
Journal of Parallel and Distributed Computing 159 (2022) 24–34

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Distributed and individualized computation offloading optimization in

a fog computing environment

Keqin Li

Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 April 2021
Received in revised form 21 July 2021
Accepted 19 September 2021
Available online 30 September 2021

Keywords:
Computation offloading
Fog computing
Heuristic algorithm
Mobile edge cloud server
Non-cooperative game

In a newly emerged fog computing environment, various user equipments (UE) enhance their computing
power and extend their battery lifetime by computation offloading to mobile edge cloud (MEC) servers.
Such an environment is distributed and competitive in nature. In this paper, we take a game theoretical
approach to computation offloading optimization in a fog computing environment. Such an approach
captures and characterizes the nature of a competitive environment. The main contributions of the paper
can be summarized as follows. First, we formulate a non-cooperative game with both UEs and MECs as
players. Each UE attempts to minimize the execution time of its tasks with an energy constraint. Each
MEC attempts to minimize the product of its power consumption for computation and execution time
for allocated tasks. Second, we develop a heuristic algorithm for a UE to determine its “heuristically” best
response to the current situation, an algorithm for an MEC to determine its best response to the current
situation, and an iterative algorithm to find the Nash equilibrium. Third, we prove that our iterative
algorithm converges to a Nash equilibrium. We demonstrate numerical examples of our non-cooperative
games with and without MECs’ participation. We observe that our iterative algorithm always quickly
converges to a Nash equilibrium. The uniqueness of our non-cooperative games is that the strategy set of
a player can be discrete and the payoff function of a player can be obtained by a heuristic algorithm for
combinatorial optimization. To the best of the author’s knowledge, there has been no such investigation
of non-cooperative games based on combinatorial optimization for computation offloading optimization
in a fog computing environment.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

In a newly emerged fog computing environment, various user
equipments (UE) enhance their computing power and extend their
battery lifetime by computation offloading to mobile edge cloud
(MEC) servers. Such an environment is distributed and competi-
tive in nature, in the sense that each UE finds its best computa-
tion offloading strategy to the MECs and its best computation and
communication speeds, such that both execution time and energy
consumption can be minimized. Furthermore, each UE is aware of
the existence of other UEs, and adjusts its strategies according to
the current situation of an environment.

Computation offloading optimization faces the following impor-
tant concerns and challenges. First, computation offloading opti-
mization should include both cost and performance into consider-
ation. While performance (e.g., execution time) is an important tar-

E-mail address: lik@newpaltz.edu.
https://doi.org/10.1016/j.jpdc.2021.09.003
0743-7315/© 2021 Elsevier Inc. All rights reserved.
get for optimization, cost (e.g., energy consumption) is an equally
important target for optimization. Second, computation offloading
optimization should be performed for each UE individually and
separately. Globalized, collective, and centralized optimization for
all UEs is not very interesting to each UE. On the other hand, lo-
calized, individualized, and distributed optimization for each UE is
more appropriate. Third, computation offloading optimization for a
UE should be based on other UEs’ behavior and the current work-
load already offloaded to the MECs, so that the best reaction and
action can be taken. Fourth, computation offloading optimization
should involve both UEs and MECs. While most cost and perfor-
mance optimizations are conducted for UEs, the MECs also need to
try to provide the highest quality of service with the lowest cost
of service.

The best way to handle competition and conflict is negotiation
to reach a win-win situation. While each UE or MEC is conduct-
ing its optimization, other UEs and MECs are also doing so. Each
change to a UE’s or an MEC’s strategy causes other UEs and MECs
to adjust their strategies. One immediate question is: “Is there a

https://doi.org/10.1016/j.jpdc.2021.09.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.09.003&domain=pdf
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.jpdc.2021.09.003

K. Li Journal of Parallel and Distributed Computing 159 (2022) 24–34
stable situation when no one wants to make further change, since
any further change brings no benefit?”

1.2. New contributions

In this work, we adopt a game theoretical approach to com-
putation offloading optimization in a fog computing environment.
Such an approach captures and characterizes the nature of a com-
petitive environment and can handle the multiple challenges men-
tioned above simultaneously. It is clear that both cost and per-
formance can be incorporated into the payoff functions of the
players, who can choose different methods to deal with the cost-
performance tradeoff. Furthermore, both UEs and MECs can join a
game and each UE or MEC optimizes its own payoff function indi-
vidually and separately and maximizes its benefit.

The main contributions of the paper are summarized as follows.

• First, we formulate a non-cooperative game with both UEs and
MECs as players. Each UE attempts to minimize the execution
time of its tasks with an energy constraint. Each MEC attempts
to minimize the product of its power consumption for compu-
tation and execution time for allocated tasks.

• Second, we develop a heuristic algorithm for a UE to deter-
mine its “heuristically” best response to the current situation,
an algorithm for an MEC to determine its best response to the
current situation, and an iterative algorithm to find the Nash
equilibrium.

• Third, we prove that our iterative algorithm converges to a
Nash equilibrium. We demonstrate numerical examples of our
non-cooperative games with and without MECs’ participation.
We observe that our iterative algorithm always quickly con-
verges to a Nash equilibrium.

The uniqueness of our non-cooperative games is that the strategy
set of a player can be discrete and the payoff function of a player
can be obtained by a heuristic algorithm for combinatorial opti-
mization. To the best of the author’s knowledge, there has been no
such investigation of non-cooperative games based on combinato-
rial optimization for computation offloading optimization in a fog
computing environment.

The rest of the paper is organized as follows. In Section 2, we
present the execution models for both offloaded and non-offloaded
tasks and the power consumption models for both computation
and communication. In Section 3, we describe a non-cooperative
game played by all the UEs and MECs. In Section 4, we develop
a group of algorithms to find the Nash equilibrium. In Section 5,
we prove the existence of and convergence to a Nash equilibrium
and give some characterizations of the Nash equilibrium. In Section
6, we demonstrate numerical examples. In Section 7, we review
related research. In Section 8, we conclude the paper.

2. Models

In this section, we present the execution models for both of-
floaded and non-offloaded tasks and the power consumption mod-
els for both computation and communication. Table 1 gives a sum-
mary of notations and definitions in the order introduced in this
paper.

2.1. The execution models

The execution models for both offloaded and non-offloaded
tasks are described in this section.

We consider a fog computing environment with multiple het-
erogeneous UEs and multiple heterogeneous MECs. Assume that
25
Table 1
Summary of Notations and Definitions.

Notation Definition

m the number of UEs
UEi the ith UE
n the number of MECs
MEC j the jth MEC
Li = (ti,1, ti,2, ..., ti,bi), a list of independent tasks of UEi

ti,k = (ri,k, di,k), a task of UEi

ri,k the computation requirement of ti,k

di,k the communication requirement of ti,k

si the computation speed of UEi

s̃ j the computation speed of MEC j

ci, j the communication speed between UEi and MEC j

Pd,i = ξi s
αi
i , dynamic power consumption of UEi for computation

ξi , αi technology dependent constants
Ps,i static power consumption of UEi for computation
Pi = Pd,i + Ps,i , power consumption of UEi for computation

P̃d, j = ξ̃ j s̃
α̃ j

j , dynamic power consumption of MEC j for computation

ξ̃ j , α̃ j technology dependent constants
P̃ s, j static power consumption of MEC j for computation
P̃ j = P̃d, j + P̃ s, j , power consumption of MEC j for computation
Pt,i, j the transmission power of UEi to MEC j

wi, j the channel bandwidth
βi, j a combined quantity that encapsulates various factors
Si = (Li,0, Li,1, Li,2, ..., Li,n), a computation offloading strategy of UEi

Li,0 a sublist of tasks not offloaded and executed locally on UEi

Li, j a sublist of tasks offloaded to MEC j and executed remotely on
MEC j

Ri, j total computation requirement of tasks in Li, j

Di, j total communication requirement of tasks in Li, j

R j total computation requirement of tasks in MEC j

T̂ i the execution time of all tasks in UEi

T̃ j the execution time of all tasks in MEC j

T i the execution time of all tasks in Li , and the payoff function of UEi

Ei the energy consumption of UEi for both computation and
communication

Ẽ j the energy consumption of MEC j for computation
F j = P̃ j T̃ j , the payoff function of MEC j

Ai = (Si , si , ci,1, ..., ci,n), the action UEi

Ã j = s̃ j the action of MEC j

A = (A1, A2, ..., Am, ̃A1, ̃A2, ..., ̃An), an action profile
T ′

i, j the existing workload on MEC j

T the same task completion time
T ∗

i, j the part of the execution time of MEC j that UEi cannot change and
control

A∗ = (A∗
1, A∗

2, ..., A∗
m, ̃A∗

1, ̃A∗
2, ..., ̃A∗

n), a Nash equilibrium

there are m UEs, i.e., UE1, UE2, ..., UEm , and n MECs, i.e., MEC1,
MEC2, ..., MECn .

UEi has a list of independent tasks Li = (ti,1, ti,2, ..., ti,bi), where
ti,k = (ri,k, di,k), for all 1 ≤ k ≤ bi and 1 ≤ i ≤ m. Each task ti,k is
specified as ti,k = (ri,k, di,k), where ri,k is the computation require-
ment (i.e., the amount of computation, measured by the number
of billion processor cycles or the number of billion instructions (BI)
to be executed) of ti,k , and di,k is the communication requirement
(i.e., the amount of data to be communicated between UEi and an
MEC, measured by the number of million bits (MB) to be transmit-
ted) of ti,k .

