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In a newly emerged fog computing environment, various user equipments (UE) enhance their computing 
power and extend their battery lifetime by computation offloading to mobile edge cloud (MEC) servers. 
Such an environment is distributed and competitive in nature. In this paper, we take a game theoretical 
approach to computation offloading optimization in a fog computing environment. Such an approach 
captures and characterizes the nature of a competitive environment. The main contributions of the paper 
can be summarized as follows. First, we formulate a non-cooperative game with both UEs and MECs as 
players. Each UE attempts to minimize the execution time of its tasks with an energy constraint. Each 
MEC attempts to minimize the product of its power consumption for computation and execution time 
for allocated tasks. Second, we develop a heuristic algorithm for a UE to determine its “heuristically” best 
response to the current situation, an algorithm for an MEC to determine its best response to the current 
situation, and an iterative algorithm to find the Nash equilibrium. Third, we prove that our iterative 
algorithm converges to a Nash equilibrium. We demonstrate numerical examples of our non-cooperative 
games with and without MECs’ participation. We observe that our iterative algorithm always quickly 
converges to a Nash equilibrium. The uniqueness of our non-cooperative games is that the strategy set of 
a player can be discrete and the payoff function of a player can be obtained by a heuristic algorithm for 
combinatorial optimization. To the best of the author’s knowledge, there has been no such investigation 
of non-cooperative games based on combinatorial optimization for computation offloading optimization 
in a fog computing environment.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

In a newly emerged fog computing environment, various user 
equipments (UE) enhance their computing power and extend their 
battery lifetime by computation offloading to mobile edge cloud
(MEC) servers. Such an environment is distributed and competi-
tive in nature, in the sense that each UE finds its best computa-
tion offloading strategy to the MECs and its best computation and 
communication speeds, such that both execution time and energy 
consumption can be minimized. Furthermore, each UE is aware of 
the existence of other UEs, and adjusts its strategies according to 
the current situation of an environment.

Computation offloading optimization faces the following impor-
tant concerns and challenges. First, computation offloading opti-
mization should include both cost and performance into consider-
ation. While performance (e.g., execution time) is an important tar-
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get for optimization, cost (e.g., energy consumption) is an equally 
important target for optimization. Second, computation offloading 
optimization should be performed for each UE individually and 
separately. Globalized, collective, and centralized optimization for 
all UEs is not very interesting to each UE. On the other hand, lo-
calized, individualized, and distributed optimization for each UE is 
more appropriate. Third, computation offloading optimization for a 
UE should be based on other UEs’ behavior and the current work-
load already offloaded to the MECs, so that the best reaction and 
action can be taken. Fourth, computation offloading optimization 
should involve both UEs and MECs. While most cost and perfor-
mance optimizations are conducted for UEs, the MECs also need to 
try to provide the highest quality of service with the lowest cost 
of service.

The best way to handle competition and conflict is negotiation 
to reach a win-win situation. While each UE or MEC is conduct-
ing its optimization, other UEs and MECs are also doing so. Each 
change to a UE’s or an MEC’s strategy causes other UEs and MECs 
to adjust their strategies. One immediate question is: “Is there a 
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stable situation when no one wants to make further change, since 
any further change brings no benefit?”

1.2. New contributions

In this work, we adopt a game theoretical approach to com-
putation offloading optimization in a fog computing environment. 
Such an approach captures and characterizes the nature of a com-
petitive environment and can handle the multiple challenges men-
tioned above simultaneously. It is clear that both cost and per-
formance can be incorporated into the payoff functions of the 
players, who can choose different methods to deal with the cost-
performance tradeoff. Furthermore, both UEs and MECs can join a 
game and each UE or MEC optimizes its own payoff function indi-
vidually and separately and maximizes its benefit.

The main contributions of the paper are summarized as follows.

• First, we formulate a non-cooperative game with both UEs and 
MECs as players. Each UE attempts to minimize the execution 
time of its tasks with an energy constraint. Each MEC attempts 
to minimize the product of its power consumption for compu-
tation and execution time for allocated tasks.

• Second, we develop a heuristic algorithm for a UE to deter-
mine its “heuristically” best response to the current situation, 
an algorithm for an MEC to determine its best response to the 
current situation, and an iterative algorithm to find the Nash 
equilibrium.

• Third, we prove that our iterative algorithm converges to a 
Nash equilibrium. We demonstrate numerical examples of our 
non-cooperative games with and without MECs’ participation. 
We observe that our iterative algorithm always quickly con-
verges to a Nash equilibrium.

The uniqueness of our non-cooperative games is that the strategy 
set of a player can be discrete and the payoff function of a player 
can be obtained by a heuristic algorithm for combinatorial opti-
mization. To the best of the author’s knowledge, there has been no 
such investigation of non-cooperative games based on combinato-
rial optimization for computation offloading optimization in a fog 
computing environment.

The rest of the paper is organized as follows. In Section 2, we 
present the execution models for both offloaded and non-offloaded 
tasks and the power consumption models for both computation 
and communication. In Section 3, we describe a non-cooperative 
game played by all the UEs and MECs. In Section 4, we develop 
a group of algorithms to find the Nash equilibrium. In Section 5, 
we prove the existence of and convergence to a Nash equilibrium 
and give some characterizations of the Nash equilibrium. In Section 
6, we demonstrate numerical examples. In Section 7, we review 
related research. In Section 8, we conclude the paper.

2. Models

In this section, we present the execution models for both of-
floaded and non-offloaded tasks and the power consumption mod-
els for both computation and communication. Table 1 gives a sum-
mary of notations and definitions in the order introduced in this 
paper.

2.1. The execution models

The execution models for both offloaded and non-offloaded 
tasks are described in this section.

We consider a fog computing environment with multiple het-
erogeneous UEs and multiple heterogeneous MECs. Assume that 
25
Table 1
Summary of Notations and Definitions.

Notation Definition

m the number of UEs
UEi the ith UE
n the number of MECs
MEC j the jth MEC
Li = (ti,1, ti,2, ..., ti,bi ), a list of independent tasks of UEi

ti,k = (ri,k, di,k), a task of UEi

ri,k the computation requirement of ti,k

di,k the communication requirement of ti,k

si the computation speed of UEi

s̃ j the computation speed of MEC j

ci, j the communication speed between UEi and MEC j

Pd,i = ξi s
αi
i , dynamic power consumption of UEi for computation

ξi , αi technology dependent constants
Ps,i static power consumption of UEi for computation
Pi = Pd,i + Ps,i , power consumption of UEi for computation

P̃d, j = ξ̃ j s̃
α̃ j

j , dynamic power consumption of MEC j for computation

ξ̃ j , α̃ j technology dependent constants
P̃ s, j static power consumption of MEC j for computation
P̃ j = P̃d, j + P̃ s, j , power consumption of MEC j for computation
Pt,i, j the transmission power of UEi to MEC j

wi, j the channel bandwidth
βi, j a combined quantity that encapsulates various factors
Si = (Li,0, Li,1, Li,2, ..., Li,n), a computation offloading strategy of UEi

Li,0 a sublist of tasks not offloaded and executed locally on UEi

Li, j a sublist of tasks offloaded to MEC j and executed remotely on 
MEC j

Ri, j total computation requirement of tasks in Li, j

Di, j total communication requirement of tasks in Li, j

R j total computation requirement of tasks in MEC j

T̂ i the execution time of all tasks in UEi

T̃ j the execution time of all tasks in MEC j

T i the execution time of all tasks in Li , and the payoff function of UEi

Ei the energy consumption of UEi for both computation and 
communication

Ẽ j the energy consumption of MEC j for computation
F j = P̃ j T̃ j , the payoff function of MEC j

Ai = (Si , si , ci,1, ..., ci,n), the action UEi

Ã j = s̃ j the action of MEC j

A = (A1, A2, ..., Am, ̃A1, ̃A2, ..., ̃An), an action profile
T ′

i, j the existing workload on MEC j

T the same task completion time
T ∗

i, j the part of the execution time of MEC j that UEi cannot change and 
control

A∗ = (A∗
1, A∗

2, ..., A∗
m, ̃A∗

1, ̃A∗
2, ..., ̃A∗

n), a Nash equilibrium

there are m UEs, i.e., UE1, UE2, ..., UEm , and n MECs, i.e., MEC1, 
MEC2, ..., MECn .

