
J. Parallel Distrib. Comput. 95 (2016) 15–28
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Energy and time constrained task scheduling on multiprocessor
computers with discrete speed levels
Keqin Li
Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• Address energy and time constrained task scheduling with discrete speed levels.
• Prove the NP-hardness even on a uniprocessor computer with only two speed levels.
• Develop algorithms with two components: task scheduling and speed determination.
• Derive worst-case asymptotic performance bounds and average-case asymptotic per- formance bounds.
• Perform extensive simulations to verify the analytical results.

a r t i c l e i n f o

Article history:
Received 18 September 2015
Received in revised form
25 December 2015
Accepted 26 February 2016
Available online 4 March 2016

Keywords:
Discrete speed levels
Energy consumption
List scheduling
List placement
Performance analysis
Power-aware scheduling
Simulation
Task scheduling

a b s t r a c t

Energy and time constrained task scheduling onmultiprocessor computers with discrete clock frequency
and supply voltage and execution speed and power levels is addressed as combinatorial optimization
problems. It is proved that the problem of minimizing schedule length with energy consumption con-
straint and the problem of minimizing energy consumption with schedule length constraint are NP-hard
even on a uniprocessor computer with only two speed levels. A class of algorithms is developed to solve
the above two problems. These algorithms include two components, namely, a list scheduling algorithm
for task scheduling and a list placement algorithm for speed determination. A worst-case asymptotic per-
formance bound and an average-case asymptotic performance bound are derived for our algorithms on
uniprocessor computers, and a worst-case asymptotic performance bound is derived for our algorithms
on multiprocessor computers. Extensive simulations are performed to verify our analytical results. It is
found that our algorithms produce solutions very close to optimal and are practically very useful.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Modern high-performance processors can consume signifi-
cant amount of energy. An idle processor (e.g., Intel Core i7-975
3.33 GHz, DDR3-1066, 1 MB L2, 8 MB L3) may require 83 W of
power. The peak power consumption can be as high as 210 W
(e.g., AMD FX 8350 4.0 GHz, DDR3-1866, 8 MB L2, 8 MB L3) [36].
As the scale of multi-core and many-core systems increases to the
order of 106 cores, the power consumption also increases dramat-
ically. As of June 2015, the average power of the worlds ten fastest
supercomputers is 6.4454 MW [37], costing 56,461,704 kWh of
electricity and 6,137,387 USD (assuming 10.87 cents per Kilo-
watthour [34]) per year. On July 29, 2015, President Obama signed
an executive order—creating a National Strategic Computing Ini-

E-mail address: lik@newpaltz.edu.

http://dx.doi.org/10.1016/j.jpdc.2016.02.006
0743-7315/© 2016 Elsevier Inc. All rights reserved.
tiative with the objective of accelerating delivery of a capable ex-
ascale computing system, which is able to perform a quintillion,
i.e., 1018, floating point operations per second [38]. Since it is
widely believed that power consumption of any computing sys-
tem should not exceed 20 MW, we are facing the challenge of
developing an exascale system with 50,000 MFLOPS/Watt; how-
ever, the current (as of June 2015) technology can only achieve
7031.58MFLOPS/Watt [35]. Therefore, energy efficiency is listed as
the number one challenge of the top ten exascale system research
challenges [33].

According to Moore’s law, power consumption in computer
systems has increased at an exponential speed for decades [31].
Power density in high-performance computer systems will soon
reach that of a nuclear reactor [79]. Such increased energy
consumption causes severe economic, ecological, and techni-
cal problems [17,20,25,75]. Power conservation is critical in
many computation and communication environments and has at-
tracted extensive research activities. Reducing processor energy

http://dx.doi.org/10.1016/j.jpdc.2016.02.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.02.006&domain=pdf
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.jpdc.2016.02.006


16 K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28
consumption has been an important and pressing research issue
in recent years. There has been increasing interest and importance
in developing high-performance and energy-efficient computing
systems [16,18,19]. There exists an explosive body of literature
on power-aware computing and communication. The reader is re-
ferred to [1,8,9,77–79,91] for comprehensive surveys.

Power consumption in computing systems can be reduced
by thermal-aware hardware and software design at various lev-
els. Software techniques for power reduction are supported by a
mechanism called dynamic voltage scaling (equivalently, dynamic
frequency scaling, dynamic speed scaling, dynamic power scal-
ing) [28]. A power-aware algorithm can change supply voltage and
frequency at appropriate times to optimize a combined consid-
eration of performance and energy consumption. There are many
existing technologies and commercial processors that support dy-
namic voltage (frequency, speed, power) scaling [29,30,32].

Dynamic power management at the operating system level
refers to supply voltage and clock frequency adjustment schemes
implemented while tasks are running. These energy conservation
techniques explore the opportunities for tuning the energy-
delay tradeoff [76]. Since the pioneering work in [80,82], power-
aware task scheduling on processors with variable voltages and
speeds has been extensively studied, including scheduling tasks
with arrival times and deadlines on a uniprocessor computer
with minimum energy consumption [4–6,12,42,45,57,60,59,83],
scheduling independent or precedence constrained tasks on
uniprocessor or multiprocessor computers in real-time appli-
cations [3,23,26,27,40,44,46,61,63,66,70,71,73,74,81,87–90], deal-
ing with the energy-delay tradeoff [7,11,14,22,43,48,58,72,86,92],
developing high-performance and energy-efficient computing
systems [10,16,18,19], improving system level power manage-
ment [15,39,47,62,67], and conducting other studies [2,65,68,85].
In [50,52,54,53,51,55,56], we addressed energy and time con-
strained power allocation and task scheduling on multiprocessors
with dynamically variable voltage and frequency and speed and
power as combinatorial optimization problems.

