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In this paper, we study task scheduling with or without energy constraint in mobile edge computing with multiple 
cloud-assisted edge servers as combinatorial optimization problems within the framework of classical scheduling 
theory. The first problem is to schedule a list of independent tasks on a mobile device and several heterogeneous 
edge servers and cloud servers, such that the makespan is minimized. The second problem is to schedule a list 
of independent tasks and to determine the computation and communication speeds of a mobile device, such that 
the makespan is minimized and the energy consumption of the mobile device does not exceed certain energy 
budget. The paper makes the following tangible contributions. We design heuristic task scheduling algorithms 
for both problems by considering the heterogeneity of computation and communication speeds. We derive a 
lower bound for the optimal schedule and prove an asymptotic performance bound for our heuristic algorithms. 
We experimentally evaluate the performance of our heuristic algorithms and show that their performance is 
very close to that of an optimal algorithm. Our analysis employs three key techniques, namely, the method 
of communication unification (i.e., all tasks have the same communication to computation ratio), the concept 
of effective speed of an edge server or a cloud server (i.e., the perceived speed of a server by ignoring the 
details and differences of communication speed and computation speed, wireless communication time and wired 
communication time, a regular edge server and a cloud-assisted edge server, execution time and waiting time), 
and the construction of virtual tasks (i.e., imaginary tasks which do not exist). Such unique techniques make it 
possible to derive a lower bound for the optimal solution, to derive an upper bound for the heuristic solution, 
to prove an asymptotic performance bound, and to find the best edge server order. To the best of the author’s 
knowledge, this is the first paper in the literature which optimizes the makespan of task scheduling with or 
without energy constraint in mobile edge computing with multiple cloud-assisted edge servers.
1. Introduction

1.1. Background

Device-edge-cloud cooperative computing [9,27] provides a power-
ful and flexible environment for numerous applications [1,5,8,18,28,
30,33] by combining various local and remote computing resources 
[2,4,19,22,24,31,34]. One effective way to utilize the abundant com-
puting capabilities in such an environment is to properly schedule tasks 
generated on a mobile device. Task scheduling in mobile edge com-
puting with device-edge-cloud fusion has been investigated by several 
researchers [6,7,10,11,13–17,23,25,26,29,32]. However, none of the 
existing research has studied task scheduling with device-edge-cloud 
collaborative computing within the traditional scheduling framework, 
i.e., to minimize the schedule length. A common approach adopted by 

many researchers is to minimize the summation of task execution times 
[7,10,23,26] or a weighted sum of execution time and energy consump-
tion of all tasks [6,17,25,29].

Task scheduling for device-edge-cloud cooperative computing is a 
very challenging problem due to several reasons. First, mobile devices, 
edge servers, and cloud servers are heterogeneous in their computing 
speeds. Typically, an edge server has faster computing speed than a 
mobile device, and a cloud server has even faster computing speed. 
However, offloading tasks to an edge server incurs wireless communica-
tion cost, and offloading tasks to a cloud server incurs both wireless and 
wired communication costs. Second, there are different communication 
mechanisms and speeds in mobile edge computing. A mobile device 
communicates with an edge server via wireless communication, while 
an edge server communicates with a cloud server via wired communica-
tion. Typically, wired communication may have faster communication 
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speed than wireless communication. Third, a mobile device can com-
municate with only one edge server at a time. This implies that there 
is some initial waiting time for edge servers to receive workload from 
a mobile device. The edge servers should be arranged in an appropri-
ate order to reduce the impact of such waiting time on performance. 
Fourth, similar to the traditional scheduling theory, the performance of 
a heuristic scheduling algorithm should be compared with an optimal 
scheduling algorithm. However, it is quite challenging to obtain the 
knowledge of an optimal schedule due to various heterogeneities and 
sophisticated communications mentioned above. Yet, without compar-
ison with an optimal algorithm, performance evaluation of a heuristic 
algorithm is much less interesting.

Energy consumption is another factor which makes task scheduling 
in mobile edge computing more difficult. A heuristic task scheduling 
algorithm must pay extra attention to an energy constraint, set proper 
computation and communication speeds for a mobile device, and make 
sure that the energy consumption of the mobile device does not exceed 
the given energy budget. Such energy constraint also makes it more 
troublesome to find a lower bound for an optimal solution.

Some initial attempt has been made to minimize makespan [21], 
where only the situation with one edge server and one cloud server was 
considered. The motivation of this paper is to extend the investigation 
to multiple edge servers and multiple cloud servers.

1.2. Contributions

In this paper, we study task scheduling with or without energy con-
straint in mobile edge computing with multiple cloud-assisted edge 
servers as combinatorial optimization problems within the framework 
of classical scheduling theory. The first problem is to schedule a list of 
independent tasks on a mobile device and several heterogeneous edge 
servers and cloud servers, such that the makespan is minimized. The 
second problem is to schedule a list of independent tasks and to deter-
mine the computation and communication speeds of a mobile device, 
such that the makespan is minimized and the energy consumption of 
the mobile device does not exceed certain energy budget. The paper 
makes the following tangible contributions.

• We design heuristic task scheduling algorithms for both problems 
by considering the heterogeneity of computation and communica-
tion speeds.

• We derive a lower bound for the optimal schedule and prove an 
asymptotic performance bound for our heuristic algorithms.

• We experimentally evaluate the performance of our heuristic algo-
rithms and show that their performance is very close to that of an 
optimal algorithm.

Our analysis employs three key techniques (see Section 4), namely, the 
method of communication unification (i.e., all tasks have the same com-
munication to computation ratio), the concept of effective speed of an 
edge server or a cloud server (i.e., the perceived speed of a server by 
ignoring the details and differences of communication speed and com-
putation speed, wireless communication time and wired communication 
time, a regular edge server and a cloud-assisted edge server, execution 
time and waiting time), and the construction of virtual tasks (i.e., imagi-
nary tasks which do not exist). Such unique techniques make it possible 
to derive a lower bound for the optimal solution, to derive an upper 
bound for the heuristic solution, to prove an asymptotic performance 
bound, and to find the best edge server order. To the best of the au-
thor’s knowledge, this is the first paper in the literature which optimizes 
the makespan of task scheduling with or without energy constraint in 
mobile edge computing with multiple cloud-assisted edge servers.

We would like to emphasize that the two scheduling problems in-
vestigated in this paper are very closely related in the sense that any 
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Fig. 1. A heterogeneous computing environment with device-edge-cloud fusion.

without energy constraint can be extended to task scheduling on cloud-
assisted edge servers with energy constraint (see Section 6).

The rest of the paper is organized as follows. Sections 2–5 are con-
cerned with task scheduling without energy constraint. In Section 2, we 
describe our models and problem. In Section 3, we develop our heuristic 
algorithms. In Section 4, we analyze the performance of our heuristic 
algorithm. In Section 5, we demonstrate and discuss some numerical 
data and experimental results. In Section 6, we study task scheduling 
with energy constraint. In Section 7, we give remarks on related work. 
In Section 8, we conclude the paper.

2. Preliminaries

In this section, we describe our models and problem.

2.1. Models

In this section, we present our computing model, task model, and 
execution model.

2.1.1. Computing model

We consider a heterogeneous mobile edge computing environment 
with a mobile device and multiple edge servers supported by cloud 
servers (see Fig. 1). All computation speeds are measured by billion 
instructions per second (Bips). All communication speeds are measured 
by million bits per second (Mbps).

The mobile device is the center of the computing system with device-
edge-cloud fusion, which decides a task schedule and dispatches tasks to 
the edge servers. A mobile device is specified by its computation speed 
𝑠𝑑 .

There are 𝑚 heterogeneous edge servers: ES1, ES2, ..., ES𝑚, with dif-
ferent communication and computation capabilities. The edge servers 
are classified into two categories.

The first category are regular edge servers (RES), for instance, ES𝑚′+1, 
ES𝑚′+2, ..., ES𝑚 in Fig. 1. If ES𝑗 is a RES, we also call it as RES𝑗 , which 
is specified by RES𝑗 = (�̃�𝑗 , 𝑠𝑗 ), where �̃�𝑗 is the wireless communication 
speed between the mobile device and ES𝑗 , and 𝑠𝑗 is the computation 
speed of ES𝑗 .

The second category are cloud-assisted edge servers (CES), for in-
stance, ES1, ES2, ..., ES𝑚′ in Fig. 1. If ES𝑗 is a CES, we also call it 
as CES𝑗 . CES𝑗 actually includes ES𝑗 and CS𝑗 , where ES𝑗 is an edge 
server and CS𝑗 is a cloud server. ES𝑗 is specified by ES𝑗 = (�̃�𝑗 , 𝑠𝑗,𝑒), 
where �̃�𝑗 is the wireless communication speed between the mobile de-

vice and ES𝑗 , and 𝑠𝑗,𝑒 is the computation speed of ES𝑗 . CS𝑗 is specified 
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Fig. 2. A task scheduling framework on cloud-assisted edge servers.
by CS𝑗 = (�̃�𝑗,𝑐 , 𝑠𝑗,𝑐), where �̃�𝑗,𝑐 is the wired communication speed be-
tween ES𝑗 and CS𝑗 , and 𝑠𝑗,𝑐 is the computation speed of CS𝑗 . CES𝑗 is 
specified by CES𝑗 = (�̃�𝑗 , 𝑠𝑗,𝑒, ̃𝑠𝑗,𝑐 , 𝑠𝑗,𝑐).

2.1.2. Task model

The mobile device has a list of independent tasks to be executed: 
𝐿 = (𝑡1, 𝑡2, ..., 𝑡𝑛). Task 𝑡𝑖 is specified as 𝑡𝑖 = (𝑑𝑖, 𝑟𝑖), where 𝑑𝑖 is the amount 
of communication (MB) and 𝑟𝑖 is the amount of computation (GI), for 
all 1 ≤ 𝑖 ≤ 𝑛. The ratio 𝛾𝑖 = 𝑑𝑖∕𝑟𝑖 gives the amount of communication 
per unit of computation (MB/GI). A task can be executed on the mobile 
device, an edge server, or a cloud server.

A schedule of 𝐿 is a division of 𝐿 into (𝑚 + 1) sublists 𝐿𝑑, 𝐿1, 𝐿2, ...,
𝐿𝑚. 𝐿𝑑 includes tasks executed on the mobile device. Let

𝐷𝑑 =
∑
𝑡𝑖∈𝐿𝑑

𝑑𝑖, and𝑅𝑑 =
∑
𝑡𝑖∈𝐿𝑑

𝑟𝑖.

𝐿𝑗 includes tasks executed on ES𝑗 . Let

𝐷𝑗 =
∑
𝑡𝑖∈𝐿𝑗

𝑑𝑖, and𝑅𝑗 =
∑
𝑡𝑖∈𝐿𝑗

𝑟𝑖.

If ES𝑗 is a CES, 𝐿𝑗 is further divided into two sublists 𝐿𝑗,𝑒 and 𝐿𝑗,𝑐 , 
where 𝐿𝑗,𝑒 includes tasks executed on ES𝑗 and 𝐿𝑗,𝑐 includes tasks exe-
cuted on CS𝑗 . Let

𝐷𝑗,𝑒 =
∑
𝑡𝑖∈𝐿𝑗,𝑒

𝑑𝑖, 𝑅𝑗,𝑒 =
∑
𝑡𝑖∈𝐿𝑗,𝑒

𝑟𝑖, 𝐷𝑗,𝑐 =
∑
𝑡𝑖∈𝐿𝑗,𝑐

𝑑𝑖, and𝑅𝑗,𝑐 =
∑
𝑡𝑖∈𝐿𝑗,𝑐

𝑟𝑖.