UEi has a list of independent tasks Li = (ti,1, ti,2, ..., ti,bi ), where 
ti,k = (ri,k, di,k), for all 1 ≤ k ≤ bi and 1 ≤ i ≤ m. Each task ti,k is 
specified as ti,k = (ri,k, di,k), where ri,k is the computation require-
ment (i.e., the amount of computation, measured by the number 
of billion processor cycles or the number of billion instructions (BI) 
to be executed) of ti,k , and di,k is the communication requirement 
(i.e., the amount of data to be communicated between UEi and an 
MEC, measured by the number of million bits (MB) to be transmit-
ted) of ti,k .

UEi has computation speed si (i.e., the processor execution 
speed, measured by GHz or the number of billion instructions that 
can be executed in one second), for all 1 ≤ i ≤ m, and MEC j has 
computation speed s̃ j , for all 1 ≤ j ≤ n. If ti,k is not offloaded and 
executed locally on UEi , the computation time (measured by sec-
onds) of ti,k on UEi is ri,k/si . If ti,k is offloaded to an MEC j and 
executed remotely on MEC j , the computation time of ti,k on MEC j
is ri,k/s̃ j .

The communication speed between UEi and MEC j is ci, j (i.e., 
the data transmission rate, measured by the number of million 
bits which can be transmitted per second), for all 1 ≤ i ≤ m and 
1 ≤ j ≤ n. If ti,k is not offloaded and executed locally on UEi , there 
is no communication time. If ti,k is offloaded to an MEC j and ex-
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ecuted remotely on MEC j , the communication time (measured by 
seconds) between UEi and MEC j for ti,k is di,k/ci, j .

The execution time of a task is its computation time plus its 
communication time. If ti,k is not offloaded and executed locally 
on UEi , the execution time of ti,k is ri,k/si . If ti,k is offloaded to an 
MEC j and executed remotely on MEC j , the execution time of ti,k is 
ri,k/s̃ j + di,k/ci, j , for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ bi .

2.2. The power consumption models

The power consumption models for both computation and com-
munication are described in this section.

There are two components in the power consumption Pi (mea-
sured by Watts) of UEi for computation, i.e., dynamic power con-
sumption and static power consumption. The dynamic component 
Pd,i is usually expressed as Pd,i = ξi s

αi
i , where ξi and αi are tech-

nology dependent constants. The static component P s,i is usually 
a constant. Therefore, we have Pi = Pd,i + P s,i = ξi s

αi
i + P s,i , for all 

1 ≤ i ≤ m. If ti,k is not offloaded and executed locally on UEi , the 
energy consumption for computation (measured by Joules) of ti,k

on UEi is

Pi(ri,k/si) = (ξi s
αi
i + P s,i)(ri,k/si) = ((ξi s

αi
i + P s,i)/si)ri,k,

for all 1 ≤ i ≤ m and 1 ≤ k ≤ bi .
Similarly, the power consumption P̃ j of MEC j for computation 

is calculated by P̃ j = P̃d, j + P̃ s, j = ξ̃ j s̃
α̃ j

j + P̃ s, j , where ξ̃ j , α̃ j , and 
P̃ s, j are some constants, for all 1 ≤ j ≤ n. If ti,k is offloaded to an 
MEC j and executed remotely on MEC j , the energy consumption for 
computation of ti,k on MEC j is

P̃ j(ri,k/s̃ j) = (ξ̃ j s̃
α̃ j

j + P̃ s, j)(ri,k/s̃ j) = ((ξ̃ j s̃
α̃ j

j + P̃ s, j)/s̃ j)ri,k,

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ bi .
A UE also incurs power consumption for communication. Let 

Pt,i, j be the transmission power (measured by Watts) of UEi to 
MEC j , where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, we have

Pt,i, j = 2ci, j/wi, j − 1

βi, j
,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, where wi, j is the channel band-
width and βi, j is a combined quantity that encapsulates various 
factors such as (1) the channel gain between UEi and MEC j , (2) the 
interference on the communication channel caused by other de-
vices’ data transmission to the same MEC, (3) and the background 
noise power.

The energy consumption for communication (measured by 
Joules) of ti,k from UEi to MEC j is

Pt,i, j(di,k/ci, j) =
(

2ci, j/wi, j − 1

βi, jci, j

)
di,k,

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ bi .

3. A non-cooperative game

In this section, we describe a non-cooperative game played by 
all the UEs and MECs.

A computation offloading strategy of UEi is a partition of Li into 
(n + 1) sublists

Si = (Li,0, Li,1, Li,2, ..., Li,n),

such that all tasks in Li,0 are not offloaded and executed locally 
on UEi , and all tasks in Li, j are offloaded to MEC j and executed 
remotely on MEC j , where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Define
26
Ri, j =
∑

ti,k∈Li, j

ri,k,

for all 1 ≤ i ≤ m and 0 ≤ j ≤ n, and

Di, j =
∑

ti,k∈Li, j

di,k,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and

R j =
m∑

i=1

Ri, j,

for all 1 ≤ j ≤ n.
The execution time of all tasks in UEi is

T̂ i = Ri,0/si,

for all 1 ≤ i ≤ m. The execution time of all tasks in MEC j is

T̃ j = R j/s̃ j +
m∑

i=1

Di, j/ci, j,

for all 1 ≤ j ≤ n. The execution time of all tasks in Li is

Ti = max

(
T̂ i, max

Li, j �=∅
(T̃1, T̃2, ..., T̃n)

)
,

for all 1 ≤ i ≤ m. Note that if Li, j �= ∅, the execution time of all 
tasks in Li, j is the execution time of all tasks in MEC j , since the 
schedule of all tasks in MEC j is not known. In other words, we 
should consider the execution times of all tasks in Li, j , plus the 
possible waiting time in the worst case. This is consistent with 
existing scheduling models [8,9]. Furthermore, we do not consider 
overlap of computation and communication times.

The energy consumption of UEi for both computation and com-
munication is

Ei = ((ξi s
αi
i + P s,i)/si)Ri,0 +

n∑
j=1

(
2ci, j/wi, j − 1

βi, jci, j

)
Di, j,

for all 1 ≤ i ≤ m. The energy consumption of MEC j for computation 
is

Ẽ j = ((ξ̃ j s̃
α̃ j

j + P̃ s, j)/s̃ j)R j,

for all 1 ≤ j ≤ n.
Our non-cooperative game includes (m +n) players, i.e., UE1, UE2, 

..., UEm , and MEC1, MEC2, ..., MECn (see Fig. 1).
Each UEi has an energy constraint Ei . The payoff function of UEi

is Ti , i.e., the execution time of all tasks in Li . UEi has (n + 2)

variables to manipulate, i.e., the computation offloading strategy 
Si , the computation speed si , and the communication speeds ci, j
for all 1 ≤ j ≤ n. The objective of UEi is to find Si , si , and ci, j
for all 1 ≤ j ≤ n, such that Ti is minimized and that its energy 
consumption does not exceed the given budget Ei .

