$_j$

$_{j'}$

$_j$

$_{j'}$

$_j$

$_{j'}$

$_i$

$n\times n$

\begin {equation*}\Pb _i=[p_i(j,j')],\end {equation*}

$p_i(j,j')$

$0\le j,j' \le n-1$

$_i$

$_j$

$_{j'}$

$_i$

$_j$

$_i$

\begin {equation*}\pi _i=[\pi _i(0),\pi _i(1),\ldots ,\pi _i(n-1)],\end {equation*}

$\pi _i(j)$

$_i$

$_j$

$\pi _i$

\begin {equation*}\pi _i=\pi _i\Pb _i,\end {equation*}

\begin {equation*}\pi _i(0)+\pi _i(1)+\cdots +\pi _i(n-1)=1,\end {equation*}

$0\le i\le m-1$

$_i$

$_i$

$n\times n$

\begin {equation*}\Qb _i=[q_i(j,j')],\end {equation*}

$q_i(j,j')$

$0\le j\not =j' \le n-1$

$_i$

$_j$

$_{j'}$

$_i$

$_j$

\begin {equation*}q_i(j,j)=-\sum _{j'\not =j}q_i(j,j'),\end {equation*}

$_i$

$_j$

$-1/q_i(j,j)$

$0\le j\le n-1$

$_i$

\begin {equation*}\pi _i=[\pi _i(0),\pi _i(1),\ldots ,\pi _i(n-1)],\end {equation*}

\begin {equation*}\pi _i\Qb _i=0,\end {equation*}

\begin {equation*}\pi _i(0)+\pi _i(1)+\cdots +\pi _i(n-1)=1,\end {equation*}

$0\le i\le m-1$

$J=(j_0,j_1,\ldots ,j_{m-1})$

$_i$

$_{j_i}$

$0\le i\le m-1$

J

m

n

$(j_0j_1\cdots j_{m-1})_n$

$0,1,\ldots ,N-1$

\begin {equation*}J=j_0n^{m-1}+j_1n^{m-2}+\cdots +j_{m-1}n^0,\end {equation*}

$0\le j_0,j_1,\ldots ,j_{m-1}\le n-1$

$N=n^m$

$\pi (J)$

J

$0\le J\le N-1$

\begin {equation*}\pi =[\pi (0),\pi (1),\ldots ,\pi (N-1)]\end {equation*}

$J=(j_0,j_1,\ldots ,j_{m-1})$

\begin {equation*}\pi (J)=\prod _{i=0}^{m-1}\pi _i(j_i),\end {equation*}

$0\le J\le N-1$

$_i$

$_i$

$\lambda _i-\lambdah _i$

$_i$

\begin {equation*}T_i=\overline {x_i}+W_i,\end {equation*}

W_i

$_i$

\begin {equation*}W_i={(\lambda _i-\lambdah _i)\overline {x_i^2}\over 2(1-\rho _i)},\end {equation*}

$\rho _i$

$_i$

\begin {equation*}\rho _i=(\lambda _i-\lambdah _i)\overline {x_i},\end {equation*}

$0\le i\le m-1$

I_j

$_j$

$\xt _j$

\begin {equation*}\overline {\xt _j} ={1\over \lambdat _j}\sum _{i\in I_j}\lambdah _i\overline {\xt _{i,j}} ={1\over \lambdat _j}\sum _{i\in I_j}\lambdah _i\biggl ({\overline {r_i}\over \st _j}+{\overline {d_i}\over c_{i,j}}\biggr),\end {equation*}

\begin {equation*}\overline {\xt _j^2} ={1\over \lambdat _j}\sum _{i\in I_j}\lambdah _i\overline {\xt _{i,j}^2} ={1\over \lambdat _j}\sum _{i\in I_j}\lambdah _i \biggl ({\overline {r_i^2}\over \st _j^2}+2{\overline {r_i}\overline {d_i}\over \st _jc_{i,j}}+{\overline {d_i^2}\over c_{i,j}^2}\biggr),\end {equation*}

\begin {equation*}\sigma _j^2=\overline {\xt _j^2}-\overline {\xt _j}^2,\end {equation*}

\begin {equation*}c_j={\sigma _j\over \overline {\xt _j}}=\sqrt {{\overline {\xt _j^2}\over \overline {\xt _j}^2}-1},\end {equation*}

$0\le j\le n-1$

$_j$

\begin {equation*}\Tt _j=\overline {\xt _j}+\Wt _j,\end {equation*}

$\Wt _j$

$_j$

$_j$

\begin {equation*}\Wt _j=\biggl ({c_j^2+1\over 2}\biggr)W_j^*,\end {equation*}

W_j^*

$_j$

\begin {equation*}\rhot _j ={\lambdat _j\overline {\xt _j}\over k_j} ={1\over k_j}\sum _{i\in I_j}\lambdah _i\overline {\xt _{i,j}}.\end {equation*}

\begin {equation*}W_j^*=\overline {\xt _j}\cdot {p_{j,k_j}\over k_j(1-\rhot _j)^2},\end {equation*}

\begin {equation*}p_{j,k_j}=p_{j,0}{(k_j\rhot _j)^{k_j}\over k_j!},\end {equation*}

\begin {equation*}p_{j,0}=\biggl (\sum _{b=0}^{k_j-1}{(k_j\rhot _j)^b\over b!}+{(k_j\rhot _j)^{k_j}\over k_j!}\cdot {1\over 1-\rhot _j}\biggr)^{-1},\end {equation*}

$0\le j\le n-1$

$\lambdah _i$

$_j$

$_i$

$_j$

$\lambdah _i$

$i\in I_j$

$_i$

$_j$

$_j$

$T_i=\Tt _j=T$

$i\in I_j$

T

$\lambdah _i$

\begin {equation*}T_i=\overline {x_i}+{(\lambda _i-\lambdah _i)\overline {x_i^2}\over 2(1-(\lambda _i-\lambdah _i)\overline {x_i})}=T,\end {equation*}

\begin {equation*}\lambdah _i=\lambda _i-{2(T-\overline {x_i})\over \overline {x_i^2}+2\overline {x_i}(T-\overline {x_i})},\end {equation*}

$i\in I_j$

$\lambdah _i$

$\lambdah _i(T)$

T

$\Tt _j$

$\lambdah _i$

$\Tt _j$

T

$\Tt _j(\lambdah _{i_1}(T),\lambdah _{i_2}(T),\ldots ,\lambdah _{i_b}(T))$

$I_j=\{i_1,i_2,\ldots ,i_b\}$

T

\begin {equation*}f(T)=T-\Tt _j(\lambdah _{i_1}(T),\lambdah _{i_2}(T),\ldots ,\lambdah _{i_b}(T))=0,\end {equation*}

$\Tt _j$

T

$\lambdah _i$

$\Tt _j(\lambdah _{i_1}(T),\lambdah _{i_2}(T),\ldots ,\lambdah _{i_b}(T))$

$f(T)$

T

$f(T)=0$

$[T_{\mathit {lb}},T_{\mathit {ub}}]$

\begin {equation*}\overline {x_i}\le T_i\le \overline {x_i}+{\lambda _i\overline {x_i^2}\over 2(1-\lambda _i\overline {x_i})},\end {equation*}

\begin {equation*}T_{\mathit {lb}}=\max _{i\in I_j}\{\overline {x_i}\},\end {equation*}

\begin {equation*}T_{\mathit {ub}}=\min _{i\in I_j}\biggl \{\overline {x_i}+{\lambda _i\overline {x_i^2}\over 2(1-\lambda _i\overline {x_i})}\biggr \}.\end {equation*}

$O(\log (\Delta /\epsilon))$

$\Delta =T_{\mathit {ub}}-T_{\mathit {lb}}$

$\epsilon $

$\Delta $

$O(\log (1/\epsilon))$

$_j$

$_i$

$_j$

\begin {equation*}\lambdah _i=F_j\lambda _i,\end {equation*}

$i\in I_j$

$_i$

$_j$

\begin {equation*}T=\sum _{i\in I_j}\biggl ({\lambda _i-\lambdah _i\over \Lambda _j}\biggr)T_i+{\lambdat _j\over \Lambda _j}\Tt _j,\end {equation*}

\begin {equation*}\Lambda _j=\sum _{i\in I_j}\lambda _i\end {equation*}

$_j$

\begin {equation*}\lambda _i-\lambdah _i=(1-F_j)\lambda _i,\end {equation*}

\begin {equation*}\lambdat _j=\sum _{i\in I_j}\lambdah _i=\sum _{i\in I_j}F_j\lambda _i=F_j\sum _{i\in I_j}\lambda _i=F_j\Lambda _j,\end {equation*}

T

\begin {equation*}T={1\over \Lambda _j}\sum _{i\in I_j}(1-F_j)\lambda _iT_i+F_j\Tt _j,\end {equation*}

$0\le j\le n-1$

T

F_j

\begin {equation*}{\partial T/\partial F_j}=0,\end {equation*}

\begin {equation*}{\partial T\over \partial F_j}= {1\over \Lambda _j}\sum _{i\in I_j}\biggl (-\lambda _iT_i+(1-F_j)\lambda _i{\partial T_i\over \partial F_j}\biggr) +\Tt _j+F_j{\partial \Tt _j\over \partial F_j},\end {equation*}

$0\le j\le n-1$

$\partial T_i/\partial F_j$

\begin {equation*}{\partial T_i\over \partial F_j}={\partial W_i\over \partial F_j},\end {equation*}

\begin {equation*}W_i ={(\lambda _i-\lambdah _i)\overline {x_i^2}\over 2(1-(\lambda _i-\lambdah _i)\overline {x_i})} ={(1-F_j)\lambda _i\overline {x_i^2}\over 2(1-(1-F_j)\lambda _i\overline {x_i})},\end {equation*}

\begin {equation*}{\partial W_i\over \partial F_j}= -\biggl ({\lambda _i\overline {x_i^2}(1-(1-F_j)\lambda _i\overline {x_i})+(1-F_j)\lambda _i^2\overline {x_i}\overline {x_i^2}\over 2(1-(1-F_j)\lambda _i\overline {x_i})^2}\biggr),\end {equation*}

$0\le j\le n-1$

$\partial \Tt _j/\partial F_j$

$\overline {\xt _j}$

c_j

F_j

\begin {equation*}{\partial \Tt _j\over \partial F_j}={\partial \Wt _j\over \partial F_j}=\biggl ({c_j^2+1\over 2}\biggr){\partial W_j^*\over \partial F_j},\end {equation*}

\begin {equation*}{\partial W_j^*\over \partial F_j}={\overline {\xt _j}\over k_j} \biggl ({1\over (1-\rhot _j)^2}\cdot {\partial p_{j,k_j}\over \partial F_j} + {2p_{j,k_j}\over (1-\rhot _j)^3}\cdot {\partial \rhot _j\over \partial F_j} \biggr),\end {equation*}

\begin {equation*}{\partial p_{j,k_j}\over \partial F_j}= {(k_j\rhot _j)^{k_j}\over k_j!}\cdot {\partial p_{j,0}\over \partial F_j} + p_{j,0}{k_j^{k_j}\rhot _j^{k_j-1}\over (k_j-1)!}\cdot {\partial \rhot _j\over \partial F_j},\end {equation*}

\begin {equation*}{\partial p_{j,0}\over \partial F_j}=-p_{j,0}^2 \bigg (\sum _{b=1}^{k_j-1}{k_j^b\rhot _j^{b-1}\over (b-1)!} +{k_j^{k_j}\rhot _j^{k_j-1}\over (k_j-1)!}\cdot {1\over 1-\rhot _j} +{(k_j\rhot _j)^{k_j}\over k_j!}\cdot {1\over (1-\rhot _j)^2} \biggr){\partial \rhot _j\over \partial F_j},\end {equation*}

$0\le j\le n-1$

\begin {equation*}\rhot _j ={\overline {\xt _j}\over k_j}\lambdat _j ={\overline {\xt _j}\over k_j}F_j\Lambda _j,\end {equation*}

\begin {equation*}{\partial \rhot _j\over \partial F_j}={\overline {\xt _j}\over k_j}\Lambda _j,\end {equation*}

$0\le j\le n-1$

$\partial T/\partial F_j$

F_j

${\partial T/\partial F_j}=0$

$0\le \rhot _j<1$

$0\le F_j<k_j/(\overline {\xt _j}\Lambda _j)$

$F_j\le 1$

F_j

$[0,\min \{1,k_j/(\overline {\xt _j}\Lambda _j)\}]$

$O(\log (1/\epsilon))$

$f(T)=0$

${\partial T/\partial F_j}=0$

T

$_j$

$\Twt _j$

$0\le j\le n-1$

$\Twt _j$

I_j

$\Twt _j$

$\Twt _j(I_j)$

$_j$

$_j$

$\Twt _j(I_j)$

$_j$

I_j

$_j$

$\Twt _j(I_j)$

$J=(j_0,\ldots ,j_i,\ldots ,j_{m-1})$

\begin {equation*}I_j(J)=\{i\;|\;j_i=j\}\end {equation*}

$_j$

$0\le j\le n-1$

$\Twt _j$

$_j$

\begin {equation*}\Twt _j=\sum _{J=0}^{N-1}\pi (J)\Twt _j(I_j(J)).\end {equation*}

$\Twt _j$

$O(N\log (1/\epsilon))$

$\Twt _j$

$I_j\subseteq \{0,1,\ldots ,m-1\}$

I_j

\begin {equation*}P_j(I_j)=\prod _{i\in I_j}\pi _i(j)\prod _{i\not \in I_j}(1-\pi _i(j))\end {equation*}

$\Twt _j$

\begin {equation*}\Twt _j={1\over B_j}\sum _{I_j\not =\emptyset }P_j(I_j)\Twt _j(I_j),\end {equation*}

\begin {equation*}B_j=\sum _{I_j\not =\emptyset }P_j(I_j)\end {equation*}

$_j$

\begin {equation*}B_j=1-P_j(\emptyset)=1-\prod _{i=0}^{m-1}(1-\pi _i(j)),\end {equation*}

$0\le j\le n-1$

$M=2^m$

$\{0,1,\ldots ,m-1\}$

M

$\Twt _j$

$O(M(m+\log (1/\epsilon)))$

$O(M\log (1/\epsilon))$

$\Twt _j$

M

$P_j(I_j)$

$O(m)$

$\Twt _j(I_j)$

$O(\log (1/\epsilon))$

$\Twt _j$

$\Twt _j(k_j)$

k_j

$K\ge n$

$_0$

$_2$

$_{n-1}$

K

$_j$

k_0,k_1,\ldots ,k_{n-1}

$k_j\ge 1$

$0\le j\le n-1$

\begin {equation*}k_0+k_1+\cdots +k_{n-1}=K,\end {equation*}

\begin {equation*}T=\max \{\Twt _0(k_0),\Twt _1(k_1),\ldots ,\Twt _{n-1}(k_{n-1})\}\end {equation*}

$\st _j$

$\st _0=\st _1=\cdots =\st _{n-1}$

T

$_{j_1}$

\begin {equation*}\Twt _{j_1}(k_{j_1})=\max \{\Twt _0(k_0),\Twt _1(k_1),\ldots ,\Twt _{n-1}(k_{n-1})\}.\end {equation*}

k_{j_1}

$\Twt _{j_1}(k_{j_1})$

$_{j_2}$

\begin {equation*}\Twt _{j_2}(k_{j_2})=\min \{\Twt _0(k_0),\Twt _1(k_1),\ldots ,\Twt _{n-1}(k_{n-1})\}.\end {equation*}

$_{j_2}$

T

j_2

$j_2\not =j_1$

$k[j_2]>1$

$_{j_2}$

$_{j_1}$

T'

T

$_{j_2}$

T'

T

k_0,k_1,\ldots ,k_{n-1}

k_0,k_1,\ldots ,k_{n-1}

$T=\max \{\Twt _0(k_0),\Twt _1(k_1),\ldots ,\Twt _{n-1}(k_{n-1})\}$

T

k_1

k_2

$_{j_2}$

$_{j_1}$

$T(K)$

K

$K<K'$

$T(K)>T(K')$

k_0,k_1,\ldots ,k_{n-1}

K

$T(K)=\max \{\Twt _0(k_0),\Twt _1(k_1),\ldots ,\Twt _{n-1}(k_{n-1})\}$

$j^*=\hbox {argmax}_{0\le j\le n-1}\{\Twt _j(k_j)\}$

K'

k_{j^*}

$\Twt _{j^*}(k_{j^*})$

$T(K')$

K

k_j

$0\le j\le n-1$

k_0,k_1,\ldots ,k_{n-1}

K

$k'_0,k'_1,\ldots ,k'_{n-1}$

K'