It is clear that 𝐷𝑗 =𝐷𝑗,𝑒 +𝐷𝑗,𝑐 and 𝑅𝑗 =𝑅𝑗,𝑒 +𝑅𝑗,𝑐 .

2.1.3. Execution model

A task scheduling framework on cloud-assisted edge servers is shown 
in Fig. 2. Since the mobile device can only communicate with one ES 
at a time, the edge servers are arranged in certain order: ES1, ES2, ..., 
ES𝑚, such that the mobile device sends tasks to the edge servers in this 
order. This means that each ES𝑗 has certain waiting time 𝑊𝑗 , which is 
the total wireless communication time of ES1, ES2, ..., ES𝑗−1.

If a task 𝑡𝑖 is executed on the mobile device, its execution time is

𝜏𝑖 =
𝑟𝑖

𝑠𝑑
.

The total time of the mobile device is its computation time:

𝑇 =
∑

𝜏 =
𝑅𝑑
.

3

𝑑

𝑡𝑖∈𝐿𝑑
𝑖

𝑠𝑑
If a task 𝑡𝑖 is executed on a regular edge server ES𝑗 = RES𝑗 , its 
execution time is

𝜏𝑖 =
𝑑𝑖

�̃�𝑗
+
𝑟𝑖

𝑠𝑗
.

The total time of RES𝑗 is waiting time + communication time + com-
putation time:

𝑇𝑗 =𝑊𝑗 +
∑
𝑡𝑖∈𝐿𝑗

𝜏𝑖 =𝑊𝑗 +
𝐷𝑗

�̃�𝑗
+
𝑅𝑗

𝑠𝑗
. (1)

For a cloud-assisted edge server CES𝑗 = ES𝑗 + CS𝑗 , if a task 𝑡𝑖 is 
executed on ES𝑗 , its execution time is

𝜏𝑖 =
𝑑𝑖

�̃�𝑗
+
𝑟𝑖

𝑠𝑗,𝑒
,

and if 𝑡𝑖 is executed on CS𝑗 , its execution time is

𝜏𝑖 =
𝑑𝑖

�̃�𝑗
+
𝑑𝑖

�̃�𝑗,𝑐
+
𝑟𝑖

𝑠𝑗,𝑐
.

The total time of ES𝑗 is waiting time + wireless communication time + 
computation time:

𝑇𝑗,𝑒 =𝑊𝑗 +
∑
𝑡𝑖∈𝐿𝑗

𝑑𝑖

�̃�𝑗
+

∑
𝑡𝑖∈𝐿𝑗,𝑒

𝑟𝑖

𝑠𝑗,𝑒
=𝑊𝑗 +

𝐷𝑗

�̃�𝑗
+
𝑅𝑗,𝑒

𝑠𝑗,𝑒
. (2)

The total time of CS𝑗 is waiting time + wireless communication time + 
wired communication time + computation time:

𝑇𝑗,𝑐 =𝑊𝑗 +
∑
𝑡𝑖∈𝐿𝑗

𝑑𝑖

�̃�𝑗
+

∑
𝑡𝑖∈𝐿𝑗,𝑐

𝑑𝑖

�̃�𝑗,𝑐
+

∑
𝑡𝑖∈𝐿𝑗,𝑐

𝑟𝑖

𝑠𝑗,𝑐
=𝑊𝑗 +

𝐷𝑗

�̃�𝑗
+
𝐷𝑗,𝑐

�̃�𝑗,𝑐
+
𝑅𝑗,𝑐

𝑠𝑗,𝑐
. (3)

The total time of CES𝑗 is:

𝑇𝑗 =max{𝑇𝑗,𝑒, 𝑇𝑗,𝑐}. (4)

The waiting time of ES𝑗 is the total wireless communication time of 
all its predecessors:

𝑊𝑗 =
∑
𝑗′<𝑗

𝐷𝑗′

�̃�𝑗′
, (5)
for all 1 ≤ 𝑗 ≤𝑚.
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2.2. Problem

The schedule length is

𝑇 =max{𝑇𝑑, 𝑇1, 𝑇2, ..., 𝑇𝑚}. (6)

Our combinatorial optimization problem is within the framework of 
traditional scheduling theory, i.e., minimizing the schedule length.

Our first combinatorial optimization problem is defined below.

Problem 1. Task Scheduling on Cloud-Assisted Edge Servers.
Input: 𝐿 = (𝑡1, 𝑡2, ..., 𝑡𝑛), ES1, ES2, ..., ES𝑚.
Output: A schedule of 𝐿: 𝐿𝑑, 𝐿1, 𝐿2, ..., 𝐿𝑚, such that 𝑇 is minimized.

The problem is NP-hard even for one regular edge server [21].

3. Heuristic algorithms

Algorithm 1 presents our heuristic algorithm for task scheduling on 
cloud-assisted edge servers.

The algorithm is essentially adapted from the classical list schedul-
ing algorithm [12], i.e., scheduling tasks in the given order (line (9)) 
and assigning the next task to the earliest available device or server 
(lines (10), (13), (24), (27)). When a task is assigned to an edge server 
(lines (14), (25), (28)) whose total time is updated (lines (15), (26), 
(29)), the waiting times of successive edge servers are also updated 
(lines (16)–(18) and (21)–(23)).

Without loss of generality, we assume that the edge servers are in 
the order of:

CES1, ...,CES𝑗 , ...,CES𝑚′ ,RES𝑚′+1, ...,RES𝑗′ , ...,RES𝑚.

Then, the current configuration of the computing system can be repre-
sented as:

⟨𝑇𝑑, 𝑇1,𝑒, 𝑇1,𝑐 , ..., 𝑇𝑗,𝑒, 𝑇𝑗,𝑐 , ..., 𝑇𝑚′ ,𝑒, 𝑇𝑚′ ,𝑐 , 𝑇𝑚′+1, ..., 𝑇𝑗′ , ..., 𝑇𝑚⟩,
with

�̂� =min{𝑇𝑑, 𝑇1,𝑒, 𝑇1,𝑐 , ..., 𝑇𝑗,𝑒, 𝑇𝑗,𝑐 , ..., 𝑇𝑚′ ,𝑒, 𝑇𝑚′ ,𝑐 , 𝑇𝑚′+1, ..., 𝑇𝑗′ , ..., 𝑇𝑚}.

If 𝑇𝑑 = �̂� , then the new configuration is (line (12))

⟨𝑇𝑑 + 𝑟𝑖∕𝑠𝑑 , 𝑇1,𝑒, 𝑇1,𝑐 , ..., 𝑇𝑗,𝑒, 𝑇𝑗,𝑐 , ..., 𝑇𝑚′ ,𝑒, 𝑇𝑚′ ,𝑐 , 𝑇𝑚′+1, ..., 𝑇𝑗′ , ..., 𝑇𝑚⟩.
If 𝑇𝑗,𝑒 = �̂� , then the new configuration is (lines (20)–(23), (26))

⟨𝑇𝑑, 𝑇1,𝑒, 𝑇1,𝑐 , ..., 𝑇𝑗,𝑒 + 𝑑𝑖∕�̃�𝑗 + 𝑟𝑖∕𝑠𝑗,𝑒, 𝑇𝑗,𝑐 + 𝑑𝑖∕�̃�𝑗 , ..., 𝑇𝑚′ ,𝑒 + 𝑑𝑖∕�̃�𝑗 , 𝑇𝑚′ ,𝑐
+𝑑𝑖∕�̃�𝑗 , 𝑇𝑚′+1 + 𝑑𝑖∕�̃�𝑗 , ..., 𝑇𝑗′ + 𝑑𝑖∕�̃�𝑗 , ..., 𝑇𝑚 + 𝑑𝑖∕�̃�𝑗⟩.

If 𝑇𝑗,𝑐 = �̂� , then the new configuration is (lines (20)–(23), (29))

⟨𝑇𝑑, 𝑇1,𝑒, 𝑇1,𝑐 , ..., 𝑇𝑗,𝑒 + 𝑑𝑖∕�̃�𝑗 , 𝑇𝑗,𝑐 + 𝑑𝑖∕�̃�𝑗 + 𝑑𝑖∕�̃�𝑗,𝑐 + 𝑟𝑖∕𝑠𝑗,𝑐 , ..., 𝑇𝑚′ ,𝑒
+𝑑𝑖∕�̃�𝑗 , 𝑇𝑚′ ,𝑐 + 𝑑𝑖∕�̃�𝑗 , 𝑇𝑚′+1 + 𝑑𝑖∕�̃�𝑗 , ..., 𝑇𝑗′ + 𝑑𝑖∕�̃�𝑗 , ..., 𝑇𝑚 + 𝑑𝑖∕�̃�𝑗⟩.

If 𝑇𝑗′ = �̂� , then the new configuration is (lines (15)–(18))

⟨𝑇𝑑, 𝑇1,𝑒, 𝑇1,𝑐 , ..., 𝑇𝑗,𝑒, 𝑇𝑗,𝑐 , ..., 𝑇𝑚′ ,𝑒, 𝑇𝑚′ ,𝑐 ,
𝑇𝑚′+1, ..., 𝑇𝑗′ + 𝑑𝑖∕�̃�𝑗′ + 𝑟𝑖∕𝑠𝑗′ , ..., 𝑇𝑚 + 𝑑𝑖∕�̃�𝑗′ ⟩.

In addition to Algorithm 1, we also consider Algorithm 2, which 
follows the same framework of Algorithm 1, except that when task 𝑡𝑖 is 
being scheduled, we calculate the total time of the mobile device and 
each server:

𝑇 ′
𝑑
= 𝑇𝑑 + 𝑟𝑖∕𝑠𝑑 ,

𝑇 ′
𝑗
= 𝑇𝑗 + 𝑑𝑖∕�̃�𝑗 + 𝑟𝑖∕𝑠𝑗 ,

𝑇 ′
𝑗,𝑒

= 𝑇𝑗,𝑒 + 𝑑𝑖∕�̃�𝑗 + 𝑟𝑖∕𝑠𝑗,𝑒,
4

𝑇 ′
𝑗,𝑐

= 𝑇𝑗,𝑐 + 𝑑𝑖∕�̃�𝑗 + 𝑑𝑖∕�̃�𝑗,𝑐 + 𝑟𝑖∕𝑠𝑗,𝑐 ,
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Algorithm 1 Heuristic Algorithm for Task Scheduling on Cloud-Assisted 
Edge Servers.

Input: 𝐿 = (𝑡1 , 𝑡2 , ..., 𝑡𝑛), ES1 , ES2 , ..., ES𝑚 .
Output: A schedule of 𝐿: 𝐿𝑑, 𝐿1 , 𝐿2 , ..., 𝐿𝑚 , such that 𝑇 is minimized.

