
J. Parallel Distrib. Comput. 123 (2019) 13–25

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Optimal task execution speed setting and lower bound for delay and
energy minimization
Keqin Li
Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• Investigate scheduling a set of independent sequential tasks on identical processors.
• Find the optimal task execution speed setting analytically for delay and energy minimization.
• Establish lower bound for the minimum schedule length with a given energy consumption constraint.
• Establish lower bound for the minimum energy consumption with a given schedule length constraint.
• Perform experimental study on the performance of list scheduling algorithms.

a r t i c l e i n f o

Article history:
Received 22 November 2017
Received in revised form 7 July 2018
Accepted 3 September 2018
Available online xxxx

Keywords:
Delay minimization
Energy minimization
Energy-efficient task scheduling
List scheduling
Lower bound
Optimal speed setting
Static power consumption

a b s t r a c t

The current technology trend reveals that static power consumption is growing at a faster rate than
dynamic power consumption. In this paper, energy-efficient task scheduling is studiedwhen static power
consumption is a significant part of energy consumption which cannot be ignored. The problems of
scheduling a set of independent sequential tasks on identical processors so that the schedule length is
minimized for a given energy consumption constraint or the energy consumption isminimized for a given
schedule length constraint are investigated. For a given schedule, the optimal task execution speed setting
for delay and energy minimization is found analytically. Lower bounds for the minimum schedule length
of a set of tasks with a given energy consumption constraint and the minimum energy consumption of a
set of tasks with a given schedule length constraint are established. Our lower bounds are applicable to
sequential or parallel, and independent or precedence constrained tasks, on processors with discrete or
continuous speed levels, and bounded or unbounded speed ranges. The significance of these lower bounds
is that they can be used to evaluate the performance of any heuristic algorithms when compared with
optimal algorithms. Experimental study on the performance of list scheduling algorithms is performed
and it is shown that their performance is very close to the optimal. To the best of the author’s knowledge,
this is the first paper that provides such analytical results for energy-efficient task scheduling with both
dynamic and static power consumptions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Reducing processor energy consumption has been a significant
research issue in the last two decades, and a huge body of litera-
ture has been published [1,29,40]. Processor power consumption
includes two components, i.e., dynamic power consumption and
static power consumption. It was believed that dynamic power
consumption is the dominant part of processor energy consump-
tion, and some research ignored static power consumption [15,39].

However, as transistors become smaller and faster, static power
dissipation (i.e., the power due to leakage current in the absence
of any switching activity) has become increasingly significant. Be-
cause leakage current flows from every transistor that is powered

E-mail address: lik@newpaltz.edu.

on, with increasing die size and integration, static power will
become a significant part of processor power consumption. Static
power dissipation is equal to the product of the supply voltage and
the leakage current. While the rate of reduction of supply voltage
is decreasing, leakage current is increasing exponentially [5]. The
current technology trend reveals that static power consumption is
growing at a faster rate than dynamic power consumption. Leakage
current increases about 7.5 times and leakage power increases
about 5.0 times every generation, while active power remains
roughly constant [4]. In just a fewprocessor generations, the curves
will intersect. Technology scaling is increasing both the absolute
and relative contributions of static power dissipation [28]. Static
power consumption has noticeable influence on energy consump-
tion and energy-delay product (EDP) [24]. It was demonstrated
that if static power consumption is tuned during designing and

https://doi.org/10.1016/j.jpdc.2018.09.003
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.09.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.09.003&domain=pdf
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.jpdc.2018.09.003


14 K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25

manufacturing, it is possible to save up to 35% reduction in energy
consumption and achieve up to 20% improvement in the EDP [23].

One major challenge in the study of energy-efficient task
scheduling algorithms is lack of performance analysis and com-
parison between a heuristic solution and an optimal solution, as
traditionally conducted in scheduling theory [8] and other areas
of approximation algorithms for NP-hard problems [12]. The main
weakness of most existing researches is that they only compare
the performance of heuristic algorithms among the algorithms
themselves, not with an optimal algorithm [3,10,14,25,30–35,38,
41]. Furthermore, there is little analytical result on the worst-
case or average-case performance ratio, although some attempt
has been made without consideration of static power dissipation
[15,16,19,20,26]. This is essentially due to the sophistication of
energy-efficient task scheduling algorithms and the apparent lack
of the understanding of optimal solutions.

To tackle the above challenge and weakness, one effective ap-
proach has been developed in [15,16], i.e., establishing a lower
bound for the optimal solution and comparing a heuristic solution
with the lower bound. The advantages of a lower bound are two
fold. First, it is easy to obtain based on just a few parameters, and
thus can be easily incorporated into any scheduler in a real system.
Second,we can still assess the performance of a heuristic algorithm
when compared with an optimal algorithm even we do not know
the optimal solution. If the ratio of a heuristic solution to the lower
bound is close to one, the performance of a heuristic algorithm
is close to the optimal. Even though a performance ratio cannot
be derived, it can be obtained experimentally by simulations or
numerically by calculations. This method has been successful in
studying the performance of various energy-efficient algorithms
in scheduling sequential or parallel tasks, and independent or
precedence constrained tasks [15–21]. However, such an effort has
been effective only when the static power consumption is ignored.

The motivation of this paper is to make further progress to-
wards this direction when static power consumption is a signif-
icant part of energy consumption which cannot be ignored. The
main contributions of the paper are as follows.

• We investigate the problems of scheduling a set of inde-
pendent sequential tasks on identical processors so that the
schedule length isminimized for a given energy consumption
constraint or the energy consumption is minimized for a
given schedule length constraint. In particular, for a given
schedule,we are able to find the optimal task execution speed
setting analytically for delay and energy minimization.

• We establish lower bounds for theminimum schedule length
of a set of tasks with a given energy consumption constraint
and the minimum energy consumption of a set of tasks
with a given schedule length constraint. Our lower bounds
are applicable to sequential or parallel, and independent or
precedence constrained tasks, on processors with discrete or
continuous speed levels, and bounded or unbounded speed
ranges. The significance of these lower bounds is that they
can be used to evaluate the performance of any heuristic
algorithms when compared with optimal algorithms.

• We perform experimental study on the performance of list
scheduling algorithms and show that their performance is
very close to the optimal.

To the best of the author’s knowledge, this is the first paper that
provides such analytical results for energy-efficient task schedul-
ing with both dynamic and static power consumptions. All re-
searchers in this area can benefit from our work in the sense that
they can compare the performance of their heuristic algorithms
with the lower bounds derived in this paper.

The paper is organized as follows. In Section 2, we present
preliminary information, including the power consumptionmodel

and problem definitions. In Section 3, we develop lower bound for
delay minimization, i.e., minimizing schedule length with energy
consumption constraint. In Section 4, we develop lower bound for
energy minimization, i.e., minimizing energy consumption with
schedule length constraint. In Section 5, we demonstrate experi-
mental data for some heuristic algorithms. In Section 6, we extend
our lower bounds to parallel tasks and precedence constrained
tasks and other power consumption models. In Section 7, we
conclude the paper.

2. Background information

Assume that we are given n independent sequential tasks to
be executed on m identical processors. Each task can be executed
on any of the m processors. There is no precedence constraint
(i.e., dependency) nor communication cost among the tasks. (Note:
Extensions of our results to parallel tasks and precedence con-
strained tasks and other situations are discussed in Section 6.) Let
ri represent the execution requirement (measured in the number
of processor cycles or the number of instructions) of task i, where
1 ≤ i ≤ n. The processors can be either computing cores in the
same node, or computing cores across different nodes, as long as
the cores are homogeneous.

We use the following power consumption model adopted by
many researchers [6,9,22,27,36,37]. It is well known that dynamic
power consumption p (i.e., the switching component of power) can
be accuratelymodeled by a simple equation, i.e., p = aCV 2f , where
a is an activity factor, C is the loading capacitance, V is the supply
voltage, and f is the clock frequency. In the ideal case, the supply
voltage and the clock frequency are related in such a way that
V ∝ f φ for some constant φ > 0. The processor execution speed
s is usually linearly proportional to the clock frequency, namely,
s ∝ f . For ease of discussion, we will assume that V = bf φ and
s = cf , where b and c are some constants. Hence, we know that
the dynamic power consumption is p = aCV 2f = ab2Cf 2φ+1

=

(ab2C/c2φ+1)s2φ+1
= ξ sα , where ξ = ab2C/c2φ+1 and α = 2φ + 1.

Let pi represent the dynamic power (measured inwatts) consumed
to execute task i, which is pi = ξ sαi , where si is the execution speed
of task i (measured in GHz or the number of billion instructions
per second). Let ψ be the static power consumption (measured
in watts). Therefore, the total power consumption is ξ sαi + ψ =

ξ (sαi +ψ/ξ ). Since ξ is a constant which only creates scaling effect,
for ease of discussion, we will assume that ξ = 1 and simply
say that p = ψ/ξ is static power consumption. Hence, the power
required to execute task i is pi + p = sαi + p.

The execution time (measured in seconds) of task i is ti = ri/si.
The energy (measured in joule) consumed to execute task i is ei =

(pi+p)ti = (pi+p)ri/si = ri(sαi +p)/si = ri(sα−1
i +p/si).We observe

that
∂ei
∂si

= ri

(
(α − 1)sα−2

i −
p
s2i

)
.

Hence, when ∂ei/∂si = 0, that is,

(α − 1)sα−2
i =

p
s2i
,

which implies that when

si = s∗ =

(
p

α − 1

)1/α

,

ei has its minimum value of

e∗

i = ri
(
(s∗)α−1

+
p
s∗

)
,

which is actually

e∗

i = rip1−1/α α

(α − 1)1−1/α .



