
Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Non-clairvoyant scheduling of independent parallel tasks on single
and multiple multicore processors
Keqin Li
Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• Worst-case performance bound for offline scheduling on a single multicore processor.
• Worst-case performance bound for offline scheduling on multiple multicore processors.
• Average-case performance bound for online scheduling on multiple multicore processors.

a r t i c l e i n f o

Article history:
Received 25 September 2017
Received in revised form 3 April 2018
Accepted 1 June 2018
Available online xxxx

Keywords:
Multicore processor
Non-clairvoyant scheduling
Online scheduling
Parallel task
Performance bound
Task scheduling

a b s t r a c t

We investigate the problem of non-clairvoyant scheduling of independent parallel tasks on single and
multiple multicore processors. For a single multicore processor, we derive an asymptotic worst-case
performance bound for a non-clairvoyant offline scheduling algorithm called largest task first (LTF).
The result improves our previous result on a single parallel computing system. For multiple multicore
processors, we derive an asymptotic worst-case performance bound for the LTF algorithm. To the best of
our knowledge, there has been little result on scheduling parallel tasks on multiple parallel computing
systems. For multiple multicore processors, we also derive an asymptotic average-case performance
bound for a non-clairvoyant online scheduling algorithm called random task first (RTF). The result
extends our earlier result on a single parallel computing system. Extensive simulation results are also
demonstrated.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Since power consumption in a microprocessor is in the order
of the clock frequency raised to the power of φ ≥ 3, increasing
clock frequency and execution speed has led to the power density
(Watts/cm2) of a microprocessor comparative to that of a nuclear
reactor and a rocket nozzle. Furthermore, the exponential growth
of transistors per chip increases the capacitance and power con-
sumption of a chip. We are putting more transistors on a chip than
we can afford to turn them on. Power consumption has been the
major limitation of further performance improvement of a single
processor.

Multicore processors provide an ultimate solution to power
management and performance optimization in current and future
microprocessors. A multicore processor contains multiple inde-
pendent processors, called cores, integrated onto a single circuit
die (known as a chipmultiprocessor or CMP). AnM-core processor

E-mail address: lik@newpaltz.edu.

achieves the same performance of a single-core processor whose
clock frequency is M times faster, but consumes only 1/Mφ−1 of
the energy of the single-core processor. All major microprocessor
companies and vendors are producing multicore chips and dedi-
cating their current and future development andmanufacturing to
multicore products.

The power and performance gain in a multicore processor is
mainly from parallelism, i.e., multiple slower but less energy-
consuming cores’ working together to achieve the performance
of a single faster but more energy-consuming processor. A mul-
ticore processor implements multiprocessing in a single physical
package. It can implement various parallel computing architec-
tures such as superscalar, multithreading, VLIW, vector processing,
SIMD, and MIMD. Intercore communications are supported by
message passing or shared memory. The degree of parallelism can
increase together with the number M of cores, which is typically
tens and evenhundreds in the current technology.WhenM is large,
a multicore processor is also called a many-core or a massively
multicore processor.

As in all computing systems, increasing the utilization of a
multicore processor becomes a critical issue as the number of cores

https://doi.org/10.1016/j.jpdc.2018.06.001
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.06.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.jpdc.2018.06.001

Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

2 K. Li / J. Parallel Distrib. Comput. () –

increases. One effective way of increasing the utilization is to take
the approach of multitasking, i.e., allowing multiple tasks to be
executed simultaneously in a multicore processor. Such sharing
of computing resources not only improves system utilization, but
also improves system performance, because more users’ requests
can be processed in the same amount of time. Such performance
enhancement is very important in optimizing the quality of service
in a datacenter for cloud computing, where multicore processors
are employed as servers.

When multicore processors are shared by a large number of
users who submit independent applications and tasks, we are
facing the problemof allocating the cores to the users and schedule
the tasks such that the system performance is optimized. Such
an optimization problem needs to be formulated and efficient
algorithms need to be developed and their performance needs to
be analyzed and evaluated.

1.2. Background information

In this paper, we investigate the problem of non-clairvoyant
scheduling of independent parallel tasks on single and multiple
multicore processors and servers.

Assume that we are given a list of n independent parallel tasks
L = (T1, T2, . . . , Tn). A parallel task Ti is specified as Ti = (si, ti),
where si is the number of cores requested by Ti, i.e., the size of Ti,
and ti is the execution time of Ti. We are also given a multicore
processor with M identical cores. For such a single multicore pro-
cessor, the problem is to find a nonpreemptive andnon-clairvoyant
schedule of the n independent parallel tasks on the M cores, such
that the total execution time of the n tasks isminimized. To execute
a task Ti, any si of the M cores can be allocated to Ti. Several tasks
can be executed simultaneously, with the restriction that the total
number of active cores (i.e., cores allocated to tasks being executed)
at any moment cannot exceedM .

In a more general case, we are given m multicore processors
with M1,M2, . . . ,Mm cores respectively. All the M = M1 + M2 +

· · · + Mm cores in the m multicore processors are identical. To
execute a task Ti, any si of theMj cores of the jthmulticore processor
can be allocated to Ti, and the task execution time of Ti is always
ti. However, core allocation cannot be performed across different
multicore processors, i.e., all the si cores allocated to Ti must re-
side in the same multicore processor. (Notice that inter-processor
communications take considerablymore time than intra-processor
communications. If a task Ti is executed by several multicore
processors, the execution time is no longer ti. The specification
of the increased execution time is not clear.) For such multiple
multicore processors, the problem is to find a nonpreemptive and
non-clairvoyant schedule of then independent parallel tasks on the
m multicore processors with M1,M2, . . . ,Mm cores, such that the
total execution time of the n tasks is minimized.

Inmany applications, the execution time of a task is unavailable
until the task is executed and completed. Although task execution
times are included in the definition of our problem, we assume in
this paper that for each task Ti, we only know its size si, i.e., the
number of cores requested to execute the task. However, the exe-
cution time ti of the task is unknown, due to its unpredictable input
and other factors. A scheduling algorithm is clairvoyant if the algo-
rithm knows the execution times of all tasks, and non-clairvoyant
if the algorithm does not have any information of task execution
times. Furthermore, in many applications, not all the tasks in a list
L of tasks are available when a scheduling algorithm generates a
schedule. A scheduling algorithm is offline if the algorithm knows
the complete list of tasks, i.e., tasks can be executed in any order;
and online if the algorithm must generate a schedule in the order
of T1, T2, . . . , Tn, i.e., when task Ti is scheduled, the algorithm does
not have any information of future tasks Ti+1, Ti+2, . . . , Tn.

The parallel task scheduling problem defined above is consid-
ered as a type of resource constrained scheduling problem [6,9],
where the resource is a set of cores. The problem is NP-hard, since
it includes two subproblems of core allocation and task scheduling.
Each of these two subproblems alone makes the problem NP-hard.
When all tasks are sequential, i.e., si = 1 for all 1 ≤ i ≤ n, the prob-
lem becomes the classic multiprocessor scheduling problem [11].
When all tasks have identical execution time, i.e., ti = t for some t
and for all 1 ≤ i ≤ n, the problem becomes the classic bin packing
problem [13]. Both of these two problems are well known NP-hard
problems.