UEi has computation speed si (i.e., the processor execution
speed, measured by GHz or the number of billion instructions that
can be executed in one second), for all 1 ≤ i ≤ m, and MEC j has
computation speed s̃ j , for all 1 ≤ j ≤ n. If ti,k is not offloaded and
executed locally on UEi , the computation time (measured by sec-
onds) of ti,k on UEi is ri,k/si . If ti,k is offloaded to an MEC j and
executed remotely on MEC j , the computation time of ti,k on MEC j
is ri,k/s̃ j .

The communication speed between UEi and MEC j is ci, j (i.e.,
the data transmission rate, measured by the number of million
bits which can be transmitted per second), for all 1 ≤ i ≤ m and
1 ≤ j ≤ n. If ti,k is not offloaded and executed locally on UEi , there
is no communication time. If ti,k is offloaded to an MEC j and ex-

K. Li Journal of Parallel and Distributed Computing 159 (2022) 24–34
ecuted remotely on MEC j , the communication time (measured by
seconds) between UEi and MEC j for ti,k is di,k/ci, j .

The execution time of a task is its computation time plus its
communication time. If ti,k is not offloaded and executed locally
on UEi , the execution time of ti,k is ri,k/si . If ti,k is offloaded to an
MEC j and executed remotely on MEC j , the execution time of ti,k is
ri,k/s̃ j + di,k/ci, j , for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ bi .

2.2. The power consumption models

The power consumption models for both computation and com-
munication are described in this section.

There are two components in the power consumption Pi (mea-
sured by Watts) of UEi for computation, i.e., dynamic power con-
sumption and static power consumption. The dynamic component
Pd,i is usually expressed as Pd,i = ξi s

αi
i , where ξi and αi are tech-

nology dependent constants. The static component P s,i is usually
a constant. Therefore, we have Pi = Pd,i + P s,i = ξi s

αi
i + P s,i , for all

1 ≤ i ≤ m. If ti,k is not offloaded and executed locally on UEi , the
energy consumption for computation (measured by Joules) of ti,k

on UEi is

Pi(ri,k/si) = (ξi s
αi
i + P s,i)(ri,k/si) = ((ξi s

αi
i + P s,i)/si)ri,k,

for all 1 ≤ i ≤ m and 1 ≤ k ≤ bi .
Similarly, the power consumption P̃ j of MEC j for computation

is calculated by P̃ j = P̃d, j + P̃ s, j = ξ̃ j s̃
α̃ j

j + P̃ s, j , where ξ̃ j , α̃ j , and
P̃ s, j are some constants, for all 1 ≤ j ≤ n. If ti,k is offloaded to an
MEC j and executed remotely on MEC j , the energy consumption for
computation of ti,k on MEC j is

P̃ j(ri,k/s̃ j) = (ξ̃ j s̃
α̃ j

j + P̃ s, j)(ri,k/s̃ j) = ((ξ̃ j s̃
α̃ j

j + P̃ s, j)/s̃ j)ri,k,

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ bi .
A UE also incurs power consumption for communication. Let

Pt,i, j be the transmission power (measured by Watts) of UEi to
MEC j , where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, we have

Pt,i, j = 2ci, j/wi, j − 1

βi, j
,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, where wi, j is the channel band-
width and βi, j is a combined quantity that encapsulates various
factors such as (1) the channel gain between UEi and MEC j , (2) the
interference on the communication channel caused by other de-
vices’ data transmission to the same MEC, (3) and the background
noise power.

The energy consumption for communication (measured by
Joules) of ti,k from UEi to MEC j is

Pt,i, j(di,k/ci, j) =
(

2ci, j/wi, j − 1

βi, jci, j

)
di,k,

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ bi .

3. A non-cooperative game

In this section, we describe a non-cooperative game played by
all the UEs and MECs.

A computation offloading strategy of UEi is a partition of Li into
(n + 1) sublists

Si = (Li,0, Li,1, Li,2, ..., Li,n),

such that all tasks in Li,0 are not offloaded and executed locally
on UEi , and all tasks in Li, j are offloaded to MEC j and executed
remotely on MEC j , where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Define
26
Ri, j =
∑

ti,k∈Li, j

ri,k,

for all 1 ≤ i ≤ m and 0 ≤ j ≤ n, and

Di, j =
∑

ti,k∈Li, j

di,k,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and

R j =
m∑

i=1

Ri, j,

for all 1 ≤ j ≤ n.
The execution time of all tasks in UEi is

T̂ i = Ri,0/si,

for all 1 ≤ i ≤ m. The execution time of all tasks in MEC j is

T̃ j = R j/s̃ j +
m∑

i=1

Di, j/ci, j,

for all 1 ≤ j ≤ n. The execution time of all tasks in Li is

Ti = max

(
T̂ i, max

Li, j �=∅
(T̃1, T̃2, ..., T̃n)

)
,

for all 1 ≤ i ≤ m. Note that if Li, j �= ∅, the execution time of all
tasks in Li, j is the execution time of all tasks in MEC j , since the
schedule of all tasks in MEC j is not known. In other words, we
should consider the execution times of all tasks in Li, j , plus the
possible waiting time in the worst case. This is consistent with
existing scheduling models [8,9]. Furthermore, we do not consider
overlap of computation and communication times.

The energy consumption of UEi for both computation and com-
munication is

Ei = ((ξi s
αi
i + P s,i)/si)Ri,0 +

n∑
j=1

(
2ci, j/wi, j − 1

βi, jci, j

)
Di, j,

for all 1 ≤ i ≤ m. The energy consumption of MEC j for computation
is

Ẽ j = ((ξ̃ j s̃
α̃ j

j + P̃ s, j)/s̃ j)R j,

for all 1 ≤ j ≤ n.
Our non-cooperative game includes (m +n) players, i.e., UE1, UE2,

..., UEm , and MEC1, MEC2, ..., MECn (see Fig. 1).
Each UEi has an energy constraint Ei . The payoff function of UEi

is Ti , i.e., the execution time of all tasks in Li . UEi has (n + 2)

variables to manipulate, i.e., the computation offloading strategy
Si , the computation speed si , and the communication speeds ci, j
for all 1 ≤ j ≤ n. The objective of UEi is to find Si , si , and ci, j
for all 1 ≤ j ≤ n, such that Ti is minimized and that its energy
consumption does not exceed the given budget Ei .

Each MEC j has one variable to manipulate, i.e., its computation
speed s̃ j . The payoff function of MEC j is the power-time product
(measured by Watts-seconds), i.e., F j = P̃ j T̃ j [32]. The objective
of MEC j is to find s̃ j , such that F j is minimized. (Notice that the
power-time product is actually the cost-performance ratio, if we
treat P̃ j as the cost (the lower, the better), and 1/T̃ j as the perfor-
mance (the higher, the better).)

Notice that the MECs are resources shared by all UEs. In other
words, UEs compete for MECs. When the UEs offload more tasks to
the MECs, the processing times on the MECs become longer. There-
fore, the UEs will adjust their computation offloading strategies to
process more tasks locally. When the UEs offload less tasks to the

K. Li Journal of Parallel and Distributed Computing 159 (2022) 24–34

UE1

�

(S1, s1, c1, j)

T1

UE2

�

(S2, s2, c2, j)

T2

UEm

�

(Sm, sm, cm, j)

Tm

A non-cooperative game which results in a Nash equilibrium

MEC1

�

s̃1

F1

MEC2

�

s̃2

F2

MECn

�

s̃n

Fn

Fig. 1. A non-cooperative game with (m + n) players: UE1, UE2, ..., UEm , and MEC1, MEC2, ..., MECn .
MECs, the processing times on the MECs become shorter. There-
fore, the UEs will adjust their computation offloading strategies to
process more tasks remotely. This process continues until a stable
situation is reached, i.e., a situation when no UE wants to make
further adjustment to its computation offloading strategy, because
such change brings no more benefit.

The above process certainly becomes more complicated if the
UEs can also adjust their computation and communication speeds.
The process becomes even more complicated when the MECs also
join the game. If MEC j increases s̃ j , more tasks will be offloaded to
MEC j . If MEC j decreases s̃ j , less tasks will be offloaded to MEC j .
When so many factors are involved and evolving in such a dynam-
ics, we are definitely interested in whether the above dynamics
eventually reaches a stable situation.

The action Ai of UEi is the combination of all its variables,
i.e., Ai = (Si, si, ci,1, ..., ci,n). Similarly, Ã j = s̃ j is the action of
MEC j . The combination of actions of all UEs and MECs, i.e., A =
(A1, A2, ..., Am, Ã1, Ã2, ..., Ãn), is an action profile. A stable situa-
tion, i.e., a situation when any change to Ai makes Ti longer for all
1 ≤ i ≤ m, and any change to Ã j makes F j greater for all 1 ≤ j ≤ n,
is called a Nash equilibrium, which is an action profile A with the
property that no single player UEi or MEC j can benefit from a uni-
lateral deviation from A, if all other players act according to it.