𝐿𝑑 ← ∅, 𝑇𝑑 ← 0; (1)
for (𝑗 = 1; 𝑗 ≤𝑚; 𝑗++) do (2)

if (ES𝑗 is a RES) then (3)
𝐿𝑗 ← ∅, 𝑇𝑗 ← 0; (4)

else //ES𝑗 is a CES (5)
𝐿𝑗,𝑒 ← ∅, 𝐿𝑗,𝑐 ← ∅, 𝑇𝑗,𝑒 ← 0, 𝑇𝑗,𝑐 ← 0; (6)

end if (7)
end do; (8)
for (𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖++) do (9)

if (𝑇𝑑 =min{𝑇𝑑 , 𝑇1 , 𝑇2 , ..., 𝑇𝑚}) then (10)
add 𝑡𝑖 to 𝐿𝑑 ; (11)
𝑇𝑑 ← 𝑇𝑑 + 𝑟𝑖∕𝑠𝑑 ; (12)

else if (𝑇𝑗 =min{𝑇𝑑 , 𝑇1 , 𝑇2 , ..., 𝑇𝑚} and ES𝑗 is a RES) then (13)
add 𝑡𝑖 to 𝐿𝑗 ; (14)
𝑇𝑗 ← 𝑇𝑗 + 𝑑𝑖∕�̃�𝑗 + 𝑟𝑖∕𝑠𝑗 ; (15)
for (𝑗′ = 𝑗 + 1; 𝑗′ ≤𝑚; 𝑗′++) do (16)

𝑇𝑗′ ← 𝑇𝑗′ + 𝑑𝑖∕�̃�𝑗 ; (17)
end do (18)

else //ES𝑗 is a CES (19)
𝑇𝑗,𝑒 ← 𝑇𝑗,𝑒 + 𝑑𝑖∕�̃�𝑗 , 𝑇𝑗,𝑐 ← 𝑇𝑗,𝑐 + 𝑑𝑖∕�̃�𝑗 ; (20)
for (𝑗′ = 𝑗 + 1; 𝑗′ ≤𝑚; 𝑗′++) do (21)

𝑇𝑗′ ← 𝑇𝑗′ + 𝑑𝑖∕�̃�𝑗 ; (22)
end do; (23)
if (𝑇𝑗,𝑒 =min{𝑇𝑑 , 𝑇1 , 𝑇2 , ..., 𝑇𝑚}) then (24)

add 𝑡𝑖 to 𝐿𝑗,𝑒 ; (25)
𝑇𝑗,𝑒 ← 𝑇𝑗,𝑒 + 𝑟𝑖∕𝑠𝑗,𝑒 ; (26)

else //𝑇𝑗,𝑐 =min{𝑇𝑑 , 𝑇1 , 𝑇2 , ..., 𝑇𝑚} (27)
add 𝑡𝑖 to 𝐿𝑗,𝑐 ; (28)
𝑇𝑗,𝑐 ← 𝑇𝑗,𝑐 + 𝑑𝑖∕�̃�𝑗,𝑐 + 𝑟𝑖∕𝑠𝑗,𝑐 ; (29)

end if (30)
end if (31)

end do. (32)

and add 𝑡𝑖 to the mobile device or the edge server or the cloud server 
which has the minimum total time if 𝑡𝑖 is added.

The time complexity of both Algorithms 1 and 2 is 𝑂(𝑚𝑛), since 𝑂(𝑚)
time is spent for each task.

It should be emphasized that although not mentioned in Algo-
rithm 1, it is an important component of a heuristic algorithm to decide 
the order of the edge servers, which affects the schedule length. Some 
reasonable and promising edge server orders are as follows.

• �̄�1 ≥ �̄�2 ≥ ⋯ ≥ �̄�𝑚: �̄�𝑗 is the effective computation speed of ES𝑗 to 
be introduced in Section 4.1. An edge server with larger �̄�𝑗 should 
start its execution earlier to complete more work.

• 𝜙1 ≤ 𝜙2 ≤⋯ ≥ 𝜙𝑚: 𝜙𝑗 is the percentage of the communication time 
in the execution time of ES𝑗 to be introduced in Section 4.1. An 
edge server with smaller 𝜙𝑗 should start its execution earlier to 
reduce the waiting time of subsequent edge servers.

• �̄�1∕𝜙1 ≥ �̄�2∕𝜙2 ≥ ⋯ ≥ �̄�𝑚∕𝜙𝑚: This is a combination of the above 
two orders and will be adopted by our algorithm (see Section 4.2
for justification).

• �̃�1 ≥ �̃�2 ≥ ⋯ ≥ �̃�𝑚: An edge server with larger �̃�𝑗 should start its 
execution earlier to reduce the waiting time of subsequent edge 
servers. It turns out that this is actually equivalent to �̄�1∕𝜙1 ≥

�̄�2∕𝜙2 ≥⋯ ≥ �̄�𝑚∕𝜙𝑚 (see Section 4.2 for explanation).

4. Analysis

In this section, we analyze the performance of our heuristic algo-
rithm. We derive a lower bound for the optimal solution and an upper 
bound for the heuristic solution, and then prove a performance bound.

4.1. Effective speed

To derive a lower bound for the optimal schedule length (Theo-

rem 1) and an upper bound for the heuristic schedule length (Theo-
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rem 2), we consider a special case where all tasks have the same com-
munication to computation ratio, 𝛾1 = 𝛾2 =⋯ = 𝛾𝑛 = 𝛾 , namely, 𝑑𝑖 = 𝛾𝑟𝑖, 
for all 1 ≤ 𝑖 ≤ 𝑛. Such communication unification helps to analyze the per-
formance of our heuristic algorithm (Theorem 3), where the assumption 
of unified 𝛾 is removed.

For ease of analysis, we introduce the concept of effective speed of a 
server as perceived from an outside observer. Assume that for a CES𝑗 , 
𝑇𝑗 = 𝑇𝑗,𝑒 = 𝑇𝑗,𝑐 , that is, for some 𝐶𝑗 , we have

𝑅𝑗,𝑒

𝑠𝑗,𝑒
=
𝐷𝑗,𝑐

�̃�𝑗,𝑐
+
𝑅𝑗,𝑐

𝑠𝑗,𝑐
= 𝐶𝑗.

From

𝑅𝑗,𝑒

𝑠𝑗,𝑒
= 𝐶𝑗,

we get

𝑅𝑗,𝑒 = 𝑠𝑗,𝑒𝐶𝑗 .

Since

𝐷𝑗,𝑐

�̃�𝑗,𝑐
+
𝑅𝑗,𝑐

𝑠𝑗,𝑐
=
(
𝛾

�̃�𝑗,𝑐
+ 1
𝑠𝑗,𝑐

)
𝑅𝑗,𝑐 =

(
𝛾𝑠𝑗,𝑐 + �̃�𝑗,𝑐
�̃�𝑗,𝑐𝑠𝑗,𝑐

)
𝑅𝑗,𝑐 =

𝑅𝑗,𝑐

�̄�𝑗,𝑐
= 𝐶𝑗,

we get

𝑅𝑗,𝑐 = �̄�𝑗,𝑐𝐶𝑗 ,

where

�̄�𝑗,𝑐 =
�̃�𝑗,𝑐𝑠𝑗,𝑐

𝛾𝑠𝑗,𝑐 + �̃�𝑗,𝑐
(7)

is the effective computation speed of CS𝑗 , i.e., the perceived computation 
speed of CS𝑗 by ignoring the details and differences of communication 
speed �̃�𝑗,𝑐 and computation speed 𝑠𝑗,𝑐 . Using �̄�𝑗,𝑐 , 𝑇𝑗,𝑐 can be rewritten 
(actually simplified) as

𝑇𝑗,𝑐 =𝑊𝑗 +
𝐷𝑗

�̃�𝑗
+
𝑅𝑗,𝑐

�̄�𝑗,𝑐
.

Furthermore, we have

𝑅𝑗 =𝑅𝑗,𝑒 +𝑅𝑗,𝑐 = (𝑠𝑗,𝑒 + �̄�𝑗,𝑐)𝐶𝑗 = 𝑠𝑗𝐶𝑗 ,

where

𝑠𝑗 = 𝑠𝑗,𝑒 + �̄�𝑗,𝑐 = 𝑠𝑗,𝑒 +
�̃�𝑗,𝑐𝑠𝑗,𝑐

𝛾𝑠𝑗,𝑐 + �̃�𝑗,𝑐
=
𝛾𝑠𝑗,𝑒𝑠𝑗,𝑐 + 𝑠𝑗,𝑒�̃�𝑗,𝑐 + �̃�𝑗,𝑐𝑠𝑗,𝑐

𝛾𝑠𝑗,𝑐 + �̃�𝑗,𝑐
(8)

is the effective computation speed of CES𝑗 , i.e., the perceived computation 
speed of CES𝑗 by ignoring the details and differences of ES𝑗 and CS𝑗 . 
Using 𝑠𝑗 , 𝑇𝑗 can be rewritten (actually simplified) as

𝑇𝑗 =𝑊𝑗 +
𝐷𝑗

�̃�𝑗
+
𝑅𝑗

𝑠𝑗
. (9)

Now, for all ES𝑗 , no matter whether it is a RES or a CES, we have

𝑇𝑗 =𝑊𝑗+
𝐷𝑗

�̃�𝑗
+
𝑅𝑗

𝑠𝑗
=𝑊𝑗+

(
𝛾

�̃�𝑗
+ 1
𝑠𝑗

)
𝑅𝑗 =𝑊𝑗+

(
𝛾𝑠𝑗 + �̃�𝑗
�̃�𝑗 𝑠𝑗

)
𝑅𝑗 =𝑊𝑗+

𝑅𝑗

�̄�𝑗
,

(10)

where

�̄�𝑗 =
�̃�𝑗 𝑠𝑗

𝛾𝑠𝑗 + �̃�𝑗
(11)

for a RES, and

�̄�𝑗 =
�̃�𝑗 𝑠𝑗

𝛾𝑠𝑗 + �̃�𝑗
=

�̃�𝑗 (𝛾𝑠𝑗,𝑒𝑠𝑗,𝑐 + 𝑠𝑗,𝑒�̃�𝑗,𝑐 + �̃�𝑗,𝑐𝑠𝑗,𝑐)
𝛾2𝑠𝑗,𝑒𝑠𝑗,𝑐 + 𝛾𝑠𝑗,𝑒�̃�𝑗,𝑐 + 𝛾�̃�𝑗,𝑐𝑠𝑗,𝑐 + 𝛾�̃�𝑗𝑠𝑗,𝑐 + �̃�𝑗 �̃�𝑗,𝑐

(12)

for a CES, is the effective execution speed of ES𝑗 , i.e., the perceived com-
5

putation speed of ES𝑗 , by ignoring the difference between RES or CES 
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and ignoring the details of wireless communication time, wired com-
munication time, and computation time. We call the quantity

𝑇 ′
𝑗
=
𝐷𝑗

�̃�𝑗
+
𝑅𝑗

𝑠𝑗
=
𝑅𝑗

�̄�𝑗
(13)

as the execution time (including all wireless communication time, wired 
communication time, and computation time) of ES𝑗 , whether in the 
presence or absence of a cloud server.