Each MEC j has one variable to manipulate, i.e., its computation 
speed s̃ j . The payoff function of MEC j is the power-time product
(measured by Watts-seconds), i.e., F j = P̃ j T̃ j [32]. The objective 
of MEC j is to find s̃ j , such that F j is minimized. (Notice that the 
power-time product is actually the cost-performance ratio, if we 
treat P̃ j as the cost (the lower, the better), and 1/T̃ j as the perfor-
mance (the higher, the better).)

Notice that the MECs are resources shared by all UEs. In other 
words, UEs compete for MECs. When the UEs offload more tasks to 
the MECs, the processing times on the MECs become longer. There-
fore, the UEs will adjust their computation offloading strategies to 
process more tasks locally. When the UEs offload less tasks to the 
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�

(S1, s1, c1, j )

T1

UE2

�

(S2, s2, c2, j )
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UEm

�
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Tm

A non-cooperative game which results in a Nash equilibrium

MEC1

�

s̃1

F1

MEC2

�

s̃2

F2

MECn

�

s̃n

Fn

Fig. 1. A non-cooperative game with (m + n) players: UE1, UE2, ..., UEm , and MEC1, MEC2, ..., MECn .
MECs, the processing times on the MECs become shorter. There-
fore, the UEs will adjust their computation offloading strategies to 
process more tasks remotely. This process continues until a stable 
situation is reached, i.e., a situation when no UE wants to make 
further adjustment to its computation offloading strategy, because 
such change brings no more benefit.

The above process certainly becomes more complicated if the 
UEs can also adjust their computation and communication speeds. 
The process becomes even more complicated when the MECs also 
join the game. If MEC j increases s̃ j , more tasks will be offloaded to 
MEC j . If MEC j decreases s̃ j , less tasks will be offloaded to MEC j . 
When so many factors are involved and evolving in such a dynam-
ics, we are definitely interested in whether the above dynamics 
eventually reaches a stable situation.

The action Ai of UEi is the combination of all its variables, 
i.e., Ai = (Si, si, ci,1, ..., ci,n). Similarly, Ã j = s̃ j is the action of 
MEC j . The combination of actions of all UEs and MECs, i.e., A =
(A1, A2, ..., Am, Ã1, Ã2, ..., Ãn), is an action profile. A stable situa-
tion, i.e., a situation when any change to Ai makes Ti longer for all 
1 ≤ i ≤ m, and any change to Ã j makes F j greater for all 1 ≤ j ≤ n, 
is called a Nash equilibrium, which is an action profile A with the 
property that no single player UEi or MEC j can benefit from a uni-
lateral deviation from A, if all other players act according to it.

Our non-cooperative game is very unusual. Typically, the do-
main of a payoff function (i.e., the strategy set of a player) is a 
closed and convex set, and a payoff function is a continuous and 
twice differentiable function, whose optimal value can be obtained 
by multi-variable calculus. It is well known that if every player has 
a convex payoff function, then there exists a Nash equilibrium [28]. 
However, in our case, the strategy set of a player includes Si , which 
is a partition of a list of tasks, and is certainly discrete. Further-
more, as we will see soon in the next section, the payoff function 
of a UE is calculated by a heuristic algorithm for combinatorial 
optimization, which does not necessarily produce an optimal solu-
tion (i.e., the optimal response of a UE to the current situation). 
Under the above circumstance, it becomes unclear whether our 
non-cooperative game has a Nash equilibrium. Even if there exists 
a Nash equilibrium, it is not clear whether our iterative algorithm 
converges to a Nash equilibrium. It is interesting to know under 
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what conditions there exists a Nash equilibrium for our game and 
the game converges.

4. The algorithms

A group of algorithms are developed in this section to find the 
Nash equilibrium.

4.1. A heuristic response of a UE

In this section, we give a heuristic algorithm for a UE to find its 
“best” response to the current situation.

First of all, we would like to mention that it is an NP-hard prob-
lem for a UE to find its optimal response to the current situation, 
even if there is only one UE, one MEC, and the UE is the only 
player [17]. Therefore, the best we can hope is a heuristic response 
of a UE.

When UEi makes its decision, the MECs are already preloaded 
with tasks from other UEs. Let

T ′
i, j =

∑
i′ �=i

(Ri′, j/s̃ j + Di′, j/ci′, j),

which is the existing workload on MEC j , for all 1 ≤ j ≤ n.
We take two steps to develop a heuristic algorithm for UEi to 

decide an action Ai . Thus, our algorithm, which is presented in 
Algorithm 1, includes two stages. In the first step (which is ac-
tually the second stage of our algorithm, i.e., lines (9)–(13)), we 
consider the following problem, i.e., for a given computation of-
floading strategy Si , how to minimize the execution time Ti by 
choosing the computation speed si and the communication speeds 
ci, j , for all 1 ≤ j ≤ n. In the second step (which is actually the first 
stage of our algorithm, i.e., lines (1)–(8)), we consider how to gen-
erate a computation offloading strategy Si .

Note that our algorithm is generalized from the heuristic algo-
rithm for optimal computation offloading with energy constraint 
developed in [17] for a single UE without preloaded tasks from 
other UEs to a competitive fog computing environment with mul-
tiple UEs.
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Algorithm 1: Heuristic Response of UEi .

Input: UEi = (ξi, αi, P s,i), and Li = (ti,1, ti,2, ..., ti,bi ), where ti,k =
(ri,k, di,k), for all 1 ≤ k ≤ bi , and Ei ; MEC j = (s̃ j, wi, j, βi, j) with 
T ′

i, j , for all 1 ≤ j ≤ n.

Output: Si = (Li,0, Li,1, Li,2, ..., Li,n), si , ci, j for all 1 ≤ j ≤ n, and T .

//Stage 1
Initialize the list Li ; (1)
for ( j = 0; j ≤ n; j++) do (2)

Li, j ← ∅; (3)
end do; (4)
for (k = 1; k ≤ bi ; k++) do (5)

j′ ← indexmin0≤ j≤n T (L0, L1, ..., L j ∪ {ti,k}, ..., Ln); (6)
L j′ ← L j′ ∪ {ti,k}; (7)

end do; (8)
//Stage 2
Get T by solving Equation (1); (9)
si ← Ri,0/T ; (10)
for ( j = 1; j ≤ n; j++) do (11)

ci, j ← Di, j/(T − T ∗
i, j); (12)

end do; (13)
return Si , si , ci, j for all 1 ≤ j ≤ n, and T . (14)