Our non-cooperative game is very unusual. Typically, the do-
main of a payoff function (i.e., the strategy set of a player) is a
closed and convex set, and a payoff function is a continuous and
twice differentiable function, whose optimal value can be obtained
by multi-variable calculus. It is well known that if every player has
a convex payoff function, then there exists a Nash equilibrium [28].
However, in our case, the strategy set of a player includes Si , which
is a partition of a list of tasks, and is certainly discrete. Further-
more, as we will see soon in the next section, the payoff function
of a UE is calculated by a heuristic algorithm for combinatorial
optimization, which does not necessarily produce an optimal solu-
tion (i.e., the optimal response of a UE to the current situation).
Under the above circumstance, it becomes unclear whether our
non-cooperative game has a Nash equilibrium. Even if there exists
a Nash equilibrium, it is not clear whether our iterative algorithm
converges to a Nash equilibrium. It is interesting to know under
27
what conditions there exists a Nash equilibrium for our game and
the game converges.

4. The algorithms

A group of algorithms are developed in this section to find the
Nash equilibrium.

4.1. A heuristic response of a UE

In this section, we give a heuristic algorithm for a UE to find its
“best” response to the current situation.

First of all, we would like to mention that it is an NP-hard prob-
lem for a UE to find its optimal response to the current situation,
even if there is only one UE, one MEC, and the UE is the only
player [17]. Therefore, the best we can hope is a heuristic response
of a UE.

When UEi makes its decision, the MECs are already preloaded
with tasks from other UEs. Let

T ′
i, j =

∑
i′ �=i

(Ri′, j/s̃ j + Di′, j/ci′, j),

which is the existing workload on MEC j , for all 1 ≤ j ≤ n.
We take two steps to develop a heuristic algorithm for UEi to

decide an action Ai . Thus, our algorithm, which is presented in
Algorithm 1, includes two stages. In the first step (which is ac-
tually the second stage of our algorithm, i.e., lines (9)–(13)), we
consider the following problem, i.e., for a given computation of-
floading strategy Si , how to minimize the execution time Ti by
choosing the computation speed si and the communication speeds
ci, j , for all 1 ≤ j ≤ n. In the second step (which is actually the first
stage of our algorithm, i.e., lines (1)–(8)), we consider how to gen-
erate a computation offloading strategy Si .

Note that our algorithm is generalized from the heuristic algo-
rithm for optimal computation offloading with energy constraint
developed in [17] for a single UE without preloaded tasks from
other UEs to a competitive fog computing environment with mul-
tiple UEs.

K. Li Journal of Parallel and Distributed Computing 159 (2022) 24–34
Algorithm 1: Heuristic Response of UEi .

Input: UEi = (ξi, αi, P s,i), and Li = (ti,1, ti,2, ..., ti,bi), where ti,k =
(ri,k, di,k), for all 1 ≤ k ≤ bi , and Ei ; MEC j = (s̃ j, wi, j, βi, j) with
T ′

i, j , for all 1 ≤ j ≤ n.

Output: Si = (Li,0, Li,1, Li,2, ..., Li,n), si , ci, j for all 1 ≤ j ≤ n, and T .

//Stage 1
Initialize the list Li ; (1)
for (j = 0; j ≤ n; j++) do (2)

Li, j ← ∅; (3)
end do; (4)
for (k = 1; k ≤ bi ; k++) do (5)

j′ ← indexmin0≤ j≤n T (L0, L1, ..., L j ∪ {ti,k}, ..., Ln); (6)
L j′ ← L j′ ∪ {ti,k}; (7)

end do; (8)
//Stage 2
Get T by solving Equation (1); (9)
si ← Ri,0/T ; (10)
for (j = 1; j ≤ n; j++) do (11)

ci, j ← Di, j/(T − T ∗
i, j); (12)

end do; (13)
return Si , si , ci, j for all 1 ≤ j ≤ n, and T . (14)

For the first step, we observe that UEi should allocate its energy
budget Ei in such a way that all MEC j ’s with Li, j �= ∅ and UEi

complete their tasks at the same time (see Fig. 2), i.e.,

T̂ i = T̃ j1 = T̃ j2 = · · · = T̃ jz = T ,

where j1, j2, ..., jz are indices such that Li, j1 �= ∅, Li, j2 �= ∅, ..., and
Li, jz �= ∅. The above equation gives rise to

si = Ri,0/T ,

and

ci, j = Di, j/(T − T ∗
i, j),

where

T ∗
i, j = T ′

i, j + Ri, j/s̃ j,

for all 1 ≤ j ≤ n and Li, j �= ∅. Note that T ∗
i, j is the part of the ex-

ecution time of MEC j that UEi cannot change and control. If the
above condition is not satisfied, we can shift some energy from an
MEC/UE which completes the earliest to an MEC/UE which com-
pletes the latest, thereby reducing Ti without increasing Ei . Hence,
to most efficiently utilize the energy budget Ei , we must have

ξi
Rαi

i,0

T αi−1 + P s,i T +
n∑

j=1

2(Di, j/wi, j)/(T −T ∗
i, j) − 1

βi, j
(T − T ∗

i, j) = Ei, (1)

for all 1 ≤ i ≤ m. (Notice that the above equation holds even if
Li, j = ∅ and Di, j = 0, i.e., UEi does not offload any task to MEC j
for some j.) The value of T can be obtained numerically by using
a bisection search and noticing that the left-hand side of the above
equation is a decreasing function of T .

For the second step, we employ a greedy method to gradually
construct

Si = (Li,0, Li,1, Li,2, ..., Li,n).

Let

T (Li,0, Li,1, Li,2, ..., Li,n)
28
be the T obtained by solving Equation (1). In the beginning, no
task is offloaded (lines (2)–(4)). Then, the tasks in Li are scanned
one by one (line (5)). For each task ti,k , we choose the MEC j (for
convenience, UEi is treated as MEC0) in such a way that if ti,k is
offloaded to MEC j , the new Ti , i.e.,

T (L0, L1, ..., L j ∪ {ti,k}, ..., Ln)

in line (6), is the minimum, for all 0 ≤ j ≤ n. (Notation: We
define indexmin(x1, x2, ..., xn) to be the index j such that x j =
min(x1, x2, ..., xn).) This is the key idea of the greedy method, and
the most important part of the algorithm is in lines (6)–(7).

Once T is determined (line (9)), the computation speed si and
the communication speeds ci, j can be computed routinely (lines
(10)–(13)).

The time complexity of Algorithm 1 is analyzed as follows. The
most time consuming part of the algorithm is the for-loop in lines
(5)–(8), which is repeated bi times (line (5)). Line (6) needs to
solve Equation (1) (n + 1) times. Lines (6) and (9) solve Equation
(1) by using the bisection method, which needs to reduce a search
internal of length I to certain accuracy requirement ε and requires
O (log(I/ε)) repetitions. Each repetition needs to calculate the left-
hand side of Equation (1) and requires O (n) time. Therefore, the
overall time complexity of the algorithm is O (bin2 log(I/ε)), fairly
efficient.

Finally, we make the following important assumption, namely,
a UE does not take any action if it is not able to find an action
to reduce its payoff. Since the best response of a UE is obtained
by using a heuristic algorithm, it is not necessarily the optimal re-
sponse. Such a heuristic response may even increase the payoff of
a UE, which may prevent our game from reaching a stable situ-
ation or make the convergence process longer and slower. If that
is the case, a UE would rather do nothing than making its payoff
greater.

4.2. The best response of an MEC

We now give an algorithm for an MEC to find its best response
to the current situation.

Notice that

F j = P̃ j T̃ j = (ξ̃ j s̃
α̃ j

j + P̃ s, j)

(
R j/s̃ j +

m∑
i=1

Di, j/ci, j

)
,

for all 1 ≤ j ≤ n. Let

C j =
m∑

i=1

Di, j/ci, j .

Then, we have

F j = (ξ̃ j s̃
α̃ j

j + P̃ s, j)(R j/s̃ j + C j)

= C j ξ̃ j s̃
α̃ j

j + R j ξ̃ j s̃
α̃ j−1
j + P̃ s, j R j/s̃ j + P̃ s, jC j,

and

∂ F j

∂ s̃ j
= α̃ jC j ξ̃ j s̃

α̃ j−1
j + (α̃ j − 1)R j ξ̃ j s̃

α̃ j−2
j − P̃ s, j R j

s̃2
j

.

To minimize F j , we only need to find s̃ j such that ∂ F j/∂ s̃ j = 0,
i.e.,

α̃ jC j ξ̃ j s̃
α̃ j+1
j + (α̃ j − 1)R j ξ̃ j s̃

α̃ j

j = P̃ s, j R j.

Although there is no closed-form solution of s̃ j , it can be easily
found by a bisection search in the interval

K. Li Journal of Parallel and Distributed Computing 159 (2022) 24–34

UEi MEC j1 MEC j2 MEC jz

� � �

T̂ i

T ′
i, j1

T ∗
i, j1

T̃ j1

T ′
i, j2

T ∗
i, j2

T̃ j2

T ′
i, jz

T ∗
i, jz

T̃ jz

T

Fig. 2. Illustration of Algorithm 1: All MEC j ’s with Li, j �= ∅ and UEi must complete their tasks at the same time. Black areas mean preloaded tasks.
[
0,

(
P̃ s, j R j

α̃ jC j ξ̃ j

)1/(α̃ j+1)]
,

by noticing that the left-hand side of the above equation is an in-
creasing function of s̃ j .