Let us define

𝜙𝑗 = 𝛾
�̄�𝑗

�̃�𝑗
, (14)

which is

𝜙𝑗 = 𝛾
�̄�𝑗

�̃�𝑗
=

𝛾𝑠𝑗

𝛾𝑠𝑗 + �̃�𝑗
(15)

for a RES, and

𝜙𝑗 = 𝛾
�̄�𝑗

�̃�𝑗
=

𝛾𝑠𝑗

𝛾𝑠𝑗 + �̃�𝑗
=

𝛾2𝑠𝑗,𝑒𝑠𝑗,𝑐 + 𝛾𝑠𝑗,𝑒�̃�𝑗,𝑐 + 𝛾�̃�𝑗,𝑐𝑠𝑗,𝑐
𝛾2𝑠𝑗,𝑒𝑠𝑗,𝑐 + 𝛾𝑠𝑗,𝑒�̃�𝑗,𝑐 + 𝛾�̃�𝑗,𝑐𝑠𝑗,𝑐 + 𝛾�̃�𝑗𝑠𝑗,𝑐 + �̃�𝑗 �̃�𝑗,𝑐

(16)

for a CES, for all 1 ≤ 𝑗 ≤𝑚. It is easy to see that 𝜙𝑗 is actually

𝜙𝑗 =

𝐷𝑗

�̃�𝑗

𝐷𝑗

�̃�𝑗
+
𝑅𝑗

𝑠𝑗

=

𝐷𝑗

�̃�𝑗

𝑅𝑗

�̄�𝑗

, (17)

i.e., the percentage of the wireless communication time in the execution 
time of ES𝑗 .

4.2. Optimal solution

To derive a lower bound for the optimal solution, let us consider an 
ideal case:

𝑇𝑑 = 𝑇1 = 𝑇2 =⋯ = 𝑇𝑚 = 𝑇 , (18)

with

𝑇𝑗 = 𝑇𝑗,𝑒 = 𝑇𝑗,𝑐 ,

where

𝑇𝑑 =
𝑅𝑑

𝑠𝑑
,

𝑇𝑗 =𝑊𝑗 + 𝑇 ′
𝑗
=
∑
𝑗′<𝑗

𝐷𝑗′

�̃�𝑗′
+
𝑅𝑗

�̄�𝑗
, 1 ≤ 𝑗 ≤𝑚.

It is clear that even an optimal schedule may not achieve such an ideal 
situation, where all mobile devices, edge servers, and cloud servers 
complete their tasks at the same time. Thus, 𝑇 can serve as a lower 
bound for the optimal solution.

To pave the way for further discussion, we start with some calcula-
tions. Since

𝑇𝑑 =
𝑅𝑑

𝑠𝑑
= 𝑇1 =

𝑅1
�̄�1
,

we get

𝑅1 =
(
�̄�1
𝑠𝑑

)
𝑅𝑑.

Since

𝑇𝑑 =
𝑅𝑑

𝑠𝑑
= 𝑇2 =

𝐷1
�̃�1

+
𝑅2
�̄�2
,

we get
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𝑅2 = �̄�2
(
𝑅𝑑

𝑠𝑑
−
𝐷1
�̃�1

)

= �̄�2
(
𝑅𝑑

𝑠𝑑
−
𝛾𝑅1
�̃�1

)

= �̄�2
(
𝑅𝑑

𝑠𝑑
− 𝛾

�̃�1

(
�̄�1
𝑠𝑑

)
𝑅𝑑

)

=
�̄�2
𝑠𝑑

(1 −𝜙1)𝑅𝑑.

Since

𝑇𝑑 =
𝑅𝑑

𝑠𝑑
= 𝑇3 =

𝐷1
�̃�1

+
𝐷2
�̃�2

+
𝑅3
�̄�3
,

we get

𝑅3 = �̄�3
(
𝑅𝑑

𝑠𝑑
−
𝐷1
�̃�1

−
𝐷2
�̃�2

)

= �̄�3
(
𝑅𝑑

𝑠𝑑
−
𝛾𝑅1
�̃�1

−
𝛾𝑅2
�̃�2

)

= �̄�3
(
𝑅𝑑

𝑠𝑑
− 𝛾

�̃�1

(
�̄�1
𝑠𝑑

)
𝑅𝑑 −

𝛾

�̃�2
⋅
�̄�2
𝑠𝑑

(1 −𝜙1)𝑅𝑑
)

=
�̄�3
𝑠𝑑

(1 −𝜙1 −𝜙2(1 −𝜙1))𝑅𝑑

=
�̄�3
𝑠𝑑

(1 −𝜙1)(1 − 𝜙2)𝑅𝑑.

Since

𝑇𝑑 =
𝑅𝑑

𝑠𝑑
= 𝑇4 =

𝐷1
�̃�1

+
𝐷2
�̃�2

+
𝐷3
�̃�3

+
𝑅4
�̄�4
,

we get

𝑅4 = �̄�4
(
𝑅𝑑

𝑠𝑑
−
𝐷1
�̃�1

−
𝐷2
�̃�2

−
𝐷3
�̃�3

)

= �̄�4
(
𝑅𝑑

𝑠𝑑
−
𝛾𝑅1
�̃�1

−
𝛾𝑅2
�̃�2

−
𝛾𝑅3
�̃�3

)

= �̄�4
(
𝑅𝑑

𝑠𝑑
− 𝛾

�̃�1

(
�̄�1
𝑠𝑑

)
𝑅𝑑 −

𝛾

�̃�2
⋅
�̄�2
𝑠𝑑

(1 −𝜙1)𝑅𝑑

− 𝛾

�̃�3
⋅
�̄�3
𝑠𝑑

(1 −𝜙1)(1 −𝜙2)𝑅𝑑
)

=
�̄�4
𝑠𝑑

(1 −𝜙1 −𝜙2(1 −𝜙1) −𝜙3(1 − 𝜙1)(1 −𝜙2))𝑅𝑑

=
�̄�4
𝑠𝑑

(1 −𝜙1)(1 − 𝜙2)(1 − 𝜙3)𝑅𝑑.

The above calculations inspire us to define

𝑄𝑗 =
∏
𝑗′<𝑗

(1 −𝜙𝑗′ ) =
∏
𝑗′<𝑗

�̃�𝑗

𝛾𝑠𝑗 + �̃�𝑗
. (19)

𝑄𝑗 is actually the percentage of the execution time

𝑇 ′
𝑗
= (1 −𝜙𝑗−1)𝑇 ′

𝑗−1 =⋯ = (1 −𝜙𝑗−1)⋯ (1 −𝜙1)𝑇 ′
1 =𝑄𝑗𝑇 (20)

in the total time 𝑇𝑗 = 𝑇 of ES𝑗 . Then, it can be verified (e.g., by an 
inductive proof) that

𝑅𝑗

�̄�𝑗
=𝑄𝑗

𝑅𝑑

𝑠𝑑
,

or

𝑅𝑗 =
�̄�𝑗

𝑠𝑑
𝑄𝑗𝑅𝑑,

or

𝑅𝑗

𝑄𝑗 �̄�𝑗
=
𝑅𝑑

𝑠𝑑
,

for all 1 ≤ 𝑗 ≤ 𝑚. 𝑄𝑗�̄�𝑗 can be regarded as the effective execution speed of 
ES𝑗 with waiting time included. Due to the waiting time 𝑊𝑗 , the perceived 
6

execution speed of ES𝑗 is reduced by a factor of 𝑄𝑗 .
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The above discussion leads to the following theorem, which gives a 
lower bound for the optimal schedule length 𝑇 ∗(𝐿) of 𝐿.

Theorem 1. If 𝑑𝑖 = 𝛾𝑟𝑖, for all 1 ≤ 𝑖 ≤ 𝑛, the optimal schedule length 𝑇 ∗(𝐿)
has the following lower bound:

𝑇 ∗(𝐿) ≥ 𝑅

𝑠𝑑 +
𝑚∑
𝑗=1
𝑄𝑗�̄�𝑗

. (21)

Proof. It is clear that 𝑇 ∗(𝐿) ≥ 𝑇 , where 𝑇 is the identical completion 
time of all mobile devices, edge servers, and cloud servers. To find 𝑇 , 
we notice that

𝑅𝑑 +
𝑚∑
𝑗=1
𝑅𝑗 =𝑅,

that is,

𝑅𝑑 +
𝑚∑
𝑗=1

�̄�𝑗

𝑠𝑑
𝑄𝑗𝑅𝑑 =𝑅,

from which we obtain

𝑅𝑑 =
𝑅

1 +
𝑚∑
𝑗=1

�̄�𝑗

𝑠𝑑
𝑄𝑗

,

and

𝑅𝑗 =

�̄�𝑗

𝑠𝑑
𝑄𝑗

1 +
𝑚∑
𝑗=1

�̄�𝑗

𝑠𝑑
𝑄𝑗

𝑅,

and

𝑇 =
𝑅𝑑

𝑠𝑑
=
𝑅𝑗

𝑄𝑗 �̄�𝑗
= 𝑅

𝑠𝑑 +
𝑚∑
𝑗=1
𝑄𝑗�̄�𝑗

= 𝑅
𝑆
,

where

𝑆 = 𝑠𝑑 +
𝑚∑
𝑗=1
𝑄𝑗�̄�𝑗 (22)

is the aggregated execution speed of the device-edge-cloud collaborative 
computing system. The proof of the theorem is completed. □

We would like to mention that the above theorem includes the lower 
bound in [21] for one CES as a special case.

Notice that 𝑇 in the proof Theorem 1 depends on the order of the 
edge servers in our task scheduling framework. We would like to men-
tion that 𝑇 is minimized when the edge servers are arranged in such an 
order that

�̃�1 ≥ �̃�2 ≥⋯ ≥ �̃�𝑚. (23)

To show this, we need to find an edge server order which maximizes 
the aggregated execution speed and minimizes 𝑇 . Assume that the edge 
servers are in an order:

ES1, ...,ES𝑗′−1,ES𝑗′ ,ES𝑗′+1,ES𝑗′+2, ...,ES𝑚,

with aggregated execution speed:

𝑆 =
𝑗′−1∑
𝑗=1
𝑄𝑗�̄�𝑗 +𝑄𝑗′ �̄�𝑗′ +𝑄𝑗′ (1 −𝜙𝑗′ )�̄�𝑗′+1 +

𝑚∑
𝑗=𝑗′+2

𝑄𝑗�̄�𝑗 .

We exchange the order of ES𝑗′ and ES𝑗′+1 and get another order:
ES1, ...,ES𝑗′−1,ES𝑗′+1,ES𝑗′ ,ES𝑗′+2, ...,ES𝑚,
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with aggregated execution speed:

𝑆′ =
𝑗′−1∑
𝑗=1
𝑄𝑗�̄�𝑗 +𝑄𝑗′ �̄�𝑗′+1 +𝑄𝑗′ (1 −𝜙𝑗′+1)�̄�𝑗′ +

𝑚∑
𝑗=𝑗′+2

𝑄𝑗�̄�𝑗 .

Notice that

𝑆′ −𝑆 =𝑄𝑗′ (𝜙𝑗′ �̄�𝑗′+1 − 𝜙𝑗′+1�̄�𝑗′ ),

which means that 𝑆′ ≥ 𝑆 if and only if 𝜙𝑗′ �̄�𝑗′+1 − 𝜙𝑗′+1�̄�𝑗′ ≥ 0, that is, 
𝜙𝑗′ �̄�𝑗′+1 ≥ 𝜙𝑗′+1�̄�𝑗′ , or,

�̄�𝑗′+1

𝜙𝑗′+1
≥
�̄�𝑗′

𝜙𝑗′
.