For the first step, we observe that UEi should allocate its energy 
budget Ei in such a way that all MEC j ’s with Li, j �= ∅ and UEi

complete their tasks at the same time (see Fig. 2), i.e.,

T̂ i = T̃ j1 = T̃ j2 = · · · = T̃ jz = T ,

where j1, j2, ..., jz are indices such that Li, j1 �= ∅, Li, j2 �= ∅, ..., and 
Li, jz �= ∅. The above equation gives rise to

si = Ri,0/T ,

and

ci, j = Di, j/(T − T ∗
i, j),

where

T ∗
i, j = T ′

i, j + Ri, j/s̃ j,

for all 1 ≤ j ≤ n and Li, j �= ∅. Note that T ∗
i, j is the part of the ex-

ecution time of MEC j that UEi cannot change and control. If the 
above condition is not satisfied, we can shift some energy from an 
MEC/UE which completes the earliest to an MEC/UE which com-
pletes the latest, thereby reducing Ti without increasing Ei . Hence, 
to most efficiently utilize the energy budget Ei , we must have

ξi
Rαi

i,0

T αi−1 + P s,i T +
n∑

j=1

2(Di, j/wi, j)/(T −T ∗
i, j) − 1

βi, j
(T − T ∗

i, j) = Ei, (1)

for all 1 ≤ i ≤ m. (Notice that the above equation holds even if 
Li, j = ∅ and Di, j = 0, i.e., UEi does not offload any task to MEC j
for some j.) The value of T can be obtained numerically by using 
a bisection search and noticing that the left-hand side of the above 
equation is a decreasing function of T .

For the second step, we employ a greedy method to gradually 
construct

Si = (Li,0, Li,1, Li,2, ..., Li,n).

Let

T (Li,0, Li,1, Li,2, ..., Li,n)
28
be the T obtained by solving Equation (1). In the beginning, no 
task is offloaded (lines (2)–(4)). Then, the tasks in Li are scanned 
one by one (line (5)). For each task ti,k , we choose the MEC j (for 
convenience, UEi is treated as MEC0) in such a way that if ti,k is 
offloaded to MEC j , the new Ti , i.e.,

T (L0, L1, ..., L j ∪ {ti,k}, ..., Ln)

in line (6), is the minimum, for all 0 ≤ j ≤ n. (Notation: We 
define indexmin(x1, x2, ..., xn) to be the index j such that x j =
min(x1, x2, ..., xn).) This is the key idea of the greedy method, and 
the most important part of the algorithm is in lines (6)–(7).

Once T is determined (line (9)), the computation speed si and 
the communication speeds ci, j can be computed routinely (lines 
(10)–(13)).

The time complexity of Algorithm 1 is analyzed as follows. The 
most time consuming part of the algorithm is the for-loop in lines 
(5)–(8), which is repeated bi times (line (5)). Line (6) needs to 
solve Equation (1) (n + 1) times. Lines (6) and (9) solve Equation 
(1) by using the bisection method, which needs to reduce a search 
internal of length I to certain accuracy requirement ε and requires 
O (log(I/ε)) repetitions. Each repetition needs to calculate the left-
hand side of Equation (1) and requires O (n) time. Therefore, the 
overall time complexity of the algorithm is O (bin2 log(I/ε)), fairly 
efficient.

Finally, we make the following important assumption, namely, 
a UE does not take any action if it is not able to find an action 
to reduce its payoff. Since the best response of a UE is obtained 
by using a heuristic algorithm, it is not necessarily the optimal re-
sponse. Such a heuristic response may even increase the payoff of 
a UE, which may prevent our game from reaching a stable situ-
ation or make the convergence process longer and slower. If that 
is the case, a UE would rather do nothing than making its payoff 
greater.

4.2. The best response of an MEC

We now give an algorithm for an MEC to find its best response 
to the current situation.

Notice that

F j = P̃ j T̃ j = (ξ̃ j s̃
α̃ j

j + P̃ s, j)

(
R j/s̃ j +

m∑
i=1

Di, j/ci, j

)
,

for all 1 ≤ j ≤ n. Let

C j =
m∑

i=1

Di, j/ci, j .

Then, we have

F j = (ξ̃ j s̃
α̃ j

j + P̃ s, j)(R j/s̃ j + C j)

= C j ξ̃ j s̃
α̃ j

j + R j ξ̃ j s̃
α̃ j−1
j + P̃ s, j R j/s̃ j + P̃ s, jC j,

and

∂ F j

∂ s̃ j
= α̃ jC j ξ̃ j s̃

α̃ j−1
j + (α̃ j − 1)R j ξ̃ j s̃

α̃ j−2
j − P̃ s, j R j

s̃2
j

.

To minimize F j , we only need to find s̃ j such that ∂ F j/∂ s̃ j = 0, 
i.e.,

α̃ jC j ξ̃ j s̃
α̃ j+1
j + (α̃ j − 1)R j ξ̃ j s̃

α̃ j

j = P̃ s, j R j.

Although there is no closed-form solution of s̃ j , it can be easily 
found by a bisection search in the interval
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T ′
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T ∗
i, jz

T̃ jz

T

Fig. 2. Illustration of Algorithm 1: All MEC j ’s with Li, j �= ∅ and UEi must complete their tasks at the same time. Black areas mean preloaded tasks.
[
0,

(
P̃ s, j R j

α̃ jC j ξ̃ j

)1/(α̃ j+1)]
,

by noticing that the left-hand side of the above equation is an in-
creasing function of s̃ j .

Algorithm 2: Best Response of MEC j .

Input: ξ̃ j, α̃ j, P̃ s, j , R j , Di, j , ci, j , for all 1 ≤ i ≤ m.

Output: s̃ j and F j .

lb ← 0, ub ← ( P̃ s, j R j/α̃ j C j ξ̃ j)
1/(α̃ j+1); (1)

while (ub − lb ≥ ε) do (2)
s̃ j ← mid ← (lb + ub)/2; (3)

if (α̃ j C j ξ̃ j s̃
α̃ j+1
j + (α̃ j − 1)R j ξ̃ j s̃

α̃ j

j < P̃ s, j R j ) (4)
lb ← mid; (5)

else (6)
ub ← mid; (7)

end if; (8)
end do; (9)
s̃ j ← (lb + ub)/2; (10)
Calculate F j ; (11)
return s̃ j and F j . (12)

Our algorithm for MEC j to decide an action Ã j is presented 
in Algorithm 2. It is easy to see that the time complexity of the 
algorithm is O (log(I/ε)), very efficient.

4.3. An iterative algorithm for Nash equilibrium

We develop an iterative algorithm to find the Nash equilibrium 
in this section, which is presented in Algorithm 3.

A game is initialized with Li, j = ∅, for all 1 ≤ i ≤ m and 0 ≤
j ≤ n. The computation and communication speeds are set to any 
reasonable values. A Nash equilibrium can be found by allowing 
the players to play in rounds (lines (2)–(16)). In each round, UE1, 
UE2, ..., UEm , and MEC1, MEC2, ..., MECn play in turn. Each UEi ap-
plies Algorithm 1 to find its action A′ (lines (3)–(5)), which is its 
i
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“heuristically” best response to the current situation. Each MEC j

applies Algorithm 2 to find its action Ã′
j (lines (6)–(8)), which is 

its best response to the current situation. A game is over when the 
difference between the action profiles of two successive rounds, 
i.e., A′ and A, is within certain accuracy requirement ε (lines 
(10)–(15)). The final converged action profile

A∗ = (A∗
1, A∗

2, ..., A∗
m, Ã∗

1, Ã∗
2, ..., Ã∗

n)

is produced as the Nash equilibrium, i.e., a strategy profile with the 
unique property that no player can have better payoff from a uni-
lateral deviation from A∗

i or Ã∗
j , if all other players act according 

to A∗ .