To solve an NP-hard optimization problem with realistically
useful algorithms, one effective way is to develop fast algorithms
that are able to produce near-optimal solutions. Let A(L) denote
the length of the schedule produced by an algorithm A for a list
L of n independent parallel tasks, and OPT(L) the length of an
optimal schedule with the minimum length. We define t∗ =

max(t1, t2, . . ., tn) to be the longest execution time of the parallel
tasks in L. If

A(L) ≤ αOPT(L)

for all L, we call α an absolute worst-case performance bound of A. If

A(L) ≤ αOPT(L) + γ t∗

for all L, we call α an asymptotic worst-case performance bound of A.
When task sizes and execution times are random variables, if

E(A(L)) ≤ βE(OPT(L))

for all L with n → ∞, where E(x) represents the expectation of
a random variable x, we call β an asymptotic average-case perfor-
mance bound of A.

1.3. Our contributions

Our main results in this paper are summarized as follows.

• For a single M-core processor, there is a non-clairvoyant
offline scheduling algorithm, called the largest task first
(LTF) algorithm, which has an asymptotic worst-case per-
formance bound of

αk = 1 +
(k + 2)(k + 3) + 1
(k + 1)(k + 2)2

,

where k is the largest integer such that all task sizes do not
exceedM/k.

• For multiple multicore processors, the LTF algorithm has an
asymptotic worst-case performance bound of

αk,r =
k + 1

k − r + 1
,

where k is the largest integer such that all task sizes do not
exceed M∗/k; M∗ is the smallest number of cores; and r is
the ratio ofM∗ to the average number of cores.

• For m multicore processors whose total number of cores is
M , there is a non-clairvoyant online scheduling algorithm,
called the random task first (RTF) algorithm, which has an
asymptotic average-case performance bound of

β =
M

M − m((3 − (1 + 1/D)D+1)D + 1)
,

where we assume that task sizes are uniformly distributed
in the range [1..D].

Our result of the LTF algorithm on a single multicore proces-
sor improves our previous result on a single parallel computing
system [15]. To the best of our knowledge, there has been little
result on scheduling parallel tasks on multiple parallel computing

Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

K. Li / J. Parallel Distrib. Comput. () – 3

systems [16]. Our result of the RTF algorithmonmultiplemulticore
processors extends our earlier result on a single parallel computing
system [17].

The remainder of the paper is organized as follows. In Section 2,
we review related studies. In Section 3, we analyze the worst-case
performance of the LTF algorithm on a single multicore proces-
sor. In Section 4, we analyze the worst-case performance of the
LTF algorithm on multiple multicore processors. In Section 5, we
analyze the average-case performance of the RTF algorithm on
multiplemulticore processors. Simulation results are also provided
in Sections 3–5. We conclude the paper in Section 6.

2. Related work

Scheduling parallel tasks has been studied by a number of
researchers (see [1] for a comprehensive survey and many recent
studies [21–24]). In addition to themany variations to the problem,
including preemptive and nonpreemptive schedules, dedicated
and parallel processors, fixed and variable system sizes, malleable
and non-malleable task sizes [12], we are more interested in the
following cases.

Clairvoyant Offline Scheduling.When all the task execution times
are available to a scheduling algorithm, the parallel task scheduling
problem is very similar to the classic two-dimensional packing
problem, which has been extensively studied [4,5,10], and an
asymptotic worst-case performance bound as low as 1.25 can be
obtained.

Non-clairvoyant Offline Scheduling. It has been known that no
non-clairvoyant offline scheduling algorithm can have an absolute
worst-case performance bound less than 2−1/M [19], and a simple
non-clairvoyant offline scheduling algorithm called GREEDY can
achieve an absolute worst-case performance bound of 2−1/M [8].
There is a non-clairvoyant offline scheduling algorithm called Hm,
which can achieve an asymptotic worst-case performance bound
of 1.7222 [15]. Furthermore, when task sizes are no greater than
M/k for some integer k ≥ 2, algorithm Hm can achieve an asymp-
totic worst-case performance bound of 1 + 1/k. Notice that for
algorithm LTF, we have α1 = 1.7222 and αk < 1 + 1/k for
all k ≥ 2 (Theorem 1). Although algorithm LTF has the same
asymptotic worst-case performance bound as that of algorithmHm
in the general case, LTF has an improved asymptotic worst-case
performance bound when task sizes are small.

Non-clairvoyant Online Scheduling. It is easy to show that no
clairvoyant or non-clairvoyant online parallel task scheduling al-
gorithm can have a finite absolute or asymptotic worst-case per-
formance bound. Therefore, research attention has been focused
on the analysis of average-case performance of online scheduling
algorithms. In [17], it was shown that there is a non-clairvoyant
online scheduling algorithm called SIMPLE, which can achieve an
asymptotic average-case performance bound of

M
M − (3 − (1 + 1/D)D+1)D − 1

,

assuming that task sizes are uniformly distributed in the range
[1..D]. It is clear that the above result for a single system is ex-
tended to multiple systems (Theorem 3) in this paper.

Scheduling on Multiple Systems. Scheduling parallel tasks on
multiple parallel computing systems has rarely been investigated
before, primarily due to the sophistication of the problem. A similar
but different scheduling problem in a grid computing environment
was considered in [16], where execution of a parallel task across
several systems is allowed. However, in this paper, each task must
be executed on one multicore processor. Therefore, our result of
the LTF algorithm onmultiple multicore processors (Theorem 2) is
the first attempt in this direction.

Scheduling on Multicore Processors. For multicore processors,
research so far has been focused on scheduling independent or

precedence constrained sequential tasks [2,3,14,20]. Little inves-
tigation has been done for parallel tasks.

Other Recent Studies. A hybridmulticore architecture combining
CPUs andGPUswas considered in [7], where tasks are independent
and sequential, and each task can be processed on either CPU or
GPU with different execution times. An adaptive multicore archi-
tecture was considered in [18], which allows tasks to bemalleable,
i.e., the number of cores allocated per application is not fixed and
can change during execution through preemption.

3. Scheduling on a single multicore processor

3.1. The LTF scheduling algorithm

The scheduling algorithm considered in this section is called
largest task first (LTF). Algorithm LTF does not need the information
of task execution times, i.e., t1, t2, . . . , tn, thus satisfying the re-
quirement of non-clairvoyant scheduling. However, algorithm LTF
needs all the information of task sizes, i.e., s1, s2, . . . , sn. Hence, it
is an offline scheduling algorithm.

To schedule a list L = (T1, T2, . . . , Tn) of parallel tasks on a
single multicore processor with M cores, algorithm LTF first sorts
the n tasks in a nonincreasing order of task sizes. Without loss of
generality, let us assume that s1 ≥ s2 ≥ · · · ≥ sn. Algorithm LTF
then schedules the n tasks in the order of T1, T2, . . . , Tn. Initially,
tasks in the beginning of L, say T1, T2, . . . , Ti, are scheduled for
execution, where i is as large as possible, i.e., the total size of
T1, T2, . . . , Ti does not exceedM ,

s1 + s2 + · · · + si ≤ M,

but the total size of T1, T2, . . . , Ti, Ti+1 exceeds M ,

s1 + s2 + · · · + si + si+1 > M.

Whenever a task is completed, algorithm LTF checks whether
there are enough available cores (i.e., inactive and free cores not
allocated to any task) for task Ti+1. If so, task Ti is scheduled for
execution; otherwise, algorithm LTF waits for the next completion
of a task. The above procedure is repeated until all tasks are sched-
uled.

Notice that task Ti′ cannot be scheduled earlier than Ti if i′ > i.
This restriction can be removed to improve the performance of
algorithm LTF. In algorithm LTF∗, initially and whenever a task is
completed, algorithm LTF∗ examines all the remaining tasks and
schedules all tasks that can be scheduled (i.e., there are enough
available cores to accommodate these tasks).

3.2. Worst-case analysis

In this section, we analyze the asymptotic worst-case perfor-
mance of algorithm LTF for non-clairvoyant offline scheduling of
independent parallel tasks on a single multicore processor withM
cores.