Since

�̄�𝑗

𝜙𝑗
=
�̃�𝑗

𝛾
,

the last inequality is equivalent to �̃�𝑗′+1 ≥ �̃�𝑗′ . Since 𝑇 is minimized if 
and only if the aggregated execution speed is maximized, we know that 
𝑇 is minimized if and only if �̃�1 ≥ �̃�2 ≥⋯ ≥ �̃�𝑚, that is, the edge servers 
are arranged in the decreasing order of wireless communication speeds.

4.3. Heuristic solution

The main result of this section is the following theorem, which gives 
an upper bound for the heuristic schedule length 𝑇 (𝐿) of 𝐿.

Theorem 2. If 𝑑𝑖 = 𝛾𝑟𝑖, for all 1 ≤ 𝑖 ≤ 𝑛, the heuristic schedule length 𝑇 (𝐿)
has the following upper bound:

𝑇 (𝐿) ≤ 𝑅

𝑠𝑑 +
𝑚∑
𝑗=1
𝑄𝑗�̄�𝑗

+

𝑠𝑑 +
𝑚∑
𝑗=1
�̄�𝑗

𝑠𝑑 +
𝑚∑
𝑗=1
𝑄𝑗�̄�𝑗

𝜏∗, (24)

where 𝜏∗ is the longest execution time of any task anywhere.

Proof. Let the heuristic schedule length be

𝑇 (𝐿) = max{𝑇𝑑, 𝑇1, 𝑇2, ..., 𝑇𝑚}. (25)

Assume that 𝑡𝑖 is the last task completed at time 𝑇 (𝐿). It is clear that all 
mobile devices, edge servers, and cloud servers are busy (not available) 
up to time 𝑇 (𝐿) − 𝜏𝑖, i.e., 𝑇𝑑 ≥ 𝑇 (𝐿) − 𝜏𝑖, and 𝑇𝑗 ≥ 𝑇 (𝐿) − 𝜏𝑖, for all 1 ≤
𝑗 ≤𝑚.

For the mobile device, we have

𝑅𝑑 = 𝑠𝑑𝑇𝑑 ≥ 𝑠𝑑 (𝑇 (𝐿) − 𝜏𝑖).

For edge servers, we notice that

𝑅𝑗 ≥ �̄�𝑗 (𝑇 (𝐿) − 𝜏𝑖 −𝑊𝑗 ),

for all 1 ≤ 𝑗 ≤ 𝑚, no matter whether ES𝑗 is a RES or a CES. If ES𝑗 is a 
RES, we have

𝑅𝑗 = �̄�𝑗𝑇 ′
𝑗
= �̄�𝑗 (𝑇𝑗 −𝑊𝑗 ) ≥ �̄�𝑗 (𝑇 (𝐿) − 𝜏𝑖 −𝑊𝑗 ).

If ES𝑗 is a CES and 𝑇𝑗,𝑒 = 𝑇𝑗,𝑐 , the above argument is also valid. The 
complication comes from the situation where 𝑇𝑗,𝑒 ≠ 𝑇𝑗,𝑐 . In this case, we 
can imagine that the tasks are divisible and transferable from ES𝑗 to 
CS𝑗 if 𝑇𝑗,𝑒 > 𝑇𝑗,𝑐 , or from CS𝑗 to ES𝑗 if 𝑇𝑗,𝑒 < 𝑇𝑗,𝑐 , such that the new total 
times are

�̃�𝑗,𝑒 = �̃�𝑗,𝑐 = �̃�𝑗 ≥min{𝑇𝑗,𝑒, 𝑇𝑗,𝑐} ≥ 𝑇 (𝐿) − 𝜏𝑖.

It is clear that
7

𝑅𝑗 = �̄�𝑗 (�̃�𝑗 −𝑊𝑗 ) ≥ �̄�𝑗 (𝑇 (𝐿) − 𝜏𝑖 −𝑊𝑗 ).
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We can show by induction that

𝑊𝑗 ≤ (1 −𝑄𝑗 )𝑇 (𝐿),

for all 1 ≤ 𝑗 ≤ 𝑚. The base cases for 𝑗 = 1, 2 are trivial: 𝑊1 = 0 = (1 −
𝑄1)𝑇 (𝐿) and 𝑊2 = 𝜙1𝑇1 ≤ 𝜙1𝑇 (𝐿) = (1 −𝑄2)𝑇 (𝐿). For the general case, 
we have

𝑊𝑗 =𝑊𝑗−1 + 𝜙𝑗−1𝑇 ′
𝑗−1 (by the definition of waiting time)

=𝑊𝑗−1 + 𝜙𝑗−1(𝑇𝑗−1 −𝑊𝑗−1) (by the definition of execution time)

= (1 − 𝜙𝑗−1)𝑊𝑗−1 +𝜙𝑗−1𝑇𝑗−1 (straightforward)

≤ (1 − 𝜙𝑗−1)(1 −𝑄𝑗−1)𝑇 (𝐿)

+ 𝜙𝑗−1𝑇𝑗−1 (by the induction hypothesis)

≤ (1 − 𝜙𝑗−1)(1 −𝑄𝑗−1)𝑇 (𝐿) +𝜙𝑗−1𝑇 (𝐿) (by the definition of 𝑇 (𝐿))

= (1 −𝑄𝑗 )𝑇 (𝐿). (by the definition of 𝑄𝑗)

Therefore, we get

𝑅𝑗 ≥ �̄�𝑗 (𝑇 (𝐿) − 𝜏𝑖 − (1 −𝑄𝑗 )𝑇 (𝐿)) = �̄�𝑗 (𝑄𝑗𝑇 (𝐿) − 𝜏𝑖),

for all 1 ≤ 𝑗 ≤𝑚. Finally, since

𝑅 =𝑅𝑑 +
𝑚∑
𝑗=1
𝑅𝑗 ≥ 𝑠𝑑 (𝑇 (𝐿) − 𝜏𝑖) +

𝑚∑
𝑗=1
�̄�𝑗 (𝑄𝑗𝑇 (𝐿) − 𝜏𝑖),

that is,

𝑅 ≥

(
𝑠𝑑 +

𝑚∑
𝑗=1
𝑄𝑗�̄�𝑗

)
𝑇 (𝐿) −

(
𝑠𝑑 +

𝑚∑
𝑗=1
�̄�𝑗

)
𝜏𝑖,

which gives

𝑇 (𝐿) ≤ 𝑅

𝑠𝑑 +
𝑚∑
𝑗=1
𝑄𝑗�̄�𝑗

+

𝑠𝑑 +
𝑚∑
𝑗=1
�̄�𝑗

𝑠𝑑 +
𝑚∑
𝑗=1
𝑄𝑗�̄�𝑗

𝜏∗.

The theorem is proved. □

We would like to mention that the above theorem includes the upper 
bound in [21] for one CES as a special case.

4.4. Performance bound

We say that a heuristic algorithm has an asymptotic performance 
bound 𝐵 if

lim
𝑇 ∗(𝐿)∕𝜏∗→∞

𝑇 (𝐿)
𝑇 ∗(𝐿)

= 𝐵. (26)

Consider two task lists: 𝐿 = (𝑡1, 𝑡2, ..., 𝑡𝑛), where 𝑡𝑖 = (𝑑𝑖, 𝑟𝑖), and 𝐿′ =
(𝑡′1, 𝑡

′
2, ..., 𝑡

′
𝑛
), where 𝑡′

𝑖
= (𝑑′

𝑖
, 𝑟′
𝑖
). If 𝑑𝑖 ≤ 𝑑′𝑖 and 𝑟𝑖 ≤ 𝑟′𝑖 , then any schedule of 

𝐿′ is also applicable to 𝐿, simply executing 𝑡𝑖 in the same time slot of 𝑡′
𝑖

on the same device or server, with some (wireless and wired) communi-
cation time and computation time possibly unused. However, it is very 
likely that 𝐿 can have a better schedule with shorter schedule length. 
This implies that for optimal schedules, we have 𝑇 ∗(𝐿) ≤ 𝑇 ∗(𝐿′), and 
for heuristic schedules, we have 𝑇 (𝐿) ≤ 𝑇 (𝐿′).

For a list of tasks 𝐿 = (𝑡1, 𝑡2, ..., 𝑡𝑛), where 𝑡𝑖 = (𝑑𝑖, 𝑟𝑖) and 𝛾𝑖 = 𝑑𝑖∕𝑟𝑖, we 
define

𝛾 ′ = min{𝛾1, 𝛾2, ..., 𝛾𝑛}, (27)

and

𝛾 ′′ = max{𝛾1, 𝛾2, ..., 𝛾𝑛}. (28)

Let the aggregated execution speed 𝑆(𝛾) of the device-edge-cloud col-

laborative computing system be a function of 𝛾 .
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The following theorem gives an asymptotic performance bound 
for our heuristic algorithm for task scheduling on cloud-assisted edge 
servers.

Theorem 3. Our heuristic algorithm for task scheduling on cloud-assisted 
edge servers has an asymptotic performance bound

𝑆(𝛾 ′)
𝑆(𝛾 ′′)

. (29)

Proof. Let us construct 𝐿′ = (𝑡′1, 𝑡
′
2, ..., 𝑡

′
𝑛
) with 𝑡′

𝑖
= (𝛾 ′𝑟𝑖, 𝑟𝑖), and 𝐿′′ =

(𝑡′′1 , 𝑡
′′
2 , ..., 𝑡

′′
𝑛
) with 𝑡′′

𝑖
= (𝛾 ′′𝑟𝑖, 𝑟𝑖), where 𝑡′

𝑖
and 𝑡′′

𝑖
are virtual tasks intro-

duced for the purpose of analysis. It is clear that

𝑇 ∗(𝐿′) ≤ 𝑇 ∗(𝐿) ≤ 𝑇 (𝐿) ≤ 𝑇 (𝐿′′).

From Theorem 1, we know that

𝑇 ∗(𝐿′) ≥ 𝑅

𝑆(𝛾 ′)
.

From Theorem 2, we know that

𝑇 (𝐿′′) ≤ 𝑅

𝑆(𝛾 ′′)
+ 1
𝑆(𝛾 ′′)

(
𝑠𝑑 +

𝑚∑
𝑗=1
�̄�𝑗

)
𝜏∗.

Combining all the above inequalities, we reach

𝑇 (𝐿) ≤ 𝑆(𝛾 ′)
𝑆(𝛾 ′′)

𝑇 ∗(𝐿) + 1
𝑆(𝛾 ′′)

(
𝑠𝑑 +

𝑚∑
𝑗=1
�̄�𝑗

)
𝜏∗,

and

lim
𝑇 ∗(𝐿)∕𝜏∗→∞

𝑇 (𝐿)
𝑇 ∗(𝐿)

= 𝑆(𝛾 ′)
𝑆(𝛾 ′′)

.

This proves the theorem. □

We would like to mention that the above theorem includes the 
asymptotic performance bound in [21] for one CES as a special case.