Algorithm 3: Calculate the Nash Equilibrium

Input: UEi = (ξi, αi, P s,i) and Ei , for all 1 ≤ i ≤ m; Li = (ti,1, ti,2, ...,
ti,bi ), where ti,k = (ri,k, di,k), for all 1 ≤ k ≤ bi ; MEC j = (ξ̃ j, α̃ j, P̃ s, j), 
for all 1 ≤ j ≤ n; and wi, j, βi, j , for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Output: The Nash equilibrium
A∗ = (A∗

1, A∗
2, ..., A∗

m, Ã∗
1, Ã∗

2, ..., Ã∗
n).

Initialize A = (A1, A2, ..., Am, Ã1, Ã2, ..., Ãn); (1)
repeat (2)

for i ← 1 to m do (3)
Obtain A′

i by using Algorithm 1; (4)
end do; (5)
for j ← 1 to n do (6)

Obtain Ã′
j by using Algorithm 2; (7)

end do; (8)
A′ ← (A′

1, A′
2, ..., A′

m, Ã′
1, Ã′

2, ..., Ã′
n); (9)

if (‖A′ −A‖ ≥ ε) then (10)
A ←A′; (11)

else (12)
A∗ ←A′; (13)
return A∗; (14)

end if (15)
forever. (16)
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The termination detection condition in line (10) is

‖A′ −A‖ =( m∑
i=1

n∑
j=0

(|R ′
i, j − Ri, j|2 + |D ′

i, j − Di, j|2) +
m∑

i=1

|s′
i − si |2

+
m∑

i=1

n∑
j=1

|c′
i, j − ci, j|2 +

n∑
j=1

|s̃′
j − s̃ j|2

)1/2

< ε.

Since Algorithms 1 and 2 are invoked m and n times in each round, 
the time complexity of each round is O (bmn2 log(I/ε)), where b =
max{b1, b2, ..., bm}, and the overall time complexity of Algorithm 
3 is O (Nbmn2 log(I/ε)), where N is the number of rounds (i.e., 
the number of repetitions of the loop in lines (2)–(16), which is 
essentially determined by the accuracy requirement ε in line (10). 
(We set ε = 10−5 in this paper.)

We would like to mention that the above iterative algorithm 
can be implemented in a centralized or decentralized way.

5. Nash equilibrium

5.1. Existence of and convergence to the Nash equilibrium

In this section, we show that our game has a Nash equilibrium 
and our iterative algorithm converges to the Nash equilibrium, no 
matter whether the MECs join the game.

Theorem 1. Our game with or without MECs’ participation converges to 
a Nash equilibrium.

Proof. Recall that an action Ai of UEi contains a computation of-
floading strategy Si (i.e., the assignment of tasks to the UE and 
the MECs) and an energy allocation strategy (i.e., the determina-
tion of the computation speed si and the communication speeds 
ci, j based on an energy constraint Ei ). The payoff function of UEi

is

Ti = max

(
T̂ i,max

j∈ J i

(T̃ j)

)
,

where J i = { j | 1 ≤ j ≤ n, Li, j �= ∅}, for all 1 ≤ i ≤ m. Each UEi
takes an action by using the heuristic Algorithm 1. We emphasize 
that UEi takes no action if it cannot find a better computation of-
floading strategy or a better energy allocation strategy to reduce 
its payoff Ti . A Nash equilibrium is a situation where no UEi (and 
no MEC j of course) would take any more action.

Assume that before and after UEi takes an action (i.e., a heuris-
tic response to the current situation), tasks in Li are assigned to 
the UE and the MECs according to Si = (Li,0, Li,1, Li,2, ..., Li,n) and 
S ′

i = (L′
i,0, L

′
i,1, L

′
i,2, ..., L

′
i,n) respectively. The quantities R ′

i, j , D ′
i, j , 

c′
i, j , J ′

i , T̂ ′
i , and T̃ ′

j can be defined accordingly.
To take the action, UEi needs to withdraw its tasks from MEC j

with j ∈ J i , leading to reduced execution time of these MECs, i.e.,

T̃ ′
j ← T̃ j − Ri, j/s̃ j − Di, j/ci, j,

for all j ∈ J i . Then, tasks in L′
i, j with j ∈ J ′

i are assigned to MEC j , 
leading to increased execution time of these MECs, i.e.,

T̃ ′
j ← T̃ j + R ′

i, j/s̃ j + D ′
i, j/c′

i, j,

for all j ∈ J ′
i .

Let us define M( J ) = max j∈ J (T̃ j), and M ′( J ) = max j∈ J (T̃ ′
j), 

for J ⊆ {1, 2, ..., n}. Then, we have Ti = max(T̂ i, M( J i)) and T ′ =
i
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max(T̂ ′
i , M

′( J ′
i)). We notice that T ′

i < Ti ; otherwise, UEi would not 
take the action.

All MEC j ’s with j ∈ J i ∪ J ′
i are affected by the action of UEi . We 

can show that for these affected MECs, we have

max(T̂ ′
i , M ′( J i ∪ J ′

i)) < max(T̂ i, M( J i ∪ J ′
i)).

To this end, we observe that

max(T̂ ′
i , M ′( J i ∪ J ′

i)) = max(T̂ ′
i , M ′( J i − J ′

i), M ′( J ′
i))

= max(max(T̂ ′
i , M ′( J ′

i)), M ′( J i − J ′
i))

= max(T ′
i , M ′( J i − J ′

i))

< max(Ti, M( J i − J ′
i))

= max(max(T̂ i, M( J i)), M( J i − J ′
i))

= max(T̂ i, M( J i))

= max(T̂ i, M( J i), M( J ′
i − J i))

= max(T̂ i, M( J i ∪ J ′
i)),

where we notice that (1) T ′
i < Ti ; (2) M ′( J i − J ′

i) < M( J i − J ′
i), 

since each MEC j with j ∈ J i − J ′
i losses some tasks of UEi ; 

(3) M( J i − J ′
i) ≤ M( J i), since J i − J ′

i ⊆ J i ; (4) M( J ′
i − J i) <

max(T̂ i, M( J i)), so that MEC j with j ∈ J ′
i − J i can receive tasks 

from UEi .
The above discussion essentially means that each action of UEi

reduces its payoff Ti (i.e., T̂ i or the maximum execution time of all 
affected (i.e., J i ∪ J ′

i ) MECs), while T̃ j of MEC j with j /∈ J i ∪ J ′
i is 

not affected. We define

M∗ = max

(
max

1≤i≤m
(T̂ i), max

1≤ j≤n
(T̃ j)

)
,

which is the makespan, i.e., the time to complete all tasks of all 
UEs on the m UEs and n MECs. If Ti = M∗ , an action of UEi re-
duces M∗ . It is clear that this cannot happen forever, since there 
is a lower bound for M∗ , which depends on the Ei ’s (i.e., the en-
ergy constraints), the s̃ j ’s (i.e., the computation speeds), and the 
computation and communication requirements. At certain point, 
no UEi can take any action to reduce M∗ . Note that although 
max(T̂ i, M( J i ∪ J ′

i)) is never increased by UEi , T̃ j can still be 
changed (either increased or decreased) by MEC j . However, M∗ is 
never increased by a UE, and cannot be reduced by the UEs for-
ever.