We use the notation LTF(L) to stand for the length of the sched-
ule produced by algorithm LTF for a list L of n independent parallel
tasks. Let s∗ = max(s1, s2, . . ., sn) be the largest size of the n tasks.
Recall that t∗ = max(t1, t2, . . ., tn) is the longest execution time of
the n tasks.

Our main result of this section is the following theorem.

Theorem 1. To schedule any list L of independent parallel tasks on
a single multicore processor with M cores by using the LTF algorithm,
we have

LTF (L) ≤ αkOPT (L) + 4t∗,

where the asymptotic worst-case performance bound is

αk = 1 +
(k + 2)(k + 3) + 1
(k + 1)(k + 2)2

,

Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

4 K. Li / J. Parallel Distrib. Comput. () –

and k ≥ 1 is some integer such that M/(k + 1) < s∗ ≤ M/k,
i.e., k = ⌊M/s∗⌋.

Proof. First, let us examine LTF(L). Assume thatM/(k + 1) < s∗ ≤

M/k for some integer k ≥ 1. We also assume that the execution of
the n tasks starts at time 0, and all the tasks are executed during
time interval I = [0, LTF(L)). We divide L into four sublists Lk, Lk+1,
Lk+2, and Lk+3, where

• Lk includes all tasks Ti withM/(k + 1) < si ≤ M/k;
• Lk+1 includes all tasks Ti with M/(k + 2) < si ≤ M/(k + 1);
• Lk+2 includes all tasks Ti with M/(k + 3) < si ≤ M/(k + 2);
• Lk+3 includes all tasks Ti with 0 < si ≤ M/(k + 3).

The list L is a simple concatenation of the four sublists, i.e., L =

LkLk+1Lk+2Lk+3. Notice that some of the above sublists may be
empty, depending on the values ofM , k, and the si’s.

We define the moments bk, ck, bk+1, ck+1, bk+2, ck+2, bk+3, ck+3
as follows:

• bk: the moment when the first task in Lk is scheduled for
execution;

• ck: the moment when all tasks in Lk complete their execu-
tions;

• bk+1: the moment when the first task in Lk+1 is scheduled for
execution;

• ck+1: the moment when all tasks in Lk+1 complete their
executions;

• bk+2: the moment when the first task in Lk+2 is scheduled for
execution;

• ck+2: the moment when all tasks in Lk+2 complete their
executions;

• bk+3: the moment when the first task in Lk+3 is scheduled for
execution;

• c ′

k+3: the moment when the task which completes last is
scheduled for execution;

• ck+3: the moment when all tasks in Lk+3 complete their
executions.

Therefore, tasks in Lk are executed during the time interval [bk, ck);
tasks in Lk+1 are executed during the time interval [bk+1, ck+1);
tasks in Lk+2 are executed during the time interval [bk+2, ck+2); and
tasks in Lk+3 are executed during the time interval [bk+3, ck+3).

In a ‘‘normal’’ case, i.e., when each of Lk, Lk+1, Lk+2, Lk+3 contains
a large number of tasks, we have

bk < bk+1 < ck < bk+2 < ck+1 < bk+3 < ck+2 < c ′

k+3 < ck+3.

The above moments divide the time interval I = [0, LTF(L)) into
eight subintervals Ik, I ′k, Ik+1, I ′k+1, Ik+2, I ′k+2, Ik+3, I ′k+3, where Ik =

[bk, bk+1), I ′k = [bk+1, ck), Ik+1 = [ck, bk+2), I ′k+1 = [bk+2, ck+1),
Ik+2 = [ck+1, bk+3), I ′k+2 = [bk+3, ck+2), Ik+3 = [ck+2, c ′

k+3), I
′

k+3 =

[c ′

k+3, ck+3). Let τk, τ
′

k, τk+1, τ
′

k+1, τk+2, τ
′

k+2, τk+3, τ
′

k+3 denote the
lengths of the subintervals Ik, I ′k, Ik+1, I ′k+1, Ik+2, I ′k+2, Ik+3, I ′k+3. Then,
we have

LTF(L) = τk + τ ′

k + τk+1 + τ ′

k+1 + τk+2 + τ ′

k+2 + τk+3 + τ ′

k+3.

Weobserve that at bk+1, there are some tasks of Lk which are still
in execution. The remaining execution time of these tasks cannot
exceed t∗. Therefore, we have τ ′

k ≤ t∗. Similarly, we have τ ′

k+1 ≤ t∗
and τ ′

k+2 ≤ t∗. The length of the subinterval I ′k+3, i.e., the execution
time of the task in Lk+3 which completes last, is also no longer than
t∗, i.e., τ ′

k+3 ≤ t∗. Hence, we get

LTF(L) ≤ τk + τk+1 + τk+2 + τk+3 + 4t∗.

Notice that

• during time interval Ik, only tasks in Lk are in execution.
• during time interval Ik+1, only tasks in Lk+1 are in execution;

• during time interval Ik+2, only tasks in Lk+2 are in execution;
• during time interval Ik+3, only tasks in Lk+3 are in execution.

In the above discussion, it is assumed that the four subintervals
I ′k, I

′

k+1, I
′

k+2, I
′

k+3 do not overlap. If I ′k and I ′k+1 overlap, then τk+1 =

0. If I ′k+1 and I ′k+2 overlap, then τk+2 = 0. If I ′k+2 and I ′k+3 overlap,
then τk+3 = 0. It is also possible that τk = 0.

Now, let us examine OPT(L). We have the following observa-
tions.

• Notice that during time interval Ik, there are constantly k
tasks of Lk in execution. Hence, the total execution time of
tasks in Lk is at least kτk. Since the system can only accom-
modate k tasks of Lk simultaneously, we must have

OPT(L) ≥ kτk/k = τk,

just to schedule tasks in Lk.
• Furthermore, during time interval Ik+1, there are constantly

k + 1 tasks of Lk+1 in execution. Hence, the total execution
time of tasks in Lk and Lk+1 is at least kτk + (k+ 1)τk+1. Since
the system can only accommodate k + 1 tasks of Lk and Lk+1
simultaneously, we must have

OPT(L) ≥
kτk + (k + 1)τk+1

k + 1
=

(
k

k + 1

)
τk + τk+1.

• Let us call the product wi = siti the amount of work to be
done for task Ti. We define

Wk =

∑
Ti∈Lk

wi

to be the total amount of work to be done for tasks in Lk.
Similarly, we define

Wk+1 =

∑
Ti∈Lk+1

wi,

and

Wk+2 =

∑
Ti∈Lk+2

wi,

and

Wk+3 =

∑
Ti∈Lk+3

wi.

It is clear that

OPT(L) ≥
Wk + Wk+1 + Wk+2 + Wk+3

M
,

namely, the optimal schedule length is at least the total
amount of work divided by the number of cores. Since there
are constantly k tasks of Lk in execution during time interval
Ik and the size of each task in Lk is at leastM/(k+1), we have

Wk ≥

(
k

k + 1

)
Mτk.

Similarly, we get

Wk+1 ≥

(
k + 1
k + 2

)
Mτk+1,

and

Wk+2 ≥

(
k + 2
k + 3

)
Mτk+2.

As for Wk+3, we notice that during time interval Ik+3, the
number of idle cores cannot exceedM/(k+ 3); otherwise, at
least one task in Lk+3, say, the task that completes last, would
be scheduled earlier. Therefore, we get

Wk+3 ≥

(
1 −

1
k + 3

)
Mτk+3 =

(
k + 2
k + 3

)
Mτk+3.

Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

K. Li / J. Parallel Distrib. Comput. () – 5

Based on the last four inequalities, we obtain

OPT(L) ≥

(
k

k + 1

)
τk +

(
k + 1
k + 2

)
τk+1 +

(
k + 2
k + 3

)
x,

where x = τk+2 + τk+3. Summarizing the above discussion on
OPT(L), we have

OPT(L) ≥ max
(

τk,

(
k

k + 1

)
τk + τk+1,

(
k

k + 1

)
τk

+

(
k + 1
k + 2

)
τk+1 +

(
k + 2
k + 3

)
x
)

.

Finally, we study the ratio

R =
τk + τk+1 + x

max
(
τk,
(k
k+1

)
τk + τk+1,

(k
k+1

)
τk +

(k+1
k+2

)
τk+1 +

(k+2
k+3

)
x
) .

We consider three cases, depending on which term in the three
terms of the max operator is the maximum.

Case 1. (The first term is the maximum.) In this case, we have

τk ≥

(
k

k + 1

)
τk + τk+1,

which implies that

τk+1

τk
≤

1
k + 1

.

Furthermore, since

τk ≥

(
k

k + 1

)
τk +

(
k + 1
k + 2

)
τk+1 +

(
k + 2
k + 3

)
x,

we get

x
τk

≤
k + 3
k + 2

(
1

k + 1
−

(
k + 1
k + 2

)
τk+1

τk

)
.

Consequently, we get

R =
τk + τk+1 + x

τk

= 1 +
τk+1

τk
+

x
τk

≤ 1 +
τk+1

τk
+

k + 3
k + 2

(
1

k + 1
−

(
k + 1
k + 2

)
τk+1

τk

)
= 1 +

k + 3
(k + 1)(k + 2)

+

(
1 −

(k + 1)(k + 3)
(k + 2)2

)
τk+1

τk

= 1 +
k + 3

(k + 1)(k + 2)
+

1
(k + 1)(k + 2)2

= 1 +
(k + 2)(k + 3) + 1
(k + 1)(k + 2)2

.

Case 2. (The second term is themaximum.) In this case, we have

τk ≤

(
k

k + 1

)
τk + τk+1,

which implies that

τk ≤ (k + 1)τk+1.

Furthermore, since(
k

k + 1

)
τk + τk+1 ≥

(
k

k + 1

)
τk +

(
k + 1
k + 2

)
τk+1 +

(
k + 2
k + 3

)
x,

we get

x ≤

(
k + 3

(k + 2)2

)
τk+1.

Hence, we get

R =
τk + τk+1 + x(k
k+1

)
τk + τk+1

≤

τk + τk+1 +

(
k+3

(k+2)2

)
τk+1(k

k+1

)
τk + τk+1

=

τk +

(
k2+5k+7
(k+2)2

)
τk+1(k

k+1

)
τk + τk+1

.

To proceed, we need the following simple fact, namely, if ad−bc >
0 (< 0, respectively), the function

f (y) =
ay + b
cy + d

is an increasing (decreasing, respectively) function of y, where
a, b, c, d, y > 0. Hence, the last ratio is an increasing function of
τk and achieves its maximum value when τk = (k + 1)τk+1, which
is

(k + 1) +
k2+5k+7
(k+2)2

k + 1
= 1 +

k2 + 5k + 7
(k + 1)(k + 2)2

,

which is the same as that of Case 1.
Case 3. (The third term is the maximum.) In this case, we have(
k

k + 1

)
τk + τk+1 ≤

(
k

k + 1

)
τk +

(
k + 1
k + 2

)
τk+1 +

(
k + 2
k + 3

)
x,

which implies that

x ≥

(
k + 3

(k + 2)2

)
τk+1.

We observe that

R =
x + τk + τk+1(k+2

k+3

)
x +

(k
k+1

)
τk +

(k+1
k+2

)
τk+1

is a decreasing function of x and achieves itsmaximum valuewhen

x =

(
k + 3

(k + 2)2

)
τk+1,

that is,

R ≤

(
k+3

(k+2)2

)
τk+1 + τk + τk+1(k+2

k+3

) (k+3
(k+2)2

)
τk+1 +

(k
k+1

)
τk +

(k+1
k+2

)
τk+1

=

τk +

(
k2+5k+7
(k+2)2

)
τk+1(k

k+1

)
τk + τk+1

,

which is an increasing function of τk. Since

τk ≤

(
k

k + 1

)
τk +

(
k + 1
k + 2

)
τk+1 +

(
k + 2
k + 3

)
x,

with

x =

(
k + 3

(k + 2)2

)
τk+1,

we get

τk ≤ (k + 1)τk+1.

Hence, the R achieves its maximum value when τk = (k + 1)τk+1,
which is the same as that of Cases 1 and 2.

Summarizing the above discussion, we obtain

LTF(L) ≤

(
1 +

(k + 2)(k + 3) + 1
(k + 1)(k + 2)2

)
OPT(L) + 4t∗.

The theorem is proven. □

Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

6 K. Li / J. Parallel Distrib. Comput. () –

Table 1
The performance bound of Theorem 1.

k αk

1 1.7222222
2 1.4375000
3 1.3100000
4 1.2388889
5 1.1938776
6 1.1629464
7 1.1404321
8 1.1233333
9 1.1099174
10 1.0991162

In Table 1,we show the numerical data of the asymptoticworst-
case performance bound of algorithm LTF in Theorem 1, i.e.,

αk = 1 +
(k + 2)(k + 3) + 1
(k + 1)(k + 2)2

,

for k = 1, 2, . . . , 10.

3.3. Simulation results

In this section, we demonstrate simulation results on the
average-case performance of both algorithms LTF and LTF∗ for non-
clairvoyant offline scheduling of independent parallel tasks on a
single multicore processor withM cores.

Assume that task sizes are independent and identically dis-
tributed (i.i.d.) random variables with a common probability dis-
tribution (p1, p2, . . . , pD) in the range [1..D] with D ≤ M , where ps
is the probability that si = s, for all 1 ≤ s ≤ D. We consider three
types of probability distributions of task sizes with about the same
expected task size E(si).

• Uniform distributions in the range [1..D], i.e., ps = 1/D for
all 1 ≤ s ≤ D. The average task size is E(si) = (D + 1)/2.

• Binomial distributions in the range [1..D], i.e.,

ps =
1

1 − (1 − q)D

(
D
s

)
qs(1 − q)D−s,

for all 1 ≤ s ≤ D, where q is chosen such thatDq = (D+1)/2,
i.e., q = (D+ 1)/(2D). However, the actual average task size
is

E(si) =
Dq

1 − (1 − q)D
,

which is slightly greater than (D + 1)/2.
• Geometric distributions in the range [1..D], i.e.,

ps =
q(1 − q)s−1

1 − (1 − q)D
,

for all 1 ≤ s ≤ D, where q is chosen such that 1/q =

(D + 1)/2, i.e., q = 2/(D + 1). However, the actual average
task size is

E(si) =
1/q − (1/q + D)(1 − q)D

1 − (1 − q)D
,

which is less than (D + 1)/2.

In Table 2, we show our experimental data on the average-case
performance of algorithms LTF and LTF∗. The number of cores is
set as M = 128. For each combination of k, where 1 ≤ k ≤

10, and each of the three probability distributions, and the LTF
and LTF∗ algorithms, we generate a list L of n = 5000 random
tasks. Task sizes are i.i.d. random variable from a given probability
distribution, where we set D = ⌊M/k⌋. Task execution times are
i.i.d. random variables uniformly distributed in the range (0, 10).

For each list of random tasks, we apply algorithm LTF or LTF∗, and
get the schedule length LTF(L) or LTF∗(L). As for OPT(L), we simply
use the lower bound

OPT(L) ≥ W/M =
1
M

n∑
i=1

siti.