Much existing research assume that a task can be supplied
with any power and a processor can be set at any speed, that
is, clock frequency and supply voltage and execution speed and
power supply can be changed continuously in any range. However,
the currently available processors have only a few discrete clock
frequency and supply voltage and execution speed and power
levels [41,69]. Much existing research also assume that clock
frequency and supply voltage and execution speed and power
supply canbe changed in any range. However, discrete settings also
imply that clock frequency and supply voltage and execution speed
and power supply can only be change in certain bounded range. The
constraints of discrete and bounded settings certainly make our
optimization problems more difficult to solve. However, power-
aware task scheduling algorithmsdevelopedwith such constraints,
though more complicated, will be more practically useful.

Task scheduling on processors with discrete speed levels has
been investigated by a number of researchers. For instances, it
was shown that an optimal preemptive schedule with minimum
energy consumption on a uniprocessor computer can be found in
polynomial time [45,60,59]. Processors with discrete speed levels
were also considered in real-time multiprocessor systems [64,88].
However, to the best of the author’s knowledge, energy and time
constrained nonpreemptive task scheduling on multiprocessor
computers with discrete speed levels has not been well studied
analytically, although experimental studies have been conducted
by many researchers. The motivation of this paper is to make
investigation towards this direction. We find that addressing
discrete and bounded speed levels simultaneously does not yield
analytically tractable algorithms and manageable and meaningful
results. Therefore, we will concentrate on discrete speed levels
which are assumed to be enough to accommodate the needs of our
algorithms.

The main contributions of the present paper are as follows.
First, we prove that the problem of minimizing schedule length
with energy consumption constraint and the problem of mini-
mizing energy consumption with schedule length constraint are
NP-hard evenon auniprocessor computerwith only two speed lev-
els (Proposition 1 in Section 3.1 and Proposition 2 in 4.1). Second,
we develop a class of algorithms to solve the above two problems.
These algorithms include two components, namely, a list schedul-
ing algorithm for task scheduling and a list placement algorithm
for speed determination (Sections 3.2 and 4.2). Third, we derive
a worst-case asymptotic performance bound and an average-case
asymptotic performance bound for our algorithms on uniprocessor
computers (Theorem 1 and Corollary 1 in Section 3.1 and Theo-
rem 3 and Corollary 2 in Section 4.1), and a worst-case asymptotic
performance bound on multiprocessor computers (Theorem 2 in
Section 3.2 and Theorem 4 in Section 4.2). Fourth, we perform ex-
tensive simulations to verify our analytical results. We found that
our algorithms produce solutions very close to optimal and are
practically very useful (Section 5).

2. The model of power consumption

Power dissipation and circuit delay in digital CMOS circuits
can be accurately modeled by simple equations, even for complex
microprocessor circuits. CMOS circuits have dynamic, static, and
short-circuit power dissipation; however, the dominant compo-
nent in a well designed circuit is dynamic power consumption p
(i.e., the switching component of power), which is approximately
p = aCV 2f , where a is an activity factor, C is the loading capaci-
tance, V is the supply voltage, and f is the clock frequency [13]. The
supply voltage and the clock frequency are related in such a way
that f ∝ V γ and equivalently V ∝ f 1/γ , where 0 < γ ≤ 1 [84]. The
processor execution speed s is linearly proportional to the clock
frequency, namely, s ∝ f . For ease of discussion, we will assume
that V = bf 1/γ and s = cf , where b and c are some constants.

We consider processors with discrete clock frequency and
supply voltage and execution speed and power levels. Assume that
a processor has d discrete levels of clock frequency f1, f2, . . . , fd,
which result in d discrete levels of supply voltage V1, V2, . . . , Vd,
and d discrete levels of processor speed s1, s2, . . . , sd, and d
discrete levels of power supply p1, p2, . . . , pd, where Vj = bf 1/γj ,

sj = cfj, and pj = aCV 2
j fj = ab2Cf 1+2/γ

j = ab2Cf α
j , where α =

1 + 2/γ ≥ 3, for all 1 ≤ j ≤ d.
Assume that we are given n independent tasks to be executed

on m identical processors. Let ri represent the execution require-
ment (i.e., the number of CPU cycles or the number of instructions)
of task i. If task i is executed with processor speed sj, the execu-
tion time of task i is ti = ri/sj, and the energy consumed to exe-
cute task i is calculated as ei = pjti = ri(pj/sj) = ri(aCV 2

j fj/sj) =

(aC/c)riV 2
j = (aC/c)ri(bf

1/γ
j )2 = (ab2C/c)rif α−1

j = (ab2C/c)ri
(sj/c)α−1

= (ab2C/cα)risα−1
j , where 1 ≤ i ≤ n and 1 ≤ j ≤ d. No-

tice that the constants a, b, c , and C only generate effect of scaling.
Thus, we will simply assume that ei = risα−1

j .
Throughout the paper, we assume that s1 < s2 < · · · < sd,

where d ≥ 2. We also define φj = sj+1/sj, for all 1 ≤ j ≤ d − 1.
The quantity φj measures the relative gap between two successive
speed levels sj and sj+1. As mentioned earlier, we assume that the
number of speed levels is large enough to accommodate the needs
of our algorithms.



K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28 17
3. Energy constrained scheduling

Given n tasks with task execution requirements r1, r2, . . . , rn,
the problem ofminimizing schedule length with energy consumption
constraint E on a multiprocessor computer with m processors
is to determine the execution speeds sj1 , sj2 , . . . , sjn and a
nonpreemptive schedule of the n tasks on the m processors
such that the schedule length is minimized and the total energy
consumed does not exceed E.