When M∗ cannot be reduced further, any UEi with Ti = M∗ will 
not take any further action. However, other UEi ’s may still reduce 
their payoffs. We remove the UEi ’s with T̂ i = M∗ and the MEC j ’s 
with T̃ j = M∗ , plus the UEi ’s that have tasks on these MECs from 
further consideration, since all these UEs and MECs will not be in-
volved in the game anymore, and apply the same argument on the 
remaining UEs and MECs. Eventually, no UEi can take any action to 
reduce its Ti (i.e., its payoff). When all UEs stop taking any more 
action, all MECs do not take further action either. Therefore, the 
game eventually terminates and reaches a Nash equilibrium. The 
theorem is proved. �

The above discussion implies that if each UE could find its op-
timal response (which is unlikely to be obtained efficiently due to 
NP-hardness), so that it never increases its payoff, an iterative algo-
rithm eventually converges to a Nash equilibrium. However, what 
will happen if each UE is only able to take a heuristic action? Is 
there a Nash equilibrium? Can it be reached? Our answer is that a 
heuristic algorithm should be applied in a protective way (e.g., to 
make sure that a heuristic response does not make things worse).
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5.2. Characterizations of the Nash equilibrium

In this section, we give some characterizations of the Nash 
equilibrium.

Let us define J i = { j | Li, j �= ∅}, for all 1 ≤ i ≤ m. We construct 
an undirected graph G , which has m vertices, i.e., v1, v2, ..., vm , 
where vi stands for UEi , for all 1 ≤ i ≤ m. There is an edge be-
tween vi1 and vi2 if and only if J i1 ∩ J i2 �= ∅, for all 1 ≤ i1 �= i2 ≤ m.

The following result shows how a Nash equilibrium looks like.

Theorem 2. In a Nash equilibrium, all UEi ’s in the same connected com-
ponent of G have the same Ti , i.e., we have Ti1 = Ti2 , if and only if vi1

and vi2 are connected in G (i.e., there is a path between vi1 and vi2 ).

Proof. Let J i1 = { ji1,1, ji1,2, ...} and J i2 = { ji2,1, ji2,2, ...}. Then, Al-
gorithm 1 guarantees that T̂ i1 = T̃ ji1,1 = T̃ ji1,2 = · · · = Ti1 , and 
T̂ i2 = T̃ ji2,1 = T̃ ji2,2 = · · · = Ti2 . It is clear that Ti1 = Ti2 if J i1 ∩
J i2 �= ∅, i.e., there is an edge between vi1 and vi2 . By the transitiv-
ity of equality, we know that Ti1 = Ti2 , if and only if vi1 and vi2

are connected in G . �
Likewise, we define I j = {i | Li, j �= ∅}, for all 1 ≤ j ≤ n. We 

construct an undirected graph G̃ , which has n vertices, i.e., 
ṽ1, ̃v2, ..., ̃vn , where ṽ j stands for MEC j , for all 1 ≤ j ≤ n. There 
is an edge between ṽ j1 and ṽ j2 if and only if I j1 ∩ I j2 �= ∅, for all 
1 ≤ j1 �= j2 ≤ n.

Similar to Theorem 1, we have the following result.

Theorem 3. In a Nash equilibrium, all MEC j ’s in the same connected 
component of G̃ have the same T̃ j , i.e., we have T̃ j1 = T̃ j2 , if and only 
if ṽ j1 and ṽ j2 are connected in G̃ (i.e., there is a path between ṽ j1 and 
ṽ j2 ).

Proof. Let I j1 = {i j1,1, i j1,2, ...} and I j2 = {i j2,1, i j2,2, ...}. Then, Al-
gorithm 1 guarantees that T̂ i j1,1 = T̂ i j1,2 = · · · = T̃ j1 , and T̂ i j2,1 =
T̂ i j2,2 = · · · = T̃ j2 . It is clear that T̃ j1 = T̃ j2 if I j1 ∩ I j2 �= ∅, i.e., there 
is an edge between ṽ j1 and ṽ j2 . By the transitivity of equality, 
we know that T̃ j1 = T̃ j2 , if and only if ṽ j1 and ṽ j2 are connected 
in G̃ . �
6. Numerical examples

Numerical examples are demonstrated in this section.
First, we give an example without MECs’ participation of a 

game. We consider a fog computing environment with M = 5 UEs 
and n = 7 MECs. The parameters of the UEs are set as follows: 
ξi = 0.1, αi = 2.0, P s,i = 0.05 Watts, for all 1 ≤ i ≤ m. The pa-
rameters of MEC j are set as follows: s̃ j = 3.1 − 0.1 j BI/second, 
wi, j = 2.9 + 0.1 j MB/second, βi, j = 2.1 − 0.1 j Watts−1, for all 
1 ≤ i ≤ m and 1 ≤ j ≤ n. Each UE generates a list of bi = 15 random 
tasks. Tasks are randomly generated, such that the ri,k ’s are inde-
pendently and identically and uniformly distributed in the range 
[1.5, 5.0], and the di,k ’s are independently and identically and uni-
formly distributed in the range [1.0, 3.0]. The energy constraint is 
Ei = 6.5 + 0.5i Joules, for all 1 ≤ i ≤ m.

In Table 2, we show one instance of the game. We demon-
strate the Ei, j ’s, the Ri, j ’s, and the Di, j ’s in the Nash equilibrium. 
The game terminates after only N = 17 rounds (very fast speed of 
convergence). The Nash equilibrium results in T̂ i = T̃ j = 13.21714
seconds, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. (Both G and G̃ are con-
nected.) We observe that it is possible for a UE not to offload any 
task to an MEC, i.e., Ei, j = Ri, j = Di, j = 0, for some 1 ≤ i ≤ m and 
1 ≤ j ≤ n. Furthermore, at least half of the tasks are processed 
31
locally in a UE, and each UE consumes most of its energy on com-
putation.

Next, we give an example with MECs’ participation of a game. 
We use the same parameter setting as the above example, with 
MEC j further set with ξ̃ j = 0.31 −0.01 j, α̃ j = 2.0, P̃ s, j = 2.1 −0.1 j
Watts, for all 1 ≤ j ≤ n.

In Table 3, we show one instance of the game. We demonstrate 
the Ei, j ’s, the Ri, j ’s, and the Di, j ’s in the Nash equilibrium. The 
game terminates after N = 22 rounds (relatively slower speed of 
convergence due to more players and more complicated dynam-
ics). The Nash equilibrium results in T̂ i = T̃ j = 14.18227 seconds, 
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. (Both G and G̃ are connected.) 
We also display the s̃ j ’s and the P̃ j ’s. We observe that to optimize 
the power-time product, each MEC j chooses a speed slower than 
the one in the last example. The reduced computation speeds of 
the MECs result in increased execution times. Furthermore, each 
UE tends to offload tasks to fewer MECs, and the computation 
offloading strategy produces less balanced workload and energy 
distributions.

Our extensive experiments reveal the fact that our game always 
converges to a Nash equilibrium. However, if the heuristic algo-
rithm employed by the UEs is not protected, our game may not 
converge or take much longer time (i.e., more rounds and more 
iterations) to converge to a Nash equilibrium. A non-cooperative 
game involving combinatorial optimization, especially heuristic al-
gorithms, is a truly interesting and challenging research topic.

We would like to mention that strictly speaking, our non-
cooperative game played by the UEs equipped with a heuristic 
algorithm H can only reach a Nash equilibrium with respect to H , 
i.e., a stable situation where no UE wants to make further change 
by using H . However, by using another heuristic, especially an op-
timal algorithm, further changes are still possible, and eventually, 
another equilibrium may be reached.