The ratio of LTF(L)/OPT(L) or LTF∗(L)/OPT(L) is the result of an
experiment. The experiment is repeated for 100 times, and the
average of the 100 values is considered as E(LTF(L)/OPT(L)) or
E(LTF∗(L)/OPT(L)), which is displayed in the table. The maximum
99% confidence interval of all the data in the table is±0.3253353%.

We have the following observations.

• The average-case performance of algorithm LTF in Table 2 is
much better than the worst-case performance in Table 1.

• The performance of algorithm LTF∗ is noticeably better than
that of algorithm LTF. The performance of LTF∗ is very close
to optimal and practically very useful.

4. Scheduling on multiple multicore processors

4.1. The extended LTF scheduling algorithm

The LTF algorithm can be easily extended to multiple mul-
ticore processors with M1,M2, . . . ,Mm cores. Again, tasks are
scheduled in a nonincreasing order of task sizes. Initially, tasks
Tij−1+1, Tij−1+2, . . . , Tij are scheduled for execution on the jth mul-
ticore processor, where i0 = 0 and the indices i1, i2, . . . , im are
defined in such a way that the total size of Tij−1+1, Tij−1+2, . . . , Tij
does not exceedMj,

sij−1+1 + sij−1+2 + · · · + sij ≤ Mj,

but the total size of Tij−1+1, Tij−1+2, . . . , Tij , Tij+1 exceedsMj,

sij−1+1 + sij−1+2 + · · · + sij + sij+1 > Mj,

for all 1 ≤ j ≤ m. Whenever a task is completed on a multicore
processor, say, the jth multicore processor, algorithm LTF checks
whether there are enough available cores for task Tim+1. If so, task
Tim+1 is scheduled for execution; otherwise, algorithm LTF waits
for the next completion of a task.

Algorithm LTF∗ can be extended to multiple multicore proces-
sors accordingly.

4.2. Worst-case analysis

In this section, we analyze the asymptotic worst-case perfor-
mance of algorithm LTF for non-clairvoyant offline scheduling of
independent parallel tasks on multiple multicore processors with
M1,M2, . . . ,Mm cores.

We define M = M1 + M2 + · · · + Mm to be the total number
of cores of the m multicore processors, and M∗

= min(M1,M2,

. . . ,Mm) to be the minimum size of the m multicore processors.
Furthermore, let r = mM∗/M = M∗/(M/m), which is the ratio of
the minimum processor size to the average processor size.

It is assumed in this section that s∗ ≤ M∗, i.e., the maximum
task size is no greater than the minimum processor size. In other
words, any task can be executed on any multicore processor.

Our main result of this section is the following theorem.

Theorem 2. To schedule any list L of independent parallel tasks on
m multicore processors with M cores by using the LTF algorithm, we
have

LTF (L) ≤ αk,rOPT (L) + t∗,

Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

K. Li / J. Parallel Distrib. Comput. () – 7

Table 2
Simulation results of LTF and LTF∗ on a single multicore processor.

k Uniform Binomial Geometric

LTF LTF∗ LTF LTF∗ LTF LTF∗

1 1.2836656 1.0086699 1.4897393 1.0631060 1.2904968 1.0048925
2 1.1559544 1.0030697 1.1446964 1.0704966 1.1412308 1.0065995
3 1.1026384 1.0040161 1.0917927 1.0367635 1.0891142 1.0050399
4 1.0773207 1.0033769 1.0576074 1.0293787 1.0668444 1.0039470
5 1.0608234 1.0031505 1.0545063 1.0118485 1.0518679 1.0040560
6 1.0488520 1.0033442 1.0544935 1.0055328 1.0430472 1.0046057
7 1.0420992 1.0036175 1.0455553 1.0059473 1.0378420 1.0050309
8 1.0406718 1.0040414 1.0355460 1.0064859 1.0355423 1.0054756
9 1.0424241 1.0043263 1.0258349 1.0065875 1.0341625 1.0058136
10 1.0380658 1.0047071 1.0201550 1.0059795 1.0298851 1.0063139

where the asymptotic worst-case performance bound is

αk,r = 1 +
r

k − r + 1
,

and M∗/(k + 1) < s∗ ≤ M∗/k, or, k = ⌊M∗/s∗⌋.

Proof. We assume that the execution of the n tasks starts at time
0, and all the tasks are executed during time interval [0, LTF(L)).
Assume that task Tl is the task which is completed last, and Tl is
scheduled at time τ . Then, we have tl = LTF(L) − τ , i.e.,

LTF(L) = τ + tl ≤ τ + t∗.

Let us consider any moment during the time interval [0, τ) and
any multicore processor j. By the definition of k, we know that the
number of tasks in execution at that moment on the jth multicore
processor is at least k, because ks∗ ≤ M∗

≤ Mj, i.e., the jth mul-
ticore processor can accommodate at least k tasks simultaneously,
for all 1 ≤ j ≤ m. A key observation is that at any moment, the
number of idle cores in the jth multicore processor is less than
the sizes of the tasks in execution on the jth multicore processor.
To show this, we assume that the tasks in execution on the jth
multicore processor at certain moment are Ti1 , Ti2 , . . . , Tip , where
p ≥ k. Without loss of generality, let us assume that si1 ≥ si2 ≥

· · · ≥ sip . If there are d idle cores, then we must have d < sip ;
otherwise, since sl ≤ sip ≤ d, some task (say, task Tl) would be
scheduled earlier. This implies that

d <
Mj

p + 1
≤

Mj

k + 1
,

for all 1 ≤ j ≤ m. In particular, we have

d <
M∗

k + 1
,

that is, at any moment during the time interval [0, τ), the number
of idle cores in each of the m multicore processors is less than
M∗/(k + 1).

Notice that the total amount of work to be performed for all the
n tasks is

W =

n∑
i=1

siti.

It is clear thatW is at least

W ≥

m∑
j=1

(
Mj −

M∗

k + 1

)
τ =

(
M −

mM∗

k + 1

)
τ .

Hence, we get

OPT(L) ≥
W
M

≥

(
1 −

1
k + 1

·
mM∗

M

)
τ .

By the definition of r , we obtain

OPT(L) ≥

(
1 −

r
k + 1

)
τ ,

Table 3
The performance bound of Theorem 2.

k r = 1.00 r = 0.75 r = 0.50 r = 0.25

1 2.0000000 1.6000000 1.3333333 1.1428571
2 1.5000000 1.3333333 1.2000000 1.0909091
3 1.3333333 1.2307692 1.1428571 1.0666667
4 1.2500000 1.1764706 1.1111111 1.0526316
5 1.2000000 1.1428571 1.0909091 1.0434783
6 1.1666667 1.1200000 1.0769231 1.0370370
7 1.1428571 1.1034483 1.0666667 1.0322581
8 1.1250000 1.0909091 1.0588235 1.0285714
9 1.1111111 1.0810811 1.0526316 1.0256410
10 1.1000000 1.0731707 1.0476190 1.0232558

which implies that

τ ≤

(
k + 1

k − r + 1

)
OPT(L).

Summarizing the above discussion, we obtain

LTF(L) ≤

(
k + 1

k − r + 1

)
OPT(L) + t∗.

This proves the theorem. □

It is easy to see that since r ≤ 1, we have
k + 1

k − r + 1
≤ 1 +

1
k
,

where the equality is achieved when r = 1, i.e., M1 = M2 = · · · =

Mm.
In Table 3,we show the numerical data of the asymptoticworst-

case performance bound of algorithm LTF in Theorem 2, i.e.,

αk,r = 1 +
r

k + 1 − r
,

for k = 1, 2, . . . , 10 and r = 1.00, 0.75, 0.50, 0.25.