$K<K'$

$k_j\le k'_j$

$0\le j\le n-1$

$k'_j<k_j$

$\Twt _j(k'_j)\le T(K')$

$T(K')<T(K)$

$\Twt _j(k'_j)<T(K)$

$k_j-k'_j$

$_j$

$T(K)$

k_0,k_1,\ldots ,k_{n-1}

$\Twt _j(k_j)$

n

$\Twt _j(k_j)$

K

$2n$

$\Twt _j(k_j)$

$\Twt _j(k_j)$

$O(M\log (1/\epsilon))$

$O(KnM\log (1/\epsilon))$

$m=10$

$n=5$

\begin {equation*}\begin {array}{ccc} \hbox {SA}_1 & & \hbox {SA}_2 \\ \\ & \hbox {SA}_0 & \\ \\ \hbox {SA}_3 & & \hbox {SA}_4 \\ \end {array}\end {equation*}

$_i$

$\overline {r_i}=1.5+0.1i$

$\overline {r_i^2}=1.1\overline {r_i}^2$

2

$\overline {d_i}=2.0+0.2i$

$\overline {d_i^2}=1.1\overline {d_i}^2$

2

$s_i=1.5+0.05i$

$\overline {x_i}={\overline {r_i}/s_i}$

$\overline {x_i^2}={\overline {r_i^2}/s_i^2}$

2

$\lambda _i=0.99/\overline {x_i}$

$0\le i\le m-1$

$_j$

$\st _j=2.5$

$0\le j\le n-1$

$c_{i,j}=(10+i)+0.5j$

$0\le i\le m-1$

$0\le j\le n-1$

$_i$

$\rho _i=\lambda _i\overline {x_i}=0.99$

$\lambdah _i=0$

\begin {align*}\Pb _0= \Pb _1= \Pb _2&= \begin {bmatrix} 0.15& 0.40& 0.15& 0.15& 0.15\\ 0.25& 0.50& 0.25& 0.00& 0.00\\ 0.25& 0.50& 0.25& 0.00& 0.00\\ 0.40& 0.00& 0.00& 0.30& 0.30\\ 0.40& 0.00& 0.00& 0.30& 0.30 \end {bmatrix},\\ \Pb _3= \Pb _4= \Pb _5= \Pb _6&= \begin {bmatrix} 0.40& 0.15& 0.15& 0.15& 0.15\\ 0.40& 0.30& 0.30& 0.00& 0.00\\ 0.40& 0.30& 0.30& 0.00& 0.00\\ 0.40& 0.00& 0.00& 0.30& 0.30\\ 0.40& 0.00& 0.00& 0.30& 0.30 \end {bmatrix},\\ \Pb _7= \Pb _8= \Pb _9&= \begin {bmatrix} 0.15& 0.15& 0.15& 0.15& 0.40\\ 0.40& 0.30& 0.30& 0.00& 0.00\\ 0.40& 0.30& 0.30& 0.00& 0.00\\ 0.25& 0.00& 0.00& 0.25& 0.50\\ 0.25& 0.00& 0.00& 0.25& 0.50 \end {bmatrix}.\end {align*}

$_0$

$_1$

$_2$

$_1$

$_3$

$_4$

$_5$

$_6$

$_0$

$_7$

$_8$

$_9$

$_4$

$_i$

\begin {align*}\pi _0=\pi _1=\pi _2&=[0.25316, 0.37975, 0.17722, 0.09494, 0.09494],\\ \pi _3=\pi _4=\pi _5=\pi _6&=[0.40000, 0.15000, 0.15000, 0.15000, 0.15000],\\ \pi _7=\pi _8=\pi _9&=[0.25316, 0.09494, 0.09494, 0.17722, 0.37975].\end {align*}

$5\le K\le 15$

$5\le K\le 15$

K

k_j

$\Twt _j(k_j))$

$0\le j\le n-1$

T

$_0$

$_1$

$_3$

$_4$

K

k_j

$0\le j\le n-1$

\begin {align*}\Qb _0= \Qb _1= \Qb _2&= \begin {bmatrix} -0.05& 0.02& 0.01& 0.01& 0.01\\ 0.02&-0.04& 0.02& 0.00& 0.00\\ 0.02& 0.03&-0.05& 0.00& 0.00\\ 0.03& 0.00& 0.00&-0.05& 0.02\\ 0.03& 0.00& 0.00& 0.02&-0.05 \end {bmatrix},\\ \Qb _3= \Qb _4= \Qb _5= \Qb _6&= \begin {bmatrix} -0.04& 0.01& 0.01& 0.01& 0.01\\ 0.03&-0.05& 0.02& 0.00& 0.00\\ 0.03& 0.02&-0.05& 0.00& 0.00\\ 0.03& 0.00& 0.00&-0.05& 0.02\\ 0.03& 0.00& 0.00& 0.02&-0.05 \end {bmatrix},\\ \Qb _7= \Qb _8= \Qb _9&= \begin {bmatrix} -0.05& 0.01& 0.01& 0.01& 0.02\\ 0.03&-0.05& 0.02& 0.00& 0.00\\ 0.03& 0.02&-0.05& 0.00& 0.00\\ 0.02& 0.00& 0.00&-0.05& 0.03\\ 0.02& 0.00& 0.00& 0.02&-0.04 \end {bmatrix}.\end {align*}

$_0$

$_1$

$_2$

$_1$

$_3$

$_4$

$_5$

$_6$

$_0$

$_7$

$_8$

$_9$

$_4$

$_i$

\begin {align*}\pi _0=\pi _1=\pi _2&=[0.31579, 0.29323, 0.18045, 0.10526, 0.10526],\\ \pi _3=\pi _4=\pi _5=\pi _6&=[0.42857, 0.14286, 0.14286, 0.14286, 0.14286],\\ \pi _7=\pi _8=\pi _9&=[0.31579, 0.10526, 0.10526, 0.18045, 0.29323].\end {align*}

$5\le K\le 15$

$5\le K\le 15$

$_j$

\begin {equation*}P_j=\beta k_j(\xi B_j\rhot _j\st _j^{\alpha }+P^*),\end {equation*}

$0\le j\le n-1$

$_j$

\begin {equation*}P_j=\beta k_j(\xi \st _j^{\alpha }+P^*),\end {equation*}

$0\le j\le n-1$

$\xi $

$\alpha $

P^*

$\beta $

$\Twt _j$

$\Twt _j(\st _j)$

$\st _j$

P

$_0$

$_2$

$_{m-1}$

P

$_j$

$\st _0,\st _1,\ldots ,\st _{n-1}$

\begin {equation*}P_0+P_1+\cdots +P_{n-1}=P,\end {equation*}

\begin {equation*}T=\max \{\Twt _0(\st _0),\Twt _1(\st _1),\ldots ,\Twt _{n-1}(\st _{n-1})\}\end {equation*}

$\st _j$

P_j

\begin {equation*}\st _j=\biggl ({1\over \xi B_j\rhot _j}\biggl ({P_j\over \beta k_j}-P^*\biggr)\biggr)^{1/\alpha }\end {equation*}

\begin {equation*}\st _j=\biggl ({1\over \xi }\biggl ({P_j\over \beta k_j}-P^*\biggr)\biggr)^{1/\alpha }\end {equation*}

$0\le j\le n-1$

$B_j<1$

$\rhot _j<1$

P_j

$\st _j$

T

\begin {equation*}\Twt _0(\st _0)=\Twt _1(\st _1)=\cdots =\Twt _{n-1}(\st _{n-1})=T.\end {equation*}

T

T

$\st _j$

$\Twt _0(\st _0)=\Twt _1(\st _1)=\cdots =\Twt _{n-1}(\st _{n-1})=T$

$\st _j$

P_j

$P_0+P_1+\cdots +P_{n-1}$

P

$P_0+P_1+\cdots +P_{n-1}$

T

T

$[T_{\mathit {lb}},T_{\mathit {lb}}]$

T

$T_{\mathit {lb}}=0$

$T_{\mathit {ub}}$

$\Twt _j(\st _j)=T_{\mathit {ub}}$

$0\le j\le n-1$

$P_0+P_1+\cdots +P_{n-1}<P$

$[T_{\mathit {lb}},T_{\mathit {lb}}]$

$\Twt _j(\st _j)=T$

$\st _j$

$\Twt _j(\st _j)$

$\st _j$

$0\le j\le n-1$

$[s_{\mathit {lb}},s_{\mathit {lb}}]$

$\st _j$

$\Delta _T=T_{\mathit {ub}}-T_{\mathit {lb}}$

$\Delta _s=s_{\mathit {ub}}-s_{\mathit {lb}}$

$\epsilon $

$\Twt _j(\st _j)=T$

$\st _j$

$\Twt _j(\st _j)$

$O(M\log (1/\epsilon))$

\begin {equation*}O(M\log (1/\epsilon)\log (\Delta _s/\epsilon))\end {equation*}

$\Delta _s$

$O(M(\log (1/\epsilon))^2)$

$O(\log (\Delta _T/\epsilon))$

n

$\Twt _j(\st _j)=T$

$O(M(\log (1/\epsilon))^2)$

\begin {equation*}O(Mn\log (\Delta _T/\epsilon)(\log (1/\epsilon))^2).\end {equation*}

$\Delta _T$

$O(Mn(\log (1/\epsilon))^3)$

$k_j=2$

$0\le j\le n-1$

$\xi =10$

$\alpha =2$

$P^*=5$

$\beta =2$

$P=800,900,\ldots ,1500$

$P=800,900,\ldots ,1500$

$P=800,900,\ldots ,1500$

$P=800,900,\ldots ,1500$

P

$\st _j$

P_j

$0\le j\le n-1$

T

$_0$

$_1$

$_3$

$_4$

P

P_j

$\st _j$

$0\le j\le n-1$

P_j

$\st _j$

$P=800,900,\ldots ,1500$

$P=800,900,\ldots ,1500$

$P=800,900,\ldots ,1500$

$P=800,900,\ldots ,1500$

$(\ln n+1)$

n

\begin {equation*}T=\sum _{J=0}^{N-1}\pi (J)\max \{\Twt _0(I_0(J)),\Twt _1(I_1(J)),\ldots ,\Twt _{n-1}(I_{n-1}(J))\}.\end {equation*}

T

$T(k_0,k_1,\ldots ,k_{n-1})$

k_0,k_1,\ldots ,k_{n-1}

$T(\st _0,\st _1,\ldots ,\st _{n-1})$

$\st _0,\st _1,\ldots ,\st _{n-1}$

$T(k_0,k_1,\ldots ,k_{n-1})$

$T(\st _0,\st _1,\ldots ,\st _{n-1})$

$K-1\choose n-1$

K

n

$K=20$

$n=5$

${19\choose 4}=3876$

mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.jpdc.2025.105216
https://doi.org/10.1016/j.jpdc.2025.105216

K. Li

aware server placement and optimal mobility-aware power allocation
should be solved algorithmically.

Unfortunately, there has been little such productive investigation
within the above framework. The motivation of this paper is to make
efforts towards this direction.

1.3. Contributions and significance

In this paper, we systematically, quantitatively, and mathematically
address the problems of optimal mobility-aware server placement and
optimal mobility-aware power allocation in mobile edge computing en-
vironments with randomly walking mobile users. The new contributions
of the paper are highlighted below.

• We establish a single-server M/G/1 queueing system for mobile user
equipment and a multiserver M/G/k queueing system for mobile
edge clouds.

• We consider both the synchronous mobility model and the asyn-
chronous mobility model, which are described by discrete-time
Markov chains and continuous-time Markov chains respectively.

• We discuss two task offloading strategies for user equipment in
the same service area, i.e., the equal-response-time method and the
equal-load-fraction method.

• We formally and rigorously define the optimal mobility-aware server
placement problem and the optimal mobility-aware power allocation
problem.

• We develop optimization algorithms to solve the optimal mobility-
aware server placement problem and the optimal mobility-aware
power allocation problem.

• We demonstrate numerical data for optimal mobility-aware server
placement and optimal mobility-aware power allocation with two
mobility models, two task offloading strategies, and two power con-
sumption models.

The significance of the paper can be seen from the fact that the above
analytical and algorithmic discussion of optimal mobility-aware server
placement and optimal mobility-aware power allocation for mobile edge
computing environments with randomly walking mobile users has rarely
been seen in the existing literature. Therefore, the paper has made tan-
gible contributions in this direction.

1.4. Paper organization

In Section 2, we establish our analytical models, including queueing
systems for user equipment and mobile edge clouds, and Markov chains
for synchronous mobility and asynchronous mobility. In Section 3, we
discuss task offloading to an MEC in a service area with multiple UEs. In
Section 4, we formulate and solve the mobility-aware server placement
problem. In Section 5, we formulate and solve the mobility-aware power
allocation problem. In Section 6, we review related research on server
placement and power allocation. In Section 7, we conclude the paper.

2. Analytical models

In this section, we establish our analytical models, including queue-
ing systems for user equipment and mobile edge clouds, and Markov
chains for synchronous mobility and asynchronous mobility.

2.1. Server modeling: queueing systems

We consider a mobile edge computing system with multiple mobile
user equipment UE0, UE1, …, UE𝑚−1, which randomly move among mul-
tiple service areas SA0, SA1, …, SA𝑛−1, where each service area SA𝑗 is
equipped with a mobile edge cloud service system MEC𝑗 with 𝑘𝑗 servers
(see Fig. 1). All UEs and MECs are considered task servers and formu-
lated as queueing systems which are described in detail in this section.

Fig. 1. Mobile UEs randomly walk among the service areas (i.e., the big circles)
SA0, SA1, …, SA𝑛−1. Each SA𝑗 has a multiserver MEC𝑗 , 0 ≤ 𝑗 ≤ 𝑛 − 1. The UE
groups are 𝐼0 = {1, 4, 7}, 𝐼1 = {5, 8}, 𝐼2 = {9}, 𝐼3 = {2, 6}, 𝐼4 = {0, 3}.

Fig. 2. A service area SA𝑗 with UE𝑖1 , UE𝑖2 , …, UE𝑖𝑏 and MEC𝑗 with 𝑘𝑗 servers
𝑆𝑗,1, 𝑆𝑗,2,… , 𝑆𝑗,𝑘𝑗 . Each UE𝑖 is modeled as an M/G/1 queueing system. Each
MEC𝑗 is modeled as an M/G/k queueing system.

Journal of Parallel and Distributed Computing 210 (2026) 105216

2

K. Li

2.1.1. User equipment: M/G/1 queueing systems
Each user equipment UE𝑖, where 0 ≤ 𝑖 ≤ 𝑚 − 1, is treated as a single-

server M/G/1 queueing system with a task-waiting queue of infinite
capacity and the first-come-first-serve queueing discipline (see Fig. 2).
The workload on UE𝑖 can be described by five parameters: 𝜆𝑖, 𝑟𝑖, 𝑟2𝑖 , 𝑑𝑖,
𝑑2𝑖 . Assume that there is a Poisson stream of tasks arriving at UE𝑖. Let
𝜆𝑖 be the arrival rate (measured by the number of tasks per second).
We use 𝑟𝑖 to denote the independent and identically distributed (i.i.d.)
random task computation requirements (measured by the number of bil-
lion instructions (BI)) with mean 𝑟𝑖 and second moment 𝑟2𝑖 . (Throughout
the paper, we use 𝑧 and 𝑧2 to represent the mean and the second mo-
ment of a random variable 𝑧.) We use 𝑑𝑖 to denote the i.i.d. random task
communication requirements (measured by the number of million bits
(MB)) with mean 𝑑𝑖 and second moment 𝑑2𝑖 . We assume that 𝑟𝑖 and 𝑑𝑖
are independent of each other.

UE𝑖 has computation speed 𝑠𝑖 (measured by BI/second). If a task
received by UE𝑖 is processed locally on UE𝑖 itself, the execution time
(measured by second) is a random variable

𝑥𝑖 =
𝑟𝑖
𝑠𝑖
,

whose mean is

𝑥𝑖 =
𝑟𝑖
𝑠𝑖
,

and whose second moment is

𝑥2𝑖 =
𝑟2𝑖
𝑠2𝑖

,

for all 0 ≤ 𝑖 ≤ 𝑚 − 1.