Algorithm 2: Best Response of MEC j .

Input: ξ̃ j, α̃ j, P̃ s, j , R j , Di, j , ci, j , for all 1 ≤ i ≤ m.

Output: s̃ j and F j .

lb ← 0, ub ← (P̃ s, j R j/α̃ j C j ξ̃ j)
1/(α̃ j+1); (1)

while (ub − lb ≥ ε) do (2)
s̃ j ← mid ← (lb + ub)/2; (3)

if (α̃ j C j ξ̃ j s̃
α̃ j+1
j + (α̃ j − 1)R j ξ̃ j s̃

α̃ j

j < P̃ s, j R j) (4)
lb ← mid; (5)

else (6)
ub ← mid; (7)

end if; (8)
end do; (9)
s̃ j ← (lb + ub)/2; (10)
Calculate F j ; (11)
return s̃ j and F j . (12)

Our algorithm for MEC j to decide an action Ã j is presented
in Algorithm 2. It is easy to see that the time complexity of the
algorithm is O (log(I/ε)), very efficient.

4.3. An iterative algorithm for Nash equilibrium

We develop an iterative algorithm to find the Nash equilibrium
in this section, which is presented in Algorithm 3.

A game is initialized with Li, j = ∅, for all 1 ≤ i ≤ m and 0 ≤
j ≤ n. The computation and communication speeds are set to any
reasonable values. A Nash equilibrium can be found by allowing
the players to play in rounds (lines (2)–(16)). In each round, UE1,
UE2, ..., UEm , and MEC1, MEC2, ..., MECn play in turn. Each UEi ap-
plies Algorithm 1 to find its action A′ (lines (3)–(5)), which is its
i

29
“heuristically” best response to the current situation. Each MEC j

applies Algorithm 2 to find its action Ã′
j (lines (6)–(8)), which is

its best response to the current situation. A game is over when the
difference between the action profiles of two successive rounds,
i.e., A′ and A, is within certain accuracy requirement ε (lines
(10)–(15)). The final converged action profile

A∗ = (A∗
1, A∗

2, ..., A∗
m, Ã∗

1, Ã∗
2, ..., Ã∗

n)

is produced as the Nash equilibrium, i.e., a strategy profile with the
unique property that no player can have better payoff from a uni-
lateral deviation from A∗

i or Ã∗
j , if all other players act according

to A∗ .

Algorithm 3: Calculate the Nash Equilibrium

Input: UEi = (ξi, αi, P s,i) and Ei , for all 1 ≤ i ≤ m; Li = (ti,1, ti,2, ...,
ti,bi), where ti,k = (ri,k, di,k), for all 1 ≤ k ≤ bi ; MEC j = (ξ̃ j, α̃ j, P̃ s, j),
for all 1 ≤ j ≤ n; and wi, j, βi, j , for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Output: The Nash equilibrium
A∗ = (A∗

1, A∗
2, ..., A∗

m, Ã∗
1, Ã∗

2, ..., Ã∗
n).

Initialize A = (A1, A2, ..., Am, Ã1, Ã2, ..., Ãn); (1)
repeat (2)

for i ← 1 to m do (3)
Obtain A′

i by using Algorithm 1; (4)
end do; (5)
for j ← 1 to n do (6)

Obtain Ã′
j by using Algorithm 2; (7)

end do; (8)
A′ ← (A′

1, A′
2, ..., A′

m, Ã′
1, Ã′

2, ..., Ã′
n); (9)

if (‖A′ −A‖ ≥ ε) then (10)
A ←A′; (11)

else (12)
A∗ ←A′; (13)
return A∗; (14)

end if (15)
forever. (16)

K. Li Journal of Parallel and Distributed Computing 159 (2022) 24–34
The termination detection condition in line (10) is

‖A′ −A‖ =(m∑
i=1

n∑
j=0

(|R ′
i, j − Ri, j|2 + |D ′

i, j − Di, j|2) +
m∑

i=1

|s′
i − si |2

+
m∑

i=1

n∑
j=1

|c′
i, j − ci, j|2 +

n∑
j=1

|s̃′
j − s̃ j|2

)1/2

< ε.

Since Algorithms 1 and 2 are invoked m and n times in each round,
the time complexity of each round is O (bmn2 log(I/ε)), where b =
max{b1, b2, ..., bm}, and the overall time complexity of Algorithm
3 is O (Nbmn2 log(I/ε)), where N is the number of rounds (i.e.,
the number of repetitions of the loop in lines (2)–(16), which is
essentially determined by the accuracy requirement ε in line (10).
(We set ε = 10−5 in this paper.)

We would like to mention that the above iterative algorithm
can be implemented in a centralized or decentralized way.

5. Nash equilibrium

5.1. Existence of and convergence to the Nash equilibrium

In this section, we show that our game has a Nash equilibrium
and our iterative algorithm converges to the Nash equilibrium, no
matter whether the MECs join the game.

Theorem 1. Our game with or without MECs’ participation converges to
a Nash equilibrium.

Proof. Recall that an action Ai of UEi contains a computation of-
floading strategy Si (i.e., the assignment of tasks to the UE and
the MECs) and an energy allocation strategy (i.e., the determina-
tion of the computation speed si and the communication speeds
ci, j based on an energy constraint Ei). The payoff function of UEi

is

Ti = max

(
T̂ i,max

j∈ J i

(T̃ j)

)
,

where J i = { j | 1 ≤ j ≤ n, Li, j �= ∅}, for all 1 ≤ i ≤ m. Each UEi
takes an action by using the heuristic Algorithm 1. We emphasize
that UEi takes no action if it cannot find a better computation of-
floading strategy or a better energy allocation strategy to reduce
its payoff Ti . A Nash equilibrium is a situation where no UEi (and
no MEC j of course) would take any more action.

Assume that before and after UEi takes an action (i.e., a heuris-
tic response to the current situation), tasks in Li are assigned to
the UE and the MECs according to Si = (Li,0, Li,1, Li,2, ..., Li,n) and
S ′

i = (L′
i,0, L

′
i,1, L

′
i,2, ..., L

′
i,n) respectively. The quantities R ′

i, j , D ′
i, j ,

c′
i, j , J ′

i , T̂ ′
i , and T̃ ′

j can be defined accordingly.
To take the action, UEi needs to withdraw its tasks from MEC j

with j ∈ J i , leading to reduced execution time of these MECs, i.e.,

T̃ ′
j ← T̃ j − Ri, j/s̃ j − Di, j/ci, j,

for all j ∈ J i . Then, tasks in L′
i, j with j ∈ J ′

i are assigned to MEC j ,
leading to increased execution time of these MECs, i.e.,

T̃ ′
j ← T̃ j + R ′

i, j/s̃ j + D ′
i, j/c′

i, j,

for all j ∈ J ′
i .

Let us define M(J) = max j∈ J (T̃ j), and M ′(J) = max j∈ J (T̃ ′
j),

for J ⊆ {1, 2, ..., n}. Then, we have Ti = max(T̂ i, M(J i)) and T ′ =
i

30
max(T̂ ′
i , M

′(J ′
i)). We notice that T ′

i < Ti ; otherwise, UEi would not
take the action.

All MEC j ’s with j ∈ J i ∪ J ′
i are affected by the action of UEi . We

can show that for these affected MECs, we have

max(T̂ ′
i , M ′(J i ∪ J ′

i)) < max(T̂ i, M(J i ∪ J ′
i)).

To this end, we observe that

max(T̂ ′
i , M ′(J i ∪ J ′

i)) = max(T̂ ′
i , M ′(J i − J ′

i), M ′(J ′
i))

= max(max(T̂ ′
i , M ′(J ′

i)), M ′(J i − J ′
i))

= max(T ′
i , M ′(J i − J ′

i))

< max(Ti, M(J i − J ′
i))

= max(max(T̂ i, M(J i)), M(J i − J ′
i))

= max(T̂ i, M(J i))

= max(T̂ i, M(J i), M(J ′
i − J i))

= max(T̂ i, M(J i ∪ J ′
i)),

where we notice that (1) T ′
i < Ti ; (2) M ′(J i − J ′

i) < M(J i − J ′
i),

since each MEC j with j ∈ J i − J ′
i losses some tasks of UEi ;

(3) M(J i − J ′
i) ≤ M(J i), since J i − J ′

i ⊆ J i ; (4) M(J ′
i − J i) <

max(T̂ i, M(J i)), so that MEC j with j ∈ J ′
i − J i can receive tasks

from UEi .
The above discussion essentially means that each action of UEi

reduces its payoff Ti (i.e., T̂ i or the maximum execution time of all
affected (i.e., J i ∪ J ′

i) MECs), while T̃ j of MEC j with j /∈ J i ∪ J ′
i is

not affected. We define

M∗ = max

(
max

1≤i≤m
(T̂ i), max

1≤ j≤n
(T̃ j)

)
,

which is the makespan, i.e., the time to complete all tasks of all
UEs on the m UEs and n MECs. If Ti = M∗ , an action of UEi re-
duces M∗ . It is clear that this cannot happen forever, since there
is a lower bound for M∗ , which depends on the Ei ’s (i.e., the en-
ergy constraints), the s̃ j ’s (i.e., the computation speeds), and the
computation and communication requirements. At certain point,
no UEi can take any action to reduce M∗ . Note that although
max(T̂ i, M(J i ∪ J ′

i)) is never increased by UEi , T̃ j can still be
changed (either increased or decreased) by MEC j . However, M∗ is
never increased by a UE, and cannot be reduced by the UEs for-
ever.