3.1. Scheduling on uniprocessor computers

We first consider a uniprocessor computer with m = 1
processor. It is clear that on a uniprocessor computer with energy
constraint E, the problem of minimizing schedule length with
energy consumption constraint is simply to decide the execution
speeds sj1 , sj2 , . . . , sjn , such that the schedule length

t1 + t2 + · · · + tn =
r1
sj1

+
r2
sj2

+ · · · +
rn
sjn

isminimized and the total energy consumed does not exceed E, i.e.,

e1 + e2 + · · · + en = r1sα−1
j1

+ r2sα−1
j2

+ · · · + rnsα−1
jn ≤ E.

Since tasks can be executed in any order on one processor, there is
no issue of scheduling. The determination of the execution speeds
is the only problem.

Let R = r1 + r2 + · · · + rn be the total execution requirement
of the n tasks. We define Ej = Rsα−1

j , which is the amount of
energy required for all the tasks to be executed at speed sj, where
1 ≤ j ≤ d. It is reasonable to assume that the given energy budget E
is in the range E1 ≤ E < Ed. If E < E1, there is no feasible schedule
tomeet the energy constraint. If E ≥ Ed, we simply execute all tasks
at speed sd and achieve the shortest possible schedule length.

Our first result shows that even on a uniprocessor computer
with only d = 2 speed levels, the problem of minimizing schedule
length with energy consumption constraint is NP-hard.

Proposition 1. The problem of minimizing schedule length with
energy consumption constraint is NP-hard on a uniprocessor
computer with two speed levels.

Proof. Consider a uniprocessor computer with d = 2 speed levels
s1 and s2. Assume that the energy constraint E is E1 ≤ E < E2. It
is clear that some tasks are executed at speed s1, while others are
executed at speed s2. Let S ⊆ {1, 2, . . . , n} be the set of taskswhich
are executed at speed s2, and

R′
=


i∈S

ri

be the total execution requirement of tasks in S. The schedule
length is
i∉S

ri
s1

+


i∈S

ri
s2

=
R − R′

s1
+

R′

s2
=

R
s1

− R′


1
s1

−
1
s2


.

The actual amount of energy consumed is
i∉S

risα−1
1 +


i∈S

risα−1
2 = (R − R′)sα−1

1 + R′sα−1
2

= Rsα−1
1 + R′(sα−1

2 − sα−1
1 )

= E1 + R′(sα−1
2 − sα−1

1 ).

Our problem of determination of the execution speeds is
equivalent to the problem of choosing S such that

E1 + R′(sα−1
2 − sα−1

1 ) ≤ E,
that is,

R′
≤

E − E1
sα−1
2 − sα−1

1

= M,

and that R′ is maximized so that the schedule length is minimized.
The above problem is exactly the maximum subset sum

problem [49]. Assume that there are n objects (i.e., tasks) of
sizes r1, r2, . . . , rn and a bag of capacity M . The maximum subset
problem is to find a subset S of objects to be placed into the bag
such that the total size of the objects packed into the bag is as
large as possible but does not exceed the capacity M of the bag.
Notice that the solution of the maximum subset problem can be
used to decide whether there is a subset of objects whose total
size is exactlyM , i.e., the subset sum problem, which is known to be
NP-hard [21, p. 223]. Therefore, themaximum subset sumproblem
is NP-hard, so is our problem of minimizing schedule length with
energy consumption constraint. �

Our strategy for energy constrained task scheduling on
processors with discrete clock frequency and supply voltage and
execution speed and power levels is to simulate the efficient
algorithms on processors with continuous clock frequency and
supply voltage and execution speed and power levels. It has
been known from [50] that if processors have continuous clock
frequency and supply voltage and execution speed and power
levels, the schedule length is minimized when all tasks are
executed at the same speed s = (E/R)1/(α−1). It is clear that such
an optimal speed s is not available in our d discrete speed levels,
unless E = Ej for some 1 ≤ j ≤ d. Assume that Ej ≤ E < Ej+1,
where 1 ≤ j ≤ d − 1. This implies that sj ≤ s < sj+1. Our strategy
is to achieve close-to-optimal performance by using speed levels
sj and sj+1. Hence, although there are d speed levels available, we
only focus on two speed levels.

Our scheduling algorithm works as follows. All the n tasks are
executed at speed sj or sj+1. If all tasks are executed at speed sj,
the energy consumption is Ej, and there is extra energy E − Ej to
accommodate some tasks to be executed at speed sj+1. We choose
a subset S ⊆ {1, 2, . . . , n} of tasks that are executed at speed sj+1.
Tasks not in S are executed at speed sj. Let

R′
=


i∈S

ri.

The subset S of tasks are chosen such that R′ is as large as possible
under the condition that

R′
≤ M =

R∆

φα−1
j − 1

,

where ∆ is defined such that E = Ej(1+ ∆) = Rsα−1
j (1+ ∆), with

0 ≤ ∆ < φα−1
j − 1. The bound M will be explained shortly.

The problem of finding S is equivalent to the maximum subset
sum problem, where the n objects are the n tasks with sizes
r1, r2, . . . , rn, and the bag capacity M is the space translated from
the extra energy E − Ej to accommodate tasks to be executed at
speed sj+1. The problem can be solved by using a simple greedy
algorithm called list placement (LP) [49] which works as follows.
Initially, the available space of the bag is M . We scan the list of
objects one after another. For each object i, we put the object into
the bag if ri is no greater than the currently available space of the
bag. After object i is packed into the bag, the available space of the
bag is reduced by ri.

AlgorithmLP arranges tasks in a randomorder. The LP algorithm
has many variations, depending on the strategy used in the initial
ordering of the tasks. We mention two of them here.

• Largest object first (LOF): This algorithm is the same as the LP
algorithm, except that the objects are arranged such that r1 ≥

r2 ≥ · · · ≥ rn.



18 K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28
• Smallest object first (SOF): This algorithm is the same as the
LP algorithm, except that the objects are arranged such that
r1 ≤ r2 ≤ · · · ≤ rn.