2.1.2. Mobile edge clouds: M/G/k queueing systems
Each mobile edge cloud MEC𝑗 , where 0 ≤ 𝑗 ≤ 𝑛 − 1, is treated as a mul-

tiserver M/G/k queueing system with a task-waiting queue of infinite
capacity and the first-come-first-serve queueing discipline. The M/G/k
queueing system has 𝑘𝑗 (called the size of the multiserver system) iden-
tical servers 𝑆𝑗,1, 𝑆𝑗,2,… , 𝑆𝑗,𝑘𝑗 (see Fig. 2).

Assume that UE𝑖 is in SA𝑗 so that UE𝑖 can offload its tasks to MEC𝑗 .
The task arrival stream of UE𝑖 is split into two substreams. The first
substream of tasks processed locally on UE𝑖 has arrival rate 𝜆𝑖 − 𝜆̂𝑖. The
second substream of tasks offloaded to and processed remotely on MEC𝑗
is 𝜆̂𝑖.

The UEs are divided into UE groups: 𝐼0, 𝐼1,… , 𝐼𝑛−1, where 𝐼𝑗 =
{𝑖 | UE𝑖 is in SA𝑗} is the set of indices of UEs in SA𝑗 (see Fig. 1). It is
clear that all these UEs can offload their tasks to MEC𝑗 . Hence, the task
arrival rate of MEC𝑗 is
𝜆̃𝑗 =

∑

𝑖∈𝐼𝑗

𝜆̂𝑖,

for all 0 ≤ 𝑗 ≤ 𝑛 − 1.
MEC𝑗 has computation speed 𝑠̃𝑗 (measured by BI/second). The com-

munication speed between UE𝑖 and MEC𝑗 is 𝑐𝑖,𝑗 (measured by MB/sec-
ond). If UE𝑖 is in SA𝑗 and a task received by UE𝑖 is processed remotely
on MEC𝑗 , the execution time (measured by second) is a random variable

𝑥̃𝑖,𝑗 =
𝑟𝑖
𝑠̃𝑗

+
𝑑𝑖
𝑐𝑖,𝑗

,

which is the computation time 𝑟𝑖∕𝑠̃𝑗 plus the communication time 𝑑𝑖∕𝑐𝑖,𝑗 ,
whose mean is

𝑥̃𝑖,𝑗 =
𝑟𝑖
𝑠̃𝑗

+
𝑑𝑖
𝑐𝑖,𝑗

,

and whose second moment is

𝑥̃2𝑖,𝑗 =
𝑟2𝑖
𝑠̃2𝑗

+ 2
𝑟𝑖𝑑𝑖
𝑠̃𝑗𝑐𝑖,𝑗

+
𝑑2𝑖
𝑐2𝑖,𝑗

,

for all 0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ 𝑗 ≤ 𝑛 − 1.
The determination of server sizes 𝑘0, 𝑘1,… , 𝑘𝑛−1 is called server place-

ment (see Section 4).
The determination of server speeds 𝑠̃0, 𝑠̃1,… , 𝑠̃𝑛−1 is called power al-

location and speed setting (see Section 5).
Both mobility-aware server placement and power allocation depend

on mobility modeling.

2.2. Mobility modeling: Markov chains

In this section, we describe our mobility models for UEs and their
location distributions. The material in this section is based on [5].

Mobility modeling of a UE𝑖 does not need its detailed trajectory in-
formation, but only the knowledge of how UE𝑖 changes its service area
SA𝑗 and the associated MEC𝑗 . When UE𝑖 moves from SA𝑗 to SA𝑗′ , the
task offloading strategy in both SA𝑗 and SA𝑗′ , the average response time
of all UEs in both SA𝑗 and SA𝑗′ , and the average response time of both
MEC𝑗 and MEC𝑗′ are changed (see Section 3).

2.2.1. Synchronous mobility: discrete-time Markov chains
In this section, we describe discrete-time Markov chains (DTMC) for

synchronous mobility.
With synchronous mobility, all UEs move simultaneously. It is as-

sumed that time is divided into equal-length slots. At the beginning of
each time slot, each UE𝑖 can move from one SA to another SA or re-
main in the same SA. Such movement is controlled by an 𝑛 × 𝑛 transition
probability matrix
P𝑖 = [𝑝𝑖(𝑗, 𝑗′)],

where 𝑝𝑖(𝑗, 𝑗′), 0 ≤ 𝑗, 𝑗′ ≤ 𝑛 − 1, is the transition probability of UE𝑖 from
SA𝑗 to SA𝑗′ in a time slot, if UE𝑖 is currently in SA𝑗 .

Let the stationary probability vector of UE𝑖 be denoted as
𝜋𝑖 = [𝜋𝑖(0), 𝜋𝑖(1),… , 𝜋𝑖(𝑛 − 1)],

where 𝜋𝑖(𝑗) is the stationary probability that UE𝑖 is in SA𝑗 . 𝜋𝑖 can be
obtained by solving the linear system of equations:
𝜋𝑖 = 𝜋𝑖P𝑖,

with the condition
𝜋𝑖(0) + 𝜋𝑖(1) +⋯ + 𝜋𝑖(𝑛 − 1) = 1,

for all 0 ≤ 𝑖 ≤ 𝑚 − 1.

2.2.2. Asynchronous mobility: continuous-time markov chains
In this section, we describe continuous-time Markov chains (CTMC)

for asynchronous mobility.
With asynchronous mobility, the UEs move at different times. A UE𝑖

can change its service area at any time. Such movement of UE𝑖 is con-
trolled by an 𝑛 × 𝑛 transition rate matrix
Q𝑖 = [𝑞𝑖(𝑗, 𝑗′)],

where 𝑞𝑖(𝑗, 𝑗′), 0 ≤ 𝑗 ≠ 𝑗′ ≤ 𝑛 − 1, is the transition rate of UE𝑖 from SA𝑗
to SA𝑗′ , if UE𝑖 is currently in SA𝑗 . Notice that
𝑞𝑖(𝑗, 𝑗) = −

∑

𝑗′≠𝑗
𝑞𝑖(𝑗, 𝑗′),

and the mean holding time for UE𝑖 to stay in SA𝑗 is −1∕𝑞𝑖(𝑗, 𝑗), for all
0 ≤ 𝑗 ≤ 𝑛 − 1.

The stationary probability vector of UE𝑖, i.e.,
𝜋𝑖 = [𝜋𝑖(0), 𝜋𝑖(1),… , 𝜋𝑖(𝑛 − 1)],

can be obtained by solving the linear system of equations:
𝜋𝑖Q𝑖 = 0,

with the condition
𝜋𝑖(0) + 𝜋𝑖(1) +⋯ + 𝜋𝑖(𝑛 − 1) = 1,

for all 0 ≤ 𝑖 ≤ 𝑚 − 1.

Journal of Parallel and Distributed Computing 210 (2026) 105216

3

K. Li

2.2.3. Location distributions
A location distribution of the UEs is 𝐽 = (𝑗0, 𝑗1,… , 𝑗𝑚−1), where UE𝑖 is

in SA𝑗𝑖 , for all 0 ≤ 𝑖 ≤ 𝑚 − 1. Equivalently, 𝐽 can be treated as an 𝑚-digit
radix-𝑛 integer (𝑗0𝑗1 ⋯ 𝑗𝑚−1)𝑛 in the range 0, 1,… , 𝑁 − 1:

𝐽 = 𝑗0𝑛
𝑚−1 + 𝑗1𝑛

𝑚−2 +⋯ + 𝑗𝑚−1𝑛
0,

for all 0 ≤ 𝑗0, 𝑗1,… , 𝑗𝑚−1 ≤ 𝑛 − 1, where 𝑁 = 𝑛𝑚 is the number of location
distributions.

Let 𝜋(𝐽) be the stationary probability of a location distribution 𝐽 ,
where 0 ≤ 𝐽 ≤ 𝑁 − 1. The stationary location distribution vector
𝜋 = [𝜋(0), 𝜋(1),… , 𝜋(𝑁 − 1)]

can be calculated as follows. If 𝐽 = (𝑗0, 𝑗1,… , 𝑗𝑚−1), then we have

𝜋(𝐽) =
𝑚−1
∏

𝑖=0
𝜋𝑖(𝑗𝑖),

for all 0 ≤ 𝐽 ≤ 𝑁 − 1.

3. Task offloading

In this section, we discuss task offloading to an MEC in a service area
with multiple UEs. The discussion in this section forms the basis for the
optimization problems to be solved in this paper.

3.1. Average response time

In this section, we derive the average response time for each UE and
MEC.

3.1.1. User equipment
Recall that the substream of tasks of UE𝑖 processed locally on UE𝑖

has arrival rate 𝜆𝑖 − 𝜆̂𝑖. Therefore, by the Pollaczek-Khinchin mean value
formula, the average response time of UE𝑖 is
𝑇𝑖 = 𝑥𝑖 +𝑊𝑖,

where 𝑊𝑖 is the average waiting time of UE𝑖:

𝑊𝑖 =
(𝜆𝑖 − 𝜆̂𝑖)𝑥2𝑖
2(1 − 𝜌𝑖)

,

and 𝜌𝑖 is the utilization of UE𝑖:
𝜌𝑖 = (𝜆𝑖 − 𝜆̂𝑖)𝑥𝑖,

for all 0 ≤ 𝑖 ≤ 𝑚 − 1 (see [6], p. 190).

3.1.2. Mobile edge clouds
For a given 𝐼𝑗 , the execution time of a task on MEC𝑗 is a random

variable 𝑥̃𝑗 with mean

𝑥̃𝑗 =
1
𝜆̃𝑗

∑

𝑖∈𝐼𝑗

𝜆̂𝑖𝑥̃𝑖,𝑗 =
1
𝜆̃𝑗

∑

𝑖∈𝐼𝑗

𝜆̂𝑖

(

𝑟𝑖
𝑠̃𝑗

+
𝑑𝑖
𝑐𝑖,𝑗

)

,

and the second moment

𝑥̃2𝑗 =
1
𝜆̃𝑗

∑

𝑖∈𝐼𝑗

𝜆̂𝑖𝑥̃2𝑖,𝑗 =
1
𝜆̃𝑗

∑

𝑖∈𝐼𝑗

𝜆̂𝑖

(𝑟2𝑖
𝑠̃2𝑗

+ 2
𝑟𝑖𝑑𝑖
𝑠̃𝑗𝑐𝑖,𝑗

+
𝑑2𝑖
𝑐2𝑖,𝑗

)

,

and the variance
𝜎2𝑗 = 𝑥̃2𝑗 − 𝑥̃𝑗

2
,

and the coefficient of variation

𝑐𝑗 =
𝜎𝑗
𝑥̃𝑗

=

√

√

√

√

√

𝑥̃2𝑗

𝑥̃𝑗
2
− 1,

for all 0 ≤ 𝑗 ≤ 𝑛 − 1.

The average response time of MEC𝑗 is
𝑇̃𝑗 = 𝑥̃𝑗 + 𝑊̃𝑗 ,

where 𝑊̃𝑗 is the average waiting time of MEC𝑗 . By Kingman’s law of
congestion [7], it is known that the average waiting time of MEC𝑗 is ap-
proximately

𝑊̃𝑗 =
(𝑐2𝑗 + 1

2

)

𝑊 ∗
𝑗 ,

where 𝑊 ∗
𝑗 is the average waiting time of an M/M/k queueing system

with the same utilization as the M/G/k queueing system. The utilization
of MEC𝑗 is

𝜌̃𝑗 =
𝜆̃𝑗 𝑥̃𝑗
𝑘𝑗

= 1
𝑘𝑗

∑

𝑖∈𝐼𝑗

𝜆̂𝑖𝑥̃𝑖,𝑗 .

Then, we have

𝑊 ∗
𝑗 = 𝑥̃𝑗 ⋅

𝑝𝑗,𝑘𝑗
𝑘𝑗 (1 − 𝜌̃𝑗)2

,

where

𝑝𝑗,𝑘𝑗 = 𝑝𝑗,0
(𝑘𝑗 𝜌̃𝑗)

𝑘𝑗

𝑘𝑗 !
,

and

𝑝𝑗,0 =
(𝑘𝑗−1
∑

𝑏=0

(𝑘𝑗 𝜌̃𝑗)𝑏

𝑏!
+

(𝑘𝑗 𝜌̃𝑗)
𝑘𝑗

𝑘𝑗 !
⋅

1
1 − 𝜌̃𝑗

)−1
,

for all 0 ≤ 𝑗 ≤ 𝑛 − 1 (see [6], p. 102).

3.2. Task offloading strategies

In this section, we develop two task offloading strategies for user
equipment in the same service area. A task offloading strategy is to decide
the 𝜆̂𝑖’s.

3.2.1. Equal-response-time method
For an SA𝑗 , the objective of the equal-response-time (ERT) method for

all the UE𝑖’s in SA𝑗 is to find 𝜆̂𝑖 for all 𝑖 ∈ 𝐼𝑗 , such that all the UE𝑖’s
served by MEC𝑗 and MEC𝑗 itself have identical average response time, i.e.,
𝑇𝑖 = 𝑇̃𝑗 = 𝑇 , for all 𝑖 ∈ 𝐼𝑗 and some 𝑇 . The rationale of the above task
offloading strategy is to treat all UEs equally and satisfy all of them.

To get the 𝜆̂𝑖’s, we notice that

𝑇𝑖 = 𝑥𝑖 +
(𝜆𝑖 − 𝜆̂𝑖)𝑥2𝑖

2(1 − (𝜆𝑖 − 𝜆̂𝑖)𝑥𝑖)
= 𝑇 ,

which gives

𝜆̂𝑖 = 𝜆𝑖 −
2(𝑇 − 𝑥𝑖)

𝑥2𝑖 + 2𝑥𝑖(𝑇 − 𝑥𝑖)
,

for all 𝑖 ∈ 𝐼𝑗 .
The last equation implies that each 𝜆̂𝑖 can be treated as a function

𝜆̂𝑖(𝑇) of 𝑇 . Since 𝑇̃𝑗 is a function of the 𝜆̂𝑖’s, 𝑇̃𝑗 can also be treated as
a function of 𝑇 , i.e., 𝑇̃𝑗 (𝜆̂𝑖1 (𝑇), 𝜆̂𝑖2 (𝑇),… , 𝜆̂𝑖𝑏 (𝑇)), where we assume that
𝐼𝑗 = {𝑖1, 𝑖2,… , 𝑖𝑏}. Hence, 𝑇 can be obtained by solving the equation

𝑓 (𝑇) = 𝑇 − 𝑇̃𝑗 (𝜆̂𝑖1 (𝑇), 𝜆̂𝑖2 (𝑇),… , 𝜆̂𝑖𝑏 (𝑇)) = 0,

where 𝑇̃𝑗 is derived in Section 3.1.2.
To solve the above equation, we observe that increased 𝑇 gives re-

duced 𝜆̂𝑖, which in turn, results in reduced 𝑇̃𝑗 (𝜆̂𝑖1 (𝑇), 𝜆̂𝑖2 (𝑇),… , 𝜆̂𝑖𝑏 (𝑇)).
Therefore, 𝑓 (𝑇) is an increasing function of 𝑇 . This means that the equa-
tion 𝑓 (𝑇) = 0 can be solved by using the standard bisection search algo-
rithm. The search interval [𝑇𝑙𝑏, 𝑇𝑢𝑏] can be determined as follows. Since

𝑥𝑖 ≤ 𝑇𝑖 ≤ 𝑥𝑖 +
𝜆𝑖𝑥2𝑖

2(1 − 𝜆𝑖𝑥𝑖)
,

Journal of Parallel and Distributed Computing 210 (2026) 105216

4

K. Li

we can set
𝑇𝑙𝑏 = max

𝑖∈𝐼𝑗
{𝑥𝑖},

and

𝑇𝑢𝑏 = min
𝑖∈𝐼𝑗

{

𝑥𝑖 +
𝜆𝑖𝑥2𝑖

2(1 − 𝜆𝑖𝑥𝑖)

}

.

The above procedure takes 𝑂(log(Δ∕𝜖)) time, where Δ = 𝑇𝑢𝑏 − 𝑇𝑙𝑏 is the
length of the search interval and 𝜖 is the accuracy requirement. Since Δ
is a reasonably small quantity, the above time complexity will be simply
treated as 𝑂(log(1∕𝜖)).