4.3. Simulation results

In this section, we demonstrate simulation results on the
average-case performance of both algorithms LTF and LTF∗ for
non-clairvoyant offline scheduling of independent parallel tasks on
multiple multicore processors.

In Table 4, we show our experimental data on the average-
case performance of algorithms LTF and LTF∗. The number of
multicore processors is m = 5. The numbers of cores are set
as (M1,M2,M3,M4,M5) = (128, 128, 192, 256, 256). For each
combination of k, where 1 ≤ k ≤ 10, and each of the three
probability distributions, and the LTF and LTF∗ algorithms, we
generate a list L of n = 5000 random tasks. Task sizes are i.i.d.
random variable from a given probability distribution, where we
set D = ⌊M∗/k⌋. Task execution times are i.i.d. random variables
uniformly distributed in the range (0, 10). For each list of random

Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

8 K. Li / J. Parallel Distrib. Comput. () –

Table 4
Simulation results of LTF and LTF∗ on multiple multicore processors.

k Uniform Binomial Geometric

LTF LTF∗ LTF LTF∗ LTF LTF∗

1 1.2165348 1.0076198 1.2422061 1.0620983 1.1966610 1.0108762
2 1.1070906 1.0103615 1.0937155 1.0439797 1.0977763 1.0136766
3 1.0806176 1.0134536 1.0645665 1.0308059 1.0732611 1.0175264
4 1.0625377 1.0163439 1.0473301 1.0275828 1.0613371 1.0220800
5 1.0565701 1.0198179 1.0478568 1.0242367 1.0584516 1.0271077
6 1.0520925 1.0226328 1.0501519 1.0257317 1.0574081 1.0320433
7 1.0499784 1.0259279 1.0477142 1.0283908 1.0586942 1.0366524
8 1.0505199 1.0289361 1.0463114 1.0307059 1.0590290 1.0407761
9 1.0552177 1.0324511 1.0465785 1.0341991 1.0626428 1.0456997
10 1.0554874 1.0373198 1.0493552 1.0382159 1.0666131 1.0522816

tasks, we apply algorithm LTF or LTF∗, and get the schedule length
LTF(L) or LTF∗(L). As for OPT(L), we simply use the lower bound

OPT(L) ≥ W/M =
1
M

n∑
i=1

siti.

The ratio of LTF(L)/OPT(L) or LTF∗(L)/OPT(L) is the result of an
experiment. The experiment is repeated for 100 times, and the
average of the 100 values is considered as E(LTF(L)/OPT(L)) or
E(LTF∗(L)/OPT(L)), which is displayed in the table. The maximum
99% confidence interval of all the data in the table is±0.1010213%.

We have the following observations.

• The average-case performance of algorithm LTF in Table 4 is
much better than the worst-case performance in Table 3.

• The performance of algorithm LTF∗ is noticeably better than
that of algorithm LTF. The performance of LTF∗ is very close
to optimal and practically very useful.

5. Online scheduling on multiple multicore processors

5.1. The RTF scheduling algorithm

Our algorithm for non-clairvoyant online scheduling of in-
dependent parallel tasks on multiple multicore processors is
extended from the SIMPLE algorithm, which was originally
proposed for non-clairvoyant online scheduling of independent
parallel tasks on a single parallel computing system [17]. It can
be easily extended to multiple parallel computing systems such as
multiple multicore processors.

Our algorithm works as follows. The list L of n parallel tasks
is divided into m + d sublists L1, L2, . . . , Lm, Lm+1, Lm+2, . . . , Lm+d,
where Lk = (Tbk−1+1, Tbk−1+2, . . . , Tbk), for all 1 ≤ k ≤ m + d,
with b0 = 0, bm+d = n. The indices b1, b2, . . . , bm, bm+1, bm+2,

. . . , bm+d−1 and the integer d are defined below. Notice that L =

L1L2 · · · Lm+d is a simple concatenation of them + d sublists.
Let Ti1 , Ti2 , . . . , Tid , . . . be the sequence of tasks completed in

a schedule produced by our algorithm. Assume that task Tik is
completed at time ck, where 1 ≤ k ≤ d.

Initially, at time 0, tasks in Lj are scheduled for execution on the
jth multicore processor, for all 1 ≤ j ≤ m. The index bj is as large
as possible, i.e., the total size of tasks in Lj does not exceedMj,

sbj−1+1 + sbj−1+2 + · · · + sbj ≤ Mj,

but the total size of tasks in Lj plus that of Tbj+1 exceedsMj,

sbj−1+1 + sbj−1+2 + · · · + sbj + sbj+1 > Mj,

for all 1 ≤ j ≤ m.
Later, at time ck when task Tik is completed on the jth multicore

processor, where 1 ≤ k ≤ d, tasks in Lm+k are scheduled for
execution on the jth multicore processor. Again, the index bm+k

is as large as possible, for all 1 ≤ k ≤ d − 1. Let Cj(t) be the
number of active cores allocated to some task in execution on the
jth multicore processor at time t . Then, we have

Cj(ck) + sbm+k−1+1 + sbm+k−1+2 + · · · + sbm+k ≤ Mj,

but

Cj(ck) + sbm+k−1+1 + sbm+k−1+2 + · · · + sbm+k + sbm+k+1 > Mj,

for all 1 ≤ k ≤ d − 1.
The integer d is defined in such a way that at time cd when

task Tid is completed on the jth multicore processor, all tasks in
Lm+d can be scheduled for execution on the jthmulticore processor,
and the jth multicore processor still has more available cores to
accommodate more tasks.

The above algorithm is essentially the same as LTF, except that
tasks in L are in their original order, which is a random order
of tasks. Hence, we call the above algorithm random task first
(RTF). Since tasks are scheduled in the given order without any
preprocessing, RTF is an online scheduling algorithm.

5.2. Average-case analysis

In this section, we analyze the asymptotic average-case perfor-
mance of algorithm RTF for non-clairvoyant online scheduling of
independent parallel tasks on multiple multicore processors with
M1,M2, . . . ,Mm cores.

Wemake the following assumptions for analyzing the average-
case performance of algorithm RTF.

• The task sizes s1, s2, . . . , sn are i.i.d. random variables with
a common probability distribution in the range [1..M∗

].
• The task execution times t1, t2, . . . , tn are i.i.d. random vari-

ables with a common probability distribution.
• The probability distribution of task sizes is independent of

the probability distribution of task execution times.

We also need the following core allocation model. Assume that
there is a multicore processor with M cores, and there are n tasks
with sizes s1, s2, . . . , sn. Tasks are scheduled asmany as possible on
the multicore processor for simultaneous execution, i.e., we find i
such that s1+s2+· · ·+si ≤ M , but s1+s2+· · ·+si+si+1 > M; or if
there are no enough tasks, all tasks are scheduled for execution. If
s1, s2, . . . , sn are i.i.d. random variables, the total number of active
cores allocated is also a random variable.We use C(n,M) to denote
the mean of this random variable, i.e., the expected number of
active cores. It is clear that C(n,M) increases with n. However,
C(n,M) = CM for all n ≥ M , since a multicore processor with M
cores can accommodate at mostM tasks.

Let ps be the probability that the size of a task Ti is si = s, where
s = 1, 2, 3, The following recurrence relation characterizes

Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

K. Li / J. Parallel Distrib. Comput. () – 9

C(n,M) [17]:

C(n,M) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M∑
s=1

sps, if n = 1;

M∑
s=1

ps(s + C(n − 1,M − s)), if n > 1.