K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25 15

It is clear that when 0 < si ≤ s∗, we have ∞ > ei ≥ e∗

i and ei is a
decreasing function of si; and when si ≥ s∗, we have ei ≥ e∗

i and ei
is an increasing function of si. Therefore, for any si ∈ (0, s∗], there
is si ∈ [s∗,∞), such that ei has the same value. This means that a
slower speed in (0, s∗] can be replaced by a faster speed in [s∗,∞)
that leads to reduced execution time without any extra energy
consumption. Hence, we assume that si ∈ [s∗,∞) and ei ≥ e∗

i for
all task i.

We can now define the problems to be addressed in this paper.
Given a set of n independent sequential tasks, m identical pro-

cessors, and energy constraint E, the problemofminimizing sched-
ule lengthwith energy consumption constraint is to find execution
speeds s1, s2, . . . , sn of the n tasks and a nonpreemptive schedule
of the n tasks on the m processors such that the schedule length is
minimized and that the energy consumption does not exceed E.

Given a set of n independent sequential tasks, m identical pro-
cessors, and time constraint T , the problem of minimizing energy
consumption with schedule length constraint is to find execution
speeds s1, s2, . . . , sn of then tasks and anonpreemptive schedule of
the n tasks on them processors such that the energy consumption
is minimized and that the schedule length does not exceed T .

3. Related work

When there is no static power consumption, i.e., p = 0, lower
bounds were established for the minimum schedule length of
a set of tasks with a given energy consumption constraint and
the minimum energy consumption of a set of tasks with a given
schedule length constraint.

Let R = r1 + r2 + · · · + rn be the total execution requirement
of n independent sequential tasks. For the problem of minimiz-
ing schedule length with energy consumption constraint, it was
proved in [15] that for a set of independent sequential tasks with
total execution requirement R and energy constraint E on m iden-
tical processors, we have

T ∗
≥

(
m
E

(
R
m

)α)1/(α−1)

for the optimal schedule length T ∗. For the problem of minimiz-
ing energy consumption with schedule length constraint, it was
proved in [15] that for a set of independent sequential tasks with
total execution requirement R and time constraint T onm identical
processors, we have

E∗
≥ m

(
R
m

)α 1
Tα−1

for the optimal energy consumption E∗.
The above lower bounds have been extended to independent

parallel tasks. Let W denote the total amount of work to be per-
formed for n independent parallel tasks (see Section 6 for defini-
tion of W ). For the problem of minimizing schedule length with
energy consumption constraint, it was proved in [16] that for a set
of independent parallel tasks with total amount of work W and
energy constraint E on m identical processors, we have

T ∗
≥

(
m
E

(
W
m

)α)1/(α−1)

for the optimal schedule length T ∗. For the problem of minimiz-
ing energy consumption with schedule length constraint, it was
proved in [16] that for a set of independent parallel taskswith total
amount ofworkW and time constraint T onm identical processors,
we have

E∗
≥ m

(
W
m

)α 1
Tα−1

for the optimal energy consumption E∗. It is clear that these lower
bounds include the lower bounds for sequential tasks as special
cases.

Our lower bounds have also been extended to heterogeneous
processors which are specified by α1, α2, . . . , αm, i.e., each pro-
cessor k has its own αk in the power consumption model, where
1 ≤ k ≤ m. For the problem of minimizing schedule length with
energy consumption constraint, it was proved in [20] that for a set
of independent sequential tasks with total execution requirement
R and energy constraint E onm heterogeneous processors, we have
T ∗

≥ T , where T and the partition R1, R2, . . . , Rm that results in T
can be obtained by solving them+ 1 equations, i.e., the constraint

R1 + R2 + · · · + Rm = R,

and m equations

T =

⎛⎝αkR
αk−1
k

⎛⎝ m∑
j=1

Rj

αj

⎞⎠ 1
E

⎞⎠1/(αk−1)

,

for all 1 ≤ k ≤ m. For the problem of minimizing energy
consumptionwith schedule length constraint, itwas proved in [20]
that for a set of independent sequential tasks with total execution
requirement R and time constraint T on m heterogeneous proces-
sors, we have E∗

≥ E, where E and the partition R1, R2, . . . , Rm that
results in E are

E = T
m∑

k=1

(
φ

αk

)αk/(αk−1)

,

and

Rk =

(
φ

αk

)1/(αk−1)

T ,

for all 1 ≤ k ≤ m, and φ satisfies
m∑

k=1

(
φ

αk

)1/(αk−1)

=
R
T
.

It is clear that these lower bounds include the lower bounds for
identical processors as special cases.

It is worth mentioning that our lower bounds for independent
tasks can be applied to precedence constrained tasks, and on pro-
cessors with discrete or bounded speed levels.

In this paper, all the above lower bounds on identical proces-
sors are extended to include static power consumption p ̸= 0
for all kinds of tasks (sequential or parallel, and independent or
precedence constrained) on all kinds of processors (with discrete
or continuous speed levels, and bounded or unbounded speed
ranges).

Performance of energy-efficient task scheduling algorithms has
been compared with optimal solutions without lower bounds to
the optimal solutions. For the problem of minimizing schedule
length with energy consumption constraint, it was proved in [26]
that for a set of independent sequential tasks, there is a polynomial
time approximation scheme, and that for a set of precedence con-
strained sequential tasks, there is an O(log1+2/α m)-approximation
algorithm, where the approximation ratio can be arbitrarily large.

We would like to mention that consideration of static power
consumption is different from sleep state management [2,7,13],
where the main concern is the energy cost to transition from
the sleep state to the operating state. Although static power con-
sumption may also be considered, the preemptive scheduling
model in [2,7,13] is substantially different fromour nonpreemptive
scheduling model.



16 K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25

4. Delay minimization

4.1. Uniprocessor systems

It is clear that on a uniprocessor system with energy constraint
E, where

E ≥

n∑
i=1

e∗

i =

(
n∑

i=1

ri

)
p1−1/α α

(α − 1)1−1/α ,

the problem of minimizing schedule length with energy consump-
tion constraint is simply to find the execution speeds s1, s2, . . . , sn,
such that the schedule length

T (s1, s2, . . . , sn) =

n∑
i=1

ti =

n∑
i=1

ri
si

is minimized and the total energy consumed e1+e2+· · ·+en does
not exceed E, i.e.,

F (s1, s2, . . . , sn) =

n∑
i=1

ei =

n∑
i=1

ri

(
sα−1
i +

p
si

)
≤ E.

Notice that both the schedule length T (s1, s2, . . . , sn) and the en-
ergy consumption F (s1, s2, . . . , sn) are viewed as functions of the
task execution speeds s1, s2, . . . , sn.

We can minimize T (s1, s2, . . . , sn) subject to the constraint
F (s1, s2, . . . , sn) = E by using the Lagrange multiplier system:

∇T (s1, s2, . . . , sn) = λ∇F (s1, s2, . . . , sn),

where λ is a Lagrange multiplier. Since
∂T (s1, s2, . . . , sn)

∂si
= λ

∂F (s1, s2, . . . , sn)
∂si

,

that is,

−
ri
s2i

= λri

(
(α − 1)sα−2

i −
p
s2i

)
,

where λ ≤ 0, we have

si = s =

(
1

α − 1

(
p −

1
λ

))1/α

,

for all 1 ≤ i ≤ n. Substituting the above si into the constraint
F (s1, s2, . . . , sn) = E, we get

R
(
sα−1

+
p
s

)
= E,

where R = r1 + r2 + · · · + rn is the total execution requirement of
the n tasks.

The last equation can be rewritten as

sα −

(
E
R

)
s + p = 0.

Let us consider the function y = sα − (E/R)s. Since
∂y
∂s

= αsα−1
−

E
R
,

we know that when

s = s̄ =

(
E
αR

)1/(α−1)

,

y gets its minimum value of

y∗
=

(
E
αR

)α/(α−1)

−
E
R

(
E
αR

)1/(α−1)

,

which is

y∗
= −

α − 1
αα/(α−1)

(
E
R

)α/(α−1)

.

It is clear that when 0 < s ≤ s̄, y is a decreasing function of s;
and when s ≥ s̄, y is an increasing function of s. Furthermore,
y ≤ 0 when 0 ≤ s ≤ (E/R)1/(α−1), and y = 0 when s = 0 and
s = (E/R)1/(α−1). To have a solution of s, we must have −p ≥ y∗,
i.e.,

p ≤
α − 1
αα/(α−1)

(
E
R

)α/(α−1)

,

which implies that

E ≥ Rp1−1/α α

(α − 1)1−1/α .

Notice that the above condition is consistent with the requirement
that

E ≥

n∑
i=1

e∗

i .

Furthermore, if the above condition is satisfied, there might be
two solutions to the equation sα − (E/R)s + p = 0, one in the
interval (0, s̄] and another in the interval [s̄, (E/R)1/(α−1)). We will
certainly take the faster speed in [s̄, (E/R)1/(α−1)). It is observed that
increasing E reduces y∗ and increases the solution. Also, a reduced
p increases the solution.

It is also easy to see that s̄ ≥ s∗, i.e.,(
E
αR

)1/(α−1)

≥

(
p

α − 1

)1/α

.

Once the identical speed s is found, the schedule length is simply
T = R/s.

The above discussion is summarized in the following theorem
which gives the optimal speed setting and the optimal schedule
length.

Theorem 1. On a uniprocessor system, for a given energy consump-
tion constraint E satisfying

E ≥ Rp1−1/α α

(α − 1)1−1/α ,

the schedule length is minimized when all tasks are executed with the
same speed s which satisfies

sα −

(
E
R

)
s + p = 0,

where

s ∈

[(
E
αR

)1/(α−1)

,

(
E
R

)1/(α−1)
)
.

The optimal schedule length is T = R/s. Equivalently, T can be
obtained by solving the equation pTα − ETα−1

+ Rα = 0.

When p = 0, we have T = Rα/(α−1)/E1/(α−1), which was
obtained in [15].