3.2.2. Equal-load-fraction method
For an SA𝑗 , the objective of the equal-load-fraction (ELF) method for

all the UE𝑖’s in SA𝑗 is to set
𝜆̂𝑖 = 𝐹𝑗𝜆𝑖,

for all 𝑖 ∈ 𝐼𝑗 , such that the weighted average response time of all UE𝑖’s and
MEC𝑗 is, i.e.,

𝑇 =
∑

𝑖∈𝐼𝑗

(

𝜆𝑖 − 𝜆̂𝑖
Λ𝑗

)

𝑇𝑖 +
𝜆̃𝑗
Λ𝑗

𝑇̃𝑗 ,

is minimized, where
Λ𝑗 =

∑

𝑖∈𝐼𝑗

𝜆𝑖

is the total workload in SA𝑗 .
Since

𝜆𝑖 − 𝜆̂𝑖 = (1 − 𝐹𝑗)𝜆𝑖,

and

𝜆̃𝑗 =
∑

𝑖∈𝐼𝑗

𝜆̂𝑖 =
∑

𝑖∈𝐼𝑗

𝐹𝑗𝜆𝑖 = 𝐹𝑗
∑

𝑖∈𝐼𝑗

𝜆𝑖 = 𝐹𝑗Λ𝑗 ,

the above 𝑇 can be rewritten as
𝑇 = 1

Λ𝑗

∑

𝑖∈𝐼𝑗

(1 − 𝐹𝑗)𝜆𝑖𝑇𝑖 + 𝐹𝑗 𝑇̃𝑗 ,

for all 0 ≤ 𝑗 ≤ 𝑛 − 1.
It is clear that 𝑇 can be viewed as a function of 𝐹𝑗 , which can be

minimized by solving the equation
𝜕𝑇 ∕𝜕𝐹𝑗 = 0,

where

𝜕𝑇
𝜕𝐹𝑗

= 1
Λ𝑗

∑

𝑖∈𝐼𝑗

(

−𝜆𝑖𝑇𝑖 + (1 − 𝐹𝑗)𝜆𝑖
𝜕𝑇𝑖
𝜕𝐹𝑗

)

+ 𝑇̃𝑗 + 𝐹𝑗
𝜕𝑇̃𝑗
𝜕𝐹𝑗

,

for all 0 ≤ 𝑗 ≤ 𝑛 − 1.
To derive 𝜕𝑇𝑖∕𝜕𝐹𝑗 , we notice that

𝜕𝑇𝑖
𝜕𝐹𝑗

=
𝜕𝑊𝑖
𝜕𝐹𝑗

,

where

𝑊𝑖 =
(𝜆𝑖 − 𝜆̂𝑖)𝑥2𝑖

2(1 − (𝜆𝑖 − 𝜆̂𝑖)𝑥𝑖)
=

(1 − 𝐹𝑗)𝜆𝑖𝑥2𝑖
2(1 − (1 − 𝐹𝑗)𝜆𝑖𝑥𝑖)

,

and

𝜕𝑊𝑖
𝜕𝐹𝑗

= −
(𝜆𝑖𝑥2𝑖 (1 − (1 − 𝐹𝑗)𝜆𝑖𝑥𝑖) + (1 − 𝐹𝑗)𝜆2𝑖 𝑥𝑖𝑥

2
𝑖

2(1 − (1 − 𝐹𝑗)𝜆𝑖𝑥𝑖)2

)

,

for all 0 ≤ 𝑗 ≤ 𝑛 − 1.
To derive 𝜕𝑇̃𝑗∕𝜕𝐹𝑗 , we notice that 𝑥̃𝑗 and 𝑐𝑗 are independent of 𝐹𝑗 .

Therefore,

𝜕𝑇̃𝑗
𝜕𝐹𝑗

=
𝜕𝑊̃𝑗

𝜕𝐹𝑗
=
(𝑐2𝑗 + 1

2

) 𝜕𝑊 ∗
𝑗

𝜕𝐹𝑗
,

where

𝜕𝑊 ∗
𝑗

𝜕𝐹𝑗
=

𝑥̃𝑗
𝑘𝑗

(

1
(1 − 𝜌̃𝑗)2

⋅
𝜕𝑝𝑗,𝑘𝑗
𝜕𝐹𝑗

+
2𝑝𝑗,𝑘𝑗

(1 − 𝜌̃𝑗)3
⋅
𝜕𝜌̃𝑗
𝜕𝐹𝑗

)

,

and

𝜕𝑝𝑗,𝑘𝑗
𝜕𝐹𝑗

=
(𝑘𝑗 𝜌̃𝑗)

𝑘𝑗

𝑘𝑗 !
⋅
𝜕𝑝𝑗,0
𝜕𝐹𝑗

+ 𝑝𝑗,0
𝑘
𝑘𝑗
𝑗 𝜌̃

𝑘𝑗−1
𝑗

(𝑘𝑗 − 1)!
⋅
𝜕𝜌̃𝑗
𝜕𝐹𝑗

,

and

𝜕𝑝𝑗,0
𝜕𝐹𝑗

= −𝑝2𝑗,0

(𝑘𝑗−1
∑

𝑏=1

𝑘𝑏𝑗 𝜌̃
𝑏−1
𝑗

(𝑏 − 1)!
+

𝑘
𝑘𝑗
𝑗 𝜌̃

𝑘𝑗−1
𝑗

(𝑘𝑗 − 1)!
⋅

1
1 − 𝜌̃𝑗

+
(𝑘𝑗 𝜌̃𝑗)

𝑘𝑗

𝑘𝑗 !
⋅

1
(1 − 𝜌̃𝑗)2

) 𝜕𝜌̃𝑗
𝜕𝐹𝑗

,

for all 0 ≤ 𝑗 ≤ 𝑛 − 1. Since

𝜌̃𝑗 =
𝑥̃𝑗
𝑘𝑗

𝜆̃𝑗 =
𝑥̃𝑗
𝑘𝑗

𝐹𝑗Λ𝑗 ,

we have
𝜕𝜌̃𝑗
𝜕𝐹𝑗

=
𝑥̃𝑗
𝑘𝑗

Λ𝑗 ,

for all 0 ≤ 𝑗 ≤ 𝑛 − 1.
We observe that 𝜕𝑇 ∕𝜕𝐹𝑗 is an increasing function of 𝐹𝑗 . Conse-

quently, the equation 𝜕𝑇 ∕𝜕𝐹𝑗 = 0 can be solved by using the standard bi-
section search algorithm. Since 0 ≤ 𝜌̃𝑗 < 1, we have 0 ≤ 𝐹𝑗 < 𝑘𝑗∕(𝑥̃𝑗Λ𝑗).
Also, 𝐹𝑗 ≤ 1. Hence, the search interval of 𝐹𝑗 is [0,min{1, 𝑘𝑗∕(𝑥̃𝑗Λ𝑗)}].
The time complexity of the procedure is 𝑂(log(1∕𝜖)).

Solving the equation 𝑓 (𝑇) = 0 in Section 3.2.1 or the equation
𝜕𝑇 ∕𝜕𝐹𝑗 = 0 in Section 3.2.2 is the kernel of all our algorithms in this
paper. The value 𝑇 is called the service area response time of SA𝑗 , de-
noted as 𝑇𝑗 , for all 0 ≤ 𝑗 ≤ 𝑛 − 1. Also, we notice that 𝑇𝑗 depends on 𝐼𝑗 .
Therefore, we will represent 𝑇𝑗 as 𝑇𝑗 (𝐼𝑗).

(Note: One may consider the situation where different UEs in the
same service area SA𝑗 have different fractions of workload to offload
to MEC𝑗 , such that the weighted average response time is minimized.
This is a very complicated optimization problem. Since the focus of this
paper is not task offloading, we do not investigate along this direction.)

4. Mobility-aware server placement

In this section, we formulate and solve the mobility-aware server
placement problem.

4.1. Problem definition

In this section, we define the mobility-aware server placement prob-
lem.

Let ̃𝑇𝑗 (𝐼𝑗) be the service area response time of SA𝑗 with UEs in 𝐼𝑗 and
MEC𝑗 , where ̃𝑇𝑗 (𝐼𝑗) is obtained in Section 3.2. For a location distribution
𝐽 = (𝑗0,… , 𝑗𝑖,… , 𝑗𝑚−1), let

𝐼𝑗 (𝐽) = {𝑖 | 𝑗𝑖 = 𝑗}

be the set of UEs in SA𝑗 , where 0 ≤ 𝑗 ≤ 𝑛 − 1. The expected service area
response time 𝑇𝑗 of SA𝑗 is

𝑇𝑗 =
𝑁−1
∑

𝐽=0
𝜋(𝐽)𝑇𝑗 (𝐼𝑗 (𝐽)).

The calculation of 𝑇𝑗 needs 𝑂(𝑁 log(1∕𝜖)) time.
A more efficient way to calculate 𝑇𝑗 is as follows. Consider 𝐼𝑗 ⊆

{0, 1,… , 𝑚 − 1}. It is clear that 𝐼𝑗 occurs with probability

𝑃𝑗 (𝐼𝑗) =
∏

𝑖∈𝐼𝑗

𝜋𝑖(𝑗)
∏

𝑖∉𝐼𝑗

(1 − 𝜋𝑖(𝑗))

Journal of Parallel and Distributed Computing 210 (2026) 105216

5

K. Li

in a stationary mobile edge computing environment. Therefore, 𝑇𝑗 can
be calculated by

𝑇𝑗 =
1
𝐵𝑗

∑

𝐼𝑗≠∅
𝑃𝑗 (𝐼𝑗)𝑇𝑗 (𝐼𝑗),

where

𝐵𝑗 =
∑

𝐼𝑗≠∅
𝑃𝑗 (𝐼𝑗)

is the probability that MEC𝑗 is busy, and

𝐵𝑗 = 1 − 𝑃𝑗 (∅) = 1 −
𝑚−1
∏

𝑖=0
(1 − 𝜋𝑖(𝑗)),

for all 0 ≤ 𝑗 ≤ 𝑛 − 1. Since there are 𝑀 = 2𝑚 subsets of {0, 1,… , 𝑚 − 1},
the above equation only involves 𝑀 terms. Consequently, the calcu-
lation of 𝑇𝑗 needs 𝑂(𝑀(𝑚 + log(1∕𝜖))), or, 𝑂(𝑀 log(1∕𝜖)) time, where
we notice that 𝑇𝑗 has 𝑀 terms and each term contains 𝑃𝑗 (𝐼𝑗), which
can be calculated in 𝑂(𝑚) time, and 𝑇𝑗 (𝐼𝑗), which can be calculated in
𝑂(log(1∕𝜖)) time.

Notice that 𝑇𝑗 can be treated as a function 𝑇𝑗 (𝑘𝑗) of 𝑘𝑗 .
Let 𝐾 ≥ 𝑛 be the number of available servers to be assigned to MEC0,

MEC2, …, MEC𝑛−1.
Our mobility-aware server placement (MASP) problem is to assign the

𝐾 servers to the MEC𝑗 ’s, i.e., to find server sizes 𝑘0, 𝑘1,… , 𝑘𝑛−1, such
that 𝑘𝑗 ≥ 1 for all 0 ≤ 𝑗 ≤ 𝑛 − 1, and

𝑘0 + 𝑘1 +⋯ + 𝑘𝑛−1 = 𝐾,

and the maximum expected service area response time, i.e.,
𝑇 = max{𝑇0(𝑘0), 𝑇1(𝑘1),… , 𝑇𝑛−1(𝑘𝑛−1)}

is minimized. (Notice that all the 𝑠̃𝑗 ’s are identical, i.e., 𝑠̃0 = 𝑠̃1 = ⋯ =
𝑠̃𝑛−1.)

4.2. An optimization algorithm

In this section, we develop an optimization algorithm to solve the
mobility-aware server placement problem.

4.2.1. The OMASP algorithm
Our optimal mobility-aware server placement (OMASP) algorithm is dis-

played in Algorithm 1.
To reduce the maximum expected service area response time 𝑇 (lines

(5)–(8)), we consider MEC𝑗1 , whose service area has the longest ex-
pected response time (line (10)), i.e.,

𝑇𝑗1 (𝑘𝑗1) = max{𝑇0(𝑘0), 𝑇1(𝑘1),… , 𝑇𝑛−1(𝑘𝑛−1)}.

It is clear that 𝑘𝑗1 must be increased, so that 𝑇𝑗1 (𝑘𝑗1) is decreased. The
extra server comes from another MEC, whose expected service area re-
sponse time will be increased. It seems that the best choice is MEC𝑗2 ,
whose service area has the shortest expected response time, i.e.,

𝑇𝑗2 (𝑘𝑗2) = min{𝑇0(𝑘0), 𝑇1(𝑘1),… , 𝑇𝑛−1(𝑘𝑛−1)}.

However, the above MEC𝑗2 does not guarantee a reduced maximum ex-
pected service area response time 𝑇 . Therefore, we consider all possible
𝑗2 (line (12)) such that 𝑗2 ≠ 𝑗1 and 𝑘[𝑗2] > 1 (line (13)). One server is
moved from MEC𝑗2 to MEC𝑗1 (lines (14)–(15)). Such a new server place-
ment is acceptable only if the maximum expected service area response
time 𝑇 ′ (line (16)) is shorter than the previous maximum expected ser-
vice area response time 𝑇 (lines (17)–(21)).

The above adjustment of server placement is repeatedly conducted
(line (9)) until no MEC𝑗2 can result in a shorter 𝑇 ′ (lines (11) and (24)).
At that time, we find an optimal server placement that gives rise to the
shortest maximum expected service area response time 𝑇 (line (25)).

In the following, we show some important properties of the OMASP
algorithm.

Algorithm 1 Optimal mobility-aware server placement (OMASP).
Input: UE𝑖 with 𝜆𝑖, 𝑟𝑖, 𝑟2𝑖 , 𝑑𝑖, 𝑑2𝑖 , 𝑠𝑖, 𝑐𝑖,𝑗 for all 0 ≤ 𝑗 ≤ 𝑛 − 1, P𝑖 or Q𝑖, for
all 0 ≤ 𝑖 ≤ 𝑚 − 1; MEC𝑗 with 𝑠̃𝑗 , for all 0 ≤ 𝑗 ≤ 𝑛 − 1; 𝐾.
Output: 𝑘0, 𝑘1,… , 𝑘𝑛−1, such that 𝑘𝑗 ≥ 1 for all 0 ≤ 𝑗 ≤ 𝑛 − 1, and 𝑘0 +
𝑘1 +⋯ + 𝑘𝑛−1 = 𝐾, and 𝑇 = max{𝑇0(𝑘0), 𝑇1(𝑘1),… , 𝑇𝑛−1(𝑘𝑛−1)} is mini-
mized.

for (𝑖 = 0; 𝑖 < 𝑚; 𝑖++) do (1)
 calculate 𝜋𝑖; (2)
end do; (3)
set an initial server placement 𝑘0, 𝑘1,… , 𝑘𝑛−1; (4)
for (𝑗 = 0; 𝑗 < 𝑛; 𝑗++) do (5)
 calculate 𝑇𝑗 (𝑘𝑗); (6)
end do; (7)
𝑇 ← max{𝑇0(𝑘0), 𝑇1(𝑘1),… , 𝑇𝑛−1(𝑘𝑛−1)}; (8)
repeat (9)

𝑗1 ← argmax0≤𝑗≤𝑛−1{𝑇𝑗 (𝑘𝑗)}; (10)
 done ← true; (11)
 for (𝑗2 = 0; 𝑗2 < 𝑛; 𝑗2++) do (12)

 if (𝑗2 ≠ 𝑗1 and 𝑘[𝑗2] > 1) (13)
𝑘′𝑗1 ← 𝑘𝑗1 + 1; calculate 𝑇𝑗1 (𝑘′𝑗1); (14)
𝑘′𝑗2 ← 𝑘𝑗2 − 1; calculate 𝑇𝑗2 (𝑘′𝑗2); (15)
𝑇 ′ ← max{𝑇0(𝑘0),… , 𝑇𝑗1 (𝑘

′
𝑗1
),… , 𝑇𝑗2 (𝑘

′
𝑗2
),… , 𝑇𝑛−1(𝑘𝑛−1)};

(16)
 if (𝑇 ′ < 𝑇) (17)

𝑘𝑗1 ← 𝑘′𝑗1 ; 𝑘𝑗2 ← 𝑘′𝑗2 ; 𝑇 ← 𝑇 ′; (18)
 done ← false; (19)
 break; (20)

 end if; (21)
 end if; (22)

 end do; (23)
until (done); (24)
return 𝑘0, 𝑘1,… , 𝑘𝑛−1. (25)

We claim that the OMASP algorithm guarantees to find the optimal
server placement.
Claim 1. For any initial server placement 𝑘0, 𝑘1,… , 𝑘𝑛−1 in line (4), the
OMASP algorithm can find the optimal server placement in lines (9)–(24).
Proof. For any server placement 𝑘0, 𝑘1,… , 𝑘𝑛−1 with 𝑇 =
max{𝑇0(𝑘0), 𝑇1(𝑘1),… , 𝑇𝑛−1(𝑘𝑛−1)}, if 𝑇 can be reduced, there must be
some 𝑘1 and 𝑘2, such that one server must be moved from MEC𝑗2 to
MEC𝑗1 . According to lines (10)–(23), such an improvement can be
found and performed by the OMASP algorithm. ∎

Let 𝑇 (𝐾) be the maximum expected service area response time for
𝐾 servers. We claim that more servers guarantee a shorter maximum
expected service area response time.
Claim 2. For any 𝐾 < 𝐾 ′, we have 𝑇 (𝐾) > 𝑇 (𝐾 ′).
Proof. Let 𝑘0, 𝑘1,… , 𝑘𝑛−1 be the optimal server placement for
𝐾 servers with 𝑇 (𝐾) = max{𝑇0(𝑘0), 𝑇1(𝑘1),… , 𝑇𝑛−1(𝑘𝑛−1)} and 𝑗∗ =
argmax0≤𝑗≤𝑛−1{𝑇𝑗 (𝑘𝑗)}. If more (i.e., 𝐾 ′) servers are available, we can
increase 𝑘𝑗∗ and reduce 𝑇𝑗∗ (𝑘𝑗∗), and thus reduce 𝑇 (𝐾 ′). ∎

We claim that as 𝐾 increases, 𝑘𝑗 never decreases, for all 0 ≤ 𝑗 ≤ 𝑛 − 1.