We call algorithm LP and its variations simply as list placement
algorithms.

Let A be any algorithm which solves the schedule length min-
imization problem. We use TA to denote the length of the sched-
ule produced by algorithm A and TOPT the optimal schedule length.
The performance ratio of an algorithm A is defined as βA = TA/TOPT
and the asymptotic performance ratio of algorithm A is β∞

A =

limR/r∗→∞ TA/TOPT, where r∗
= {r1, r2, . . . , rn} is the maximum

task execution requirement. If βA ≤ B, we call B a performance
bound of algorithm A. If β∞

A ≤ B, we call B an asymptotic perfor-
mance bound of algorithm A.

The following theorem gives an asymptotic performance bound
for list placement algorithms.

Theorem 1. For any list placement algorithm A, the asymptotic
performance ratio of algorithm A is β∞

A ≤ B, where the asymptotic
performance bound is

B = (1 + ∆)1/(α−1)(1 − Kj∆),

with

Kj =
φj − 1

φj(φ
α−1
j − 1)

.

Proof. The schedule length of algorithm A is

TA =


i∉S

ri
sj

+


i∈S

ri
sj+1

=
R − R′

sj
+

R′

sj+1

=
R
sj

− R′


1
sj

−
1

sj+1


.

Let EA denote the actual amount of energy consumed by algorithm
A. Then, we get

EA =


i∉S

risα−1
j +


i∈S

risα−1
j+1

= (R − R′)sα−1
j + R′sα−1

j+1

= Rsα−1
j + R′(sα−1

j+1 − sα−1
j )

= Ej + R′(sα−1
j+1 − sα−1

j ).

The problem of choosing S is actually to choose a subset of tasks
such that EA ≤ E, i.e.,

Ej + R′(sα−1
j+1 − sα−1

j ) ≤ E,

which implies that

R′
≤

E − Ej
sα−1
j+1 − sα−1

j

=
Ej∆

sα−1
j+1 − sα−1

j

=
Rsα−1

j ∆

sα−1
j+1 − sα−1

j

=
R∆

φα−1
j − 1

= M,

and that R′ is maximized so that the schedule length TA is
minimized. This is exactly the maximum subset sum problem.

It is clear that by using any list placement algorithm A, we
always get

R′ >
R∆

φα−1
j − 1

− r∗,
where r∗
= {r1, r2, . . . , rn} is the maximum task execution

requirement; otherwise, if R′
≤ M − r∗, our bag has more room

to accommodate more tasks. This implies that

TA <
R
sj

−


R∆

φα−1
j − 1

− r∗


1
sj

−
1

sj+1



= R


1
sj

−
∆

φα−1
j − 1


1
sj

−
1

sj+1


+ r∗


1
sj

−
1

sj+1


.

It has been known from [50] that if processors have continuous
clock frequency and supply voltage and execution speed and
power levels, the optimal schedule length is

T̃OPT =
Rα/(α−1)

E1/(α−1)
.

Such an optimal schedule length T̃OPT gives a lower bound for the
optimal schedule length TOPT when processors have discrete clock
frequency and supply voltage and execution speed and power
levels, i.e.,

TOPT ≥ T̃OPT =
R

(E/R)1/(α−1)
=

R
sj(1 + ∆)1/(α−1)

.

Hence, we get the asymptotic performance ratio of algorithm A as

β∞

A = lim
R/r∗→∞

TA
TOPT

≤ lim
R/r∗→∞

TA
T̃OPT

= sj(1 + ∆)1/(α−1)


1
sj

−
∆

φα−1
j − 1


1
sj

−
1

sj+1



= (1 + ∆)1/(α−1)


1 −

∆

φα−1
j − 1


1 −

1
φj


= (1 + ∆)1/(α−1)(1 − Kj∆),

where

Kj =
φj − 1

φj(φ
α−1
j − 1)

.

The theorem is proven. �

We notice that for a given α and a given gap φj, the asymptotic
performance bound B in Theorem 1 can be viewed as a function of
∆, i.e.,

B(∆) = (1 + ∆)1/(α−1)(1 − Kj∆).

If we can show that β∞

A ≤ Bworst, where Bworst is independent of
∆, then Bworst is called a worst-case asymptotic performance bound
for algorithm A. When ∆ is a random variable, β∞

A also becomes
a random variable. If we can show that β∞

A ≤ Baverage, where
Baverage is independent of ∆, then Baverage is called an average-case
asymptotic performance bound for algorithm A. (Notation:We use x̄
to represent the expectation of a random variable x.)

The following corollary gives a worst-case asymptotic perfor-
mance bound an average-case asymptotic performance bound for
list placement algorithms.

Corollary 1. For any list placement algorithm A, a worst-case
asymptotic performance bound for algorithm A is β∞

A ≤ Bworst, where

Bworst =
α − 1

αα/(α−1)
·
(Kj + 1)α/(α−1)

K 1/(α−1)
j

.



K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28 19
If ∆ is a random variable uniformly distributed in [0, φα−1
j − 1),

an average-case asymptotic performance bound for algorithm A is
β∞

A ≤ Baverage, where

Baverage =
α − 1

α
·

1

φα−1
j − 1


(Kj + 1)φα

j −
α

2α − 1
· Kjφ

2α−1
j

−
α − 1
2α − 1

· Kj − 1


.

Proof. Notice that
∂B(∆)

∂∆
= (1 + ∆)1/(α−1)


1 − Kj∆

(α − 1)(1 + ∆)
− Kj


.

To maximize B(∆), we need ∂B(∆)/∂∆ = 0, that is,

1 − Kj∆

(α − 1)(1 + ∆)
− Kj = 0.