5. Performance evaluation

5.1. Parameter setting

We consider a heterogeneous computing environment with seven 
computing units: one mobile device with 𝑠𝑑 = 1.5 Bips, two cloud-
assisted edge servers CES1 (ES1 + CS1) and CES2 (ES2 + CS2), and 
two regular edge servers RES3 and RES4, with the following parameter 
setting [3]:

CES1 ∶ �̃�1 = 50 Mbps, 𝑠1,𝑒 = 2.5 Bips, �̃�1,𝑐 = 95 Mbps, 𝑠1,𝑐 = 3.5 Bips,

CES2 ∶ �̃�2 = 45 Mbps, 𝑠2,𝑒 = 2.6 Bips, �̃�2,𝑐 = 90 Mbps, 𝑠2,𝑐 = 3.6 Bips,

RES3 ∶ �̃�3 = 40 Mbps, 𝑠3,𝑒 = 2.7 Bips,

RES4 ∶ �̃�3 = 35 Mbps, 𝑠3,𝑒 = 2.8 Bips.

The edge servers have been arranged in the order: �̃�1 > �̃�2 > �̃�3 > �̃�4.
𝐿 is a list of random tasks. The 𝑟𝑖’s are independent and identi-

cally distributed random variables uniformly distributed in the interval 
[1.0, 4.0] GI. The 𝛾𝑖’s are independent and identically distributed random 
variables uniformly distributed in the interval [𝛾 ′, 𝛾 ′′], where 𝛾 ′ = 1.0
MB/GI and 𝛾 ′′ = 5.0 MB/GI.

5.2. Numerical data

In this section, we demonstrate and discuss some numerical data.
In Table 1, we show the effective computation speed 𝑠𝑗 , the effec-

tive execution speed �̄�𝑗 , the percentage of the wireless communication 
time in the execution time 𝜙𝑗 , the percentage of the execution time in 
the total time 𝑄𝑗 , and the effective execution speed with waiting time 
8

included 𝑄𝑗�̄�𝑗 , for all edge servers, as well as the aggregated execution 
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Table 1

Effective speeds of edge servers.

𝑗 𝑠𝑗 �̄�𝑗 𝜙𝑗 𝑄𝑗 𝑄𝑗 �̄�𝑗

𝛾 = 0.00000, 𝑆 = 19.20000
1 6.00000 6.00000 0.00000 1.00000 6.00000
2 6.20000 6.20000 0.00000 1.00000 6.20000
3 2.70000 2.70000 0.00000 1.00000 2.70000
4 2.80000 2.80000 0.00000 1.00000 2.80000

𝛾 = 1.00000, 𝑆 = 15.44792
1 5.87563 5.25778 0.10516 1.00000 5.25778
2 6.06154 5.34197 0.11871 0.89484 4.78023
3 2.70000 2.52927 0.06323 0.78862 1.99463
4 2.80000 2.59259 0.07407 0.73875 1.91528

𝛾 = 2.00000, 𝑆 = 12.89502
1 5.75980 4.68127 0.18725 1.00000 4.68127
2 5.93333 4.69519 0.20868 0.81275 3.81601
3 2.70000 2.37885 0.11894 0.64315 1.52996
4 2.80000 2.41379 0.13793 0.56665 1.36778

𝛾 = 3.00000, 𝑆 = 11.06848
1 5.65166 4.22049 0.25323 1.00000 4.22049
2 5.81429 4.19012 0.27934 0.74677 3.12906
3 2.70000 2.24532 0.16840 0.53817 1.20836
4 2.80000 2.25806 0.19355 0.44754 1.01057

𝛾 = 4.00000, 𝑆 = 9.70912
1 5.55046 3.84371 0.30750 1.00000 3.84371
2 5.70345 3.78470 0.33642 0.69250 2.62092
3 2.70000 2.12598 0.21260 0.45953 0.97696
4 2.80000 2.12121 0.24242 0.36184 0.76753

𝛾 = 5.00000, 𝑆 = 8.66492
1 5.45556 3.52983 0.35298 1.00000 3.52983
2 5.60000 3.45205 0.38356 0.64702 2.23354
3 2.70000 2.01869 0.25234 0.39885 0.80515
4 2.80000 2.00000 0.28571 0.29820 0.59640

Table 2

Experimental results for task scheduling on cloud-assisted edge 
servers.

�̃�1 < �̃�2 < �̃�3 < �̃�4 �̃�1 > �̃�2 > �̃�3 > �̃�4

𝑛 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

20 1.66089 1.61996 1.61772 1.58679
40 1.55105 1.52683 1.50824 1.49046
60 1.51877 1.49742 1.46923 1.45343
80 1.50358 1.48324 1.44964 1.43604
100 1.49121 1.47375 1.44108 1.42828
120 1.48343 1.46744 1.43348 1.42047
140 1.47974 1.46355 1.42658 1.41601
160 1.47395 1.45823 1.42394 1.41240
180 1.47151 1.45661 1.42001 1.40921
200 1.46946 1.45481 1.41803 1.40732

speed 𝑆, for 𝛾 = 0, 1, 2, 3, 4, 5. It is easily observed that as 𝛾 increases, 𝑠𝑗 , 
�̄�𝑗 , 𝑄𝑗 , 𝑄𝑗�̄�𝑗 , and 𝑆 decrease significantly, and 𝜙𝑗 increases noticeably.

In Fig. 3, we display the aggregated execution speed 𝑆(𝛾) as a func-
tion of 𝛾 . It is clear that 𝑆(𝛾) is a decreasing function of 𝛾 .

In Fig. 4, we display the asymptotic performance bound 𝑆(𝛾 ′)∕𝑆(𝛾 ′′)
as a function of 𝛾 ′′, for 𝛾 ′ = 0, 1, 2, 3, 4, 5. It is clear that 𝑆(𝛾 ′)∕𝑆(𝛾 ′′) is an 
increasing function of 𝛾 ′′. However, increasing 𝛾 ′ significantly reduces 
the bound.

5.3. Experimental results

In this section, we demonstrate and discuss some experimental re-
sults.

In Table 2, we show our experimental results for task scheduling 
on cloud-assisted edge servers. These results are produced using the 
following procedure. For each 𝑛 = 20, 40, ..., 200, we generate 𝑁 = 2000
lists of random tasks. For each list 𝐿, we apply Algorithms 1 or 2 to get 
heuristic schedule length 𝑇 (𝐿), calculate the lower bound 𝑅∕𝑆 for the 

optimal schedule length 𝑇 ∗(𝐿) using Theorem 1, and record the ratio 
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Fig. 3. 𝑆(𝛾) as a decreasing function of 𝛾 .

Fig. 4. 𝑆(𝛾 ′)∕𝑆(𝛾 ′′) vs. 𝛾 ′′.

𝑇 (𝐿)∕(𝑅∕𝑆) as an upper bound for 𝑇 (𝐿)∕𝑇 ∗(𝐿). The average of the ratio 
is reported in the table, with 99% confidence interval ±0.40712%. For 
the purpose of comparison, we adopt two server orders: �̃�1 < �̃�2 < �̃�3 < �̃�4
and �̃�1 > �̃�2 > �̃�3 > �̃�4. As a reference, the asymptotic performance bound 
from Theorem 3 is 𝑆(1)∕𝑆(5) = 1.78281.

We have the following observations.

• The schedule lengths of both Algorithms 1 or 2 are fairly close 
to the optimal schedule length. This means that our heuristic task 
scheduling algorithms are quite effective in handling a sophisti-
cated computing environment.

• As 𝑛 increases, the gap between heuristic schedule length and opti-
mal schedule length is smaller. This means that the more the tasks, 
the better the performance of our heuristic task scheduling algo-
rithms.

• Algorithm 2 consistently outperforms Algorithm 1. This means that 
even slight look-ahead improves the performance of a heuristic task 
scheduling algorithm.

• The server order does have impact on the performance. Both Algo-
rithms 1 and 2 perform better for the order of �̃�1 > �̃�2 > �̃�3 > �̃�4 than 
the order of �̃�1 < �̃�2 < �̃�3 < �̃�4.

• All data in the table are less than 1.78281. This means that there 
is room to tighten the asymptotic performance bound in Theo-
rem 3, either raising the lower bound or reducing the upper bound 
9

through more thorough analysis.
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6. Energy-constrained scheduling

In this section, we design and analyze heuristic algorithms for 
energy-constrained task scheduling on cloud-assisted edge servers.

6.1. Model and problem

In addition to the models in Section 2.1, we also need power con-
sumption models for both computation and communication. As men-
tioned earlier, we only consider energy consumption of the mobile 
device. All power consumptions are measured by Watts, and all energy 
consumptions are measured by Joule.

The power consumption 𝑃 for computation of the mobile device is 
modeled by

𝑃 = 𝑃𝑑 + 𝑃𝑠 = 𝜉𝑠𝛼𝑑 + 𝑃𝑠, (30)

where 𝑃𝑑 = 𝜉𝑠𝛼𝑑 is the dynamic component of power consumption, 𝑃𝑠 is 
the static component of power consumption, and 𝜉, 𝛼 are technology-
dependent constants [20,21].

The power consumption for communication (i.e., the transmission 
power) between the mobile device and ES𝑗 is modeled by

𝑃𝑡,𝑗 =
2�̃�𝑗∕𝑤𝑗 − 1

𝛽𝑗
, (31)

where

�̃�𝑗 =𝑤𝑗 log2(1 + 𝛽𝑗𝑃𝑡,𝑗 ) (32)

is the wireless communication speed between the mobile device and 
ES𝑗 , 𝑤𝑗 is the communication bandwidth (measured by Mbps), and 𝛽𝑗
is a quantity determined by the communication channel [20,21].

For a given schedule, the total energy consumption of the mobile 
device is

𝐸 = 𝑃𝑇𝑑 +
𝑚∑
𝑗=1
𝑃𝑡,𝑗𝜙𝑗𝑇

′
𝑗
, (33)

which is actually

𝐸 = (𝜉𝑠𝛼
𝑑
+ 𝑃𝑠)

𝑅𝑑

𝑠𝑑
+

𝑚∑
𝑗=1

(
2�̃�𝑗∕𝑤𝑗 − 1

𝛽𝑗

)
𝐷𝑗

�̃�𝑗
. (34)

We are now ready to define our second combinatorial optimization 
problem.

Problem 2. Energy-Constrained Task Scheduling on Cloud-Assisted 
Edge Servers.

Input: 𝐿 = (𝑡1, 𝑡2, ..., 𝑡𝑛), ES1, ES2, ..., ES𝑚, and �̂�.
Output: A schedule of 𝐿: 𝐿𝑑, 𝐿1, 𝐿2, ..., 𝐿𝑚, computation speed 𝑠𝑑 , and 

communication speeds �̃�𝑗 for all 1 ≤ 𝑗 ≤𝑚, such that 𝑇 is minimized and 
that 𝐸 = �̂�.

The problem is NP-hard even for one regular edge server [21].

6.2. Heuristic algorithms

Our energy-constrained task scheduling problem on cloud-assisted 
edge servers includes two subproblems. The first subproblem is to de-
cide a schedule of 𝐿. The second subproblem is to determine compu-
tation and communication speeds of the mobile device. We notice that 
any heuristic algorithm 𝐻 for task scheduling on cloud-assisted edge 
servers (e.g., those in Section 3) can be extended to energy-constrained 
task scheduling on cloud-assisted edge servers. The extended algorithm 
is called 𝐻∗.