Claim 3. Let 𝑘0, 𝑘1,… , 𝑘𝑛−1 be the optimal server placement for 𝐾 servers
and 𝑘′0, 𝑘′1,… , 𝑘′𝑛−1 be the optimal server placement for 𝐾 ′ servers. If 𝐾 <
𝐾 ′, then 𝑘𝑗 ≤ 𝑘′𝑗 , for all 0 ≤ 𝑗 ≤ 𝑛 − 1.

Proof. Assume that 𝑘′𝑗 < 𝑘𝑗 . We have ̃𝑇𝑗 (𝑘′𝑗) ≤ 𝑇 (𝐾 ′). Also, by Claim 2, we
have 𝑇 (𝐾 ′) < 𝑇 (𝐾). Thus, ̃𝑇𝑗 (𝑘′𝑗) < 𝑇 (𝐾). This means that 𝑘𝑗 − 𝑘′𝑗 servers
from MEC𝑗 can be used to reduce 𝑇 (𝐾). This is certainly not possible,
since 𝑘0, 𝑘1,… , 𝑘𝑛−1 is already the optimal server placement. ∎

Journal of Parallel and Distributed Computing 210 (2026) 105216

6

K. Li

Claims 2 and 3 will be manifested in our numerical data.

4.2.2. Time complexity of the OMASP algorithm
It is noticed that the most time-consuming computation in the

OMASP algorithm is the calculation of the 𝑇𝑗 (𝑘𝑗)’s. Lines (5)–(7) cal-
culate 𝑛 𝑇𝑗 (𝑘𝑗)’s. The main loop in lines (9)–(24) is repeated no more
than 𝐾 times, and in each repetition, we calculate no more than 2𝑛 (line
(12)) ̃𝑇𝑗 (𝑘𝑗)’s in lines (14)–(15). Since each ̃𝑇𝑗 (𝑘𝑗) requires 𝑂(𝑀 log(1∕𝜖))
time, the time complexity of the OMASP algorithm is 𝑂(𝐾𝑛𝑀 log(1∕𝜖)).

4.3. Numerical data

In this section, we present some numerical data to illustrate our al-
gorithm for mobility-aware server placement.

4.3.1. Parameter settings
We consider a mobile edge computing environment with 𝑚 = 10 UEs

and 𝑛 = 5 MECs. The SAs have the following layout:
SA1 SA2

SA0

SA3 SA4

The parameters of our queueing models are set as follows.
For UE𝑖, we set 𝑟𝑖 = 1.5 + 0.1𝑖 BI, 𝑟2𝑖 = 1.1𝑟𝑖

2 BI2, 𝑑𝑖 = 2.0 + 0.2𝑖 MB,
𝑑2𝑖 = 1.1𝑑𝑖

2 MB2, 𝑠𝑖 = 1.5 + 0.05𝑖 BI/second, 𝑥𝑖 = 𝑟𝑖∕𝑠𝑖 second, 𝑥2𝑖 = 𝑟2𝑖 ∕𝑠
2
𝑖

second2, 𝜆𝑖 = 0.99∕𝑥𝑖 tasks/second, for all 0 ≤ 𝑖 ≤ 𝑚 − 1.
For MEC𝑗 , we set 𝑠̃𝑗 = 2.5 BI/second, for all 0 ≤ 𝑗 ≤ 𝑛 − 1; and 𝑐𝑖,𝑗 =

(10 + 𝑖) + 0.5𝑗 MB/second, for all 0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ 𝑗 ≤ 𝑛 − 1.
Note that each UE𝑖 has utilization 𝜌𝑖 = 𝜆𝑖𝑥𝑖 = 0.99, and without task

offloading to the MECs (i.e., 𝜆̂𝑖 = 0), each UE has an average response
time of over 55 s:
𝑇0 = 55.45000 s,

𝑇1 = 57.23871 s,

𝑇2 = 58.91562 s,

𝑇3 = 60.49091 s,

𝑇4 = 61.97353 s,

𝑇5 = 63.37143 s,

𝑇6 = 64.69167 s,

𝑇7 = 65.94054 s,

𝑇8 = 67.12368 s,

𝑇9 = 68.24615 s.

4.3.2. Synchronous mobility
The transition probability matrices are set as follows:

P0 = P1 = P2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.15 0.40 0.15 0.15 0.15
0.25 0.50 0.25 0.00 0.00
0.25 0.50 0.25 0.00 0.00
0.40 0.00 0.00 0.30 0.30
0.40 0.00 0.00 0.30 0.30

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

P3 = P4 = P5 = P6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.40 0.15 0.15 0.15 0.15
0.40 0.30 0.30 0.00 0.00
0.40 0.30 0.30 0.00 0.00
0.40 0.00 0.00 0.30 0.30
0.40 0.00 0.00 0.30 0.30

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

P7 = P8 = P9 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.15 0.15 0.15 0.15 0.40
0.40 0.30 0.30 0.00 0.00
0.40 0.30 0.30 0.00 0.00
0.25 0.00 0.00 0.25 0.50
0.25 0.00 0.00 0.25 0.50

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The above matrices are set in such a way that UE0, UE1, and UE2 move
more towards SA1; UE3, UE4, UE5, and UE6 move more towards SA0;
while UE7, UE8, and UE9 move towards SA4.

The stationary probability vectors of the UE𝑖’s are:

𝜋0 = 𝜋1 = 𝜋2 = [0.25316, 0.37975, 0.17722, 0.09494, 0.09494],

𝜋3 = 𝜋4 = 𝜋5 = 𝜋6 = [0.40000, 0.15000, 0.15000, 0.15000, 0.15000],

𝜋7 = 𝜋8 = 𝜋9 = [0.25316, 0.09494, 0.09494, 0.17722, 0.37975].

In Table 1A, we demonstrate numerical data for optimal mobility-
aware server placement with the synchronous mobility model and the
equal-response-time method for 5 ≤ 𝐾 ≤ 15.

In Table 1B, we demonstrate numerical data for optimal mobility-
aware server placement with the synchronous mobility model and the
equal-load-fraction method for 5 ≤ 𝐾 ≤ 15.

For each 𝐾, we show the server size 𝑘𝑗 and the expected service area
response time 𝑇𝑗 (𝑘𝑗)) for all 0 ≤ 𝑗 ≤ 𝑛 − 1. We also show the maximum
expected service area response time 𝑇 . We have the following observa-
tions. First, more servers are assigned to service areas which are more
crowded with UEs (e.g., SA0 and SA1) and service areas where UEs have
more demanding computation and communication requirements (e.g.,
SA3 and SA4). Second, as more servers are available, the maximum ex-
pected service area response time becomes shorter, as shown in Claim 2.
Third, as 𝐾 increases, 𝑘𝑗 never decreases, for all 0 ≤ 𝑗 ≤ 𝑛 − 1, as shown
in Claim 3. Fourth, the equal-load-fraction method gives a shorter max-
imum expected service area response time than the equal-response-time
method (a strong observation that is hard to prove).

4.3.3. Asynchronous mobility
The transition rate matrices are set as follows:

Q0 = Q1 = Q2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.05 0.02 0.01 0.01 0.01
0.02 −0.04 0.02 0.00 0.00
0.02 0.03 −0.05 0.00 0.00
0.03 0.00 0.00 −0.05 0.02
0.03 0.00 0.00 0.02 −0.05

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

Q3 = Q4 = Q5 = Q6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.04 0.01 0.01 0.01 0.01
0.03 −0.05 0.02 0.00 0.00
0.03 0.02 −0.05 0.00 0.00
0.03 0.00 0.00 −0.05 0.02
0.03 0.00 0.00 0.02 −0.05

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

Q7 = Q8 = Q9 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.05 0.01 0.01 0.01 0.02
0.03 −0.05 0.02 0.00 0.00
0.03 0.02 −0.05 0.00 0.00
0.02 0.00 0.00 −0.05 0.03
0.02 0.00 0.00 0.02 −0.04

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The above matrices are set in such a way that UE0, UE1, and UE2 move
more towards SA1; UE3, UE4, UE5, and UE6 move more towards SA0;
while UE7, UE8, and UE9 move towards SA4.

If the unit of time is minutes, then the mean holding time is between
20min and 25min.

The stationary probability vectors of the UE𝑖’s are:

𝜋0 = 𝜋1 = 𝜋2 = [0.31579, 0.29323, 0.18045, 0.10526, 0.10526],

𝜋3 = 𝜋4 = 𝜋5 = 𝜋6 = [0.42857, 0.14286, 0.14286, 0.14286, 0.14286],

𝜋7 = 𝜋8 = 𝜋9 = [0.31579, 0.10526, 0.10526, 0.18045, 0.29323].

In Table 2A, we demonstrate numerical data for optimal mobility-
aware server placement with the asynchronous mobility model and the
equal-response-time method for 5 ≤ 𝐾 ≤ 15. In Table 2B, we demon-
strate numerical data for optimal mobility-aware server placement with
the asynchronous mobility model and the equal-load-fraction method
for 5 ≤ 𝐾 ≤ 15.

We have similar observations to those in Section 4.3.2.

Journal of Parallel and Distributed Computing 210 (2026) 105216

7

K. Li

Table 1A
Numerical data for optimal mobility-aware server placement. (synchronous mobility
model, equal-response-time method).
𝐾 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑘0 , 𝑇0(𝑘0)) (𝑘1 , 𝑇1(𝑘1)) (𝑘2 , 𝑇2(𝑘2)) (𝑘3 , 𝑇3(𝑘3)) (𝑘4 , 𝑇4(𝑘4))

 5 1 1 1 1 1
 2.67342 2.04117 1.89189 1.97678 2.26596 2.67342

 6 2 1 1 1 1
 1.66051 2.04117 1.89189 1.97678 2.26596 2.26596

 7 2 1 1 1 2
 1.66051 2.04117 1.89189 1.97678 1.48415 2.04117

 8 2 2 1 1 2
 1.66051 1.38775 1.89189 1.97678 1.48415 1.97678

 9 2 2 1 2 2
 1.66051 1.38775 1.89189 1.36922 1.48415 1.89189

 10 2 2 2 2 2
 1.66051 1.38775 1.33906 1.36922 1.48415 1.66051

 11 3 2 2 2 2
 1.36449 1.38775 1.33906 1.36922 1.48415 1.48415

 12 3 2 2 2 3
 1.36449 1.38775 1.33906 1.36922 1.28873 1.38775

 13 3 3 2 2 3
 1.36449 1.25711 1.33906 1.36922 1.28873 1.36922

 14 3 3 2 3 3
 1.36449 1.25711 1.33906 1.25275 1.28873 1.36449

 15 4 3 2 3 3
 1.26468 1.25711 1.33906 1.25275 1.28873 1.33906

 16 4 3 3 3 3
 1.26468 1.25711 1.24547 1.25275 1.28873 1.28873

 17 4 3 3 3 4
 1.26468 1.25711 1.24547 1.25275 1.23983 1.26468

 18 5 3 3 3 4
 1.23688 1.25711 1.24547 1.25275 1.23983 1.25711

 19 5 4 3 3 4
 1.23688 1.23388 1.24547 1.25275 1.23983 1.25275

 20 5 4 3 4 4
 1.23688 1.23388 1.24547 1.23314 1.23983 1.24547

Table 1B
Numerical data for optimal mobility-aware server placement. (synchronous mobility
model, equal-load-fraction method).
𝐾 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑘0 , 𝑇0(𝑘0)) (𝑘1 , 𝑇1(𝑘1)) (𝑘2 , 𝑇2(𝑘2)) (𝑘3 , 𝑇3(𝑘3)) (𝑘4 , 𝑇4(𝑘4))

 5 1 1 1 1 1
 2.65283 2.02007 1.87413 1.96117 2.24960 2.65283

 6 2 1 1 1 1
 1.59049 2.02007 1.87413 1.96117 2.24960 2.24960

 7 2 1 1 1 2
 1.59049 2.02007 1.87413 1.96117 1.41618 2.02007

 8 2 2 1 1 2
 1.59049 1.26384 1.87413 1.96117 1.41618 1.96117

 9 2 2 1 2 2
 1.59049 1.26384 1.87413 1.27162 1.41618 1.87413

 10 2 2 2 2 2
 1.59049 1.26384 1.21181 1.27162 1.41618 1.59049

 11 3 2 2 2 2
 1.25087 1.26384 1.21181 1.27162 1.41618 1.41618

 12 3 2 2 2 3
 1.25087 1.26384 1.21181 1.27162 1.17127 1.27162

 13 3 2 2 3 3
 1.25087 1.26384 1.21181 1.08289 1.17127 1.26384

 14 3 3 2 3 3
 1.25087 1.04160 1.21181 1.08289 1.17127 1.25087

 15 4 3 2 3 3
 1.10480 1.04160 1.21181 1.08289 1.17127 1.21181

 16 4 3 3 3 3
 1.10480 1.04160 1.03092 1.08289 1.17127 1.17127

 17 4 3 3 3 4
 1.10480 1.04160 1.03092 1.08289 1.07847 1.10480

 18 5 3 3 3 4
 1.03586 1.04160 1.03092 1.08289 1.07847 1.08289

 19 5 3 3 4 4
 1.03586 1.04160 1.03092 1.01888 1.07847 1.07847

 20 5 3 3 4 5
 1.03586 1.04160 1.03092 1.01888 1.04116 1.04160

Journal of Parallel and Distributed Computing 210 (2026) 105216

8

K. Li

Table 2A
Numerical data for optimal mobility-aware server placement. (asynchronous mobil-
ity model, equal-response-time method).
𝐾 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑘0 , 𝑇0(𝑘0)) (𝑘1 , 𝑇1(𝑘1)) (𝑘2 , 𝑇2(𝑘2)) (𝑘3 , 𝑇3(𝑘3)) (𝑘4 , 𝑇4(𝑘4))