When M∗ cannot be reduced further, any UEi with Ti = M∗ will
not take any further action. However, other UEi ’s may still reduce
their payoffs. We remove the UEi ’s with T̂ i = M∗ and the MEC j ’s
with T̃ j = M∗ , plus the UEi ’s that have tasks on these MECs from
further consideration, since all these UEs and MECs will not be in-
volved in the game anymore, and apply the same argument on the
remaining UEs and MECs. Eventually, no UEi can take any action to
reduce its Ti (i.e., its payoff). When all UEs stop taking any more
action, all MECs do not take further action either. Therefore, the
game eventually terminates and reaches a Nash equilibrium. The
theorem is proved. �

The above discussion implies that if each UE could find its op-
timal response (which is unlikely to be obtained efficiently due to
NP-hardness), so that it never increases its payoff, an iterative algo-
rithm eventually converges to a Nash equilibrium. However, what
will happen if each UE is only able to take a heuristic action? Is
there a Nash equilibrium? Can it be reached? Our answer is that a
heuristic algorithm should be applied in a protective way (e.g., to
make sure that a heuristic response does not make things worse).

K. Li Journal of Parallel and Distributed Computing 159 (2022) 24–34
5.2. Characterizations of the Nash equilibrium

In this section, we give some characterizations of the Nash
equilibrium.

Let us define J i = { j | Li, j �= ∅}, for all 1 ≤ i ≤ m. We construct
an undirected graph G , which has m vertices, i.e., v1, v2, ..., vm ,
where vi stands for UEi , for all 1 ≤ i ≤ m. There is an edge be-
tween vi1 and vi2 if and only if J i1 ∩ J i2 �= ∅, for all 1 ≤ i1 �= i2 ≤ m.

The following result shows how a Nash equilibrium looks like.

Theorem 2. In a Nash equilibrium, all UEi ’s in the same connected com-
ponent of G have the same Ti , i.e., we have Ti1 = Ti2 , if and only if vi1

and vi2 are connected in G (i.e., there is a path between vi1 and vi2).

Proof. Let J i1 = { ji1,1, ji1,2, ...} and J i2 = { ji2,1, ji2,2, ...}. Then, Al-
gorithm 1 guarantees that T̂ i1 = T̃ ji1,1 = T̃ ji1,2 = · · · = Ti1 , and
T̂ i2 = T̃ ji2,1 = T̃ ji2,2 = · · · = Ti2 . It is clear that Ti1 = Ti2 if J i1 ∩
J i2 �= ∅, i.e., there is an edge between vi1 and vi2 . By the transitiv-
ity of equality, we know that Ti1 = Ti2 , if and only if vi1 and vi2

are connected in G . �
Likewise, we define I j = {i | Li, j �= ∅}, for all 1 ≤ j ≤ n. We

construct an undirected graph G̃ , which has n vertices, i.e.,
ṽ1, ̃v2, ..., ̃vn , where ṽ j stands for MEC j , for all 1 ≤ j ≤ n. There
is an edge between ṽ j1 and ṽ j2 if and only if I j1 ∩ I j2 �= ∅, for all
1 ≤ j1 �= j2 ≤ n.

Similar to Theorem 1, we have the following result.

Theorem 3. In a Nash equilibrium, all MEC j ’s in the same connected
component of G̃ have the same T̃ j , i.e., we have T̃ j1 = T̃ j2 , if and only
if ṽ j1 and ṽ j2 are connected in G̃ (i.e., there is a path between ṽ j1 and
ṽ j2).

Proof. Let I j1 = {i j1,1, i j1,2, ...} and I j2 = {i j2,1, i j2,2, ...}. Then, Al-
gorithm 1 guarantees that T̂ i j1,1 = T̂ i j1,2 = · · · = T̃ j1 , and T̂ i j2,1 =
T̂ i j2,2 = · · · = T̃ j2 . It is clear that T̃ j1 = T̃ j2 if I j1 ∩ I j2 �= ∅, i.e., there
is an edge between ṽ j1 and ṽ j2 . By the transitivity of equality,
we know that T̃ j1 = T̃ j2 , if and only if ṽ j1 and ṽ j2 are connected
in G̃ . �
6. Numerical examples

Numerical examples are demonstrated in this section.
First, we give an example without MECs’ participation of a

game. We consider a fog computing environment with M = 5 UEs
and n = 7 MECs. The parameters of the UEs are set as follows:
ξi = 0.1, αi = 2.0, P s,i = 0.05 Watts, for all 1 ≤ i ≤ m. The pa-
rameters of MEC j are set as follows: s̃ j = 3.1 − 0.1 j BI/second,
wi, j = 2.9 + 0.1 j MB/second, βi, j = 2.1 − 0.1 j Watts−1, for all
1 ≤ i ≤ m and 1 ≤ j ≤ n. Each UE generates a list of bi = 15 random
tasks. Tasks are randomly generated, such that the ri,k ’s are inde-
pendently and identically and uniformly distributed in the range
[1.5, 5.0], and the di,k ’s are independently and identically and uni-
formly distributed in the range [1.0, 3.0]. The energy constraint is
Ei = 6.5 + 0.5i Joules, for all 1 ≤ i ≤ m.

In Table 2, we show one instance of the game. We demon-
strate the Ei, j ’s, the Ri, j ’s, and the Di, j ’s in the Nash equilibrium.
The game terminates after only N = 17 rounds (very fast speed of
convergence). The Nash equilibrium results in T̂ i = T̃ j = 13.21714
seconds, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. (Both G and G̃ are con-
nected.) We observe that it is possible for a UE not to offload any
task to an MEC, i.e., Ei, j = Ri, j = Di, j = 0, for some 1 ≤ i ≤ m and
1 ≤ j ≤ n. Furthermore, at least half of the tasks are processed
31
locally in a UE, and each UE consumes most of its energy on com-
putation.

Next, we give an example with MECs’ participation of a game.
We use the same parameter setting as the above example, with
MEC j further set with ξ̃ j = 0.31 −0.01 j, α̃ j = 2.0, P̃ s, j = 2.1 −0.1 j
Watts, for all 1 ≤ j ≤ n.

In Table 3, we show one instance of the game. We demonstrate
the Ei, j ’s, the Ri, j ’s, and the Di, j ’s in the Nash equilibrium. The
game terminates after N = 22 rounds (relatively slower speed of
convergence due to more players and more complicated dynam-
ics). The Nash equilibrium results in T̂ i = T̃ j = 14.18227 seconds,
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. (Both G and G̃ are connected.)
We also display the s̃ j ’s and the P̃ j ’s. We observe that to optimize
the power-time product, each MEC j chooses a speed slower than
the one in the last example. The reduced computation speeds of
the MECs result in increased execution times. Furthermore, each
UE tends to offload tasks to fewer MECs, and the computation
offloading strategy produces less balanced workload and energy
distributions.

Our extensive experiments reveal the fact that our game always
converges to a Nash equilibrium. However, if the heuristic algo-
rithm employed by the UEs is not protected, our game may not
converge or take much longer time (i.e., more rounds and more
iterations) to converge to a Nash equilibrium. A non-cooperative
game involving combinatorial optimization, especially heuristic al-
gorithms, is a truly interesting and challenging research topic.

We would like to mention that strictly speaking, our non-
cooperative game played by the UEs equipped with a heuristic
algorithm H can only reach a Nash equilibrium with respect to H ,
i.e., a stable situation where no UE wants to make further change
by using H . However, by using another heuristic, especially an op-
timal algorithm, further changes are still possible, and eventually,
another equilibrium may be reached.

7. Related research

Related research is reviewed in this section.
Computation offloading optimization in fog computing and mo-

bile edge computing has been a very active and productive re-
search area in the last few years, with extensive investigation
performed. Refs. [1,13,14,23,29,30] provide some recent compre-
hensive surveys.

Game theoretical techniques have been widely adopted and ap-
plied by many researchers in fog computing and mobile edge com-
puting. In particular, the game theoretical approach has been used
to investigate computation offloading strategies of several com-
petitive and selfish mobile users. Many game models have been
developed to study various environments of computation offload-
ing.

Several researchers have considered fog computing environ-
ments with multiple mobile users, where each user possesses only
one task to process. For cloudlet based mobile cloud computing
in a multi-channel wireless contention environment, the prob-
lem of multi-user computation offloading was investigated by Cao
and Cai, who formulated a non-cooperative game for the multi-
user computation offloading decision making problem, where ev-
ery user has a single task with the same amount of computation
and aims to minimize a weighted sum of energy consumption and
execution time [2]. A decentralized computation offloading game
was formulated by Chen for decentralized computation offload-
ing decision making among multiple mobile device users, where
each user has a computation intensive and delay sensitive task and
minimizes a weighted sum of energy consumption and computa-
tion time [5]. For mobile edge cloud computing in a multi-channel
wireless interference environment, the multi-user computation of-
floading problem was studied by Chen et al., and it was shown

K. Li Journal of Parallel and Distributed Computing 159 (2022) 24–34

Table 2
A Numerical Example of Nash Equilibrium without MECs’ Participation (N = 17 Rounds).