Closed form solutions to s can be found for special cases of α.
When α = 2, we have

s2 −

(
E
R

)
s + p = 0,

and

s =
1
2

(
E/R +

√
(E/R)2 − 4p

)
.

When α = 3, we have

s3 −

(
E
R

)
s + p = 0.



K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25 17

Fig. 1. Schedule length T vs. energy constraint E (uniprocessor).

The discriminant of the above cubic equation is

∆ = −4
(

E
3R

)3

+ p2.

Since

E ≥ 3
(p
2

)2/3
R,

we have∆ ≤ 0, and the equation has three real roots ([42], p. 82).
The one which we are seeking is

s = 2 3√r cos
θ

3
= 2

√
E
3R

cos
θ

3
,

where

r =

√(
E
3R

)3

,

and

θ = cos−1
(
−

p
2r

)
,

and 2r ≥ p. (Note: The other two solutions are obtained by
replacing θ by θ + 2π , which gives s < 0, and θ by θ + 4π , which
gives s > 0 but too small to be in the desired interval.) For fixed
α and p, s approaches (E/R)1/(α−1) as E/R gets large, which was
obtained in [15] for p = 0.

In Fig. 1, we show T obtained in Theorem 1 as a function of E,
where α = 3, R = 10, and p = 2, 4, 6, 8, 10. Notice that for a
given p, there is a minimum energy requirement in Theorem 1, for
which, we get the maximum schedule length R/s∗. It is clear that
as E increases, T decreases accordingly.

4.2. Multiprocessor systems

Let us consider a multiprocessor system with m processors. A
schedule of a set of n tasks is essentially a partition of the set intom
groups, such that all the tasks in group k are executed on processor
k, where 1 ≤ k ≤ m. Let Rk denote group k as well as the total
execution requirement of the tasks in group k. For a given schedule
(R1, R2, . . . , Rm) of the n tasks onm processors, we are seeking task
execution speeds that minimize the schedule length.

Let Ek be the energy consumed by all the tasks in group k. We
observe that by fixing Ek and adjusting the execution speeds of the
tasks in group k to the same speed sk which satisfies

sαk −

(
Ek
Rk

)
sk + p = 0,

according to Theorem 1, the total execution time of the tasks in
group k can be minimized to Tk = Rk/sk. Therefore, the problem of
finding execution speeds s1, s2, . . . , sn that minimize the schedule
length is equivalent to finding E1, E2, . . . , Em that minimize the
schedule length. It is clear that if E is large enough, the schedule
length is minimized when all the m processors complete their
execution of the m groups of tasks at the same time T , that is,
T1 = T2 = · · · = Tm = T . Since

Ek =

∑
j∈Rk

ej =

⎛⎝∑
j∈Rk

rj

⎞⎠(sα−1
k +

p
sk

)
= Rk

(
sα−1
k +

p
sk

)
=

Rαk
Tα−1 + pT ,

where sk = Rk/T , we have

E =

m∑
k=1

Ek =
Rα1 + Rα2 + · · · + Rαm

Tα−1 + mpT ,

which implies that

mpTα − ETα−1
+

m∑
k=1

Rαk = 0.

Since
Ek − pT
E − mpT

=
Rαk

Rα1 + Rα2 + · · · + Rαm
,

we get

Ek =

(
Rαk

Rα1 + Rα2 + · · · + Rαm

)
(E − mpT ) + pT ,

for all 1 ≤ k ≤ m.
To solve the equation of T , let us consider the function

y = mpTα − ETα−1
= Tα−1(mpT − E).

Since
∂y
∂T

= αmpTα−1
− (α − 1)ETα−2

= Tα−2(αmpT − (α − 1)E),

we know that when

T = T̄ =

(
1 −

1
α

)
E
mp
,



18 K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25

y gets its minimum value of

y∗
=

(
α − 1
α

·
E
mp

)α−1 (
mp ·

α − 1
α

·
E
mp

− E
)

= −
(α − 1)α−1

αα
·

Eα

(mp)α−1 .

It is clear that when 0 < T ≤ T̄ , y is a decreasing function of T ; and
when T ≥ T̄ , y is an increasing function of T . Furthermore, y ≤ 0
when 0 ≤ T ≤ E/(mp), and y = 0 when T = 0 and T = E/(mp).
To have a solution of T , we must have

−

m∑
k=1

Rαk ≥ y∗,

that is,
m∑

k=1

Rαk ≤
(α − 1)α−1

αα
·

Eα

(mp)α−1 ,

which gives rise to

E ≥ m1−1/α

(
m∑

k=1

Rαk

)1/α

p1−1/α α

(α − 1)1−1/α .

Furthermore, if the above condition is satisfied, theremight be two
solutions to the equation

mpTα − ETα−1
+

m∑
k=1

Rαk = 0,

one in the interval (0, T̄ ] and another in the interval [T̄ , E/(mp)).
We will certainly take the shorter time in (0, T̄ ]. It is observed that
increasing E reduces y∗ and decreases the solution. Also, a reduced
Rα1 + Rα2 + · · · + Rαm decreases the solution.

Notice that the above condition for E is stronger than the one
derived from Theorem 1, i.e.,

E =

m∑
k=1

Ek ≥

(
m∑

k=1

Rk

)
p1−1/α α

(α − 1)1−1/α ,

where we notice that

m1−1/α

(
m∑

k=1

Rαk

)1/α

≥

m∑
k=1

Rk,

that is,

1
m

m∑
k=1

Rαk ≥

(
1
m

m∑
k=1

Rk

)α
,

which is clearly true due to the convexity of the function xα .
Thus, we have proved the following theorem.

Theorem 2. For a given schedule (R1, R2, . . . , Rm) of n tasks on a
multiprocessor system with m processors, if

E ≥ m1−1/α

(
m∑

k=1

Rαk

)1/α

p1−1/α α

(α − 1)1−1/α ,

we can achieve the schedule length T which satisfies

mpTα − ETα−1
+

m∑
k=1

Rαk = 0,

where

T ∈

(
0,
(
1 −

1
α

)
E
mp

]
,

by allocating the following energy to group k,

Ek =

(
Rαk

Rα1 + Rα2 + · · · + Rαm

)
(E − mpT ) + pT ,

for all 1 ≤ k ≤ m. The execution speed of tasks in group k is sk = Rk/T ,
for all 1 ≤ k ≤ m.

When m = 1, Theorem 2 is equivalent to Theorem 1, since the
equation pTα−ETα−1

+Rα = 0 can be obtained from sα− (E/R)s+
p = 0 by letting s = R/T .

When p = 0, we have

T =

(
Rα1 + Rα2 + · · · + Rαm

E

)1/(α−1)

,

which was obtained in [15].
The speed setting obtained by Theorem 2 is based on the condi-

tions that E is sufficiently large and that T1 = T2 = · · · = Tm. When
E is not sufficient to guarantee T1 = T2 = · · · = Tm, we need to
take a new approach. Furthermore, if E is insufficient (i.e., E < E(m),
where E(m) is defined below), the condition T1 = T2 = · · · =

Tm does not necessarily yield the minimum schedule length. For
instance, if Rk is too small, we might have sk = Rk/T < s∗ and
T > Rk/s∗. In this case, wewould rather set sk = s∗, which not only
reduces Tk, but also reduces Ek. The saved energy can be allocated
to other groups to reduce the schedule length. The principle is, we
should keep sk ≥ s∗ and Tk ≤ Rk/s∗, for all 1 ≤ k ≤ m.

Without loss of generality, we assume that R1 ≥ R2 ≥ · · · ≥ Rm.
Let us define E(1) to be the amount of energy just enough to run all
the tasks at the minimum speed s∗, i.e.,

E(1)
=

n∑
i=1

e∗

i = Rp1−1/α α

(α − 1)1−1/α .

If E = E(1), all tasks have the same minimum execution speed s∗,
which gives Tk = Rk/s∗, and T1 ≥ T2 ≥ · · · ≥ Tm. If E > E(1),
we first allocate the extra energy E − E(1) to group 1, such that T1
can be reduced. If T1 = T2, and there is still extra energy, we then
allocate the extra energy to groups 1 and 2, such that T1 and T2
can be reduced. If T1 = T2 = T3, and there is still extra energy, we
continue to allocate the extra energy to groups 1, 2, and 3, such that
T1, T2, and T3 can be reduced. Let us define E(k) to be the amount
of energy just enough to have T1 = T2 = · · · = Tk, and tasks in
groups k, k + 1, . . . ,m are executed with the minimum speed s∗,
where 1 ≤ k ≤ m. It is clear that Tk′ = Tk, i.e., Rk′/sk′ = Rk/s∗, and
sk′ = (Rk′/Rk)s∗, for all 1 ≤ k′ < k. Hence, we get

E(k)
=

k−1∑
k′=1

Ek′ +

m∑
k′=k

Ek′ =

k−1∑
k′=1

Rk′

(
sα−1
k′ +

p
sk′

)

+

m∑
k′=k

Rk′

(
(s∗)α−1

+
p
s∗

)
,

which is actually

E(k)
=

k−1∑
k′=1

(
Rαk′
Rα−1
k

(s∗)α−1
+ p

Rk

s∗

)

+

(
m∑

k′=k

Rk′

)
p1−1/α α

(α − 1)1−1/α ,

or,

E(k)
=

1
Rα−1
k

(
k−1∑
k′=1

Rαk′

)
(s∗)α−1

+ (k − 1)p
Rk

s∗

+

(
m∑

k′=k

Rk′

)
p1−1/α α

(α − 1)1−1/α ,



K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25 19

where 1 ≤ k ≤ m. (Notice that E(1)
≤ E(2)

≤ · · · ≤ E(m). Also, if
Rk = Rk+1, then E(k)

= E(k+1).)
Assume that k is the largest integer such that E ≥ E(k), where

1 ≤ k ≤ m, i.e., E is enough for T1 = T2 = · · · = Tk, but not for
T1 = T2 = · · · = Tk = Tk+1. Then, we allocate E − E(k) to groups 1,
2, . . . , k, such that T1 = T2 = · · · = Tk = T . Since sk = Rk/T , we get

Ek = Rk

(
sα−1
k +

p
sk

)
=

Rαk
Tα−1 + pT ,

and
k∑

k′=1

Ek =
Rα1 + Rα2 + · · · + Rαk

Tα−1 + kpT .