 5 1 1 1 1 1
 2.90562 1.98190 1.90084 1.97730 2.13688 2.90562

 6 2 1 1 1 1
 1.77013 1.98190 1.90084 1.97730 2.13688 2.13688

 7 2 1 1 1 2
 1.77013 1.98190 1.90084 1.97730 1.43056 1.98190

 8 2 2 1 1 2
 1.77013 1.36956 1.90084 1.97730 1.43056 1.97730

 9 2 2 1 2 2
 1.77013 1.36956 1.90084 1.36964 1.43056 1.90084

 10 2 2 2 2 2
 1.77013 1.36956 1.34265 1.36964 1.43056 1.77013

 11 3 2 2 2 2
 1.41961 1.36956 1.34265 1.36964 1.43056 1.43056

 12 3 2 2 2 3
 1.41961 1.36956 1.34265 1.36964 1.27053 1.41961

 13 4 2 2 2 3
 1.28694 1.36956 1.34265 1.36964 1.27053 1.36964

 14 4 2 2 3 3
 1.28694 1.36956 1.34265 1.25288 1.27053 1.36956

 15 4 3 2 3 3
 1.28694 1.25284 1.34265 1.25288 1.27053 1.34265

 16 4 3 3 3 3
 1.28694 1.25284 1.24635 1.25288 1.27053 1.28694

 17 5 3 3 3 3
 1.24308 1.25284 1.24635 1.25288 1.27053 1.27053

 18 5 3 3 3 4
 1.24308 1.25284 1.24635 1.25288 1.23612 1.25288

 19 5 3 3 4 4
 1.24308 1.25284 1.24635 1.23316 1.23612 1.25284

 20 5 4 3 4 4
 1.24308 1.23324 1.24635 1.23316 1.23612 1.24635

Table 2B
Numerical data for optimal mobility-aware server placement. (asynchronous mobil-
ity model, equal-load-fraction method).
𝐾 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑘0 , 𝑇0(𝑘0)) (𝑘1 , 𝑇1(𝑘1)) (𝑘2 , 𝑇2(𝑘2)) (𝑘3 , 𝑇3(𝑘3)) (𝑘4 , 𝑇4(𝑘4))

 5 1 1 1 1 1
 2.88205 1.96197 1.88283 1.96116 2.11998 2.88205

 6 2 1 1 1 1
 1.70126 1.96197 1.88283 1.96116 2.11998 2.11998

 7 2 1 1 1 2
 1.70126 1.96197 1.88283 1.96116 1.35038 1.96197

 8 2 2 1 1 2
 1.70126 1.24439 1.88283 1.96116 1.35038 1.96116

 9 2 2 1 2 2
 1.70126 1.24439 1.88283 1.27049 1.35038 1.88283

 10 2 2 2 2 2
 1.70126 1.24439 1.21670 1.27049 1.35038 1.70126

 11 3 2 2 2 2
 1.31497 1.24439 1.21670 1.27049 1.35038 1.35038

 12 3 2 2 2 3
 1.31497 1.24439 1.21670 1.27049 1.13022 1.31497

 13 4 2 2 2 3
 1.14297 1.24439 1.21670 1.27049 1.13022 1.27049

 14 4 2 2 3 3
 1.14297 1.24439 1.21670 1.08115 1.13022 1.24439

 15 4 3 2 3 3
 1.14297 1.03931 1.21670 1.08115 1.13022 1.21670

 16 4 3 3 3 3
 1.14297 1.03931 1.03442 1.08115 1.13022 1.14297

 17 5 3 3 3 3
 1.05796 1.03931 1.03442 1.08115 1.13022 1.13022

 18 5 3 3 3 4
 1.05796 1.03931 1.03442 1.08115 1.05013 1.08115

 19 5 3 3 4 4
 1.05796 1.03931 1.03442 1.01674 1.05013 1.05796

 20 6 3 3 4 4
 1.01476 1.03931 1.03442 1.01674 1.05013 1.05013

Journal of Parallel and Distributed Computing 210 (2026) 105216

9

K. Li

5. Mobility-aware power allocation

In this section, we formulate and solve the mobility-aware power
allocation problem.

5.1. Problem definition

In this section, we define the mobility-aware power allocation prob-
lem.

Power consumption models are necessary to study power allocation
and speed setting. There are two types of power consumption models.

• Idle-speed model (ISM) – The power consumption (measured by
Watts) of MEC𝑗 is

𝑃𝑗 = 𝛽𝑘𝑗 (𝜉𝐵𝑗 𝜌̃𝑗 𝑠̃
𝛼
𝑗 + 𝑃 ∗),

for all 0 ≤ 𝑗 ≤ 𝑛 − 1.
• Constant-speed model (CSM) – The power consumption of MEC𝑗 is

𝑃𝑗 = 𝛽𝑘𝑗 (𝜉𝑠̃𝛼𝑗 + 𝑃 ∗),

for all 0 ≤ 𝑗 ≤ 𝑛 − 1.

In the above models, 𝜉 and 𝛼 are technology-dependent constants that
determine the dynamic component of power consumption, 𝑃 ∗ is the
static component of power consumption, and 𝛽 is the power usage ef-
fectiveness (PUE).

Notice that 𝑇𝑗 can be treated as a function 𝑇𝑗 (𝑠̃𝑗) of 𝑠̃𝑗 .
Let 𝑃 be the available power to be allocated to MEC0, MEC2, …,

MEC𝑚−1.
Our mobility-aware power allocation (MAPA) problem is to allocate 𝑃

to the MEC𝑗 ’s, i.e., to find server speeds 𝑠̃0, 𝑠̃1,… , 𝑠̃𝑛−1, such that
𝑃0 + 𝑃1 +⋯ + 𝑃𝑛−1 = 𝑃 ,

and the maximum expected service area response time, i.e.,
𝑇 = max{𝑇0(𝑠̃0), 𝑇1(𝑠̃1),… , 𝑇𝑛−1(𝑠̃𝑛−1)}

is minimized.
Notice that the determination of ̃𝑠𝑗 is equivalent to the determination

of 𝑃𝑗 , since

𝑠̃𝑗 =
(

1
𝜉𝐵𝑗 𝜌̃𝑗

(𝑃𝑗

𝛽𝑘𝑗
− 𝑃 ∗

))1∕𝛼

for the idle-speed model, and

𝑠̃𝑗 =
(

1
𝜉

(𝑃𝑗

𝛽𝑘𝑗
− 𝑃 ∗

))1∕𝛼

for the constant-speed model, for all 0 ≤ 𝑗 ≤ 𝑛 − 1. Since 𝐵𝑗 < 1 and 𝜌̃𝑗 <
1, for the same 𝑃𝑗 , the idle-speed model yields faster ̃𝑠𝑗 than the constant-
speed model.

5.2. An optimization algorithm

In this section, we develop an optimization algorithm to solve the
mobility-aware power allocation problem.

5.2.1. The OMAPA algorithm
Our optimal mobility-aware power allocation (OMAPA) algorithm is dis-

played in Algorithm 2.
It is clear that 𝑇 is minimized if and only if

𝑇0(𝑠̃0) = 𝑇1(𝑠̃1) = ⋯ = 𝑇𝑛−1(𝑠̃𝑛−1) = 𝑇 .

Our algorithm is essentially to find 𝑇 .
For a given 𝑇 , we can find the 𝑠̃𝑗 ’s such that 𝑇0(𝑠̃0) = 𝑇1(𝑠̃1) = ⋯ =

𝑇𝑛−1(𝑠̃𝑛−1) = 𝑇 (lines (6) and (13)). Once the 𝑠̃𝑗 ’s are available, we can
calculate the 𝑃𝑗 ’s (lines (7) and (14)) and compare 𝑃0 + 𝑃1 +⋯ + 𝑃𝑛−1
with 𝑃 (lines (9) and (16)). It is noticed that 𝑃0 + 𝑃1 +⋯ + 𝑃𝑛−1 is a

decreasing function of 𝑇 . Thus, 𝑇 can be found by using the standard
bisection search algorithm (lines (10)–(21)).

The search interval [𝑇𝑙𝑏, 𝑇𝑙𝑏] of 𝑇 is set as follows (lines (1)–(9)).
𝑇𝑙𝑏 = 0 (line (1)). 𝑇𝑢𝑏 is determined such that if 𝑇𝑗 (𝑠̃𝑗) = 𝑇𝑢𝑏 for all
0 ≤ 𝑗 ≤ 𝑛 − 1, then 𝑃0 + 𝑃1 +⋯ + 𝑃𝑛−1 < 𝑃 (line (9)). The search inter-
val [𝑇𝑙𝑏, 𝑇𝑙𝑏] is adjusted (lines (16)–(20)) in each repetition of the loop
in lines (10)–(21).

The equation ̃𝑇𝑗 (𝑠̃𝑗) = 𝑇 in lines (6) and (13) can be solved as follows.
Each 𝑠̃𝑗 can be found by using the standard bisection search algorithm,
since 𝑇𝑗 (𝑠̃𝑗) is a decreasing function of 𝑠̃𝑗 , for all 0 ≤ 𝑗 ≤ 𝑛 − 1. A reason-
able search interval [𝑠𝑙𝑏, 𝑠𝑙𝑏] of 𝑠̃𝑗 can be set easily.

Algorithm 2 Optimal mobility-aware power allocation (OMAPA).
Input: UE𝑖 with 𝜆𝑖, 𝑟𝑖, 𝑟2𝑖 , 𝑑𝑖, 𝑑2𝑖 , 𝑠𝑖, 𝑐𝑖,𝑗 for all 0 ≤ 𝑗 ≤ 𝑛 − 1, P𝑖 or Q𝑖, for
all 0 ≤ 𝑖 ≤ 𝑚 − 1; MEC𝑗 with 𝑘𝑗 , for all 0 ≤ 𝑗 ≤ 𝑛 − 1; 𝑃 .
Output: 𝑠̃0, 𝑠̃1,… , 𝑠̃𝑛−1, such that 𝑃0 + 𝑃1 +⋯ + 𝑃𝑛−1 = 𝑃 , and 𝑇 =
max{𝑇0(𝑠̃0), 𝑇1(𝑠̃1),… , 𝑇𝑛−1(𝑠̃𝑛−1)} is minimized.

𝑇𝑙𝑏 ← 0; (1)
𝑇𝑢𝑏 ← some initial value; (2)
repeat (3)

𝑇𝑢𝑏 ← 2𝑇𝑢𝑏; (4)
 for (𝑗 = 0; 𝑗 < 𝑛; 𝑗++) do (5)

 find 𝑠̃𝑗 such that 𝑇𝑗 (𝑠̃𝑗) = 𝑇𝑢𝑏; (6)
 calculate 𝑃𝑗 ; (7)

 end do; (8)
until (𝑃0 + 𝑃1 +⋯ + 𝑃𝑛−1 < 𝑃); (9)
while (𝑇𝑢𝑏 − 𝑇𝑙𝑏 > 𝜖) do (10)

𝑇 ← (𝑇𝑙𝑏 + 𝑇𝑢𝑏)∕2; (11)
 for (𝑗 = 0; 𝑗 < 𝑛; 𝑗++) do (12)

 find 𝑠̃𝑗 such that 𝑇𝑗 (𝑠̃𝑗) = 𝑇 ; (13)
 calculate 𝑃𝑗 ; (14)

 end do; (15)
 if (𝑃0 + 𝑃1 +⋯ + 𝑃𝑛−1 > 𝑃) (16)

𝑇𝑙𝑏 ← 𝑇 ; (17)
 else (18)

𝑇𝑢𝑏 ← 𝑇 ; (19)
 end if; (20)
end do; (21)
return 𝑠̃0, 𝑠̃1,… , 𝑠̃𝑛−1. (22)

5.2.2. Time complexity of the OMAPA algorithm
Let Δ𝑇 = 𝑇𝑢𝑏 − 𝑇𝑙𝑏 and Δ𝑠 = 𝑠𝑢𝑏 − 𝑠𝑙𝑏 be the lengths of the search in-

tervals and 𝜖 is the accuracy requirement.
The most time-consuming computation is to solve the equation

𝑇𝑗 (𝑠̃𝑗) = 𝑇 . For a given ̃𝑠𝑗 , the computation of ̃𝑇𝑗 (𝑠̃𝑗) needs 𝑂(𝑀 log(1∕𝜖))
time (see Sections 3.2 and 4.1). The standard bisection search algorithm
takes

𝑂(𝑀 log(1∕𝜖) log(Δ𝑠∕𝜖))

time. Since Δ𝑠 is a reasonably small quantity, the above time complexity
will be simply treated as 𝑂(𝑀(log(1∕𝜖))2).

The main loop in lines (10)–(21) is repeated for 𝑂(log(Δ𝑇 ∕𝜖)) times.
The inner loop in lines (12)–(15) is repeated for 𝑛 times. In each rep-
etition of the inner loop, we need to solve the equation 𝑇𝑗 (𝑠̃𝑗) = 𝑇 ,
which takes 𝑂(𝑀(log(1∕𝜖))2) time. Therefore, the time complexity of
the OMAPA algorithm is

𝑂(𝑀𝑛 log(Δ𝑇 ∕𝜖)(log(1∕𝜖))2).

For a reasonably small Δ𝑇 , the above time complexity is simply
𝑂(𝑀𝑛(log(1∕𝜖))3).

Journal of Parallel and Distributed Computing 210 (2026) 105216

10

K. Li

5.3. Numerical data

In this section, we present some numerical data to illustrate our al-
gorithm for mobility-aware power allocation.

5.3.1. Parameter settings
We adopt the same parameter settings of our queueing models in

Section 4.3.1. The server sizes are 𝑘𝑗 = 2 for all 0 ≤ 𝑗 ≤ 𝑛 − 1. The pa-
rameters of our power consumption models are set as follows: 𝜉 = 10,
𝛼 = 2, 𝑃 ∗ = 5 W, and 𝛽 = 2.

5.3.2. Synchronous mobility
We adopt the same parameter settings of our synchronous mobility

model in Section 4.3.2.
In Table 3A, we demonstrate numerical data for optimal mobility-

aware power allocation with the synchronous mobility model, the
equal-response-time method, and the idle-speed model for 𝑃 =
800, 900,… , 1500. In Table 3B, we demonstrate numerical data for op-
timal mobility-aware power allocation with the synchronous mobility
model, the equal-response-time method, and the constant-speed model
for 𝑃 = 800, 900,… , 1500. In Table 4A, we demonstrate numerical data
for optimal mobility-aware power allocation with the synchronous mo-
bility model, the equal-load-fraction method, and the idle-speed model
for 𝑃 = 800, 900,… , 1500. In Table 4B, we demonstrate numerical data
for optimal mobility-aware power allocation with the synchronous mo-
bility model, the equal-load-fraction method, and the constant-speed
model for 𝑃 = 800, 900,… , 1500.

For each 𝑃 , we show the server speed ̃𝑠𝑗 and the power consumption
𝑃𝑗 (rounded to the nearest integer) for all 0 ≤ 𝑗 ≤ 𝑛 − 1. We also show
the maximum expected service area response time 𝑇 .

We have the following observations.

• First, more powers are allocated to service areas which are more
crowded with UEs (e.g., SA0 and SA1) and service areas where UEs
have more demanding computation and communication require-
ments (e.g., SA3 and SA4).

• Second, as more powers 𝑃 are available, 𝑃𝑗 increases, which results
in increased 𝑠̃𝑗 , for all 0 ≤ 𝑗 ≤ 𝑛 − 1, and the maximum expected ser-
vice area response time becomes shorter.

• Third, for the same 𝑃𝑗 , the idle-speed model yields faster 𝑠̃𝑗 than the
constant-speed model. Thus, the idle-speed model gives a shorter
maximum expected service area response time than the constant-
speed model.

• Fourth, the equal-load-fraction method gives a shorter maximum
expected service area response time than the equal-response-time
method. (A rigorous proof of this claim is interesting but challeng-
ing.)

5.3.3. Asynchronous mobility
We adopt the same parameter settings of our asynchronous mobility

model in Section 4.3.3.
In Table 5A, we demonstrate numerical data for optimal mobility-

aware power allocation with the asynchronous mobility model,
the equal-response-time method, and the idle-speed model for 𝑃 =
800, 900,… , 1500. In Table 5B, we demonstrate numerical data for op-
timal mobility-aware power allocation with the asynchronous mobility
model, the equal-response-time method, and the constant-speed model
for 𝑃 = 800, 900,… , 1500. In Table 6A, we demonstrate numerical data
for optimal mobility-aware power allocation with the asynchronous mo-
bility model, the equal-load-fraction method, and the idle-speed model
for 𝑃 = 800, 900,… , 1500. In Table 6B, we demonstrate numerical data
for optimal mobility-aware power allocation with the asynchronous mo-
bility model, the equal-load-fraction method, and the constant-speed
model for 𝑃 = 800, 900,… , 1500.

We have similar observations to those in Section 5.3.2.