UEi MEC1 MEC2 MEC3 MEC4 MEC5 MEC6 MEC7 Ei/Ri/Di

i = 1 Ei, j 5.68799 0.38135 0.50962 0.00000 0.00000 0.00000 0.00000 0.42104 7.00000
si , ci, j 1.95025 1.35922 2.52615 0.00000 0.00000 0.00000 0.00000 0.94539
Pi , Pt,i, j 0.43035 0.18448 0.39956 0.00000 0.00000 0.00000 0.00000 0.14260
Ri, j 25.77680 2.27151 4.49176 0.00000 0.00000 0.00000 0.00000 7.60496 40.14503
Di, j 17.55529 2.80977 3.22203 0.00000 0.00000 0.00000 0.00000 2.79126 26.37834

i = 2 Ei, j 5.39995 0.21755 0.30548 0.00000 0.50669 0.42040 0.64992 0.00000 7.50000
si , ci, j 1.89356 1.52729 2.12690 0.00000 1.39705 0.95892 2.21070 0.00000
Pi , Pt,i, j 0.40856 0.21158 0.32049 0.00000 0.20061 0.13494 0.36621 0.00000
Ri, j 25.02744 1.92336 2.07679 0.00000 5.31335 3.58355 6.79737 0.00000 44.72187
Di, j 14.19977 1.57036 2.02733 0.00000 3.52862 2.98742 3.92340 0.00000 28.23690

i = 3 Ei, j 5.45696 0.42203 0.84080 0.92559 0.17214 0.00000 0.00000 0.18249 8.00000
si , ci, j 1.90492 2.71551 9.94725 2.42037 1.05162 0.00000 0.00000 0.58882
Pi , Pt,i, j 0.41287 0.43638 4.33987 0.38291 0.14540 0.00000 0.00000 0.08575
Ri, j 25.17753 2.69918 4.85196 11.04108 1.84395 0.00000 0.00000 3.37927 48.99295
Di, j 14.06798 2.62618 1.92716 5.85068 1.24500 0.00000 0.00000 1.25309 26.97010

i = 4 Ei, j 4.99659 0.35577 0.38041 0.22704 0.42045 0.81869 0.86454 0.43651 8.50000
si , ci, j 1.81118 1.04458 0.95544 0.95618 1.44519 1.58518 1.71558 1.55584
Pi , Pt,i, j 0.37804 0.13648 0.12535 0.12785 0.20863 0.23843 0.26974 0.24948
Ri, j 23.93868 2.85925 1.52239 4.99490 4.17004 5.18175 5.55364 4.34410 52.56474
Di, j 11.99328 2.72288 2.89956 1.69804 2.91249 5.44287 5.49864 2.72228 35.89002

i = 5 Ei, j 6.30643 0.40702 0.15424 0.20772 0.40631 1.07164 0.44665 0.00000 9.00000
si , ci, j 2.06674 1.55248 0.71009 0.91500 1.81438 6.66156 1.23532 0.00000
Pi , Pt,i, j 0.47714 0.21573 0.09056 0.12178 0.27288 1.80543 0.18478 0.00000
Ri, j 27.31636 4.23057 4.62199 4.45530 4.88139 7.02861 2.19925 0.00000 54.73347
Di, j 17.04167 2.92904 1.20934 1.56071 2.70154 3.95408 2.98600 0.00000 32.38238

Table 3
A Numerical Example of Nash Equilibrium with MECs’ Participation (N = 22 Rounds).

UEi MEC1 MEC2 MEC3 MEC4 MEC5 MEC6 MEC7 Ei/Ri/Di

i = 1 Ei, j 5.31642 0.36574 0.00000 0.00000 0.73928 0.00000 0.57855 0.00000 7.00000
si , ci, j 1.80240 1.69892 0.00000 0.00000 1.69947 0.00000 7.58096 0.00000
Pi , Pt,i, j 0.37486 0.24036 0.00000 0.00000 0.25234 0.00000 2.32516 0.00000
Ri, j 25.56210 3.42505 0.00000 0.00000 7.24179 0.00000 2.61635 0.00000 38.84530
Di, j 20.10906 2.58508 0.00000 0.00000 4.97888 0.00000 1.88632 0.00000 29.55934

i = 2 Ei, j 4.55158 0.33437 0.15172 0.00000 0.00000 0.69901 1.35604 0.40727 7.50000
si , ci, j 1.64601 6.84598 0.92205 0.00000 0.00000 2.69819 8.43559 1.26943
Pi , Pt,i, j 0.32093 1.93175 0.12050 0.00000 0.00000 0.45836 2.87691 0.19777
Ri, j 23.34415 3.54072 4.20739 0.00000 0.00000 6.37446 9.77021 4.13530 51.37223
Di, j 17.25935 1.18499 1.16092 0.00000 0.00000 4.11479 3.97614 2.61418 30.31037

i = 3 Ei, j 5.66227 0.39815 0.38011 0.52740 0.52930 0.50278 0.00000 0.00000 8.00000
si , ci, j 1.86882 7.73635 1.52798 1.14391 4.10586 2.84006 0.00000 0.00000
Pi , Pt,i, j 0.39925 2.48718 0.21435 0.15621 0.80522 0.49015 0.00000 0.00000
Ri, j 26.50415 4.77339 2.14072 6.69743 7.68104 3.37654 0.00000 0.00000 51.17328
Di, j 15.75653 1.23843 2.70959 3.86206 2.69893 2.91321 0.00000 0.00000 29.17876

i = 4 Ei, j 6.95541 0.59644 0.14925 0.00000 0.43851 0.00000 0.00000 0.36039 8.50000
si , ci, j 2.09864 4.97265 0.59590 0.00000 4.62322 0.00000 0.00000 1.18492
Pi , Pt,i, j 0.49043 1.07740 0.07501 0.00000 0.96518 0.00000 0.00000 0.18305
Ri, j 29.76351 4.68410 1.54925 0.00000 4.05923 0.00000 0.00000 1.67294 41.72904
Di, j 23.77262 2.75283 1.18562 0.00000 2.10045 0.00000 0.00000 2.33293 32.14444

i = 5 Ei, j 6.56155 0.30264 0.39649 0.39218 0.00000 0.41044 0.54923 0.38746 9.00000
si , ci, j 2.03140 1.76494 1.36840 0.91048 0.00000 0.99194 1.46789 0.84029
Pi , Pt,i, j 0.46266 0.25174 0.18839 0.12112 0.00000 0.14008 0.22491 0.12544
Ri, j 28.80988 4.61703 2.49474 4.87807 0.00000 4.60810 9.13011 4.01971 58.55764
Di, j 15.08625 2.12176 2.87998 2.94817 0.00000 2.90651 3.58457 2.59555 32.12279

s̃ j 1.99024 1.47288 1.52952 1.87182 1.65021 1.95249 1.39103

P̃ j 3.18832 2.52911 2.45504 2.64601 2.30803 2.45305 1.86439
that it is NP-hard to compute a centralized optimal solution, and a
game theoretic approach was adopted to achieve efficient compu-
tation offloading in a distributed manner [6]. A cooperative game
based framework for quality of service (QoS) guaranteed offloading
in a multiple MECs environment was constructed by Liu et al. to
maximize the number of tasks whose QoS requirements are sat-
isfied, where each UE has one task and both UEs and MECs are
32
players of the game [19]. By including both energy consumption
and delay (i.e., computing and transmission delay) into considera-
tion, computation offloading strategies of multiple users via mul-
tiple wireless access points were researched by Ma et al., who
conducted a game-theoretic analysis of the computation offload-
ing problem with the consideration of the selfish nature of the
players [22]. Using a game theoretic framework resulting in a non-

K. Li Journal of Parallel and Distributed Computing 159 (2022) 24–34
convex generalized Nash game, Nowak et al. considered several
mobile users with a splittable computation task each, which try
to minimize their own computation times by offloading fractions
of their tasks to a central access point with a cloudlet [26].

Fog computing environments with multiple users, where each
user has multiple tasks, have also been explored. A usage scenario
was considered by Cardellini et al., where multiple non-cooperative
mobile users share the limited computing resources of a close-by
cloudlet and can selfishly make decisions in sending computations
to three available tiers, i.e., a local tier of mobile computing de-
vices, a nearby tier of fog computing nodes, and a remote tier
of cloud computing servers [3]. A non-cooperative game model
was constructed by Chen et al. to find an optimal computation
offloading policy for each UE, with the objective to minimize a
weighted sum of time consumption and energy consumption [4]. A
non-cooperative game framework was established by Li to system-
atically study stabilization of a competitive mobile edge computing
environment involving multiple UEs and a single MEC, with a set
of seven non-cooperative games among the UEs and the MEC, each
attempts to minimize its cost-performance ratio [16]. The prob-
lem of multi-user computation offloading under a dynamic en-
vironment, wherein mobile users may become active or inactive
dynamically, and the wireless channels for users to offload compu-
tation may vary randomly, was investigated by Zheng et al., using
a stochastic game which is proved to be equivalent to a potential
game [33]. However, in all the above studies, only a single MEC
was considered.