Consequently, when

∆ =
1 − (α − 1)Kj

αKj
,

B(∆) reaches its maximum value of

Bworst =


(α − 1)(Kj + 1)

α


Kj + 1
αKj

1/(α−1)

=
α − 1

αα/(α−1)
·
(Kj + 1)α/(α−1)

K 1/(α−1)
j

.

Thus, we have proved that Bworst is a worst-case asymptotic
performance bound for algorithm A, i.e.,

β∞

A ≤ B(∆) ≤ Bworst =
α − 1

αα/(α−1)
·
(Kj + 1)α/(α−1)

K 1/(α−1)
j

.

As for the average-case asymptotic performance bound for
algorithm A, we notice that

B(∆)d∆ =


(1 + ∆)1/(α−1)(1 − Kj∆)d∆

=
α − 1

α


(1 + ∆)α/(α−1)(1 − Kj∆)

+ (1 + ∆)(2α−1)/(α−1)
·

α − 1
2α − 1

· Kj


.

Consequently, if ∆ is a random variable uniformly distributed in
[0, φα−1

j − 1), we have

B(∆) =
1

φα−1
j − 1

 φα−1
j −1

0
B(∆)d∆

=
1

φα−1
j − 1

 φα−1
j −1

0
(1 + ∆)1/(α−1)(1 − Kj∆)d∆

=
1

φα−1
j − 1

·
α − 1

α


(1 + ∆)α/(α−1)(1 − Kj∆)

+ (1 + ∆)(2α−1)/(α−1)
·

α − 1
2α − 1

· Kj

 
φα−1
j −1

0

=
α − 1

α
·

1

φα−1
j − 1


(Kj + 1)φα

j −
α

2α − 1
· Kjφ

2α−1
j

−
α − 1
2α − 1

· Kj − 1


.

Table 1
Numerical data for the asymptotic performance bound in Theorem 1 (α = 3).

z φj = 1.4 φj = 1.8 φj = 2.2 φj = 2.6 φj = 3.0

0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
1 1.0090942 1.0310805 1.0620115 1.0999808 1.1437754
2 1.0169888 1.0571744 1.1122661 1.1781337 1.2521981
3 1.0237402 1.0787977 1.1526748 1.2392577 1.3349157
4 1.0293997 1.0963662 1.1846076 1.2864196 1.3974580
5 1.0340134 1.1102219 1.2090909 1.3217346 1.4433757
6 1.0376237 1.1206506 1.2269201 1.3467429 1.4751271
7 1.0402692 1.1278946 1.2387285 1.3626129 1.4945085
8 1.0419855 1.1321615 1.2450316 1.3702593 1.5028861
9 1.0428055 1.1336313 1.2462569 1.3704168 1.5013327

10 1.0427593 1.1324615 1.2427642 1.3636880 1.4907120
11 1.0418751 1.1287909 1.2348603 1.3505758 1.4717337
12 1.0401789 1.1227427 1.2228102 1.3315059 1.4449913
13 1.0376952 1.1144271 1.2068447 1.3068435 1.4109886
14 1.0344467 1.1039431 1.1871666 1.2769053 1.3701581
15 1.0304546 1.0913804 1.1639559 1.2419683 1.3228757
16 1.0257390 1.0768202 1.1373729 1.2022771 1.2694706
17 1.0203185 1.0603368 1.1075617 1.1580494 1.2102341
18 1.0142109 1.0419981 1.0746522 1.1094798 1.1454257
19 1.0074328 1.0218666 1.0387625 1.0567437 1.0752777

Table 2
Numerical data for the worst-case asymptotic performance bound in Corollary 1.

φ α = 3.0 α = 3.5 α = 4.0 α = 4.5 α = 5.0

1.1 1.0034093 1.0039773 1.0045449 1.0051120 1.0056786
1.2 1.0125029 1.0145833 1.0166590 1.0187285 1.0207905
1.3 1.0259738 1.0302884 1.0345826 1.0388508 1.0430874
1.4 1.0428902 1.0499995 1.0570544 1.0640399 1.0709420
1.5 1.0625693 1.0729152 1.0831474 1.0932359 1.1031535
1.6 1.0844994 1.0984341 1.1121654 1.1256425 1.1388205
1.7 1.1082893 1.1260959 1.1435760 1.1606516 1.1772569
1.8 1.1336343 1.1555428 1.1769653 1.1977922 1.2179343
1.9 1.1602939 1.1864920 1.2120073 1.2366945 1.2604409
2.0 1.1880752 1.2187171 1.2484416 1.2770653 1.3044527
2.1 1.2168219 1.2520348 1.2860583 1.3186693 1.3497126
2.2 1.2464060 1.2862951 1.3246861 1.3613164 1.3960145
2.3 1.2767212 1.3213739 1.3641843 1.4048515 1.4431924
2.4 1.3076790 1.3571680 1.4044363 1.4491469 1.4911110
2.5 1.3392048 1.3935906 1.4453445 1.4940971 1.5396598
2.6 1.3712350 1.4305681 1.4868271 1.5396140 1.5887478
2.7 1.4037157 1.4680380 1.5288146 1.5856239 1.6382993
2.8 1.4366003 1.5059466 1.5712480 1.6320645 1.6882515
2.9 1.4698485 1.5442479 1.6140768 1.6788832 1.7385516
3.0 1.5034254 1.5829016 1.6572575 1.7260349 1.7891549

Thus, we have proved that B(∆) is an average-case asymptotic
performance bound for algorithm A, i.e.,

β∞

A ≤ B(∆) =
α − 1

α
·

1

φα−1
j − 1


(Kj + 1)φα

j

−
α

2α − 1
· Kjφ

2α−1
j −

α − 1
2α − 1

· Kj − 1


.