Table 3A
Numerical data for optimal mobility-aware power allocation. (synchronous
mobility model, equal-response-time method, idle-speed model).
𝑃 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑠̃0 , 𝑃0) (𝑠̃1 , 𝑃1) (𝑠̃2 , 𝑃2) (𝑠̃3 , 𝑃3) (𝑠̃4 , 𝑃4)

 2.48925 1.76615 1.67133 1.78787 2.07635 1.66457
 800 262 133 108 120 177

 2.68283 1.88733 1.77467 1.89731 2.21093 1.59750
 900 301 149 119 133 197

 2.86856 2.00145 1.87080 1.99803 2.33376 1.54430
 1000 342 165 130 145 218

 3.04798 2.10672 1.96055 2.09155 2.44896 1.50122
 1100 383 181 141 157 238

 3.22074 2.20461 2.04442 2.17816 2.55998 1.46599
 1200 426 196 151 169 258

 3.38552 2.29872 2.12285 2.25953 2.66779 1.43691
 1300 468 212 161 180 278

 3.54238 2.39089 2.19596 2.33586 2.77359 1.41260
 1400 511 228 171 191 299

 3.69376 2.48093 2.26702 2.40762 2.87412 1.39185
 1500 553 243 181 202 320

Table 3B
Numerical data for optimal mobility-aware power allocation. (synchronous
mobility model, equal-response-time method, constant-speed model).
𝑃 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑠̃0 , 𝑃0) (𝑠̃1 , 𝑃1) (𝑠̃2 , 𝑃2) (𝑠̃3 , 𝑃3) (𝑠̃4 , 𝑃4)

 2.33461 1.66991 1.58695 1.69710 1.96532 1.72810
 800 238 132 121 135 174

 2.51658 1.78329 1.68589 1.80349 2.09570 1.65431
 900 273 147 134 150 196

 2.68981 1.89175 1.77834 1.90115 2.21570 1.59530
 1000 309 163 147 165 216

 2.85720 1.99457 1.86493 1.99198 2.32640 1.54729
 1100 347 179 159 179 236

 3.01983 2.09042 1.94633 2.07696 2.43079 1.50751
 1200 385 195 172 193 256

 3.17717 2.17975 2.02383 2.15648 2.53140 1.47436
 1300 424 210 184 206 276

 3.32846 2.26590 2.09587 2.23187 2.62929 1.44653
 1400 463 225 196 219 297

 3.47326 2.34943 2.16356 2.30187 2.72709 1.42294
 1500 503 241 207 232 317

6. Related research

In this section, we review related research on server placement and
power allocation. Tables 7 and 8 summarize related work in server
placement and power allocation. (Some related surveys can be found
in [8–13].)

6.1. Server placement

Numerous researchers have studied server placement in mobile edge
computing with various considerations such as access delay minimiza-
tion, communication latency reduction, energy consumption optimiza-
tion, network coverage extension, operation cost reduction, response
time minimization, and server workload balancing.

Asghari et al. introduced a two-stage static and dynamic model of
cloud resource placement using red deer, Markov game, and Q-learning
algorithms with consideration of server portability [14]. Asghari et al.
proposed a novel energy-aware server placement method using the trees
social relations algorithm and the dynamic voltage and frequency scal-
ing technique to extend network coverage [15]. El-Ashmawi et al. devel-
oped a new hybrid natural-inspired algorithm by combining the manta
ray foraging algorithm and the uniform crossover operator to find the
optimal edge server placement which minimizes access delay [16]. He
et al. obtained an optimal server configuration scheme and a suboptimal
server placement scheme such that the operational expenditures is min-
imized while the system performance is maintained at a predetermined

Journal of Parallel and Distributed Computing 210 (2026) 105216

11

K. Li

Table 4A
Numerical data for optimal mobility-aware power allocation. (synchronous
mobility model, equal-load-fraction method, idle-speed model).
𝑃 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑠̃0 , 𝑃0) (𝑠̃1 , 𝑃1) (𝑠̃2 , 𝑃2) (𝑠̃3 , 𝑃3) (𝑠̃4 , 𝑃4)

 2.42288 1.79025 1.70395 1.82059 2.09271 1.62836
 800 250 136 111 124 179

 2.59046 1.91628 1.82369 1.94629 2.23329 1.54841
 900 282 153 124 139 201

 2.74843 2.03491 1.93607 2.06395 2.36473 1.48039
 1000 315 170 138 154 223

 2.89845 2.14732 2.04223 2.17484 2.48849 1.42144
 1100 348 187 151 168 245

 3.04184 2.25437 2.14302 2.27987 2.60566 1.36960
 1200 382 205 164 183 266

 3.17960 2.35671 2.23910 2.37977 2.71712 1.32348
 1300 415 222 177 198 288

 3.31249 2.45487 2.33097 2.47512 2.82360 1.28205
 1400 449 239 190 212 309

 3.44109 2.54927 2.41910 2.56639 2.92572 1.24453
 1500 483 256 204 227 331

Table 4B
Numerical data for optimal mobility-aware power allocation. (synchronous
mobility model, equal-load-fraction method, constant-speed model).
𝑃 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑠̃0 , 𝑃0) (𝑠̃1 , 𝑃1) (𝑠̃2 , 𝑃2) (𝑠̃3 , 𝑃3) (𝑠̃4 , 𝑃4)

 2.28542 1.68679 1.60537 1.71686 1.97655 1.70102
 800 229 134 123 138 176

 2.44294 1.80535 1.71831 1.83569 2.10960 1.61832
 900 259 150 138 155 198

 2.59138 1.91697 1.82435 1.94698 2.23406 1.54800
 1000 289 167 153 172 220

 2.73225 2.02277 1.92459 2.05194 2.35132 1.48706
 1100 319 184 168 188 241

 2.86674 2.12359 2.01984 2.15147 2.46243 1.43348
 1200 349 200 183 205 263

 2.99581 2.22006 2.11075 2.24626 2.56817 1.38579
 1300 379 217 198 222 284

 3.12022 2.31267 2.19778 2.33684 2.66921 1.34294
 1400 409 234 213 238 305

 3.24057 2.40182 2.28135 2.42365 2.76610 1.30412
 1500 440 251 228 255 326

Table 5A
Numerical data for optimal mobility-aware power allocation. (asynchronous
mobility model, equal-response-time method, idle-speed model).
𝑃 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑠̃0 , 𝑃0) (𝑠̃1 , 𝑃1) (𝑠̃2 , 𝑃2) (𝑠̃3 , 𝑃3) (𝑠̃4 , 𝑃4)

 2.71927 1.69365 1.64990 1.75369 1.90869 1.68696
 800 313 119 106 117 146

 2.93507 1.80156 1.74913 1.85898 2.02712 1.61967
 900 361 132 116 129 162

 3.14059 1.90370 1.84108 1.95516 2.13551 1.56609
 1000 410 145 127 140 178

 3.33721 1.99982 1.92789 2.04433 2.23566 1.52242
 1100 461 158 137 152 193

 3.52628 2.08959 2.00987 2.12879 2.32901 1.48611
 1200 512 171 147 163 207

 3.70883 2.17429 2.08682 2.20829 2.41739 1.45551
 1300 564 183 157 174 222

 3.88473 2.25560 2.15937 2.28239 2.50293 1.42971
 1400 617 196 167 184 236

 4.05430 2.33273 2.22810 2.35303 2.58662 1.40800
 1500 670 208 176 194 251

level [17]. Kasi et al. adopted a multi-agent reinforcement learning ap-
proach to mobile edge server placement to minimize network latency
and balance load on edge servers [18]. Li et al. studied the optimal
placement of edge servers on access points in heterogeneous networks
with combined consideration of response delay and energy consump-
tion [19]. Li and Wang formulated energy-aware edge server placement

Table 5B
Numerical data for optimal mobility-aware power allocation. (asynchronous
mobility model, equal-response-time method, constant-speed model).
𝑃 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑠̃0 , 𝑃0) (𝑠̃1 , 𝑃1) (𝑠̃2 , 𝑃2) (𝑠̃3 , 𝑃3) (𝑠̃4 , 𝑃4)

 2.54028 1.60275 1.56521 1.66265 1.80662 1.75355
 800 278 123 118 131 151

 2.74290 1.70531 1.66086 1.76541 1.92180 1.67898
 900 321 136 130 145 168

 2.93623 1.80213 1.74966 1.85954 2.02773 1.61934
 1000 365 150 142 158 184

 3.12179 1.89438 1.83253 1.94636 2.12585 1.57062
 1100 410 164 154 172 201

 3.30002 1.98172 1.91184 2.02786 2.21704 1.53018
 1200 456 177 166 184 217

 3.47247 2.06421 1.98677 2.10516 2.30261 1.49593
 1300 502 190 178 197 232

 3.63993 2.14283 2.05755 2.17814 2.38357 1.46656
 1400 550 204 189 210 247

 3.80116 2.21723 2.12538 2.24778 2.46280 1.44154
 1500 598 217 201 222 263

Table 6A
Numerical data for optimal mobility-aware power allocation. (asynchronous
mobility model, equal-load-fraction method, idle-speed model).
𝑃 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑠̃0 , 𝑃0) (𝑠̃1 , 𝑃1) (𝑠̃2 , 𝑃2) (𝑠̃3 , 𝑃3) (𝑠̃4 , 𝑃4)

 2.62303 1.73706 1.69457 1.79914 1.94927 1.64136
 800 292 124 110 122 151

 2.80416 1.85910 1.81317 1.92302 2.08096 1.56118
 900 331 139 124 136 170

 2.97510 1.97375 1.92434 2.03886 2.20396 1.49303
 1000 370 155 137 151 188

 3.13765 2.08213 2.02923 2.14791 2.31965 1.43402
 1100 409 170 150 165 206

 3.29314 2.18514 2.12870 2.25111 2.42903 1.38218
 1200 449 185 163 180 224

 3.44257 2.28345 2.22345 2.34922 2.53295 1.33607
 1300 489 200 176 194 242

 3.58670 2.37762 2.31403 2.44283 2.63211 1.29465
 1400 529 215 189 208 259

 3.72612 2.46810 2.40090 2.53245 2.72711 1.25713
 1500 569 230 202 222 277

Table 6B
Numerical data for optimal mobility-aware power allocation. (asynchronous
mobility model, equal-load-fraction method, constant-speed model).
𝑃 MEC0 MEC1 MEC2 MEC3 MEC4 𝑇

(𝑠̃0 , 𝑃0) (𝑠̃1 , 𝑃1) (𝑠̃2 , 𝑃2) (𝑠̃3 , 𝑃3) (𝑠̃4 , 𝑃4)

 2.46627 1.63108 1.59138 1.69111 1.83431 1.71855
 800 263 126 121 134 155

 2.63583 1.74570 1.70298 1.80793 1.95862 1.63539
 900 298 142 136 151 173

 2.79573 1.85344 1.80767 1.91728 2.07486 1.56472
 1000 333 157 151 167 192

 2.94765 1.95538 1.90655 2.02033 2.18430 1.50353
 1100 368 173 165 183 211

 3.09287 2.05234 2.00042 2.11798 2.28791 1.44976
 1200 403 188 180 199 229

 3.23236 2.14496 2.08993 2.21091 2.38643 1.40194
 1300 438 204 195 216 248

 3.36690 2.23375 2.17557 2.29967 2.48047 1.35899
 1400 473 220 209 232 266

 3.49706 2.31912 2.25779 2.38473 2.57055 1.32008
 1500 509 235 224 247 284

as a multi-objective optimization problem and devised a particle swarm
optimization-based algorithm to find the optimal solution [20]. Liu et
al. attempted to propose an effective edge server placement strategy,
taking both communication delay and workload balance into account,
and arrived at the appropriate placement method by utilizing machine
learning techniques [21]. Wang et al. formulated edge server placement
as a multi-objective constraint optimization problem to balance the

Journal of Parallel and Distributed Computing 210 (2026) 105216

12

K. Li

Table 7
Summary of related research in server placement.
Ref. Objective Technique

[14] latency reduction, load balancing, and resource re-
duction

Markov game and Q-learning algorithms

[15] network coverage extension, energy consumption
optimization, and network latency reduction

the trees social relations algorithm and the dynamic
voltage and frequency scaling technique

[16] access delay minimization a new hybrid natural-inspired algorithm combining
the manta ray foraging algorithm and the uniform
crossover operator

[17] operational expenditures minimization queueing model, bisection algorithm, and genetic
algorithm

[18] network latency minimization and load balancing
on edge servers

a multi-agent reinforcement learning approach

[19] response delay and energy consumption optimiza-
tion

an adaptive clustering algorithm

[20] multi-objective optimization a particle swarm optimization-based algorithm
[21] combined consideration of communication delay

and workload balance
machine learning techniques

[22] workload balancing and access delay minimization mixed integer programming
[23] social media services in industrial cognitive Inter-

net of vehicles
a collaborative method

[24] transmission delay reduction and server workload
balancing

a two-layer graph convolutional network and a dif-
ferentiable version of K-means clustering

[25] considerations of QoS latency, computation de-
mands, and rental costs

integer linear programming, a heuristic algorithm

Table 8
Summary of related research in power allocation.
 Ref. Objective Technique
 [26] presentation of an energy model evaluation of the energy consumption of different cloud-related architectures
 [27] energy consumption minimization a Bayesian learning framework
 [28] energy-saving management a game-theoretical approach
 [29] power consumption minimization switching the edge servers on and off based on provisioned application needs
 [30] minimization of energy consumption of an edge computing infrastructure shutting down edge servers during low-demand periods
 [31] presentation of a network simulator focused on energy consumption testing energy-saving approaches and task placement algorithms
 [32] proposal of an entropy-based power modeling framework analyzing the major components of an edge server and selecting appropriate parameters
 [33] achieving an efficient plan an adaptive and decentralized approach
 [34] presentation of a maintenance strategy reducing power consumption during edge server maintenance
 [35] proposal of an edge intelligent energy modeling approach joint adoption of Elman neural network and feature selection

workload on edge servers and minimize the access delay, and solved the
problem using mixed integer programming [22]. Xu et al. developed a
collaborative method for quantification and placement of edge servers
for social media services in industrial cognitive Internet of vehicles [23].
Zhang et al. investigated edge server placement to reduce transmission
delay and balance server workload by using a two-layer graph convolu-
tional network and a differentiable version of K-means clustering [24].
Zheng et al. studied the efficient placement of edge servers with con-
siderations of QoS latency, computation demands, and rental costs by
utilizing integer linear programming, and also proposed a heuristic al-
gorithm with (ln 𝑛 + 1)-approximation boundary for a size 𝑛 mobile edge
network [25].

6.2. Power allocation

Several researchers have considered the energy efficiency of edge
servers from various perspectives such as energy consumption model-
ing, energy consumption management, and energy consumption mini-
mization.

Ahvar et al. presented an energy model to evaluate the energy con-
sumption of different cloud-related architectures, comprising the full en-
ergy consumption of the computing facilities, including cooling systems
and network devices [26]. Ayala-Romero et al. established a Bayesian
learning framework for jointly configuring services and a radio access
network, aiming to minimize the total energy consumption while re-
specting desirable accuracy and latency thresholds [27]. Cui et al. for-
mulated an energy-efficient edge server management problem and pro-
posed a game-theoretical approach to addressing the problem [28].
Daraghmeh et al. proposed a linear power model to measure the en-

ergy consumption of edge servers, and introduced a simple dynamic
power management model to minimize power consumption by switch-
ing the edge servers on and off based on provisioned application needs
[29]. Gómez et al. formulated an optimal orchestration policy to mini-
mize the energy consumption of an edge computing infrastructure and
presented a strategy with a polynomial time complexity that reduces
the operational energy footprint of edge computing by shutting down
edge servers during low-demand periods [30]. Gómez et al. presented
a network simulator focused on the energy consumption of edge com-
puting, that allows testing energy-saving approaches and task placement
algorithms in realistic large-scale scenarios encompassing entire regions
[31]. Li and Li proposed an entropy-based power modeling framework,
which weights and combines classical prediction models by analyzing
the major components of an edge server and selecting appropriate pa-
rameters [32]. Morshedlou and Tajari took an adaptive and decentral-
ized approach for more energy efficiency in edge environments, where
edge servers collaborate with each other to achieve an efficient plan
[33]. Rubin et al. presented a maintenance strategy that reduces power
consumption during edge server maintenance without excessively ex-
tending maintenance time or increasing application latency [34]. Zhou
et al. proposed an edge intelligent energy modeling approach that jointly
adopts Elman neural network and feature selection to optimize the en-
ergy consumption on edge servers [35].

6.3. Comments on existing research

Despite the above research, there has been little investigation on
power allocation to edge servers across different service areas to opti-
mize the overall performance of all edge servers. Furthermore, there has

Journal of Parallel and Distributed Computing 210 (2026) 105216

13

K. Li

been little study on mobility-aware server placement and power alloca-
tion in mobile edge computing. The work in this paper remedies such a
situation and makes significant progress in this area.