There has been investigation concerning fog computing envi-
ronment with multiple MECs. Based on the evolutionary game
theory to deal with task offloading to multiple heterogeneous edge
nodes and central clouds among multiple users, Dong and Wen
studied a dynamic and decentralized resource allocation strategy
[7]. Ge et al. proposed a game-theoretic approach to optimizing
the overall energy in a mobile cloud computing system, where
the energy minimization problem is formulated as a congestion
game, in which, each mobile device selects a server to offload com-
putation while minimizing the overall energy consumption [10].
From the perspective of a non-cooperative game, Hu et al. con-
structed a mechanism of task offloading for a system with mul-
tiple MECs and multiple UEs with delay constraints to optimize
the benefits of both MECs and UEs [11]. Using a game theoretic
model, Jošilo and Dán considered autonomous devices, each opti-
mizes its own performance by choosing a wireless access point for
computation offloading [12]. Multiple heterogeneous mobile users
competing for resources from multiple heterogeneous mobile edge
clouds were considered by Li, who used the game theoretic ap-
proach to finding the optimal computation offloading strategy for
each mobile user in a stabilized fog computing environment [15].
Li et al. proposed a Stackelberg computing offloading game for mo-
bile devices and edge cloud servers and proposed two algorithms
for delay-sensitive and compute-intensive applications [18]. Under
situations involving complete and incomplete information, Liwang
et al. developed a two-player Stackelberg-game-based opportunis-
tic computation offloading scheme, that primarily considers task
completion duration and service price [21].

Game theory based means and methods have also been em-
ployed to study various other issues in mobile edge computing.
Liu et al. formulated the interactions among a cloud service opera-
tor and edge server owners as a Stackelberg game, which attempts
to maximize the utilities of the cloud service operator and edge
server owners by obtaining the optimal payment and computa-
tion offloading strategies [20]. Messous et al. tackled the prob-
lem of offloading heavy computation tasks of unmanned aerial
vehicles while achieving the best possible tradeoff between en-
ergy consumption, time delay, and computation cost, using a non-
cooperative theoretical game [24]. By using the theory of minor-
33
ity games, Ranadheera et al. developed a novel distributed server
activation mechanism for computation offloading, which guaran-
tees energy-efficient activation of servers as well as satisfaction of
users’ quality-of-experience requirements in terms of latency [27].
Based on the framework of prospect theory (PT), Tang and He for-
mulated users’ decision making of whether to offload or not as a
PT-based non-cooperative game, and proposed a distributed com-
putation offloading algorithm to achieve the Nash equilibrium of
the game [31].

It is noticed that game theory has also been extensively used
for mobile data offloading in heterogeneous networks [25].

8. Concluding remarks

In this paper, we have established a non-cooperative game
played by multiple UEs and multiple heterogeneous MECs, each
has its own variables to manipulate and its own payoff function to
minimize. A unique feature of the game is that each UE can only
find a heuristic response to the current situation. We have proved
the convergence of our non-cooperative game involving NP-hard
combinatorial optimization.

We would like to mention that the existence of a Nash equi-
librium and the convergence of an iterative algorithm for a game,
where the payoff function of a player is calculated by a heuristic
algorithm for NP-hard combinatorial optimization, which does not
necessarily produce an optimal solution (i.e., the optimal response
of a player to the current situation), are very challenging issues
and deserve further investigation.

It is interesting to consider other fog computing environment
with multiple competitive UEs. For instance, the UEs may be di-
vided into groups, where UEs in the same group have common
interest and are willing to collaborate. As one example, a group of
UEs may want to minimize the total execution time of all their
tasks, where each UE has its own energy constraint. In such a
situation, a cooperative game (or a coalitional game) can be for-
mulated to optimize the collective payoff of each group which
take joint actions, where there are conflict and competition among
coalitions. It is likely that the algorithms and analysis in this paper
are applicable and extensible to such an environment.

Declaration of competing interest

The author declares no conflict of interest.

Acknowledgments

The author is grateful to the three reviewers for their construc-
tive comments on improving the manuscript.

References

[1] A. Bhattacharya, P. De, A survey of adaptation techniques in computation of-
floading, J. Netw. Comput. Appl. 78 (2017) 97–115.

[2] H. Cao, J. Cai, Distributed multi-user computation offloading for cloudlet based
mobile cloud computing: a game-theoretic machine learning approach, IEEE
Trans. Veh. Technol. 67 (1) (2018) 752–764.

[3] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei, V. Grassi, F.L.
Presti, V. Piccialli, A game-theoretic approach to computation offloading in mo-
bile cloud computing, Math. Program. 157 (2) (2016) 421–449.

[4] J. Chen, K. Li, Q. Deng, S. Yu, K. Li, P.S. Yu, QoE-aware computation offloading
game algorithm for 5G mobile edge computing, submitted for publication.

[5] X. Chen, Decentralized computation offloading game for mobile cloud comput-
ing, IEEE Trans. Parallel Distrib. Syst. 26 (4) (2015) 974–983.

[6] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offload-
ing for mobile-edge cloud computing, IEEE/ACM Trans. Netw. 24 (5) (2016)
2795–2808.

[7] C. Dong, W. Wen, Joint optimization for task offloading in edge computing: an
evolutionary game approach, Sensors 19 (3) (2019) 740.

http://refhub.elsevier.com/S0743-7315(21)00181-7/bib87A47565BE4714701A8BC2354CBAEA36s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib87A47565BE4714701A8BC2354CBAEA36s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibAA53CA0B650DFD85C4F59FA156F7A2CCs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibAA53CA0B650DFD85C4F59FA156F7A2CCs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibAA53CA0B650DFD85C4F59FA156F7A2CCs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibCF8D6F04D6FD31C9FDFCFE1CC09B6D59s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibCF8D6F04D6FD31C9FDFCFE1CC09B6D59s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibCF8D6F04D6FD31C9FDFCFE1CC09B6D59s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibEF6BF3FD02C2C92BF0E156D4B5B818ACs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibEF6BF3FD02C2C92BF0E156D4B5B818ACs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib68932485CFA9E3CE7C1E577D025259B2s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib68932485CFA9E3CE7C1E577D025259B2s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib68932485CFA9E3CE7C1E577D025259B2s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib0BDFE2E55090D6BE70793778D0D8E147s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib0BDFE2E55090D6BE70793778D0D8E147s1

K. Li Journal of Parallel and Distributed Computing 159 (2022) 24–34
[8] L. Epstein, M. Feldman, T. Tamir, Ł. Witkowskie, M. Witkowskie, Approximate
strong equilibria in job scheduling games with two uniformly related machines,
Discrete Appl. Math. 161 (13–14) (2013) 1843–1858.

[9] M. Feldman, T. Tamir, Approximate strong equilibrium in job scheduling games,
J. Artif. Intell. Res. 36 (2009) 387–414.

[10] Y. Ge, Y. Zhang, Q. Qiu, Y.-H. Lu, A game theoretic resource allocation for over-
all energy minimization in mobile cloud computing system, in: International
Symposium on Low Power Electronics and Design, Redondo Beach, California,
USA, August 1, 2012.

[11] J. Hu, K. Li, C. Liu, A.T. Chronopoulos, K. Li, Game-based task offloading of
multi-MD with QoS in MEC systems of limited computation capacity, ACM
Trans. Embed. Comput. Syst. 19 (4) (2020) 29.

[12] S. Jošilo, G. Dán, A game theoretic analysis of selfish mobile computation of-
floading, in: IEEE Conference on Computer Communications, Atlanta, GA, USA,
May 2017, pp. 1–4.

[13] M.A. Khan, A survey of computation offloading strategies for performance im-
provement of applications running on mobile devices, J. Netw. Comput. Appl.
56 (2015) 28–40.

[14] K. Kumar, J. Liu, Y.-H. Lu, B. Bhargava, A survey of computation offloading for
mobile systems, Mob. Netw. Appl. 18 (1) (2013) 129–140.

[15] K. Li, A game theoretic approach to computation offloading strategy optimiza-
tion for non-cooperative users in mobile edge computing, IEEE Trans. Sustain.
Comput. (September 2018), https://doi .org /10 .1109 /TSUSC .2018 .2868655.

[16] K. Li, How to stabilize a competitive mobile edge computing environment: a
game theoretic approach, IEEE Access 7 (1) (2019) 69960–69985.

[17] K. Li, Heuristic computation offloading algorithms for mobile users in fog com-
puting, ACM Trans. Embed. Comput. Syst. 20 (2) (2020) 11.

[18] M. Li, Q. Wu, J. Zhu, R. Zheng, M. Zhang, A computing offloading game for
mobile devices and edge cloud servers, Wirel. Commun. Mob. Comput. 2018
(2018) 2179316.

[19] C. Liu, K. Li, J. Liang, K. Li, COOPER-MATCH: job offloading with a cooperative
game for guaranteeing strict deadlines in MEC, IEEE Trans. Mob. Comput. (June
2019), https://doi .org /10 .1109 /TMC .2019 .2921713.

[20] Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guana, H. Zhang, Incentive mechanism for
computation offloading using edge computing: a Stackelberg game approach,
Comput. Netw. 129 (part 2) (2017) 399–409.

[21] M. Liwang, J. Wang, Z. Gao, X. Du, M. Guizani, Game theory based oppor-
tunistic computation offloading in cloud-enabled IoV, IEEE Access 7 (2019)
32551–32561.