The above recurrence relation can be used to calculate C(n,M) for
any n, M , and any probability distribution of tasks (p1, p2, p3, . . .).

As an interesting and important special case, if task sizes have a
uniform distribution in the range [1..D], i.e., p1 = p2 = · · · = pD =

1/D, where D ≤ M , then we have

CM = M −

(
3 −

(
1 +

1
D

)D+1
)
D − 1.

The reader is referred to [17] for the derivation.
Our main result of this section is the following theorem.

Theorem 3. To schedule any list L of independent parallel tasks on m
multicore processors withM1,M2, . . . ,Mn cores respectively by using
the RTF algorithm, we have

E(RTF (L)) ≤ βE(OPT (L)),

as n → ∞, where the asymptotic average-case performance bound is

β =
M

CM1 + CM2 + · · · + CMn

.

If task sizes are uniformly distributed in the range [1..D], where D ≤

M∗, we have

β =
M

M − m((3 − (1 + 1/D)D+1)D + 1)
.

Proof. Let us divide the time interval [0, RTF(L)) into d + 1
subintervals [c0, c1), [c1, c2), [c2, c3), ..., [cd−1, cd), and [cd, RTF(L)).
Let τk = ck − ck−1, where 1 ≤ k ≤ d, and τd+1 = RTF(L)− cd be the
lengths of the d+ 1 subintervals. Notice that at time cd, all tasks in
Lm+d are scheduled for execution, and there is no more task to be
scheduled. Hence, τd+1 ≤ t∗. Therefore, we have

RTF(L) ≤

d∑
k=1

τk + t∗,

and

E(RTF(L)) ≤

d∑
k=1

E(τk) + E(t∗).

Notice that the total amount of work to be performed for all the
n tasks is

W =

n∑
i=1

siti,

and we have

OPT(L) ≥
W
M

,

and

E(OPT(L)) ≥
E(W)
M

.

Let Cj(k) denote the number of active cores on the jth multicore
processor during the time interval [ck−1, ck), where 1 ≤ j ≤ m and
1 ≤ k ≤ d. Then, we have

W ≥

d∑
k=1

τk(C1(k) + C2(k) + · · · + Cm(k)),

where we ignore the amount of work performed during
[cd, RTF(L)). Therefore, we get

E(W) ≥

d∑
k=1

E(τk)(E(C1(k)) + E(C2(k)) + · · · + E(Cm(k))).

Weobserve that initially, eachmulticore processor is packed to the
maximum extent, until there is no enough core to accommodate
the next task. Later, when task Tik is completed at time ck on the
jth multicore processor, where 1 ≤ k ≤ d − 1, the jth multicore
processor is again packed to the maximum extent, until there is
no enough core to accommodate the next task. Therefore, we have
E(Cj(k)) = CMj , for all 1 ≤ j ≤ m and 1 ≤ k ≤ d, which implies that

E(W) ≥ (CM1 + CM2 + · · · + CMm)
d∑

k=1

E(τk).

and

E(OPT(W)) ≥
CM1 + CM2 + · · · + CMm

M

d∑
k=1

E(τk).

Summarizing the above discussion, we get

E(RTF(L)) ≤

(
M

CM1 + CM2 + · · · + CMn

)
E(OPT(W)) + E(t∗),

and
E(RTF(L))

E(OPT(W))
≤

M
CM1 + CM2 + · · · + CMn

,

as n → ∞ and E(t∗)/E(OPT(W)) → 0.
If task sizes are uniformly distributed in the range [1..D], where

D ≤ M∗, we have
m∑
j=1

CMj =

m∑
j=1

(Mj − (3 − (1 + 1/D)D+1)D − 1)

= M − m((3 − (1 + 1/D)D+1)D + 1).

The theorem is proven. □

5.3. Simulation results

In this section, we demonstrate simulation results on the
average-case performance of algorithms RTF for non-clairvoyant
online scheduling of independent parallel tasks on multiple multi-
core processors.

In Table 5, we show our experimental data on the average-
case performance of algorithms RTF and RTF∗. The number of
multicore processors is m = 5. The numbers of cores are set
as (M1,M2,M3,M4,M5) = (128, 128, 192, 256, 256). For each
combination of k, where 1 ≤ k ≤ 10, and each of the three
probability distributions, and the RTF and RTF∗ algorithms, we
generate a list L of n =50,000 random tasks. Task sizes are i.i.d.
random variable from a given probability distribution, where we
set D = ⌊M∗/k⌋. Task execution times are i.i.d. random variables
uniformly distributed in the range (0, 10). For each list of random
tasks, we apply algorithm RTF or RTF∗, and get the schedule length
RTF(L) or RTF∗(L). The experiment is repeated for 100 times, and the
average of the 100 values is considered as E(RTF(L)) or E(RTF∗(L)).
As for E(OPT(L)), we simply use the lower bound

E(OPT(L)) ≥ E(W)/M =
N
M

E(si)E(ti) = 2.5(D + 1)N/M.

The ratio of E(RTF(L))/E(OPT(L)) or E(RTF∗(L))/E(OPT(L)) is dis-
played in the table. The maximum 99% confidence interval of all
the data in the table is ±0.1378706%.

As comparison, we also show the analytical asymptotic
average-case performance bound in Theorem 3. It is observed that
the analytical result is very close to the experimental result.

Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

10 K. Li / J. Parallel Distrib. Comput. () –

Table 5
Simulation results of RTF on multiple multicore processors.

k Uniform Binomial Geometric

Analysis Simulation Analysis Simulation Analysis Simulation

1 1.2606742 1.2751010 1.2200202 1.2532891 1.2131789 1.2460074
2 1.1220632 1.1317983 1.0980104 1.0982232 1.0972197 1.1114637
3 1.0766544 1.0833610 1.0586856 1.0588793 1.0609908 1.0700421
4 1.0568853 1.0620539 1.0435530 1.0442393 1.0452747 1.0515330
5 1.0434784 1.0478795 1.0335985 1.0359015 1.0345496 1.0407647
6 1.0359712 1.0394772 1.0280461 1.0302214 1.0285208 1.0342347
7 1.0304114 1.0347201 1.0239242 1.0265633 1.0240463 1.0304326
8 1.0267380 1.0309127 1.0211917 1.0239852 1.0210859 1.0268341
9 1.0230906 1.0277685 1.0184712 1.0218115 1.0181435 1.0241272
10 1.0194690 1.0238680 1.0157610 1.0194173 1.0152198 1.0230443

6. Summary

We have studied the problem of non-clairvoyant scheduling
of independent parallel tasks on single and multiple multicore
processors. Our results are summarized as follows.

• For a singlemulticore processor, we have derived an asymp-
toticworst-case performance bound for the non-clairvoyant
offline scheduling algorithm LTF. The result improves our
previous result on a single parallel computing system.

• For multiple multicore processors, we have derived an
asymptotic worst-case performance bound for the LTF algo-
rithm. This result is the first attempt in scheduling parallel
tasks on multiple parallel computing systems.

• For multiple multicore processors, we have also derived an
asymptotic average-case performance bound for the non-
clairvoyant online scheduling algorithm RTF. The result
extends our earlier result on a single parallel computing
system.

There are still much work that remains to be done. Wemention
several topics which are worth of further and deeper investigation.

• First, on a single multicore processor, the worst-case per-
formance of algorithm LTF∗ is unknown and is definitely an
interesting topic.

• Second, on multiple multicore processors, the worst-case
performance of algorithm LTF needs more careful analysis.

• Third, the worst-case performance of algorithm LTFwithout
the assumption of s∗ ≤ M∗ is also unknown and worth of
investigation.