For the first subproblem, algorithm 𝐻∗ finds a schedule of 𝐿 by 
using the heuristic algorithm 𝐻 , with some reasonable setting of the 
computation and communication speeds of the mobile device. The pur-

pose is to get a partition of 𝐿 into (𝑚 + 1) sublists: 𝐿𝑑, 𝐿1, 𝐿2, ..., 𝐿𝑚.
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Fig. 5. Determination of computation and communication speeds.

For the second subproblem, algorithm 𝐻∗ applies the following 
strategy to set the computation and communication speeds of the 
mobile device. For a given schedule of 𝐿: 𝐿𝑑, 𝐿1, 𝐿2, ..., 𝐿𝑚, 𝑠𝑑 and 
�̃�𝑗 are determined in such a way that the mobile device and all 
edge servers have the same total time (see Fig. 5), i.e., 𝑇𝑑 = 𝑇𝑗 =
max{𝑇𝑗,𝑒, 𝑇𝑗,𝑐} = 𝑇 , and that 𝐸 = �̂� by appropriate adaptation of 𝑠𝑑 and 
�̃�𝑗 .

From 𝑅𝑑∕𝑠𝑑 = 𝑇 , we get 𝑠𝑑 =𝑅𝑑∕𝑇 . Let

𝑇 ′′
𝑗
=max

{
𝑅𝑗,𝑒

𝑠𝑗,𝑒
,
𝐷𝑗,𝑐

�̃�𝑗,𝑐
+
𝑅𝑗,𝑐

𝑠𝑗,𝑐

}

be the computation time of ES𝑗 , which is a known quantity. From

𝐷𝑗

�̃�𝑗
= 𝑇 ′′

𝑗−1 − 𝑇
′′
𝑗
,

where 𝑇 ′′
0 = 𝑇 , we get

�̃�𝑗 =
𝐷𝑗

𝑇 ′′
𝑗−1 − 𝑇

′′
𝑗

.

Therefore, we have the following equation:

𝐸 = 𝜉
𝑅𝛼
𝑑

𝑇 𝛼−1
+ 𝑃𝑠𝑇 +

𝑚∑
𝑗=1

(
2(𝐷𝑗∕𝑤𝑗 )∕(𝑇

′′
𝑗−1−𝑇

′′
𝑗
) − 1

𝛽𝑗

)
(𝑇 ′′
𝑗−1 − 𝑇

′′
𝑗
) = �̂�.

Since all 𝑇 ′′
𝑗

are fixed, we get

𝜉
𝑅𝛼
𝑑

𝑇 𝛼−1
+ 𝑃𝑠𝑇 +

(
2(𝐷1∕𝑤1)∕(𝑇−𝑇 ′′1 ) − 1

𝛽1

)
(𝑇 − 𝑇 ′′

1 )

= �̂� −
𝑚∑
𝑗=2

(
2(𝐷𝑗∕𝑤𝑗 )∕(𝑇

′′
𝑗−1−𝑇

′′
𝑗
) − 1

𝛽𝑗

)
(𝑇 ′′
𝑗−1 − 𝑇

′′
𝑗
).

(35)

The last equation means that for a given schedule 𝐿, we basically can 
only adjust the computation time of the mobile device and the wireless 
communication time of ES1.

The above equation for 𝑇 can be solved numerically by using the 
standard bisection search method, based on the fact that the left-
hand side is a decreasing function of 𝑇 . The initial search interval 
is [lb, ub]. For lb, since 𝑇 > 𝑇 ′′

1 , we can set lb = 𝑇 ′′
1 . For ub, since 
10
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𝑠𝑑 ≥

(
𝑃𝑠

𝜉(𝛼 − 1)

)1∕𝛼
,

we can set

ub =𝑅𝑑
(
𝜉(𝛼 − 1)
𝑃𝑠

)1∕𝛼
.

The above analysis implies that in order to achieve identical to-
tal time, two conditions should be satisfied. First, we must have 
𝑇 ′′
1 > 𝑇

′′
2 > ⋯ > 𝑇 ′′

𝑚
, i.e., there is room for balancing. If 𝑇 ′′

𝑗
≤ 𝑇 ′′

𝑗+1, 
it is impossible to achieve 𝑇𝑗 = 𝑇𝑗+1, since the computation time of 
ES𝑗+1 is too long and even longer after the wireless communica-
tion time is added. Second, the right-hand side of Eq. (35) must be 
positive, i.e., there is enough energy budget. As a matter of fact, 
this condition can be made stronger, i.e., the right-hand side of 
Eq. (35) must be at least the amount of energy consumption when 
𝑇 = ub.

The time complexity of algorithm 𝐻∗ is the time of 𝐻 plus 
𝑂(log(Δ∕𝜖)), where Δ is the length of the initial search interval and 
𝜖 is the accuracy requirement.

6.3. Lower bound

To derive a lower bound for the optimal solution, we notice that the 
total energy consumption of the mobile device is

𝐸 = (𝜉𝑠𝛼
𝑑
+ 𝑃𝑠)𝑇𝑑 +

𝑚∑
𝑗=1

(
2�̃�𝑗∕𝑤𝑗 − 1

𝛽𝑗

)
𝜙𝑗𝑇

′
𝑗
, (36)

where the wireless communication time of ES𝑗 is 𝐷𝑗∕�̃�𝑗 = 𝜙𝑗𝑇 ′
𝑗
.

Based on the analysis in Section 4.2, we have 𝑇𝑑 = 𝑇 , and 𝑇 ′
𝑗
=𝑄𝑗𝑇 , 

where 𝑇 =𝑅∕𝑆. Hence, we have

𝐸 = (𝜉𝑠𝛼
𝑑
+ 𝑃𝑠)𝑇 +

𝑚∑
𝑗=1

(
2�̃�𝑗∕𝑤𝑗 − 1

𝛽𝑗

)
𝜙𝑗𝑄𝑗𝑇 = �̂�. (37)

Furthermore, 𝛾 = 𝛾 ′ (see Section 4.4).
To minimize 𝑇 , we need to maximize the aggregated execution 

speed 𝑆, which is treated as a function of 𝑠𝑑 , ̃𝑠1, ..., ̃𝑠𝑚:

𝑆(𝑠𝑑 , �̃�1, ..., �̃�𝑚) = 𝑠𝑑 +
𝑚∑
𝑗=1
𝑄𝑗�̄�𝑗 , (38)

subject to the constraint 𝐸 = �̂�, i.e.,

𝐹 (𝑠𝑑 , �̃�1, ..., �̃�𝑚) =
(
𝜉𝑠𝛼
𝑑
+ 𝑃𝑠 +

𝑚∑
𝑗=1

(
2�̃�𝑗∕𝑤𝑗 − 1

𝛽𝑗

)
𝜙𝑗𝑄𝑗

)
− �̂�
𝑅
𝑆 = 0. (39)

To this end, we require

∇𝑆(𝑠𝑑 , �̃�1, ..., �̃�𝑚) = 𝜆∇𝐹 (𝑠𝑑 , �̃�1, ..., �̃�𝑚),

where 𝜆 is a Lagrange multiplier. Expanding the above equation, we 
obtain

𝜕𝑆(𝑠𝑑 , �̃�1, ..., �̃�𝑚)
𝜕𝑠𝑑

= 𝜆
𝜕𝐹 (𝑠𝑑 , �̃�1, ..., �̃�𝑚)

𝜕𝑠𝑑
,

and

𝜕𝑆(𝑠𝑑 , �̃�1, ..., �̃�𝑚)
𝜕�̃�𝑗

= 𝜆
𝜕𝐹 (𝑠𝑑 , �̃�1, ..., �̃�𝑚)

𝜕�̃�𝑗
,

for all 1 ≤ 𝑗 ≤𝑚.
Since

𝜕𝑆(𝑠𝑑 , �̃�1, ..., �̃�𝑚)
𝜕𝑠𝑑

= 1,
and
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𝜕𝐹 (𝑠𝑑 , �̃�1, ..., �̃�𝑚)
𝜕𝑠𝑑

= 𝜉𝛼𝑠𝛼−1
𝑑

− �̂�
𝑅
,

we get

1 = 𝜆
(
𝜉𝛼𝑠𝛼−1

𝑑
− �̂�
𝑅

)
,

which implies that

𝑠𝑑 =
(

1
𝜉𝛼

(
1
𝜆
+ �̂�
𝑅

))1∕(𝛼−1)
.

Notice that

𝜕�̄�𝑗

𝜕�̃�𝑗
=

𝛾𝑠2
𝑗

(𝛾𝑠𝑗 + �̃�𝑗 )2
,

and

𝜕𝜙𝑗

𝜕�̃�𝑗
= −

𝛾𝑠𝑗

(𝛾𝑠𝑗 + �̃�𝑗 )2
,

and

𝜕𝑄𝑗′

𝜕�̃�𝑗
= −

𝑄𝑗′

1 −𝜙𝑗
⋅
𝜕𝜙𝑗

𝜕�̃�𝑗
, 𝑗′ > 𝑗.

It is clear that

𝜕𝑆(𝑠𝑑 , �̃�1, ..., �̃�𝑚)
𝜕�̃�𝑗

=𝑄𝑗
𝜕�̄�𝑗

𝜕�̃�𝑗
+
∑
𝑗′>𝑗

�̄�𝑗′
𝜕𝑄𝑗′

𝜕�̃�𝑗
.

Furthermore,

𝜕𝐹 (𝑠𝑑 , �̃�1, ..., �̃�𝑚)
𝜕�̃�𝑗

=𝑄𝑗
(
2�̃�𝑗∕𝑤𝑗 ln 2
𝛽𝑗𝑤𝑗

𝜙𝑗 +
2�̃�𝑗∕𝑤𝑗 − 1

𝛽𝑗
⋅
𝜕𝜙𝑗

𝜕�̃�𝑗

)

+
∑
𝑗′>𝑗

(
2�̃�𝑗′ ∕𝑤𝑗′ − 1

𝛽𝑗′

)
𝜙𝑗′
𝜕𝑄𝑗′

𝜕�̃�𝑗

− �̂�
𝑅

⋅
𝜕𝑆(𝑠𝑑 , �̃�1, ..., �̃�𝑚)

𝜕�̃�𝑗
.

Thus, we have

(
1 + 𝜆 �̂�

𝑅

)(
𝑄𝑗

𝜕�̄�𝑗

𝜕�̃�𝑗
+
∑
𝑗′>𝑗

�̄�𝑗′
𝜕𝑄𝑗′

𝜕�̃�𝑗

)

= 𝜆
(
𝑄𝑗

(
2�̃�𝑗∕𝑤𝑗 ln 2
𝛽𝑗𝑤𝑗

𝜙𝑗 +
2�̃�𝑗∕𝑤𝑗 − 1

𝛽𝑗
⋅
𝜕𝜙𝑗

𝜕�̃�𝑗

)

+
∑
𝑗′>𝑗

(
2�̃�𝑗′ ∕𝑤𝑗′ − 1

𝛽𝑗′

)
𝜙𝑗′
𝜕𝑄𝑗′

𝜕�̃�𝑗

)
,

(40)

for all 1 ≤ 𝑗 ≤𝑚.
We now have a nonlinear system of (𝑚 +1) equations (i.e., Eqs. (39)

and (40)) with (𝑚 +1) unknowns (i.e., �̃�1, ..., ̃𝑠𝑚 and 𝜆). Once these equa-
tions are solved, we can calculate the maximized 𝑆 and a lower bound 
for the optimal solution, which is 𝑅∕𝑆.