Since the available energy for groups 1, 2, . . . , k is

E ′
= E −

(
m∑

k′=k+1

Rk′

)
p1−1/α α

(α − 1)1−1/α ,

we have the following equation of T ,

Rα1 + Rα2 + · · · + Rαk
Tα−1 + kpT = E ′,

which yields

kpTα − E ′Tα−1
+

k∑
k′=1

Rαk′ = 0.

The above discussion essentially proves the following theorem.

Theorem 3. For a given schedule (R1, R2, . . . , Rm) of n tasks on a
multiprocessor system with m processors, if k is the largest integer
such that E ≥ E(k), where 1 ≤ k ≤ m, we can achieve the minimum
schedule length T which satisfies

kpTα −

(
E −

(
m∑

k′=k+1

Rk′

)
p1−1/α α

(α − 1)1−1/α

)
Tα−1

+

k∑
k′=1

Rαk′ = 0,

where

T ∈

(
0,
(
1 −

1
α

)
E ′

kp

]
The execution speed of tasks in group k′ is sk′ = Rk′/T for all 1 ≤ k′

≤

k, and sk′ = s∗ for all k + 1 ≤ k′
≤ m.

When E ≥ E(m), Theorem 3 reduces to Theorem 2. As pointed
out before, when E < E(m), Theorem 2 does not give the minimum
schedule length, since the condition T1 = T2 = · · · = Tm is not
necessary.

Closed form solutions to T can be found for special cases of α.
When α = 2, we have

kpT 2
− E ′T +

k∑
k′=1

R2
k′ = 0,

and

T =
1

2kp

⎛⎝E ′
−

√(E ′)2 − 4kp
k∑

k′=1

R2
k′

⎞⎠ .
When α = 3, we have

kpT 3
− E ′T 2

+ M = 0,

where

M =

k∑
k′=1

R3
k′ .

If we let

y = T −
E ′

3kp
,

we get y3 + 3uy + v = 0, where

u = −

(
E ′

3kp

)2

,

and

v =
27(kp)2M − 2(E ′)3

(3kp)3
.

The discriminant of the equation of y is

∆ = 4u3
+ v2 =

27(kp)2M(27(kp)2M − 4(E ′)3)
(3kp)6

.

Since E ≥ E(k), we have

E ′
≥

1
Rα−1
k

(
k−1∑
k′=1

Rαk′

)
(s∗)α−1

+ (k−1)p
Rk

s∗
+Rkp1−1/α α

(α − 1)1−1/α .

Since

(s∗)α−1
+

p
s∗

= p1−1/α α

(α − 1)1−1/α ,

the last inequality is actually

E ′
≥

1
Rα−1
k

(
k∑

k′=1

Rαk′

)
(s∗)α−1

+ kp
Rk

s∗
.

When α = 3, the last inequality is

E ′
≥ M

(
s∗

Rk

)2

+
1
2
kp

Rk

s∗
+

1
2
kp

Rk

s∗
,

which implies that

E ′
≥ 3 3

√(M (
s∗

Rk

)2
)(

1
2
kp

Rk

s∗

)(
1
2
kp

Rk

s∗

)
,

and 4(E ′)3 ≥ 27(kp)2M , and ∆ ≤ 0. Therefore, y has three real
roots. The one we are seeking is

y = 2 3√r cos
(
θ + 4π

3

)
=

2E ′

3kp
cos

(
θ + 4π

3

)
,

where

r =

√
−u3 =

(
E ′

3kp

)3

,

and

θ = cos−1
(
−
v

2r

)
= cos−1

(
2(E ′)3 − 27(kp)2M

2(E ′)3

)
.

It is easy to see that −2(E ′)3 ≤ 2(E ′)3 − 27(kp)2M < 2(E ′)3, which
implies that 0 < θ ≤ π , and 4π/3 < (θ + 4π )/3 ≤ 5π/3, and
−

1
2 < cos((θ + 4π )/3) ≤

1
2 , which gives −E ′/3kp < y ≤ E ′/3kp.

Finally, we have T = y + E ′/3kp, and 0 < T ≤ 2E ′/3kp.
(Note: The other two solutions are obtained by replacing θ+4π

by θ , which gives T > (1−1/α)E ′/kp, and θ+4π by θ+2π , which
gives T < 0.)

In Fig. 2, we show T obtained in Theorem 3 as a function of E,
where α = 3, m = 7, (R1, R2, R3, R4, R5, R6, R7) = (16, 14, 12, 10,
8, 6, 4), and p = 2, 4, 6, 8, 10. Notice that for a given p, there is a



20 K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25

Fig. 2. Schedule length T vs. energy constraint E (multiprocessor).

minimum energy requirement in Theorem 3, for which, we get the
maximum schedule length R1/s∗. It is clear that as E increases, T
decreases accordingly.

4.3. Lower bound

Asmentioned earlier, a reduced Rα1 +Rα2 +· · ·+Rαm decreases the
solution to T . For a set of tasks with total execution requirement
R, the best possible schedule (R1, R2, . . . , Rm) which minimizes
Rα1+Rα2+· · ·+Rαm and T is the onewhich has R1 = R2 = · · · = Rm =

R/m. By applying Theorem 3 on such a perfect schedule, we get
the following theorem which gives a lower bound for the optimal
schedule length. Since a perfect schedule is achievable, the lower
bound is tight.

Theorem 4. For a set of tasks with total execution requirement R on
amultiprocessor systemwith m processors, let T be the solution to the
following equation,

mpTα − ETα−1
+

Rα

mα−1 = 0,

where

T ∈

(
0,
(
1 −

1
α

)
E
mp

]
The optimal schedule length is T ∗

≥ T . The lower bound is tight.

The most significant application of a lower bound is to evaluate
the performance of a heuristic algorithm.

When p = 0, we have

T =
Rα/(α−1)

mE1/(α−1) ,

which was obtained in [15].
Closed form solutions to T can be found for special cases of α.

When α = 2, we have

mpT 2
− ET +

R2

m
= 0,

and

T =
1

2mp

(
E −

√
E2 − 4pR2

)
.

When α = 3, we have

mpT 3
− ET 2

+
R3

m2 = 0,

and

T =
E

3mp
+

2E
3mp

× cos
(
1
3

(
cos−1

(
2E3

− 27(mp)2R3/m2

2E3

)
+ 4π

))
,

which can be derived from our earlier discussion.
In Fig. 3, we show T obtained in Theorem 4 as a function of E,

where α = 3,m = 7, R = 70, and p = 2, 4, 6, 8, 10. Notice that for
a given p, there is a minimum energy requirement in Theorem 4,
for which, we get the maximum schedule length R/m/s∗. It is clear
that as E increases, T decreases accordingly.

5. Energy minimization

5.1. Uniprocessor systems

It is clear that on a uniprocessor system with time constraint T ,
where T ≤ R/s∗, the problem of minimizing energy consumption
with schedule length constraint is simply to find the execution
speeds s1, s2, . . . , sn, such that the total energy consumption

E(s1, s2, . . . , sn) =

n∑
i=1

ei =

n∑
i=1

ri

(
sα−1
i +

p
si

)
is minimized and the schedule length t1 + t2 + · · · + tn does not
exceed T , i.e.,

F (s1, s2, . . . , sn) =

n∑
i=1

ti =

n∑
i=1

ri
si

≤ T .

The energy consumption E(s1, s2, . . . , sn) and the schedule length
F (s1, s2, . . . , sn) are viewed as functions of s1, s2, . . . , sn.

We can minimize E(s1, s2, . . . , sn) subject to the constraint
F (s1, s2, . . . , sn) = T by using the Lagrange multiplier system:

∇E(s1, s2, . . . , sn) = λ∇F (s1, s2, . . . , sn),

where λ is a Lagrange multiplier. Since

∂E(s1, s2, . . . , sn)
∂si

= λ
∂F (s1, s2, . . . , sn)

∂si
,

that is,

ri

(
(α − 1)sα−2

i −
p
s2i

)
= −λ

ri
s2i
,



K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25 21

Fig. 3. Schedule length T vs. energy constraint E (lower bound).

Fig. 4. Energy constraint E vs. schedule length T (uniprocessor).

where λ ≤ 0, we have

si = s =

(
p − λ

α − 1

)1/α

≥ s∗,

for all 1 ≤ i ≤ n. Substituting the above si into the constraint
F (s1, s2, . . . , sn) = T , we get s = R/T .

The above discussion gives rise to the following theoremwhich
gives the optimal speed setting and the minimum energy con-
sumption.

Theorem 5. On a uniprocessor system, for a given schedule length
constraint T satisfying T ≤ R/s∗, the total energy consumption ismin-
imized when all tasks are executed with the same speed s = R/T . The
minimum energy consumption is E = R(sα−1

+p/s) = Rα/Tα−1
+pT .

Notice that E in Theorem 5 can be obtained from the equation
of T in Theorem 1.

When p = 0,we have E = Rα/Tα−1, whichwas obtained in [15].
In Fig. 4, we show E obtained in Theorem 5 as a function of T ,

where α = 3, R = 10, and p = 2, 4, 6, 8, 10. Notice that for a
given p, there is amaximum schedule length R/s∗ in Theorem 5, for
which, we get theminimum energy consumption. It is clear that as
T increases, E decreases accordingly.