This proves the corollary. �

In Table 1, we demonstrate numerical data for the asymptotic
performance bound B in Theorem 1. Assume that α = 3. For
φj = 1.4, 1.8, 2.2, 2.6, 3.0, we show the asymptotic performance
bound for the asymptotic performance ratio β∞

A , i.e., B = (1 +

∆)1/(α−1)(1 − Kj∆), for ∆ = 0.05z(φα−1
j − 1), where 0 ≤ z ≤

19. We observe that the asymptotic performance bound B is an
increasing function of ∆ until B reaches its maximum value, and
then B becomes a decreasing function of ∆ as ∆ further increases.
This means that for ∆ ∈ [0, φα−1

j − 1), when ∆ is close to
the boundaries of the interval, it is easier to get close-to-optimal
performance. However, When ∆ is in the middle of the interval, it
is more difficult to get close-to-optimal performance.

In Table 2, we demonstrate numerical data for the worst-
case asymptotic performance bound Bworst in Corollary 1. For



20 K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28
Table 3
Numerical data for the average-case asymptotic performance bound in Corollary 1.

φ α = 3.0 α = 3.5 α = 4.0 α = 4.5 α = 5.0

1.1 1.0022731 1.0026518 1.0030303 1.0034084 1.0037862
1.2 1.0083379 1.0097262 1.0111111 1.0124913 1.0138659
1.3 1.0173273 1.0202093 1.0230765 1.0259243 1.0287480
1.4 1.0286243 1.0333788 1.0380934 1.0427559 1.0473547
1.5 1.0417778 1.0487058 1.0555501 1.0622856 1.0688898
1.6 1.0564497 1.0657938 1.0749870 1.0839864 1.0927542
1.7 1.0723817 1.0843391 1.0960521 1.1074546 1.1184904
1.8 1.0893726 1.1041050 1.1184710 1.1323763 1.1457441
1.9 1.1072633 1.1249043 1.1420267 1.1585041 1.1742381
2.0 1.1259259 1.1465865 1.1665452 1.1856406 1.2037531
2.1 1.1452568 1.1690293 1.1918854 1.2136267 1.2341143
2.2 1.1651705 1.1921322 1.2179319 1.2423331 1.2651812
2.3 1.1855961 1.2158118 1.2445890 1.2716539 1.2968399
2.4 1.2064744 1.2399983 1.2717771 1.3015015 1.3289976
2.5 1.2277551 1.2646325 1.2994294 1.3318029 1.3615783
2.6 1.2493954 1.2896644 1.3274894 1.3624975 1.3945191
2.7 1.2713586 1.3150510 1.3559090 1.3935338 1.4277680
2.8 1.2936130 1.3407551 1.3846470 1.4248685 1.4612816
2.9 1.3161311 1.3667449 1.4136681 1.4564647 1.4950234
3.0 1.3388889 1.3929924 1.4429417 1.4882910 1.5289630

α = 3.0, 3.5, 4.0, 4.5, 5.0, and φ = 1.1, 1.2, 1.3, . . . , 3.0, we
show the worst-case asymptotic performance bound Bworst for the
asymptotic performance ratio β∞

A . We observe that the worst-case
asymptotic performance bound Bworst is an increasing function of
α and φ. As the gap between two successive speed levels becomes
larger, it is more difficult to get close-to-optimal performance.
Since the typical values of α and φ are α = 3 and φ < 2 [41],
the worst-case asymptotic performance bound Bworst is very close
to optimal.

In Table 3, we demonstrate numerical data for the average-case
asymptotic performance bound Baverage in Corollary 1. For α =

3.0, 3.5, 4.0, 4.5, 5.0, and φ = 1.1, 1.2, 1.3, . . . , 3.0, we show
the average-case asymptotic performance bound Baverage for the
asymptotic performance ratio β∞

A . We observe that the average-
case asymptotic performance bound Baverage is lower than the
worst-case asymptotic performance bound Bworst and predicts the
performance our scheduling algorithms more accurately in real
applications.

3.2. Scheduling on multiprocessor computers

Now, we consider a multiprocessor computer with m >
1 processors. We observe that the problem of minimizing
schedule length with energy consumption constraint on a mul-
tiprocessor computer with m > 1 processors consists of two
components, namely, scheduling tasks and determining speeds.
Scheduling the tasks is essentially to partition the n tasks into
m groups R1, R2, . . . , Rm, such that each processor executes one
group of tasks. (Notation: Rk stands for a group of tasks as well as
the total execution requirement of tasks in group k.) Once a par-
tition R1, R2, . . . , Rm (i.e., a schedule) is given, execution speeds
which attempt tominimize the schedule lengthwithin energy con-
sumption constraint can be determined by using the LP algorithms.

The classic list scheduling (LS) algorithm [24] and its variations
have beenproposed and analyzed to solve thepartitioningproblem
(i.e., the scheduling problem). The task execution times are
simply r1, r2, . . . , rn, and tasks are assigned to the m processors
(i.e., groups) by using the following method. Initially, task k is
scheduled on processor (or group) k, where 1 ≤ k ≤ m, and
tasks 1, 2, . . . ,m are removed from the list simultaneously. Upon
the completion of a task k, the first unscheduled task in the list,
i.e., task m + 1, is removed from the list and scheduled to be
executed on processor k. This process repeats until all tasks in the
list are finished. Algorithm LS has many variations, depending on
the strategy used in the initial ordering of the tasks. We mention
two of them here.
• Largest requirement first (LRF): This algorithm is the same as
the LS algorithm, except that the tasks are arranged such that
r1 ≥ r2 ≥ · · · ≥ rn.

• Smallest requirement first (SRF): This algorithm is the same as
the LS algorithm, except that the tasks are arranged such that
r1 ≤ r2 ≤ · · · ≤ rn.