6.4. Experimental results

Both Algorithms 1 and 2 in Section 3 have been extended to Al-
gorithms 1∗ and 2∗ for energy-constrained task scheduling on cloud-
assisted edge servers.

We adopt the same parameter setting in Section 5. The param-
eters for our computation power consumption model are 𝜉 = 0.1, 
𝛼 = 2.0, and 𝑃𝑠 = 0.05 Watts. The parameters for our communi-
cation power consumption model are 𝑤𝑗 = 30 Mbps and 𝛽𝑗 = 2.0
11

Watts−1.
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Table 3

Experimental results for energy-constrained scheduling on cloud-
assisted edge servers.

�̃�1 < �̃�2 < �̃�3 < �̃�4 �̃�1 > �̃�2 > �̃�3 > �̃�4

𝑛 Algorithm 1∗ Algorithm 2∗ Algorithm 1∗ Algorithm 2∗

20 1.87961 1.72850 1.82672 1.72529
40 1.86006 1.75466 1.76430 1.68097
60 1.84079 1.74692 1.69061 1.63369
80 1.78364 1.70234 1.63551 1.59209
100 1.73387 1.66032 1.61646 1.57966
120 1.69448 1.63382 1.59419 1.56371
140 1.67791 1.62366 1.58787 1.55916
160 1.66602 1.61724 1.58196 1.55435
180 1.65570 1.60953 1.58012 1.55403
200 1.64676 1.60234 1.57618 1.55030

In Table 3, we show our experimental results for energy-constrained 
task scheduling on cloud-assisted edge servers. These results are pro-
duced using the following procedure. The energy constraint is set 
as �̂� = 0.2𝑛 Joules. The nonlinear system of equations is solved by 
using Python scipy.optimize.fsolve, with 𝑅 = 2.5𝑛 GI. For each 𝑛 =
20, 40, ..., 200, we generate 𝑁 = 5000 lists of random tasks. For each 
list 𝐿, we apply Algorithms 1∗ and 2∗ to get heuristic schedule 
length 𝑇 (𝐿), use the lower bound 𝑅∕𝑆 for the optimal schedule 
length 𝑇 ∗(𝐿), and record the ratio 𝑇 (𝐿)∕(𝑅∕𝑆) as an upper bound 
for 𝑇 (𝐿)∕𝑇 ∗(𝐿). The average of the ratio is reported in the table, 
with 99% confidence interval ±1.02984%. For the purpose of compar-
ison, we adopt two server orders: �̃�1 < �̃�2 < �̃�3 < �̃�4 and �̃�1 > �̃�2 > �̃�3 >
�̃�4.

Since �̂�∕𝑅 = 0.08 is fixed, our nonlinear system of equations is iden-
tical for all 𝑛, thus only needs to be solved once. The computation and 
communication speeds are 𝑠𝑑 = 1.61601 Bips, and

�̃�1 = 139.45898, 𝑠1 = 5.87563, �̄�1 = 5.63809,
�̃�2 = 127.89733, 𝑠2 = 6.06154, �̄�2 = 5.78726,
�̃�3 = 107.73416, 𝑠3 = 2.70000, �̄�3 = 2.63399,
�̃�4 = 90.35365, 𝑠4 = 2.80000, �̄�4 = 2.71584,

𝜙1 = 0.04043, 𝑄1 = 1.00000;
𝜙2 = 0.04525, 𝑄2 = 0.95957;
𝜙3 = 0.02445, 𝑄3 = 0.91615;
𝜙4 = 0.03006, 𝑄4 = 0.89375.

The aggregated execution speed is 𝑆 = 17.64781 Bips, and the lower 
bound is 𝑅∕𝑆 = 0.14166𝑛 seconds.

We have the following observations.

• The schedule lengths of both Algorithms 1∗ and 2∗ are rea-
sonably close to the optimal schedule length. This means that 
our heuristic algorithms are quite effective in handling energy-
constrained task scheduling in a sophisticated computing environ-
ment.

• As 𝑛 increases, the gap between heuristic schedule length and opti-
mal schedule length is smaller. This means that the more the tasks, 
the better the performance of our heuristic task scheduling algo-
rithms.

• Algorithm 2∗ consistently outperforms Algorithm 1∗. This means 
that even slight look-ahead improves the performance of a heuristic 
task scheduling algorithm.

• The server order does have impact on the performance. Both Algo-
rithms 1∗ and 2∗ perform better for the order of �̃�1 > �̃�2 > �̃�3 > �̃�4
than the order of �̃�1 < �̃�2 < �̃�3 < �̃�4.

7. Comments on related work

Task scheduling and offloading in device-edge-cloud cooperative 

computing have two main considerations.
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The first consideration is performance optimization. In the current 
studies, many researchers have attempted to minimize the summa-
tion of task execution times (see, e.g., [7,10,23,26]). Actually, this is 
not combinatorial optimization and is quite different from traditional 
scheduling theory, where the makespan is usually the performance 
metrics to be minimized. This paper is the first combinatorial opti-
mization study in the literature which optimizes the makespan of task 
scheduling in mobile edge computing with multiple cloud-assisted edge 
servers.

The second consideration is performance-cost tradeoff. In the exist-
ing literature, many researchers have attempted to minimize a weighted 
sum of execution time and energy consumption of all tasks (see, 
e.g., [6,17,25,29]). Such an approach is again not combinatorial op-
timization. In addition, the approach has inherent technical flaw and 
makes little sense, because execution time and energy consumption 
have totally different measures (i.e., second and Joule). This pa-
per is the first combinatorial optimization study in the literature 
which optimizes the makespan of task scheduling with energy con-
straint in mobile edge computing with multiple cloud-assisted edge 
servers.

It is worth to mention that some researchers have considered energy 
minimization with performance guarantee [13,15,16,32].

8. Concluding remarks

We have treated task scheduling on cloud-assisted edge servers as a 
combinatorial optimization problem to minimize the schedule length, 
with or without energy constraint. We have developed heuristic al-
gorithms that take into consideration the heterogeneity of computa-
tion and communication speeds, the sophistication of wireless and 
wired communication mechanisms, and the order of edge servers. The 
most important feature of our study is to compare the performance 
of our heuristic algorithms with the optimal algorithm, both analyt-
ically and experimentally. In doing so, we have adopted three key 
techniques, i.e., communication unification, effective speed, and virtual 
tasks.

Further research can be conducted for more sophisticated appli-
cation structures, more challenging power allocations strategies, and 
different task scheduling frameworks. First, we may consider schedul-
ing dependent (i.e., precedence constrained) tasks on cloud-assisted 
edge servers with or without energy constraint. Second, for depen-
dent tasks, it is possible that each task has its own communication 
speed, which results in more efficient power allocation and shorter 
schedule length. Third, it is worth to investigate overlapping and in-
terleaving of computations and communications (i.e., a sublist of tasks 
are not sent to a server altogether, but in smaller batches), which 
may yield shorter waiting times. In all the above cases and their com-
binations, it will be substantially more difficult to design efficient 
and effective heuristic algorithms and to analyze the optimal solu-
tions.
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Appendix A. Notations and definitions

Notation Definition

𝐿 = (𝑡1, 𝑡2, ..., 𝑡𝑛), a list of independent tasks

𝑛 the number of tasks

𝑡𝑖 = (𝑑𝑖, 𝑟𝑖), a task

𝑑𝑖 the amount of communication of 𝑡𝑖
𝑟𝑖 the amount of computation of 𝑡𝑖
𝛾𝑖 = 𝑑𝑖∕𝑟𝑖, the amount of communication per unit of 

computation

𝛾 ′ = min{𝛾1, 𝛾2, ..., 𝛾𝑛}
𝛾 ′′ = max{𝛾1, 𝛾2, ..., 𝛾𝑛}
𝐿𝑑 the sublist of task executed on the mobile device

𝐿𝑗 the sublist of task executed on ES𝑗
𝐿𝑗,𝑒 the sublist of task executed on ES𝑗 of CES𝑗
𝐿𝑗,𝑐 the sublist of task executed on CS𝑗 of CES𝑗
𝐷𝑘 the total amount of communication of tasks in 𝐿𝑘, 

𝑘 = 𝑑, 𝑗, (𝑗, 𝑒), (𝑗, 𝑐)
𝑅𝑘 the total amount of computation of tasks in 𝐿𝑘, 

𝑘 = 𝑑, 𝑗, (𝑗, 𝑒), (𝑗, 𝑐)
𝜏𝑖 the execution time of task 𝑡𝑖
𝜏∗ the longest execution time of any task anywhere

𝑠𝑑 the computation speed of the mobile device

𝑠𝑗 the computation speed of RES𝑗 , or the effective 
computation speed of CES𝑗

𝑠𝑗,𝑒 the computation speed of ES𝑗 of CES𝑗
𝑠𝑗,𝑐 the computation speed of CS𝑗 of CES𝑗
�̃�𝑗 the wireless communication speed between the mobile 

device and ES𝑗
�̃�𝑗,𝑐 the wired communication speed between ES𝑗 and CS𝑗
�̄�𝑗,𝑐 the effective computation speed of CS𝑗
�̄�𝑗 the effective execution speed of ES𝑗
𝑇𝑑 the total time of the mobile device

𝑇𝑗 =𝑊𝑗 + 𝑇 ′
𝑗
, the total time of RES𝑗 , or the total time of 

CES𝑗 = max{𝑇𝑗,𝑒, 𝑇𝑗,𝑐}
𝑇 =max{𝑇𝑑, 𝑇1, 𝑇2, ..., 𝑇𝑚}, the schedule length

𝑇𝑗,𝑒 the total time of ES𝑗 of CES𝑗
𝑇𝑗,𝑐 the total time of CS𝑗 of CES𝑗
𝑊𝑗 the waiting time of ES𝑗
𝑇 ′
𝑗

the execution time of ES𝑗
𝑇 ′′
𝑗

the computation time of ES𝑗
𝜙𝑗 the percentage of the communication time in the 

execution time of ES𝑗
𝑄𝑗 =

∏
𝑗′<𝑗 (1 − 𝜙𝑗′ ), the percentage of the execution time 

𝑇 ′
𝑗

in the total time 𝑇𝑗 of ES𝑗
𝑆 the aggregated execution speed of the 

device-edge-cloud collaborative computing system

𝑇 ∗(𝐿) the optimal schedule length

𝑇 (𝐿) the heuristic schedule length

𝑃 the power consumption for computation

𝑃𝑑 the dynamic component of power consumption

𝑃𝑠 the static component of power consumption

𝜉, 𝛼 parameters of the power consumption model for 
computation

𝑃𝑡,𝑗 the power consumption for communication (i.e., the 
transmission power)

𝑤𝑗 the communication bandwidth

𝛽𝑗 communication channel property

𝐸 the total energy consumption of the mobile device
�̂� energy constraint
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