5.2. Multiprocessor systems

By Theorem 5, for a given time constraint T , where T ≤ Rk/s∗,
for all 1 ≤ k ≤ m, the energy consumed by tasks in group k is
minimized as Ek = Rαk /T

α−1
+pT by executing all the tasks in group

k with the same speed Rk/T without missing the time deadline T .
The minimum energy consumption is simply

E1 + E2 + · · · + Em =
Rα1 + Rα2 + · · · + Rαm

Tα−1 + mpT .

The following result gives the optimal speed setting thatminimizes
energy consumption for a given schedule of n tasks on m proces-
sors.

Theorem 6. For a given schedule (R1, R2, . . . , Rm) of n tasks on
a multiprocessor system with m processors, and a schedule length
constraint T satisfying T ≤ Rk/s∗, for all 1 ≤ k ≤ m, the total energy
consumption is minimized when all the tasks in group k are executed
with the same speed Rk/T ,where 1 ≤ k ≤ m. The energy consumption
is

E =
Rα1 + Rα2 + · · · + Rαm

Tα−1 + mpT

for the above speed setting.



22 K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25

Fig. 5. Energy constraint E vs. schedule length T (multiprocessor).

Notice that E in Theorem 6 can be obtained from the equation
of T in Theorem 2. When m = 1, Theorem 6 is equivalent to
Theorem 5.

When p = 0, we have E = (Rα1 + Rα2 + · · · + Rαm)/T
α−1, which

was obtained in [15].
The speed setting obtained by Theorem 6 is based on the con-

dition that T is sufficiently short, i.e., T ≤ min{R1/s∗, R2/s∗, . . . ,
Rm/s∗}. For longer T , more careful treatment is required. Again,
without loss of generality, we assume that R1 ≥ R2 ≥ · · · ≥ Rm.
Assume that k is the largest integer such that T ≤ Rk/s∗, where
1 ≤ k ≤ m. Then, we can apply Theorem 5 for groups 1, 2, . . . , k,
and set the minimum speed s∗ for groups k + 1, k + 2, . . . , m. The
minimum energy consumption is

Rα1 + Rα2 + · · · + Rαk
Tα−1 + kpT +

m∑
k′=k+1

Rk′

(
(s∗)α−1

+
p
s∗

)
.

The above discussion is summarized in the following theorem.

Theorem 7. For a given schedule (R1, R2, . . . , Rm) of n tasks on a
multiprocessor system with m processors, if k is the largest integer
such that T ≤ Rk/s∗, where 1 ≤ k ≤ m, the total energy consumption
is minimized when all the tasks in group k′ are executed with the same
speed Rk′/T for all 1 ≤ k′

≤ k, and s∗ for all k + 1 ≤ k′
≤ m. The

energy consumption is

E =
Rα1 + Rα2 + · · · + Rαk

Tα−1 + kpT +

(
m∑

k′=k+1

Rk′

)
p1−1/α α

(α − 1)1−1/α

for the above speed setting.

Notice that E in Theorem 7 can be obtained from the equation
of T in Theorem 3. When k = m, Theorem 7 reduces to Theorem 6.

In Fig. 5, we show E obtained in Theorem 7 as a function of T ,
where α = 3, m = 7, (R1, R2, R3, R4, R5, R6, R7) = (16, 14, 12, 10,
8, 6, 4), and p = 2, 4, 6, 8, 10. Notice that for a given p, there is a
maximum schedule length R1/s∗ in Theorem 7, for which, we get
the minimum energy consumption. It is clear that as T increases, E
decreases accordingly.

5.3. Lower bound

By applying Theorem 7 on a perfect schedule with R1 = R2 =

· · · = Rm = R/m, we get the following theorem which gives a
lower bound for the optimal energy consumption.

Theorem 8. For a set of tasks with total execution requirement R on
a multiprocessor system with m processors, let

E =
Rα

(mT )α−1 + mpT .

The optimal energy consumption is E∗
≥ E. The lower bound is tight.

Notice that E in Theorem 8 can be obtained from the equation
of T in Theorem 4.

When p = 0, we have E = Rα/(mT )α−1, which was obtained
in [15].

In Fig. 6, we show E obtained in Theorem 8 as a function of T ,
where α = 3, m = 7, R = 70, and p = 2, 4, 6, 8, 10. Notice
that for a given p, there is a maximum schedule length R/m/s∗ in
Theorem 8, for which, we get the minimum energy consumption.
It is clear that as T increases, E decreases accordingly.

6. Simulation data

In this section, we demonstrate experimental data for some
heuristic algorithms.

Asmentioned earlier, both the problem ofminimizing schedule
length with energy consumption constraint and the problem of
minimizing energy consumption with schedule length constraint
on m identical processors can be solved by finding a partition R1,
R2, . . . , Rm of the n tasks intom groups. Such a partition is essentially
a schedule of the n tasks on m processors. Once a partition (i.e., a
schedule) is available, Theorems 3 and 7 can be used to decide
the actual task execution speeds which minimize either schedule
length or energy consumption.

We consider the classic list scheduling (LS) algorithm [11] and
its variations to solve the scheduling problem. Assume that the
task execution times are simply r1, r2, . . . , rn, and tasks are assigned
to the m processors (i.e., groups) by using the LS algorithm which
works as follows to schedule a list of tasks 1, 2, . . . , n.

• List Scheduling (LS): Initially, task k is scheduled on processor
(or group) k, where 1 ≤ k ≤ m, and tasks 1, 2, . . . , m are
removed from the list simultaneously. Upon the completion
of a task k, the first unscheduled task in the list, i.e., taskm+1,
is removed from the list and scheduled to be executed on
processor k. This process repeats until all tasks in the list are
finished.

Algorithm LS has many variations, depending on the strategy used
in the initial ordering of the tasks. We mention two of them here.



K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25 23

Fig. 6. Energy constraint E vs. schedule length T (lower bound).

Table 1
Simulation Data for Expected NSL (Uniform Distribution).
n SRF LS LRF

30 1.0594634 1.0410098 1.0026986
40 1.0336427 1.0233217 1.0008751
50 1.0216661 1.0147830 1.0003638
60 1.0150351 1.0102320 1.0001795
70 1.0110245 1.0075399 1.0000966
80 1.0084437 1.0057102 1.0000586
90 1.0066710 1.0045194 1.0000369

(99% Confidence Interval ±0.064%).

Table 2
Simulation Data for Expected NSL (Exponential Distribution).
n SRF LS LRF

30 1.2750190 1.1704856 1.0539067
40 1.1764939 1.0982698 1.0129433
50 1.1232332 1.0627054 1.0036916
60 1.0925662 1.0429723 1.0011996
70 1.0720423 1.0312238 1.0003108
80 1.0579561 1.0238927 1.0001484
90 1.0476960 1.0193924 1.0000548

(99% Confidence Interval ±0.454%).

• Largest Requirement First (LRF): This algorithm is the same as
the LS algorithm, except that the tasks are arranged such that
r1 ≥ r2 ≥ · · · ≥ rn.

• Smallest Requirement First (SRF): This algorithm is the same
as the LS algorithm, except that the tasks are arranged such
that r1 ≤ r2 ≤ · · · ≤ rn.

We call algorithm LS and its variations simply as list scheduling
algorithms.

We define the performance ratio as β = T/T ∗ for a heuristic
algorithm that solves the problem of minimizing schedule length
with energy consumption constraint, where T is the minimized
schedule length for the partition (R1, R2, . . . , Rm) produced by the
heuristic algorithm according to Theorem 3, and T ∗ is the optimal
schedule length. We define the performance ratio as β = E/E∗ for
a heuristic algorithm that solves the problem of minimizing en-
ergy consumption with schedule length constraint, where E is the
minimized energy consumption for the partition (R1, R2, . . . , Rm)
produced by the heuristic algorithm according to Theorem 7, and
E∗ is the optimal energy consumption.

We define the normalized schedule length (NSL) as T divided by
the lower bound obtained by Theorem 4. NSL is an upper bound

for the performance ratio β = T/T ∗ for the problem of minimizing
schedule length with energy consumption constraint. When the
ri’s are random variables, T , T ∗, β , and NSL all become random
variables. It is clear that β̄ ≤ NSL, i.e., the expected performance
ratio is no greater than the expected normalized schedule length.
(We use x̄ to represent the expectation of a random variable x.) We
define the normalized energy consumption (NEC) as E divided by the
lower bound obtained by Theorem 8. NEC is an upper bound for
the performance ratio β = E/E∗ for the problem of minimizing
energy consumption with schedule length constraint. It is clear
that β̄ ≤ NEC.

Notice that for a given heuristic algorithm, the expected nor-
malized schedule length NSL (the expected normalized energy
consumption NEC, respectively) are determined by m, n, α, p, the
probability distribution of the ri’s, and E (T , respectively). In our
simulations, the number of processors is set as m = 10. The
number of tasks is in the range n = 30, 40, . . . , 90. The parameter
α is set as 3. The static power consumption p is set as 5. The
ri’s are treated as independent and identically distributed (i.i.d.)
continuous random variables. Two probability distributions are
considered, i.e., a uniform distribution in the range [0, 1) and an
exponential distribution with mean 1. The energy constraint E is
set as 2(e∗

1+e∗

2+· · ·+e∗
n), i.e., twice theminimum required energy.

The time constraint T is set as (R1/s∗)/2, i.e., half of the longest
execution time of all processors with the minimum execution
speed.

Tables 1–4 show our simulation data. For each combination of
n, probability distribution, and algorithm A ∈ { SRF, LS, LRF }, we
generate 5000 sets of n random tasks, produce their schedules by
using algorithm A, calculate their NSL (or NEC), and report the
average of NSL (or NEC), which is the experimental value of NSL
(or NEC). The 99% confidence interval of all the data in the same
table is also given.