7. Concluding remarks

7.1. Summary of the work

We have addressed the problems of optimal mobility-aware server
placement and optimal mobility-aware power allocation in mobile edge
computing environments with randomly walking mobile users. Our for-
mal discussion is based on two queueing systems for UE and MEC mod-
eling, two Markov chains for mobility modeling, two task offloading
methods, and two power consumption models. We analytically define
our optimization problems and algorithmically solve these problems.
We have also presented extensive numerical data to illustrate optimal
mobility-aware server placement and optimal mobility-aware power al-
location. Our models and methodologies developed in this paper can be
very useful guidelines for proper server placement and power allocation,
which are mandates and must for infrastructure deployment, energy-
efficiency management, cost reduction, and performance optimization
in mobile edge computing.

7.2. A note On applications

Although the primary purpose of this paper is to conduct an an-
alytical and algorithmic discussion of optimal mobility-aware server
placement and optimal mobility-aware power allocation for mobile edge
computing environments with randomly walking mobile users by us-
ing mathematical models such as queueing systems and Markov chains,
we would like to mention that the models and methods developed in
this paper are readily applicable to various real-world application ar-
eas (e.g., augmented and virtual reality, autonomous vehicles, enhanced
gaming, real-time healthcare, smart transportation, smart cities, and so
on), where all the necessary parameters of our models are available.

7.3. Further research

Expected Maximum Service Area Response Time. Both the MASP
and the MAPA problems use the maximum expected service area response
time as the performance measure to optimize. We can also consider the
expected maximum service area response time, which is defined as

𝑇 =
𝑁−1
∑

𝐽=0
𝜋(𝐽)max{𝑇0(𝐼0(𝐽)), 𝑇1(𝐼1(𝐽)),… , 𝑇𝑛−1(𝐼𝑛−1(𝐽))}.

The above 𝑇 can be treated as a function 𝑇 (𝑘0, 𝑘1,… , 𝑘𝑛−1) of
𝑘0, 𝑘1,… , 𝑘𝑛−1, or a function 𝑇 (𝑠̃0, 𝑠̃1,… , 𝑠̃𝑛−1) of 𝑠̃0, 𝑠̃1,… , 𝑠̃𝑛−1. The
function 𝑇 (𝑘0, 𝑘1,… , 𝑘𝑛−1) (𝑇 (𝑠̃0, 𝑠̃1,… , 𝑠̃𝑛−1), respectively) is the perfor-
mance measure to optimize for MASP (MAPA, respectively). These op-
timization problems seem much more difficult to solve for the expected
maximum service area response time.

Different-Load-Fraction Method. As mentioned in Section 3.2.2,
we can consider the different-load-fraction (DLF) method. The weighted
average response time of all UEs and the MEC in the same service area
can be optimized by letting each UE decide on a fraction of the work-
load to offload to the MEC. It is clear that such a minimized weighted
average response time may be shorter than that using the equal-load-
fraction method. However, such optimization involves solving multiple
complicated nonlinear equations simultaneously. An effective and effi-
cient algorithm needs to be developed.

Joint Optimization. In this paper, we have formulated and solved
the problems of optimal mobility-aware server placement (for given
server speeds) and optimal mobility-aware power allocation (for given
server placement) separately. Actually, we can define the mobility-aware
server placement and power allocation (MASPPA) problem, i.e., to find
server placement and server speeds simultaneously, such that the total

number of servers does not exceed a given number of servers, the total
power consumption does not exceed certain given power consumption,
and the maximum expected service area response time or the expected
maximum service area response time is minimized. Such joint server size
and server speed optimizations are worth further investigation. How-
ever, the problem seems quite challenging. Notice that there are (𝐾−1

𝑛−1

)

different placements of 𝐾 servers on 𝑛 multiserver systems. For instance,
if 𝐾 = 20 and 𝑛 = 5, we have (194

)

= 3876. Thus, extensive search in the
solution space is inherently inefficient.

CRediT authorship contribution statement

Keqin Li: Writing – review & editing, Writing – original draft, Visu-
alization, Validation, Supervision, Software, Resources, Project admin-
istration, Methodology, Investigation, Funding acquisition, Formal anal-
ysis, Data curation, Conceptualization.

Data availability

No data was used for the research described in the article.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The author appreciates the anonymous reviewers for their comments
and suggestions on improving the manuscript.

References

[1] Z. He, Y. Xu, K. Li, Resource Allocation and Placement in Multi-Access Edge Com-
puting, Springer, 2024. Resource Management in Distributed Systems.

[2] T.E. Abdoulabbas, S.M. Mahmoud, Power consumption and energy management for
edge computing: state of the art, TELKOMNIKA Telecommun. Comput. Electr. Contr.
21 (4) (2023) 836–845.

[3] P. Cong, J. Zhou, L. Li, K. Cao, T. Wei, K. Li, A survey of hierarchical energy opti-
mization for mobile edge computing: a perspective from end devices to the cloud,
ACM Comput. Surv. 53 (2) (2021) 2055394.

[4] B. Hu, J. Gao, Y. Hu, H. Wang, J. Liu, Overview of energy consumption optimization
in mobile edge computing, J. Phys. Conf. Ser. 2209 (2021) 2022.

[5] K. Li, Performance modeling and analysis for randomly walking mobile users with
Markov chains, J. Comput. Syst. Sci. 140 (2024) 103492.

[6] L. Kleinrock, Queueing Systems, 1, Theory, John Wiley and Sons, New York, New
York, 1975.

[7] https://en.wikipedia.org/wiki/M/G/k_queue.
[8] S. Abedi, M. Ghobaei-Arani, E. Khorami, M. Mojaradd, Dynamic resource allocation

using improved firefly optimization algorithm in cloud environment, Appl. Artif.
Intell. 36 (1) (2022) 38.

[9] A. Ebrahimi, M. Ghobaei-Arani, H. Saboohi, Cold start latency mitigation mech-
anisms in serverless computing: taxonomy, review, and future directions, J. Syst.
Archit. 151 (2024) 103115.

[10] M. Ghorbian, M. Ghobaei-Arani, A survey on the cold start latency approaches in
serverless computing: an optimization-based perspective, Computing 106 (2024)
3755–3809.

[11] M. Ghorbian, M. Ghobaei-Arani, Function Offloading Approaches in Serverless Com-
puting: A Survey, 120, Part C, 2024.

[12] M. Ghorbian, M. Ghobaei-Arani, R. Asadolahpour-Karimi, Function placement ap-
proaches in serverless computing: a survey, J. Syst. Archit. 157 (2024) 103291.

[13] M. Tari, M. Ghobaei-Arani, J. Pouramini, M. Ghorbian, Auto-scaling mechanisms in
serverless computing: a comprehensive review, Comput. Sci. Rev. 53 (2024) 100650.

[14] A. Asghari, A. Vahdani, H. Azgomi, A. Forestiero, Dynamic edge server placement in
mobile edge computing using modified red deer optimization algorithm and markov
game theory, J. Ambient Intell. Humaniz. Comput. 14 (2023) 12297–12315.

[15] A. Asghari, H. Azgomi, A.A. Zoraghchian, A. Barzegarinezhad, Energy-aware server
placement in mobile edge computing using trees social relations optimization algo-
rithm, J. Supercomput. 80 (2024) 6382–6410.

[16] W.H. El-Ashmawi, A.F. Ali, A. Ali, A modified manta ray foraging algorithm for edge
server placement in mobile edge computing, Int. J. Inf. Technol. Decis. Making 23
(4) (2024) 1703–1739.

[17] Z. He, K. Li, K. Li, Cost-efficient server configuration and placement for mobile edge
computing, IEEE Trans. Parallel Distrib. Syst. 33 (9) (2022) 2198–2212.

Journal of Parallel and Distributed Computing 210 (2026) 105216

14

http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0001
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0001
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0002
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0002
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0002
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0003
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0003
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0003
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0004
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0004
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0005
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0005
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0006
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0006
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0007
https://en.wikipedia.org/wiki/M/G/k_queue
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0008
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0008
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0008
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0009
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0009
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0009
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0010
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0010
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0010
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0011
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0011
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0012
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0012
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0013
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0013
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0014
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0014
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0014
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0015
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0015
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0015
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0016
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0016
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0016
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0017
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0017

K. Li

[18] M.K. Kasi, S.A. Ghazalah, R.N. Akram, D. Sauveron, Secure mobile edge server place-
ment using multi-agent reinforcement learning, Electronics 10 (17) (2021) 2098.

[19] B. Li, P. Hou, H. Wu, R. Qian, H. Ding, Placement of edge server based on task
overhead in mobile edge computing environment, Trans. Emerging Telecommun.
Technol. 32 (9) (2021) 4196.

[20] Y. Li, S. Wang, An energy-aware edge server placement algorithm in mobile edge
computing, in: IEEE International Conference on Edge Computing (EDGE), San Fran-
cisco, CA, USA, 2018, pp. 2–7.

[21] H. Liu, S. Wang, H. Huang, Q. Ye, On the placement of edge servers in mobile edge
computing, in: International Conference on Computing, Networking and Communi-
cations (ICNC), Honolulu, HI, USA, 2023, pp. 20–22.

[22] S. Wang, Y. Zhao, J. Xu, J. Yuan, C.-H. Hsu, Edge server placement in mobile edge
computing, J. Parallel Distrib. Comput. 127 (2019) 160–168.

[23] X. Xu, B. Shen, X. Yin, M.R. Khosravi, H. Wu, L. Qi, S. Wan, Edge server quantifica-
tion and placement for offloading social media services in industrial cognitive IoV,
IEEE Trans. Ind. Inf. 17 (4) (2021) 2910–2918.

[24] S. Zhang, J. Yu, M. Hu, An edge server placement based on graph clustering in
mobile edge computing, Sci. Rep. 14 (2024) 29986.

[25] D. Zheng, C. Peng, X. Cao, On the placement of edge server for mobile edge com-
puting, in: 7th International Conference on Computer and Communications (ICCC),
Chengdu, China, 2021, pp. 10–13.

[26] E. Ahvar, A.-C. Orgerie, A. Lebre, Estimating energy consumption of cloud, fog,
and edge computing infrastructures, IEEE Trans. Sustainable Comput. 7 (2) (2022)
277–288.

[27] J.A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, G. Iosifidis, EdgeBOL: au-
tomating energy-savings for mobile edge AI, in: Proceedings of the 17th Interna-
tional Conference on Emerging Networking Experiments and Technologies, the 17th
International Conference on Emerging Networking Experiments and Technologies-
Germany, 2021, pp. 7–10.

[28] G. Cui, Q. He, X. Xia, F. Chen, Y. Yang, Energy-efficient edge server management
for edge computing: a game-theoretical approach, in: Proceedings of the 51st In-
ternational Conference on Parallel Processing, the 51st International Conference on
Parallel ProcessingBordeaux, France, 2022.

[29] M. Daraghmeh, I.A. Ridhawi, M. Aloqaily, Y. Jararweh, A. Agarwal, A power man-
agement approach to reduce energy consumption for edge computing servers, in:
Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome,
Italy, 2019, pp. 10–13.

[30] B. Gómez, S. Bayhan, E. Coronado, J. Villalón, A. Garrido, LESS-ON: load-aware
edge server shutdown for energy saving in cellular networks, Comput. Netw. 252
(2024) 110675.

[31] B. Gómez, E. Coronado, J. Villalón, A. Garrido, Energy-focused simulation of edge
computing architectures in 5G networks, J. Supercomput. 80 (2024) 12564–12584.

[32] G. Li, J. Li, EWM: an entropy-based framework for estimating energy consumption
of edge servers, Eng. Rep. 6 (5) (2024) 29986.

[33] H. Morshedlou, A.R. Tajari, A new adaptive approach for efficient energy consump-
tion in edge computing, J. Artif. Intell. 11 (1) (2023) 149–159.

[34] F. Rubin, P. Souza, T. Ferreto, Reducing power consumption during server mainte-
nance on edge computing infrastructures, in: Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing, the 38th ACM/SIGAPP Symposium on Applied
ComputingTallinn, Estonia, 2023, pp. 27–31.

[35] Z. Zhou, M. Shojafar, J. Abawajy, H. Yin, H. Lu, ECMS: an edge intelligent energy
efficient model in mobile edge computing, IEEE Trans. Green Commun. Netw. 6 (1)
(2022) 238–247.

Keqin Li received a BS degree in computer science from Ts-
inghua University in 1985 and a PhD degree in computer sci-
ence from the University of Houston in 1990. He is a SUNY
Distinguished Professor at the State University of New York
and a National Distinguished Professor at Hunan University
(China). He has authored or co-authored more than 1200
journal articles, book chapters, and refereed conference pa-
pers. He holds nearly 80 patents announced or authorized
by the Chinese National Intellectual Property Administration.
He is among the world’s top few most influential scientists in
parallel and distributed computing, regarding single-year im-
pact (ranked #2) and career-long impact (ranked #3) based
on a composite indicator of the Scopus citation database. He

is listed in Scilit Top Cited Scholars (2023-2025) and is among the top 0.02% out of
over 20 million scholars worldwide based on top-cited publications in the last ten years.
He is listed in ScholarGPS Highly Ranked Scholars (2022-2025) and is among the top
0.002% out of over 30 million scholars worldwide based on a composite score of three
ranking metrics for research productivity, impact, and quality in the recent five years. He
received the IEEE TCCLD Research Impact Award from the IEEE CS Technical Committee
on Cloud Computing in 2022 and the IEEE TCSVC Research Innovation Award from the
IEEE CS Technical Community on Services Computing in 2023. He won the IEEE Region
1 Technological Innovation Award (Academic) in 2023. He was a recipient of the 2022-
2023 International Science and Technology Cooperation Award and the 2023 Xiaoxiang
Friendship Award of Hunan Province, China. He is a Member of the SUNY Distinguished
Academy. He is an AAAS Fellow, an IEEE Fellow, an AAIA Fellow, an ACIS Fellow, and
an AIIA Fellow. He is a Member of the European Academy of Sciences and Arts. He is a
Member of Academia Europaea (Academician of the Academy of Europe).

Journal of Parallel and Distributed Computing 210 (2026) 105216

15

http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0018
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0018
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0019
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0019
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0019
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0020
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0020
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0020
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0021
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0021
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0021
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0022
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0022
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0023
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0023
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0023
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0024
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0024
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0025
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0025
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0025
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0026
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0026
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0026
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0027
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0027
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0027
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0027
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0027
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0028
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0028
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0028
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0028
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0029
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0029
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0029
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0029
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0030
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0030
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0030
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0031
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0031
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0032
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0032
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0033
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0033
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0034
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0034
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0034
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0034
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0035
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0035
http://refhub.elsevier.com/S0743-7315(25)00183-2/sbref0035

	Mobility -aware server placement and power allocation for randomly walking mobile users
	1 Introduction
	1.1 Background information
	1.2 Challenges and motivation
	1.3 Contributions and significance
	1.4 Paper organization

	2 Analytical models
	2.1 Server modeling: queueing systems
	2.1.1 User equipment: M/G/1 queueing systems
	2.1.2 Mobile edge clouds: M/G/k queueing systems

	2.2 Mobility modeling: Markov chains
	2.2.1 Synchronous mobility: discrete-time Markov chains
	2.2.2 Asynchronous mobility: continuous-time markov chains
	2.2.3 Location distributions

	3 Task offloading
	3.1 Average response time
	3.1.1 User equipment
	3.1.2 Mobile edge clouds

	3.2 Task offloading strategies
	3.2.1 Equal-response-time method
	3.2.2 Equal-load-fraction method

	4 Mobility-aware server placement
	4.1 Problem definition
	4.2 An optimization algorithm
	4.2.1 The OMASP algorithm
	4.2.2 Time complexity of the OMASP algorithm

	4.3 Numerical data
	4.3.1 Parameter settings
	4.3.2 Synchronous mobility
	4.3.3 Asynchronous mobility

	5 Mobility-aware power allocation
	5.1 Problem definition
	5.2 An optimization algorithm
	5.2.1 The OMAPA algorithm
	5.2.2 Time complexity of the OMAPA algorithm

	5.3 Numerical data
	5.3.1 Parameter settings
	5.3.2 Synchronous mobility
	5.3.3 Asynchronous mobility

	6 Related research
	6.1 Server placement
	6.2 Power allocation
	6.3 Comments on existing research

	7 Concluding remarks
	7.1 Summary of the work
	7.2 A note On applications
	7.3 Further research