• Finally, the worst-case performance of algorithm LTF∗ on
multiple multicore processors is challenging and interest-
ing.

It is also worth mentioning that the problem investigated in
this paper can be further extended by breaking the boundaries
among the multicore processors. This means that core allocation
can be performed across different multicore processors. However,
as mentioned earlier, such an investigation requires additional
consideration of inter-processor communication times.

Acknowledgments

The author is grateful to the anonymous reviewers for their
suggestions to improve the manuscript.

References

[1] A.K. Amoura, E. Bampis, C. Kenyon, Y. Manoussakis, Scheduling independent
multiprocessor tasks, Algorithmica 32 (2002) 161–247.

[2] J.H. Anderson, J.M. Calandrino, Parallel real-time task scheduling on multicore
platforms, in: 27th IEEE International Real-Time Systems Symposium, 2006,
pp. 89–100.

[3] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, STARPU: A unified plat-
form for task scheduling on heterogeneous multicore architectures, in: 15th
International Euro-Par Conference, in: LNCS, vol. 5704, 2009,
pp. 863–874.

[4] B.S. Baker, D.J. Brown, H.P. Katseff, A 5/4 algorithm for two-dimensional
packing, J. Algorithms 2 (1981) 348–368.

[5] B.S. Baker, J.S. Schwarz, Shelf algorithms for two-dimensional packing prob-
lems, SIAM J. Comput. 12 (1983) 508–525.

[6] J. Blazewicz, J.K. Lenstra, A.H.G. Rinnooy Kan, Scheduling subject to resource
constraints: Classification and complexity, Discrete Appl. Math. 5 (1983)
11–24.

[7] R. Bleuse, S. Kedad-Sidhoum, F. Monna, G. Mounie, D. Trystram, Scheduling
independent tasks on multi-cores with GPU accelerators, Concurr. Comput.:
Pract. Exper. 27 (6) (2015) 1625–1638.

[8] A. Feldmann, J. Sgall, S.-H. Teng, Dynamic scheduling on parallel machines,
Theoret. Comput. Sci. 130 (1994) 49–72.

[9] M.R. Garey, R.L. Graham, Bound for multiprocessor scheduling with resource
constraints, SIAM J. Comput. 4 (1975) 187–200.

[10] I. Golan, Performance bounds for orthogonal oriented two-dimensional pack-
ing algorithms, SIAM J. Comput. 10 (1981) 571–582.

[11] R.L. Graham, Bounds onmultiprocessing timing anomalies, SIAM J. Appl. Math.
2 (1969) 416–429.

[12] K. Jansen, Schedulingmalleable parallel tasks: An asymptotic fully polynomial
time approximation scheme, Algorithmica 39 (2004) 59–81.

[13] D.S. Johnson, et al., Worst-case performance bounds for simple one-
dimensional packing algorithms, SIAM J. Comput. 3 (1974) 299–325.

[14] K. Lakshmanan, S. Kato, R. Rajkumar, Scheduling parallel real-time tasks on
multi-core processors, in: 31st IEEE International Real-Time Systems Sympo-
sium, 2010, pp. 259–268.

[15] K. Li, Analysis of an approximation algorithm for scheduling independent
parallel tasks, Discrete Math. Theor. Comput. Sci. 3 (1999) 155–166.

[16] K. Li, Job scheduling and processor allocation for grid computing onmetacom-
puters, J. Parallel Distrib. Comput. 65 (11) (2005) 1406–1418.

[17] K. Li, An average-case analysis of online non-clairvoyant scheduling of inde-
pendent parallel tasks, J. Parallel Distrib. Comput. 66 (5) (2006) 617–625.

[18] M. Pricopi, T. Mitra, Task scheduling on adaptive multi-core, IEEE Trans.
Comput. 63 (10) (2014) 2590–2603.

[19] D.B. Shmoys, J. Wein, D.P. Williamson, Scheduling parallel machines on-line,
in: Proc. 32nd IEEE Symposium on Foundations of Computer Science, 1991,
pp. 131–140.

[20] B. Wang, Task parallel scheduling over multi-core system, in: First In-
ternational Conference on Cloud Computing, in: LNCS, vol. 5931, 2009,
pp. 423–434.

[21] Y. Wang, K. Li, H. Chen, L. He, K. Li, Energy-aware data allocation and task
scheduling on heterogeneous multiprocessor systems with time constraints,
IEEE Trans. Emerg. Top. Comput. 2 (2) (2014) 134–148.

[22] G. Xie, R. Li, K. Li, Heterogeneity-driven end-to-end synchronized scheduling
for precedence constrained tasks and messages on networked embedded
systems, J. Parallel Distrib. Comput. 83 (2015) 1–12.

[23] Y. Xu, K. Li, L. He, L. Zhang, K. Li, A hybrid chemical reaction optimization
scheme for task scheduling on heterogeneous computing systems, IEEE Trans.
Parallel Distrib. Syst. 26 (12) (2015) 3208–3222.

[24] L. Zhang, K. Li, C. Li, K. Li, Bi-objective workflow scheduling of the energy
consumption and reliability in heterogeneous computing systems, Inform. Sci.
379 (2017) 241–256.

http://refhub.elsevier.com/S0743-7315(18)30398-8/sb1
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb1
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb1
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb4
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb4
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb4
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb5
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb5
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb5
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb6
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb6
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb6
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb6
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb6
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb7
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb7
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb7
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb7
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb7
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb8
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb8
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb8
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb9
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb9
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb9
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb10
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb10
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb10
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb11
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb11
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb11
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb12
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb12
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb12
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb13
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb13
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb13
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb16
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb16
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb16
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb17
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb17
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb17
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb18
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb18
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb18
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb21
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb21
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb21
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb21
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb21
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb22
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb22
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb22
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb22
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb22
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb23
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb23
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb23
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb23
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb23
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb24
http://refhub.elsevier.com/S0743-7315(18)30398-8/sb24

Please cite this article in press as: K. Li, Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors, J. Parallel Distrib. Comput.
(2018), https://doi.org/10.1016/j.jpdc.2018.06.001.

K. Li / J. Parallel Distrib. Comput. () – 11

Dr. Keqin Li is a SUNY Distinguished Professor of com-
puter science in the State University of New York. He
is also a Distinguished Professor of Chinese National Re-
cruitment Program of Global Experts (1000 Plan) at Hu-
nan University, China. He was an Intellectual Ventures
endowed visiting chair professor at the National Labo-
ratory for Information Science and Technology, Tsinghua
University, Beijing, China, during 2011–2014. His current
research interests include parallel computing and high-
performance computing, distributed computing, energy-
efficient computing and communication, heterogeneous

computing systems, cloud computing, big data computing, CPU–GPU hybrid and
cooperative computing, multicore computing, storage and file systems, wireless
communication networks, sensor networks, peer-to-peer file sharing systems, mo-
bile computing, service computing, Internet of things and cyber–physical systems.
He has published over 560 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently serving or
has served on the editorial boards of IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Computers, IEEE Transactions on Cloud Computing,
IEEE Transactions on Services Computing, and IEEE Transactions on Sustainable
Computing. He is an IEEE Fellow.

	Non-clairvoyant scheduling of independent parallel tasks on single and multiple multicore processors
	Introduction
	Motivation
	Background information
	Our contributions

	Related work
	Scheduling on a single multicore processor
	The LTF scheduling algorithm
	Worst-case analysis
	Simulation results

	Scheduling on multiple multicore processors
	The extended LTF scheduling algorithm
	Worst-case analysis
	Simulation results

	Online scheduling on multiple multicore processors
	The RTF scheduling algorithm
	Average-case analysis
	Simulation results

	Summary
	Acknowledgments
	References