We observe the following facts. (1) The performance of the
three list scheduling algorithms are ranked as SRF, LS, LRF, from
the worst to the best. This is not surprising since LRF schedules
tasks with long execution times earlier and causes more balanced
task distribution among the processors. On the other hand, SRF
schedules taskswith short execution times earlier and causesmore
imbalanced task distribution among the processors. (2) In all cases,
NSL and NEC (and β̄ as well) quickly approach one as n increases,
which means that the performance of list scheduling algorithms
is close to the optimal. (3) Finally, a probability distribution of
task requirements with greater coefficient of variation (e.g., expo-
nential distribution vs. uniform distribution) results in degraded
performance of the list scheduling algorithms.



24 K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25

Table 3
Simulation Data for Expected NEC (Uniform Distribution).
n SRF LS LRF

30 1.0704568 1.0490473 1.0038345
40 1.0421567 1.0294917 1.0012634
50 1.0280285 1.0192497 1.0005388
60 1.0197812 1.0135356 1.0002687
70 1.0148981 1.0100991 1.0001469
80 1.0114983 1.0077859 1.0000863
90 1.0091699 1.0062641 1.0000537

(99% Confidence Interval ±0.069%).

Table 4
Simulation Data for Expected NEC (Exponential Distribution).
n SRF LS LRF

30 1.1592101 1.1172734 1.0394368
40 1.1345771 1.0827573 1.0121896
50 1.1102559 1.0612325 1.0036915
60 1.0902935 1.0453380 1.0010875
70 1.0750003 1.0347227 1.0004506
80 1.0628774 1.0276285 1.0001421
90 1.0538246 1.0219334 1.0000577

(99% Confidence Interval ±0.156%).

Wewould like tomention thatwhile a heuristic energy-efficient
task scheduling algorithm such as LRF indeed performs very well,
we would not be able to know its performance ratio, i.e., how close
its performance is when compared with an optimal algorithm. The
significance of the lower bounds obtained in this paper is that for
any heuristic algorithm, we are able to know the performance of
the algorithm when compared with an optimal algorithm, since
the performance ratio is no greater than NSL or NEC, which are
analytically and experimentally available.

We would like to emphasize that the performance data of
the above evaluated algorithms actually depend on the derived
lower bounds in this paper. The simulation data for the expected
NSL and the expected NEC depend not only on the performance
of a scheduling algorithm, but also on the quality of the lower
bounds. The close-to-optimal performance of the list scheduling
algorithms implies that our lower bounds are of high quality. These
lower bounds can be applied to evaluate other energy-efficient
task scheduling algorithms with both dynamic and static power
consumptions.

7. Extensions

Assume that we are given n independent parallel tasks to be
executed on m identical processors. Task i requires πi processors
to execute, where 1 ≤ i ≤ n, and any πi of the m processors can
be allocated to task i. It is possible that in executing task i, the πi
processors may have different execution requirements. Let ri rep-
resent the maximum execution requirement of the πi processors
executing task i. The execution time of task i is ti = ri/si, where
si is the execution speed. Note that all the πi processors allocated
to task i have the same execution speed si for duration ti, although
some of the πi processors may be idle for some time. The amount
of work performed for task i iswi = πiti. We use pi to represent the
power required to execute task i, which is pi = sαi + p. The energy
consumed to execute task i is ei = πipiti = πi(sαi + p)(ri/si). Let

W = w1 + w2 + · · · + wn = π1r1 + π2r2 + · · · + πnrn

denote the total amount of work to be performed for the n tasks.
Imagine that each parallel task i is broken into πi sequential

tasks, each having execution requirement ri. It is clear that any
speed setting and schedule of thenparallel tasks is also a legitimate
speed setting and schedule of the n′

= π1+π2+· · ·+πn sequential
tasks. However, it is more flexible to schedule the n′ sequential

tasks, since the πi sequential tasks obtained from parallel task i can
have different execution speeds and do not need to be scheduled
simultaneously. Hence, the optimal schedule length of the n′ se-
quential tasks is no longer than the optimal schedule length of the
n parallel tasks. The optimal schedule length of the n′ sequential
tasks has a lower bound given in Theorem 4, where R is the total
execution requirement of the n′ sequential tasks. It is clear that
R = π1r1 + π2r2 + · · · + πnrn = W . Therefore, the optimal
schedule length of the n parallel tasks also has a lower bound given
in Theorem 4, with R replaced byW .

For n precedence constrained tasks (sequential or parallel), we
have a similar argument. Imagine that the n tasks are treated as
independent tasks. It is clear that any speed setting and schedule
of the n precedence constrained tasks is also a legitimate speed
setting and schedule of the n independent tasks. However, it is
more flexible to schedule the n independent tasks, which can have
arbitrary execution order. Hence, the optimal schedule length of
the n independent tasks is no longer than the optimal schedule
length of the n precedence constrained tasks.

In our study, it has been assumed that task execution speed is a
continuous and unbounded variable. For a real processor, its speed
has several discrete and bounded levels. It is clear that the optimal
schedule length on processors with continuous and unbounded
speed levels is no longer than the optimal schedule length on
processors with discrete or bounded speed levels.

The above discussion can be summarized in the following the-
orem.

Theorem9. For a set of tasks (sequential or parallel, and independent
or precedence constrained) with total execution requirement W on
m processors (with discrete or continuous speed levels, and bounded
or unbounded speed ranges), let T be the solution to the following
equation,

mpTα − ETα−1
+

Wα

mα−1 = 0,

where

T ∈

(
0,
(
1 −

1
α

)
E
mp

]
The optimal schedule length is T ∗

≥ T . The lower bound is tight.

Similarly, we can prove the following theorem.

Theorem 10. For a set of tasks (sequential or parallel, independent
or precedence constrained) with total execution requirement W on m
processors (with discrete or continuous speed levels, and bounded or
unbounded speed ranges), let

E =
Wα

(mT )α−1 + mpT .

The optimal energy consumption is E∗
≥ E. The lower bound is tight.

8. Conclusions

Wehave addressed energy-efficient task schedulingwhen static
power consumption is a significant part of energy consumption
which cannot be ignored. We have made the following progress.
We investigated the problems of scheduling a set of independent
sequential tasks on identical processors so that the schedule length
is minimized for a given energy consumption constraint or the
energy consumption is minimized for a given schedule length
constraint. In particular, for a given schedule, we are able to find
the optimal task execution speed setting analytically for delay and
energy minimization. We have established lower bounds for the
minimum schedule length of a set of tasks with a given energy
consumption constraint and the minimum energy consumption of



K. Li / J. Parallel Distrib. Comput. 123 (2019) 13–25 25

a set of tasks with a given schedule length constraint. Our lower
bounds are applicable to sequential or parallel, and independent
or precedence constrained tasks, on processors with discrete or
continuous speed levels, and bounded or unbounded speed ranges.
The significance of these lower bounds is that they can be used
to evaluate the performance of any heuristic algorithms when
compared with optimal algorithms. As an example, we have per-
formed experimental study on the performance of list scheduling
algorithms and showed that their performance is very close to the
optimal. The paper hasmade significant contributions to analytical
study of energy-efficient task scheduling with both dynamic and
static power consumptions.

Acknowledgments

The authorwishes to express his gratitude to the editor and two
anonymous reviewers for their constructive commentswhich help
to improve the presentation of the paper.

References

[1] S. Albers, Energy-efficient algorithms, Commun. ACM 53 (5) (2010) 86–96.
[2] A. Antoniadis, C.-C. Huang, S. Ott, A fully polynomial-time approximation

scheme for speed scaling with sleep state, in: Proceedings of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2015, pp. 1102–1113.

[3] P. Baptiste, M. Chrobak, C. Dürr, Polynomial-time algorithms for minimum
energy scheduling, ACM Trans. Algorithms 8 (3) (2012) article (26).

[4] S. Borkar, Design challenges of technology scaling, IEEE Micro 19 (4) (1999)
23–29.

[5] J.A. Butts, G.S. Sohi, A static power model for architects, in: Proceedings of
the 33rd ACM/IEEE International Symposium onMicroarchitecture, 2000, pp.
191–201.

[6] J. Cao, K. Li, I. Stojmenovic, Optimal power allocation and load distribution for
multiple heterogeneous multicore server processors across clouds and data
centers, IEEE Trans. Comput. 63 (1) (2014) 45–58.

[7] S.-H. Chan, T.-W. Lam, L.-K. Lee, C.-M. Liu, H.-F. Ting, Sleep management on
multiple machines for energy and flow time, Lecture Notes in Comput. Sci.
6755 (2011) 219–231.

[8] P. Chrétienne, E.G. Coffman, J.K. Lenstra, Z. Liu (Eds.), Scheduling Theory and
Its Applications, John Wiley & Sons, Chichester, England, 1995.

[9] S.K. Garg, C.S. Yeo, A. Anandasivam, R. Buyya, Environment-conscious
scheduling of HPC applications on distributed cloud-oriented data centers,
J. Parallel Distrib. Comput. 71 (6) (2011) 732–749.

[10] M.E.T. Gerards, Algorithmic Power Management – Energy Minimization un-
der Real-Time Constraints (Ph.D. thesis), University of Twente, Netherlands,
2014.

[11] R.L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl.
Math. 17 (2) (1969) 416–429.

[12] D.S. Hochbaum (Ed.), Approximation Algorithms for NP-Hard Problems, PWS
Publishing Company, Boston, MA, 1997.

[13] S. Irani, S. Shukla, R. Gupta, Algorithms for power savings, ACM Trans. Algo-
rithms 3 (4) (2007) Article (41).

[14] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing
systems under different operating conditions, IEEE Trans. Parallel Distrib.
Syst. 22 (8) (2011) 1374–1381.

[15] K. Li, Performance analysis of power-aware task scheduling algorithms on
multiprocessor computers with dynamic voltage and speed, IEEE Trans. Par-
allel Distrib. Syst. 19 (11) (2008) 1484–1497.