7. Related research

Related research is reviewed in this section.
Computation offloading optimization in fog computing and mo-

bile edge computing has been a very active and productive re-
search area in the last few years, with extensive investigation 
performed. Refs. [1,13,14,23,29,30] provide some recent compre-
hensive surveys.

Game theoretical techniques have been widely adopted and ap-
plied by many researchers in fog computing and mobile edge com-
puting. In particular, the game theoretical approach has been used 
to investigate computation offloading strategies of several com-
petitive and selfish mobile users. Many game models have been 
developed to study various environments of computation offload-
ing.

Several researchers have considered fog computing environ-
ments with multiple mobile users, where each user possesses only 
one task to process. For cloudlet based mobile cloud computing 
in a multi-channel wireless contention environment, the prob-
lem of multi-user computation offloading was investigated by Cao 
and Cai, who formulated a non-cooperative game for the multi-
user computation offloading decision making problem, where ev-
ery user has a single task with the same amount of computation 
and aims to minimize a weighted sum of energy consumption and 
execution time [2]. A decentralized computation offloading game 
was formulated by Chen for decentralized computation offload-
ing decision making among multiple mobile device users, where 
each user has a computation intensive and delay sensitive task and 
minimizes a weighted sum of energy consumption and computa-
tion time [5]. For mobile edge cloud computing in a multi-channel 
wireless interference environment, the multi-user computation of-
floading problem was studied by Chen et al., and it was shown 
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Table 2
A Numerical Example of Nash Equilibrium without MECs’ Participation (N = 17 Rounds).

UEi MEC1 MEC2 MEC3 MEC4 MEC5 MEC6 MEC7 Ei/Ri/Di

i = 1 Ei, j 5.68799 0.38135 0.50962 0.00000 0.00000 0.00000 0.00000 0.42104 7.00000
si , ci, j 1.95025 1.35922 2.52615 0.00000 0.00000 0.00000 0.00000 0.94539
Pi , Pt,i, j 0.43035 0.18448 0.39956 0.00000 0.00000 0.00000 0.00000 0.14260
Ri, j 25.77680 2.27151 4.49176 0.00000 0.00000 0.00000 0.00000 7.60496 40.14503
Di, j 17.55529 2.80977 3.22203 0.00000 0.00000 0.00000 0.00000 2.79126 26.37834

i = 2 Ei, j 5.39995 0.21755 0.30548 0.00000 0.50669 0.42040 0.64992 0.00000 7.50000
si , ci, j 1.89356 1.52729 2.12690 0.00000 1.39705 0.95892 2.21070 0.00000
Pi , Pt,i, j 0.40856 0.21158 0.32049 0.00000 0.20061 0.13494 0.36621 0.00000
Ri, j 25.02744 1.92336 2.07679 0.00000 5.31335 3.58355 6.79737 0.00000 44.72187
Di, j 14.19977 1.57036 2.02733 0.00000 3.52862 2.98742 3.92340 0.00000 28.23690

i = 3 Ei, j 5.45696 0.42203 0.84080 0.92559 0.17214 0.00000 0.00000 0.18249 8.00000
si , ci, j 1.90492 2.71551 9.94725 2.42037 1.05162 0.00000 0.00000 0.58882
Pi , Pt,i, j 0.41287 0.43638 4.33987 0.38291 0.14540 0.00000 0.00000 0.08575
Ri, j 25.17753 2.69918 4.85196 11.04108 1.84395 0.00000 0.00000 3.37927 48.99295
Di, j 14.06798 2.62618 1.92716 5.85068 1.24500 0.00000 0.00000 1.25309 26.97010

i = 4 Ei, j 4.99659 0.35577 0.38041 0.22704 0.42045 0.81869 0.86454 0.43651 8.50000
si , ci, j 1.81118 1.04458 0.95544 0.95618 1.44519 1.58518 1.71558 1.55584
Pi , Pt,i, j 0.37804 0.13648 0.12535 0.12785 0.20863 0.23843 0.26974 0.24948
Ri, j 23.93868 2.85925 1.52239 4.99490 4.17004 5.18175 5.55364 4.34410 52.56474
Di, j 11.99328 2.72288 2.89956 1.69804 2.91249 5.44287 5.49864 2.72228 35.89002

i = 5 Ei, j 6.30643 0.40702 0.15424 0.20772 0.40631 1.07164 0.44665 0.00000 9.00000
si , ci, j 2.06674 1.55248 0.71009 0.91500 1.81438 6.66156 1.23532 0.00000
Pi , Pt,i, j 0.47714 0.21573 0.09056 0.12178 0.27288 1.80543 0.18478 0.00000
Ri, j 27.31636 4.23057 4.62199 4.45530 4.88139 7.02861 2.19925 0.00000 54.73347
Di, j 17.04167 2.92904 1.20934 1.56071 2.70154 3.95408 2.98600 0.00000 32.38238

Table 3
A Numerical Example of Nash Equilibrium with MECs’ Participation (N = 22 Rounds).

UEi MEC1 MEC2 MEC3 MEC4 MEC5 MEC6 MEC7 Ei/Ri/Di

i = 1 Ei, j 5.31642 0.36574 0.00000 0.00000 0.73928 0.00000 0.57855 0.00000 7.00000
si , ci, j 1.80240 1.69892 0.00000 0.00000 1.69947 0.00000 7.58096 0.00000
Pi , Pt,i, j 0.37486 0.24036 0.00000 0.00000 0.25234 0.00000 2.32516 0.00000
Ri, j 25.56210 3.42505 0.00000 0.00000 7.24179 0.00000 2.61635 0.00000 38.84530
Di, j 20.10906 2.58508 0.00000 0.00000 4.97888 0.00000 1.88632 0.00000 29.55934

i = 2 Ei, j 4.55158 0.33437 0.15172 0.00000 0.00000 0.69901 1.35604 0.40727 7.50000
si , ci, j 1.64601 6.84598 0.92205 0.00000 0.00000 2.69819 8.43559 1.26943
Pi , Pt,i, j 0.32093 1.93175 0.12050 0.00000 0.00000 0.45836 2.87691 0.19777
Ri, j 23.34415 3.54072 4.20739 0.00000 0.00000 6.37446 9.77021 4.13530 51.37223
Di, j 17.25935 1.18499 1.16092 0.00000 0.00000 4.11479 3.97614 2.61418 30.31037

i = 3 Ei, j 5.66227 0.39815 0.38011 0.52740 0.52930 0.50278 0.00000 0.00000 8.00000
si , ci, j 1.86882 7.73635 1.52798 1.14391 4.10586 2.84006 0.00000 0.00000
Pi , Pt,i, j 0.39925 2.48718 0.21435 0.15621 0.80522 0.49015 0.00000 0.00000
Ri, j 26.50415 4.77339 2.14072 6.69743 7.68104 3.37654 0.00000 0.00000 51.17328
Di, j 15.75653 1.23843 2.70959 3.86206 2.69893 2.91321 0.00000 0.00000 29.17876