[22] X. Ma, C. Lin, X. Xiang, C. Chen, Game-theoretic analysis of computation of-
floading for cloudlet-based mobile cloud computing, in: 18th ACM Int’l Conf.
on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Can-
cun, Mexico, November 2-6, 2015, pp. 271–278.

[23] P. Mach, Z. Becvar, Mobile edge computing: a survey on architecture and com-
putation offloading, IEEE Commun. Surv. Tutor. 19 (3) (2017) 1628–1656.

[24] M.-A. Messous, S.-M. Senouci, H. Sedjelmaci, S. Cherkaoui, A game theory based
efficient computation offloading in an UAV network, IEEE Trans. Veh. Technol.
68 (5) (2019) 4964–4974.

[25] S. Noreen, N. Saxena, A review on game-theoretic incentive mechanisms for
mobile data offloading in heterogeneous networks, IETE Tech. Rev. 34 (S1)
(2017) 15–26.

[26] D. Nowak, T. Mahn, H. Al-Shatri, A. Schwartz, A. Klein, A generalized Nash game
for mobile edge computation offloading, in: 6th IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering, Bamberg, Germany,
26–29 March, 2018, pp. 95–102.

[27] S. Ranadheera, S. Maghsudi, E. Hossain, Computation offloading and activation
of mobile edge computing servers: a minority game, IEEE Wirel. Commun. Lett.
7 (5) (2018) 688–691.

[28] J.B. Rosen, Existence and uniqueness of equilibrium points for concave N-
person games, Econometrica 33 (3) (1965) 520–534.

[29] X. Shan, H. Zhi, P. Li, Z. Han, A survey on computation offloading for mobile
edge computing information, in: IEEE BigDataSecurity/HPSC/IDS, Omaha, NE,
USA, 3-5 May, 2018, pp. 248–251.

[30] M. Shiraz, M. Sookhak, A. Gani, S.A.A. Shah, A study on the critical analysis
of computational offloading frameworks for mobile cloud computing, J. Netw.
Comput. Appl. 47 (2015) 47–60.

[31] L. Tang, S. He, Multi-user computation offloading in mobile edge computing: a
behavioral perspective, IEEE Netw. 32 (1) (2018) 48–53.

[32] Z. Zeng, T. Truong-Huu, B. Veeravalli, C.-K. Tham, Operational cost-aware re-
source provisioning for continuous write applications in cloud-of-clouds, Clust.
Comput. 19 (2016) 601–614.

[33] J. Zheng, Y. Cai, Y. Wu, X.S. Shen, Stochastic computation offloading game for
mobile cloud computing, in: 2016 IEEE/CIC Int’l Conf. on Communications in
China, Chengdu, China, 27–29 July, 2016.

Keqin Li is a SUNY Distinguished Professor of
computer science with the State University of New
York. He is also a National Distinguished Professor
with Hunan University, China. His current research in-
terests include cloud computing, fog computing and
mobile edge computing, energy-efficient computing
and communication, embedded systems and cyber-
physical systems, heterogeneous computing systems,
big data computing, high-performance computing,

CPU-GPU hybrid and cooperative computing, computer architectures and
systems, computer networking, machine learning, intelligent and soft com-
puting. He has authored or coauthored more than 800 journal articles,
book chapters, and refereed conference papers, and has received several
best paper awards. He holds over 60 patents announced or authorized by
the Chinese National Intellectual Property Administration. He is among the
world’s top 10 most influential scientists in distributed computing based
on a composite indicator of Scopus citation database. He has chaired many
international conferences. He is currently an associate editor of the ACM
Computing Surveys and the CCF Transactions on High Performance Computing.
He has served on the editorial boards of the IEEE Transactions on Parallel
and Distributed Systems, the IEEE Transactions on Computers, the IEEE Trans-
actions on Cloud Computing, the IEEE Transactions on Services Computing, and
the IEEE Transactions on Sustainable Computing. He is an IEEE Fellow.
34

http://refhub.elsevier.com/S0743-7315(21)00181-7/bibABF6862A2BB77074870C23FFCA8EB433s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibABF6862A2BB77074870C23FFCA8EB433s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibABF6862A2BB77074870C23FFCA8EB433s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib1E2F86B95D78D7F8CFCBDC1A07B2FBD7s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib1E2F86B95D78D7F8CFCBDC1A07B2FBD7s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib670A0CCA5D1DE9AEB0D75EC2B4DA9835s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib670A0CCA5D1DE9AEB0D75EC2B4DA9835s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib670A0CCA5D1DE9AEB0D75EC2B4DA9835s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib670A0CCA5D1DE9AEB0D75EC2B4DA9835s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib750500CFC6F7535914F670C3B9C5E1CFs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib750500CFC6F7535914F670C3B9C5E1CFs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib750500CFC6F7535914F670C3B9C5E1CFs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib2ECD214DB016E0AD63452AE4236E065Ds1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib2ECD214DB016E0AD63452AE4236E065Ds1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib2ECD214DB016E0AD63452AE4236E065Ds1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibB9972F46C1E52797D66236B118D29709s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibB9972F46C1E52797D66236B118D29709s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibB9972F46C1E52797D66236B118D29709s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib7F88C63895E80F19C29ABDF520C6CA53s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib7F88C63895E80F19C29ABDF520C6CA53s1
https://doi.org/10.1109/TSUSC.2018.2868655
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibF2FEB978EF237FCDB33C8869A68443F9s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibF2FEB978EF237FCDB33C8869A68443F9s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib4163CF922DB5CAC4B933C8E333BA09EFs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib4163CF922DB5CAC4B933C8E333BA09EFs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibCE7F77D73853ECDAF5030B652C83E208s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibCE7F77D73853ECDAF5030B652C83E208s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibCE7F77D73853ECDAF5030B652C83E208s1
https://doi.org/10.1109/TMC.2019.2921713
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib9B20474198AD006204C9DC488B0E88D7s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib9B20474198AD006204C9DC488B0E88D7s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib9B20474198AD006204C9DC488B0E88D7s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib98D23C6248E2FDF044EAD1AF395C9D72s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib98D23C6248E2FDF044EAD1AF395C9D72s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib98D23C6248E2FDF044EAD1AF395C9D72s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib368CE28AFBBA44B53D23C87BA457B8B5s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib368CE28AFBBA44B53D23C87BA457B8B5s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib368CE28AFBBA44B53D23C87BA457B8B5s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib368CE28AFBBA44B53D23C87BA457B8B5s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib8D8FCC1ABD550C5F25DBFAA57D59CB67s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib8D8FCC1ABD550C5F25DBFAA57D59CB67s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib6B2B547F08979B2E87B013DEC21345F5s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib6B2B547F08979B2E87B013DEC21345F5s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib6B2B547F08979B2E87B013DEC21345F5s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib53C8D15A175221D2127083E66A8CC937s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib53C8D15A175221D2127083E66A8CC937s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib53C8D15A175221D2127083E66A8CC937s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibDC477E19F1756B82604F328344FABCECs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibDC477E19F1756B82604F328344FABCECs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibDC477E19F1756B82604F328344FABCECs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibDC477E19F1756B82604F328344FABCECs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibA8FEB24A3D5FDA259DC6D739F915C56Fs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibA8FEB24A3D5FDA259DC6D739F915C56Fs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibA8FEB24A3D5FDA259DC6D739F915C56Fs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibA448FFA969E691CD387EB7DEAC4F453Bs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibA448FFA969E691CD387EB7DEAC4F453Bs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibF5C197BADDE69830C2CC16D6EF9D066As1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibF5C197BADDE69830C2CC16D6EF9D066As1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibF5C197BADDE69830C2CC16D6EF9D066As1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib38029A41A6BD2A7977F1DA8268DF3C9Es1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib38029A41A6BD2A7977F1DA8268DF3C9Es1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib38029A41A6BD2A7977F1DA8268DF3C9Es1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib5B79C40FA7C2BD12DD2DF53C4A2B6836s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bib5B79C40FA7C2BD12DD2DF53C4A2B6836s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibE53E6FD777A61B7D450F71328202F659s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibE53E6FD777A61B7D450F71328202F659s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibE53E6FD777A61B7D450F71328202F659s1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibC70437B631A5B43BCC09A9FBC637DB8Fs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibC70437B631A5B43BCC09A9FBC637DB8Fs1
http://refhub.elsevier.com/S0743-7315(21)00181-7/bibC70437B631A5B43BCC09A9FBC637DB8Fs1

	Distributed and individualized computation offloading optimization in a fog computing environment
	1 Introduction
	1.1 Motivation
	1.2 New contributions

	2 Models
	2.1 The execution models
	2.2 The power consumption models

	3 A non-cooperative game
	4 The algorithms
	4.1 A heuristic response of a UE
	4.2 The best response of an MEC
	4.3 An iterative algorithm for Nash equilibrium

	5 Nash equilibrium
	5.1 Existence of and convergence to the Nash equilibrium
	5.2 Characterizations of the Nash equilibrium

	6 Numerical examples
	7 Related research
	8 Concluding remarks
	Declaration of competing interest
	Acknowledgments
	References