[16] K. Li, Energy efficient scheduling of parallel tasks on multiprocessor comput-
ers, J. Supercomput. 60 (2) (2012a) 223–247.

[17] K. Li, Scheduling precedence constrained tasks with reduced processor en-
ergy on multiprocessor computers, IEEE Trans. Comput. 61 (12) (2012b)
1668–1681.

[18] K. Li, Power and performance management for parallel computations in
clouds and data centers, J. Comput. System Sci. 82 (2016a) 174–190.

[19] K. Li, Energy and time constrained task scheduling onmultiprocessor comput-
ers with discrete speed levels, J. Parallel Distrib. Comput. 95 (2016b) 15–28.

[20] K. Li, Energy-efficient task scheduling onmultiple heterogeneous computers:
algorithms, analysis, and performance evaluation, IEEE Trans. Sustain. Com-
put. 1 (1) (2016c) 7–19.

[21] K. Li, Scheduling parallel tasks with energy and time constraints on multiple
manycore processors in a cloud computing environment, Future Gener. Com-
put. Syst. 82 (2018) 591–605.

[22] K. Li, X. Tang, K. Li, Energy-efficient stochastic task scheduling on heteroge-
neous computing systems, IEEE Trans. Parallel Distrib. Syst. 25 (11) (2014)
2867–2876.

[23] A.F. Lorenzon, M.C. Cera, A.C.S. Beck, On the influence of static power con-
sumption in multicore embedded systems, in: IEEE International Symposium
on Circuits and Systems, Lisbon, Portugal, 2015, pp. 24–27.

[24] A.F. Lorenzon, M.C. Cera, A.C.S. Beck, Investigating different general-purpose
and embedded multicores to achieve optimal trade-offs between perfor-
mance and energy, J. Parallel Distrib. Comput. 95 (2016) 107–123.

[25] J. Mei, K. Li, K. Li, Energy-aware task scheduling in heterogeneous computing
environments, Cluster Comput. 17 (2) (2014) 537–550.

[26] K. Pruhs, R. van Stee, P. Uthaisombut, Speed scaling of tasks with precedence
constraints, Theory Comput. Syst. 43 (1) (2008) 67–80.

[27] N.B. Rizvandi, J. Taheri, A.Y. Zomaya, Some observations on optimal frequency
selection in DVFS-based energy consumptionminimization, J. Parallel Distrib.
Comput. 71 (8) (2011) 1154–1164.

[28] J. Srinivasan, AnOverviewof Static PowerDissipation, http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.24.4173.

[29] G.L. Valentini,W. Lassonde, S.U. Khan, N.Min-Allah, S.A.Madani, J. Li, L. Zhang,
L. Wang, N. Ghani, J. Kolodziej, H. Li, A.Y. Zomaya, C.-Z. Xu, P. Balaji, A. Vishnu,
F. Pinel, J.E. Pecero, D. Kliazovich, P. Bouvry, An overview of energy efficiency
techniques in cluster computing systems, Cluster Comput. 16 (1) (2013) 3–15.

[30] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, K. Li, Energy-efficient fault-tolerant
scheduling of reliable parallel applications on heterogeneous embedded sys-
tems, IEEE Trans. Sustain. Comput. 3 (3) (2018) 167–181.

[31] G. Xie, J. Jiang, R. Li, K. Li,Minimizing energy consumption of real-time parallel
applications using downward and upward approaches on heterogeneous
systems, IEEE Trans. Ind. Inform. 13 (3) (2017a) 1068–1078.

[32] G. Xie, G. Zeng, R. Li, K. Li, Energy-aware processor merging algorithms for
deadline-constrained parallel applications in heterogeneous cloud comput-
ing, IEEE Trans. Sustain. Comput. 2 (2) (2017b) 62–75.

[33] G. Xie, G. Zeng, R. Li, K. Li, Energy-efficient scheduling algorithms for real-time
parallel applications on heterogeneous distributed embedded systems, IEEE
Trans. Parallel Distrib. Syst. 28 (12) (2017c) 3426–3442.

[34] Y. Xu, K. Li, L. He, L. Zhang, K. Li, A hybrid chemical reaction optimization
scheme for task scheduling on heterogeneous computing systems, IEEE Trans.
Parallel Distrib. Syst. 26 (12) (2015) 3208–3222.

[35] Y. Xu, K. Li, J. Hu, K. Li, A genetic algorithm for task scheduling on hetero-
geneous computing systems using multiple priority queues, Inform. Sci. 270
(2014) 255–287.

[36] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, K. Li, Maximizing reliability with energy
conservation for parallel task scheduling in a heterogeneous cluster, Inform.
Sci. 319 (2015) 113–131.

[37] B. Zhao, H. Aydin, D. Zhu, On maximizing reliability of real-time embedded
applications under hard energy constraint, IEEE Trans. Ind. Inform. 6 (3)
(2010) 316–328.

[38] X. Zhong, C.-Z. Xu, Energy-aware modeling and scheduling for dynamic volt-
age scaling with statistical real-time guarantee, IEEE Trans. Comput. 56 (3)
(2007) 358–372.

[39] D. Zhu, R. Melhem, B.R. Childers, Scheduling with dynamic voltage/speed
adjustment using slack reclamation inmultiprocessor real-time systems, IEEE
Trans. Parallel Distrib. Syst. 14 (7) (2003) 686–700.

[40] S. Zhuravlev, J.C. Saez, S. Blagodurov, A. Fedorova, M. Prieto, Survey of energy-
cognizant scheduling techniques, IEEE Trans. Parallel Distrib. Syst. 24 (7)
(2013) 1447–1464.

[41] Z. Zong, A. Manzanares, X. Ruan, X. Qin, EAD and PEBD: two energy-aware du-
plication scheduling algorithms for parallel tasks on homogeneous clusters,
IEEE Trans. Comput. 60 (3) (2011) 360–374.

[42] D. Zwillinger (Ed.), Standard Mathematical Tables and Formulae, thirtyth ed.,
CRC Press, Boca Raton, FL, 1996.

Dr. Keqin Li is a SUNY Distinguished Professor of com-
puter science in the State University of New York. He is
also a Distinguished Professor of Chinese National Re-
cruitment Program of Global Experts (1000 Plan) at Hu-
nan University, China. He was an Intellectual Ventures
endowed visiting chair professor at the National Labo-
ratory for Information Science and Technology, Tsinghua
University, Beijing, China, during 2011–2014. His current
research interests include parallel computing and high-
performance computing, distributed computing, energy-
efficient computing and communication, heterogeneous

computing systems, cloud computing, big data computing, CPU–GPU hybrid and
cooperative computing, multicore computing, storage and file systems, wireless
communication networks, sensor networks, peer-to-peer file sharing systems, mo-
bile computing, service computing, Internet of things and cyber–physical systems.
He has published over 590 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently serving or
has served on the editorial boards of IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Computers, IEEE Transactions on Cloud Computing, IEEE
Transactions on Services Computing, and IEEE Transactions on Sustainable Computing.
He is an IEEE Fellow.