We call algorithm LS and its variations simply as list scheduling
algorithms.

We use the notation A1–A2 to represent a power-aware task
scheduling algorithm on multiprocessor computers. Algorithm
A1–A2 works as follows. First, a list scheduling algorithm A1 is used
to produce a partition R1, R2, . . . , Rm. Second, for each processor k,
a list placement algorithm A2 is used to produce a schedule of tasks
in Rk on processor k by using

Ek =


Rα
k

Rα
1 + Rα

2 + · · · + Rα
m


E

amount of energy, where 1 ≤ k ≤ m. The above energy Ek will be
explained shortly.

The following result gives aworst-case asymptotic performance
bound for algorithm A1–A2.

Theorem 2. For any list scheduling algorithm A1 and any list
placement algorithm A2, the asymptotic performance ratio of
algorithm A1–A2 is β∞

A1–A2
≤ B, where the worst-case asymptotic

performance bound is

B =
α − 1

αα/(α−1)
·
(K + 1)α/(α−1)

K 1/(α−1)
,

and

K =
φ − 1

φ(φα−1 − 1)
,

with φ = max{φ1, φ2, . . . , φd}.

Proof. It has been known from [50] that for a given partition
R1, R2, . . . , Rm of the n tasks into m groups generated by any
list scheduling algorithm A1, if processors have continuous clock
frequency and supply voltage and execution speed and power
levels, the optimal energy allocation is to allocate

Ẽk =


Rα
k

Rα
1 + Rα

2 + · · · + Rα
m


E

amount of energy to processor k, where 1 ≤ k ≤ m. Furthermore, if
we use T̃k to denote the optimal schedule length of Rk on processor
k, then we have T̃1 = T̃2 = · · · = T̃m = T̃ , where

T̃k =
Rα/(α−1)
k

Ẽ1/(α−1)
k

,

for all 1 ≤ k ≤ m, and

T̃ =


Rα
1 + Rα

2 + · · · + Rα
m

E

1/(α−1)

.

Let TA2,k denote the length of the schedule produced by
algorithm A2 on processor kwith energy constraint Ek = Ẽk, where
1 ≤ k ≤ m. In the proof of Theorem 1, we have already shown that
for list placement algorithm A2, we have

lim
Rk/r∗→∞

TA2,k
T̃k

= (1 + ∆k)
1/(α−1)(1 − Kjk∆k),

wherewe assume that Ek,jk ≤ Ek < Ek,jk+1, with Ek,jk = Rksα−1
jk

, and
1 ≤ jk ≤ d−1, and Ek = Ek,jk(1+∆k), where 0 ≤ ∆k < φα−1

jk
−1,

for all 1 ≤ k ≤ m. Since each processor k has its own jk and ∆k,



K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28 21
where 1 ≤ k ≤ m, we need to get rid of these jk’s and ∆k’s to reach
a manageable and meaningful result.

First, from Corollary 1, we have

lim
Rk/r∗→∞

TA2,k
T̃k

≤
α − 1

αα/(α−1)
·
(Kjk + 1)α/(α−1)

K 1/(α−1)
jk

,

for all 1 ≤ k ≤ m. Thus, there is no more ∆k.
Next, let us view theworst-case asymptotic performance bound

Bworst in Corollary 1 as a function of Kj, i.e.,

Bworst(Kj) =
α − 1

αα/(α−1)
·
(Kj + 1)α/(α−1)

K 1/(α−1)
j

.

It can be verified that Bworst(Kj) is a decreasing function of Kj. This
can be seen from the fact that

∂Bworst(Kj)

∂Kj
=

α − 1
αα/(α−1)


1 +

1
Kj

1/(α−1) 
1 −

1
(α − 1)Kj


< 0,

where

Kj =
φj − 1

φj(φ
α−1
j − 1)

=
1

φj(φ
α−2
j + φα−3

j + · · · + φ0
j )

<
1

α − 1
,

since φj > 1 and α ≥ 3. Hence, we get

Bworst(Kj) ≤
α − 1

αα/(α−1)
·
(K + 1)α/(α−1)

K 1/(α−1)
,

where K = min{K1, K2, . . . , Kd}, and

K =
φ − 1

φ(φα−1 − 1)
,

with φ = max{φ1, φ2, . . . , φd}, since K is a decreasing function of
φ. The above discussion leads to

lim
Rk/r∗→∞

TA2,k
T̃k

≤
α − 1

αα/(α−1)
·
(K + 1)α/(α−1)

K 1/(α−1)
,

for all 1 ≤ k ≤ m. Thus, there is no more jk.
Notice that the length of the schedule produced by algorithm

A1–A2 is

TA1–A2 = max{TA2,1, TA2,2, . . . , TA2,m}.

Therefore, we obtain

lim
R/r∗→∞

TA1–A2
T̃

= lim
R/r∗→∞

max{TA2,1, TA2,2, . . . , TA2,m}

T̃

= lim
R/r∗→∞

max

TA2,1
T̃

,
TA2,2
T̃

, . . . ,
TA2,m
T̃


= max


lim

R/r∗→∞

TA2,1
T̃

, lim
R/r∗→∞

TA2,2
T̃

, . . . , lim
R/r∗→∞

TA2,m
T̃


= max


lim

R1/r∗→∞

TA2,1
T̃1

, lim
R2/r∗→∞

TA2,2
T̃2

, . . . , lim
Rm/r∗→∞

TA2,m
T̃m


≤

α − 1
αα/(α−1)

·
(K + 1)α/(α−1)

K 1/(α−1)
.