i = 4 Ei, j 6.95541 0.59644 0.14925 0.00000 0.43851 0.00000 0.00000 0.36039 8.50000
si , ci, j 2.09864 4.97265 0.59590 0.00000 4.62322 0.00000 0.00000 1.18492
Pi , Pt,i, j 0.49043 1.07740 0.07501 0.00000 0.96518 0.00000 0.00000 0.18305
Ri, j 29.76351 4.68410 1.54925 0.00000 4.05923 0.00000 0.00000 1.67294 41.72904
Di, j 23.77262 2.75283 1.18562 0.00000 2.10045 0.00000 0.00000 2.33293 32.14444

i = 5 Ei, j 6.56155 0.30264 0.39649 0.39218 0.00000 0.41044 0.54923 0.38746 9.00000
si , ci, j 2.03140 1.76494 1.36840 0.91048 0.00000 0.99194 1.46789 0.84029
Pi , Pt,i, j 0.46266 0.25174 0.18839 0.12112 0.00000 0.14008 0.22491 0.12544
Ri, j 28.80988 4.61703 2.49474 4.87807 0.00000 4.60810 9.13011 4.01971 58.55764
Di, j 15.08625 2.12176 2.87998 2.94817 0.00000 2.90651 3.58457 2.59555 32.12279

s̃ j 1.99024 1.47288 1.52952 1.87182 1.65021 1.95249 1.39103

P̃ j 3.18832 2.52911 2.45504 2.64601 2.30803 2.45305 1.86439
that it is NP-hard to compute a centralized optimal solution, and a 
game theoretic approach was adopted to achieve efficient compu-
tation offloading in a distributed manner [6]. A cooperative game 
based framework for quality of service (QoS) guaranteed offloading 
in a multiple MECs environment was constructed by Liu et al. to 
maximize the number of tasks whose QoS requirements are sat-
isfied, where each UE has one task and both UEs and MECs are 
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players of the game [19]. By including both energy consumption 
and delay (i.e., computing and transmission delay) into considera-
tion, computation offloading strategies of multiple users via mul-
tiple wireless access points were researched by Ma et al., who 
conducted a game-theoretic analysis of the computation offload-
ing problem with the consideration of the selfish nature of the 
players [22]. Using a game theoretic framework resulting in a non-
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convex generalized Nash game, Nowak et al. considered several 
mobile users with a splittable computation task each, which try 
to minimize their own computation times by offloading fractions 
of their tasks to a central access point with a cloudlet [26].

Fog computing environments with multiple users, where each 
user has multiple tasks, have also been explored. A usage scenario 
was considered by Cardellini et al., where multiple non-cooperative 
mobile users share the limited computing resources of a close-by 
cloudlet and can selfishly make decisions in sending computations 
to three available tiers, i.e., a local tier of mobile computing de-
vices, a nearby tier of fog computing nodes, and a remote tier 
of cloud computing servers [3]. A non-cooperative game model 
was constructed by Chen et al. to find an optimal computation 
offloading policy for each UE, with the objective to minimize a 
weighted sum of time consumption and energy consumption [4]. A 
non-cooperative game framework was established by Li to system-
atically study stabilization of a competitive mobile edge computing 
environment involving multiple UEs and a single MEC, with a set 
of seven non-cooperative games among the UEs and the MEC, each 
attempts to minimize its cost-performance ratio [16]. The prob-
lem of multi-user computation offloading under a dynamic en-
vironment, wherein mobile users may become active or inactive 
dynamically, and the wireless channels for users to offload compu-
tation may vary randomly, was investigated by Zheng et al., using 
a stochastic game which is proved to be equivalent to a potential 
game [33]. However, in all the above studies, only a single MEC 
was considered.

There has been investigation concerning fog computing envi-
ronment with multiple MECs. Based on the evolutionary game 
theory to deal with task offloading to multiple heterogeneous edge 
nodes and central clouds among multiple users, Dong and Wen 
studied a dynamic and decentralized resource allocation strategy 
[7]. Ge et al. proposed a game-theoretic approach to optimizing 
the overall energy in a mobile cloud computing system, where 
the energy minimization problem is formulated as a congestion 
game, in which, each mobile device selects a server to offload com-
putation while minimizing the overall energy consumption [10]. 
From the perspective of a non-cooperative game, Hu et al. con-
structed a mechanism of task offloading for a system with mul-
tiple MECs and multiple UEs with delay constraints to optimize 
the benefits of both MECs and UEs [11]. Using a game theoretic 
model, Jošilo and Dán considered autonomous devices, each opti-
mizes its own performance by choosing a wireless access point for 
computation offloading [12]. Multiple heterogeneous mobile users 
competing for resources from multiple heterogeneous mobile edge 
clouds were considered by Li, who used the game theoretic ap-
proach to finding the optimal computation offloading strategy for 
each mobile user in a stabilized fog computing environment [15]. 
Li et al. proposed a Stackelberg computing offloading game for mo-
bile devices and edge cloud servers and proposed two algorithms 
for delay-sensitive and compute-intensive applications [18]. Under 
situations involving complete and incomplete information, Liwang 
et al. developed a two-player Stackelberg-game-based opportunis-
tic computation offloading scheme, that primarily considers task 
completion duration and service price [21].

Game theory based means and methods have also been em-
ployed to study various other issues in mobile edge computing. 
Liu et al. formulated the interactions among a cloud service opera-
tor and edge server owners as a Stackelberg game, which attempts 
to maximize the utilities of the cloud service operator and edge 
server owners by obtaining the optimal payment and computa-
tion offloading strategies [20]. Messous et al. tackled the prob-
lem of offloading heavy computation tasks of unmanned aerial 
vehicles while achieving the best possible tradeoff between en-
ergy consumption, time delay, and computation cost, using a non-
cooperative theoretical game [24]. By using the theory of minor-
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ity games, Ranadheera et al. developed a novel distributed server 
activation mechanism for computation offloading, which guaran-
tees energy-efficient activation of servers as well as satisfaction of 
users’ quality-of-experience requirements in terms of latency [27]. 
Based on the framework of prospect theory (PT), Tang and He for-
mulated users’ decision making of whether to offload or not as a 
PT-based non-cooperative game, and proposed a distributed com-
putation offloading algorithm to achieve the Nash equilibrium of 
the game [31].

It is noticed that game theory has also been extensively used 
for mobile data offloading in heterogeneous networks [25].

8. Concluding remarks

In this paper, we have established a non-cooperative game 
played by multiple UEs and multiple heterogeneous MECs, each 
has its own variables to manipulate and its own payoff function to 
minimize. A unique feature of the game is that each UE can only 
find a heuristic response to the current situation. We have proved 
the convergence of our non-cooperative game involving NP-hard 
combinatorial optimization.

We would like to mention that the existence of a Nash equi-
librium and the convergence of an iterative algorithm for a game, 
where the payoff function of a player is calculated by a heuristic 
algorithm for NP-hard combinatorial optimization, which does not 
necessarily produce an optimal solution (i.e., the optimal response 
of a player to the current situation), are very challenging issues 
and deserve further investigation.

It is interesting to consider other fog computing environment 
with multiple competitive UEs. For instance, the UEs may be di-
vided into groups, where UEs in the same group have common 
interest and are willing to collaborate. As one example, a group of 
UEs may want to minimize the total execution time of all their 
tasks, where each UE has its own energy constraint. In such a 
situation, a cooperative game (or a coalitional game) can be for-
mulated to optimize the collective payoff of each group which 
take joint actions, where there are conflict and competition among 
coalitions. It is likely that the algorithms and analysis in this paper 
are applicable and extensible to such an environment.
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