http://refhub.elsevier.com/S0743-7315(18)30647-6/b1
http://refhub.elsevier.com/S0743-7315(18)30647-6/b3
http://refhub.elsevier.com/S0743-7315(18)30647-6/b3
http://refhub.elsevier.com/S0743-7315(18)30647-6/b3
http://refhub.elsevier.com/S0743-7315(18)30647-6/b4
http://refhub.elsevier.com/S0743-7315(18)30647-6/b4
http://refhub.elsevier.com/S0743-7315(18)30647-6/b4
http://refhub.elsevier.com/S0743-7315(18)30647-6/b6
http://refhub.elsevier.com/S0743-7315(18)30647-6/b6
http://refhub.elsevier.com/S0743-7315(18)30647-6/b6
http://refhub.elsevier.com/S0743-7315(18)30647-6/b6
http://refhub.elsevier.com/S0743-7315(18)30647-6/b6
http://refhub.elsevier.com/S0743-7315(18)30647-6/b7
http://refhub.elsevier.com/S0743-7315(18)30647-6/b7
http://refhub.elsevier.com/S0743-7315(18)30647-6/b7
http://refhub.elsevier.com/S0743-7315(18)30647-6/b7
http://refhub.elsevier.com/S0743-7315(18)30647-6/b7
http://refhub.elsevier.com/S0743-7315(18)30647-6/b8
http://refhub.elsevier.com/S0743-7315(18)30647-6/b8
http://refhub.elsevier.com/S0743-7315(18)30647-6/b8
http://refhub.elsevier.com/S0743-7315(18)30647-6/b9
http://refhub.elsevier.com/S0743-7315(18)30647-6/b9
http://refhub.elsevier.com/S0743-7315(18)30647-6/b9
http://refhub.elsevier.com/S0743-7315(18)30647-6/b9
http://refhub.elsevier.com/S0743-7315(18)30647-6/b9
http://refhub.elsevier.com/S0743-7315(18)30647-6/b10
http://refhub.elsevier.com/S0743-7315(18)30647-6/b10
http://refhub.elsevier.com/S0743-7315(18)30647-6/b10
http://refhub.elsevier.com/S0743-7315(18)30647-6/b10
http://refhub.elsevier.com/S0743-7315(18)30647-6/b10
http://refhub.elsevier.com/S0743-7315(18)30647-6/b11
http://refhub.elsevier.com/S0743-7315(18)30647-6/b11
http://refhub.elsevier.com/S0743-7315(18)30647-6/b11
http://refhub.elsevier.com/S0743-7315(18)30647-6/b12
http://refhub.elsevier.com/S0743-7315(18)30647-6/b12
http://refhub.elsevier.com/S0743-7315(18)30647-6/b12
http://refhub.elsevier.com/S0743-7315(18)30647-6/b13
http://refhub.elsevier.com/S0743-7315(18)30647-6/b13
http://refhub.elsevier.com/S0743-7315(18)30647-6/b13
http://refhub.elsevier.com/S0743-7315(18)30647-6/b14
http://refhub.elsevier.com/S0743-7315(18)30647-6/b14
http://refhub.elsevier.com/S0743-7315(18)30647-6/b14
http://refhub.elsevier.com/S0743-7315(18)30647-6/b14
http://refhub.elsevier.com/S0743-7315(18)30647-6/b14
http://refhub.elsevier.com/S0743-7315(18)30647-6/b15
http://refhub.elsevier.com/S0743-7315(18)30647-6/b15
http://refhub.elsevier.com/S0743-7315(18)30647-6/b15
http://refhub.elsevier.com/S0743-7315(18)30647-6/b15
http://refhub.elsevier.com/S0743-7315(18)30647-6/b15
http://refhub.elsevier.com/S0743-7315(18)30647-6/b16
http://refhub.elsevier.com/S0743-7315(18)30647-6/b16
http://refhub.elsevier.com/S0743-7315(18)30647-6/b16
http://refhub.elsevier.com/S0743-7315(18)30647-6/b17
http://refhub.elsevier.com/S0743-7315(18)30647-6/b17
http://refhub.elsevier.com/S0743-7315(18)30647-6/b17
http://refhub.elsevier.com/S0743-7315(18)30647-6/b17
http://refhub.elsevier.com/S0743-7315(18)30647-6/b17
http://refhub.elsevier.com/S0743-7315(18)30647-6/b18
http://refhub.elsevier.com/S0743-7315(18)30647-6/b18
http://refhub.elsevier.com/S0743-7315(18)30647-6/b18
http://refhub.elsevier.com/S0743-7315(18)30647-6/b19
http://refhub.elsevier.com/S0743-7315(18)30647-6/b19
http://refhub.elsevier.com/S0743-7315(18)30647-6/b19
http://refhub.elsevier.com/S0743-7315(18)30647-6/b20
http://refhub.elsevier.com/S0743-7315(18)30647-6/b20
http://refhub.elsevier.com/S0743-7315(18)30647-6/b20
http://refhub.elsevier.com/S0743-7315(18)30647-6/b20
http://refhub.elsevier.com/S0743-7315(18)30647-6/b20
http://refhub.elsevier.com/S0743-7315(18)30647-6/b21
http://refhub.elsevier.com/S0743-7315(18)30647-6/b21
http://refhub.elsevier.com/S0743-7315(18)30647-6/b21
http://refhub.elsevier.com/S0743-7315(18)30647-6/b21
http://refhub.elsevier.com/S0743-7315(18)30647-6/b21
http://refhub.elsevier.com/S0743-7315(18)30647-6/b22
http://refhub.elsevier.com/S0743-7315(18)30647-6/b22
http://refhub.elsevier.com/S0743-7315(18)30647-6/b22
http://refhub.elsevier.com/S0743-7315(18)30647-6/b22
http://refhub.elsevier.com/S0743-7315(18)30647-6/b22
http://refhub.elsevier.com/S0743-7315(18)30647-6/b24
http://refhub.elsevier.com/S0743-7315(18)30647-6/b24
http://refhub.elsevier.com/S0743-7315(18)30647-6/b24
http://refhub.elsevier.com/S0743-7315(18)30647-6/b24
http://refhub.elsevier.com/S0743-7315(18)30647-6/b24
http://refhub.elsevier.com/S0743-7315(18)30647-6/b25
http://refhub.elsevier.com/S0743-7315(18)30647-6/b25
http://refhub.elsevier.com/S0743-7315(18)30647-6/b25
http://refhub.elsevier.com/S0743-7315(18)30647-6/b26
http://refhub.elsevier.com/S0743-7315(18)30647-6/b26
http://refhub.elsevier.com/S0743-7315(18)30647-6/b26
http://refhub.elsevier.com/S0743-7315(18)30647-6/b27
http://refhub.elsevier.com/S0743-7315(18)30647-6/b27
http://refhub.elsevier.com/S0743-7315(18)30647-6/b27
http://refhub.elsevier.com/S0743-7315(18)30647-6/b27
http://refhub.elsevier.com/S0743-7315(18)30647-6/b27
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.4173
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.4173
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.4173
http://refhub.elsevier.com/S0743-7315(18)30647-6/b29
http://refhub.elsevier.com/S0743-7315(18)30647-6/b29
http://refhub.elsevier.com/S0743-7315(18)30647-6/b29
http://refhub.elsevier.com/S0743-7315(18)30647-6/b29
http://refhub.elsevier.com/S0743-7315(18)30647-6/b29
http://refhub.elsevier.com/S0743-7315(18)30647-6/b29
http://refhub.elsevier.com/S0743-7315(18)30647-6/b29
http://refhub.elsevier.com/S0743-7315(18)30647-6/b30
http://refhub.elsevier.com/S0743-7315(18)30647-6/b30
http://refhub.elsevier.com/S0743-7315(18)30647-6/b30
http://refhub.elsevier.com/S0743-7315(18)30647-6/b30
http://refhub.elsevier.com/S0743-7315(18)30647-6/b30
http://refhub.elsevier.com/S0743-7315(18)30647-6/b31
http://refhub.elsevier.com/S0743-7315(18)30647-6/b31
http://refhub.elsevier.com/S0743-7315(18)30647-6/b31
http://refhub.elsevier.com/S0743-7315(18)30647-6/b31
http://refhub.elsevier.com/S0743-7315(18)30647-6/b31
http://refhub.elsevier.com/S0743-7315(18)30647-6/b32
http://refhub.elsevier.com/S0743-7315(18)30647-6/b32
http://refhub.elsevier.com/S0743-7315(18)30647-6/b32
http://refhub.elsevier.com/S0743-7315(18)30647-6/b32
http://refhub.elsevier.com/S0743-7315(18)30647-6/b32
http://refhub.elsevier.com/S0743-7315(18)30647-6/b33
http://refhub.elsevier.com/S0743-7315(18)30647-6/b33
http://refhub.elsevier.com/S0743-7315(18)30647-6/b33
http://refhub.elsevier.com/S0743-7315(18)30647-6/b33
http://refhub.elsevier.com/S0743-7315(18)30647-6/b33
http://refhub.elsevier.com/S0743-7315(18)30647-6/b34
http://refhub.elsevier.com/S0743-7315(18)30647-6/b34
http://refhub.elsevier.com/S0743-7315(18)30647-6/b34
http://refhub.elsevier.com/S0743-7315(18)30647-6/b34
http://refhub.elsevier.com/S0743-7315(18)30647-6/b34
http://refhub.elsevier.com/S0743-7315(18)30647-6/b35
http://refhub.elsevier.com/S0743-7315(18)30647-6/b35
http://refhub.elsevier.com/S0743-7315(18)30647-6/b35
http://refhub.elsevier.com/S0743-7315(18)30647-6/b35
http://refhub.elsevier.com/S0743-7315(18)30647-6/b35
http://refhub.elsevier.com/S0743-7315(18)30647-6/b36
http://refhub.elsevier.com/S0743-7315(18)30647-6/b36
http://refhub.elsevier.com/S0743-7315(18)30647-6/b36
http://refhub.elsevier.com/S0743-7315(18)30647-6/b36
http://refhub.elsevier.com/S0743-7315(18)30647-6/b36
http://refhub.elsevier.com/S0743-7315(18)30647-6/b37
http://refhub.elsevier.com/S0743-7315(18)30647-6/b37
http://refhub.elsevier.com/S0743-7315(18)30647-6/b37
http://refhub.elsevier.com/S0743-7315(18)30647-6/b37
http://refhub.elsevier.com/S0743-7315(18)30647-6/b37
http://refhub.elsevier.com/S0743-7315(18)30647-6/b38
http://refhub.elsevier.com/S0743-7315(18)30647-6/b38
http://refhub.elsevier.com/S0743-7315(18)30647-6/b38
http://refhub.elsevier.com/S0743-7315(18)30647-6/b38
http://refhub.elsevier.com/S0743-7315(18)30647-6/b38
http://refhub.elsevier.com/S0743-7315(18)30647-6/b39
http://refhub.elsevier.com/S0743-7315(18)30647-6/b39
http://refhub.elsevier.com/S0743-7315(18)30647-6/b39
http://refhub.elsevier.com/S0743-7315(18)30647-6/b39
http://refhub.elsevier.com/S0743-7315(18)30647-6/b39
http://refhub.elsevier.com/S0743-7315(18)30647-6/b40
http://refhub.elsevier.com/S0743-7315(18)30647-6/b40
http://refhub.elsevier.com/S0743-7315(18)30647-6/b40
http://refhub.elsevier.com/S0743-7315(18)30647-6/b40
http://refhub.elsevier.com/S0743-7315(18)30647-6/b40
http://refhub.elsevier.com/S0743-7315(18)30647-6/b41
http://refhub.elsevier.com/S0743-7315(18)30647-6/b41
http://refhub.elsevier.com/S0743-7315(18)30647-6/b41
http://refhub.elsevier.com/S0743-7315(18)30647-6/b41
http://refhub.elsevier.com/S0743-7315(18)30647-6/b41
http://refhub.elsevier.com/S0743-7315(18)30647-6/b42
http://refhub.elsevier.com/S0743-7315(18)30647-6/b42
http://refhub.elsevier.com/S0743-7315(18)30647-6/b42

	Optimal task execution speed setting and lower bound for delay and energy minimization
	Introduction
	Background Information
	Related Work
	Delay Minimization
	Uniprocessor Systems
	Multiprocessor Systems
	Lower Bound

	Energy Minimization
	Uniprocessor Systems
	Multiprocessor Systems
	Lower Bound

	Simulation Data
	Extensions
	Conclusions
	Acknowledgments
	References