Let TOPT denote the optimal schedule length when processors
have discrete clock frequency and supply voltage and execution
speed and power levels, and T̃OPT denote the optimal schedule
length when processors have continuous clock frequency and
supply voltage and execution speed and power levels. Clearly, we
have TOPT ≥ T̃OPT. It has been proven in [50] that for any list
scheduling algorithm A1, as R/r∗

→ ∞, we have T̃/T̃OPT →
1. Consequently, the asymptotic performance ratio of algorithm
A1–A2 is

β∞

A1–A2 = lim
R/r∗→∞

TA1–A2
TOPT

≤ lim
R/r∗→∞

TA1–A2
T̃OPT

=


lim

R/r∗→∞

TA1–A2
T̃


lim

R/r∗→∞

T̃

T̃OPT



≤
α − 1

αα/(α−1)
·
(K + 1)α/(α−1)

K 1/(α−1)
.

This proves the theorem. �

4. Time constrained scheduling

Given n tasks with task execution requirements r1, r2, . . . , rn,
the problem ofminimizing energy consumption with schedule length
constraint T on a multiprocessor computer with m processors
is to determine the execution speeds sj1 , sj2 , . . . , sjn and a
nonpreemptive schedule of the n tasks on the m processors such
that the total energy consumption is minimized and the schedule
length does not exceed T .

4.1. Scheduling on uniprocessor computers

We first consider a uniprocessor computer with m = 1 pro-
cessor. It is clear that on a uniprocessor computer with time con-
straint T , the problem of minimizing energy consumption with
schedule length constraint is simply to decide the execution speeds
sj1 , sj2 , . . . , sjn , such that the total energy consumption

e1 + e2 + · · · + en = r1sα−1
j1

+ r2sα−1
j2

+ · · · + rnsα−1
jn

is minimized and the schedule length does not exceed T , i.e.,

t1 + t2 + · · · + tn =
r1
sj1

+
r2
sj2

+ · · · +
rn
sjn

≤ T .

We define Tj = R/sj, which is the total execution time of all
the tasks when they are executed at speed sj, where 1 ≤ j ≤ d. It is
reasonable to assume that the given time deadline T is in the range
T1 > T ≥ Td. If T < Td, there is no feasible schedule to meet the
time constraint. If T ≥ T1, we simply execute all tasks at speed s1
and consume the minimum possible energy.

Again, even on a uniprocessor computer with only d = 2
speed levels, the problem of minimizing energy consumption with
schedule length constraint is NP-hard.

Proposition 2. The problem of minimizing energy consumption with
schedule length constraint is NP-hard on a uniprocessor computer
with two speed levels.

Proof. Consider a uniprocessor computer with d = 2 speed levels
s1 and s2. Assume that the time constraint T is T1 > T ≥ T2. It
is clear that some tasks are executed at speed s1, while others are
executed at speed s2. Let S ⊆ {1, 2, . . . , n} be the set of taskswhich
are executed at speed s2, and

R′
=


i∈S

ri

be the total execution requirement of tasks in S. Similar to the proof
of Proposition 1, the amount of energy consumed is

Rsα−1
1 + R′(sα−1

2 − sα−1
1 ).



22 K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28
The actual schedule length is

R
s1

− R′


1
s1

−
1
s2


= T1 − R′


1
s1

−
1
s2


.

Our problem of determination of the execution speeds is
equivalent to the problem of choosing S such that

T1 − R′


1
s1

−
1
s2


≤ T ,

that is,

R′
≥

T1 − T
1/s1 − 1/s2

= M,

and thatR′ isminimized so that the energy consumed isminimized.
The above problem is exactly theminimum subset sum problem.

Assume that there are n objects (i.e., tasks) of sizes r1, r2, . . . , rn
and a bag of capacity M . The minimum subset problem is to find
a subset S of objects to fill the bag such that the total size of the
objects filling the bag is as small as possible but is at least as
large as the capacity M of the bag. Again, since the solution of the
minimum subset problem can be used to decide whether there is a
subset of objects whose total size is exactlyM (i.e., the subset sum
problem), the minimum subset sum problem is NP-hard, so is our
problem of minimizing energy consumption with schedule length
constraint. �

It has been known from [50] that if processors have continuous
clock frequency and supply voltage and execution speed and
power levels, the energy consumption is minimized when all tasks
are executed at the same speed s = R/T . Assume that Tj > T ≥

Tj+1, where 1 ≤ j ≤ d − 1. This implies that sj < s ≤ sj+1. Our
strategy is to achieve close-to-optimal performance by using speed
levels sj and sj+1.

Our scheduling algorithm works as follows. All the n tasks are
executed at speed sj or sj+1. If all tasks are executed at speed sj, the
total execution time is Tj, and there is extra time Tj−T to be reduced
by selecting some tasks to be executed at speed sj+1. We choose a
subset S ⊆ {1, 2, . . . , n} of tasks that are executed at speed sj+1.
Tasks not in S are executed at speed sj. Let

R′
=


i∈S

ri.

The subset S of tasks are chosen such that R′ is as small as possible
under the condition that

R′
≥ M =

R∆
1 − 1/φj

,

where ∆ is defined such that T = Tj(1−∆) = (R/sj)(1−∆), with
0 < ∆ ≤ 1 − 1/φj, and φj = sj+1/sj for all 1 ≤ j ≤ d − 1. The
bound M will be explained shortly.

The problem of finding S is equivalent to the minimum subset
sum problem, where the n objects are the n tasks with sizes
r1, r2, . . . , rn, and a bag of capacity M is the space translated from
the required time reduction Tj − T to be filled by tasks which are
executed at speed sj+1. The problem can be solved by using the LP
algorithm slightly modified as follows. Initially, the content of the
bag is zero. We scan the list of objects one after another. For each
object i, we fill the bagwith the object if the bag is still not full. After
object i is packed into the bag, the content of the bag is increased
by ri. Themodified LP algorithm also has variations such as SOF and
LOF.

Let A be any algorithm which solves the energy consumption
minimization problem. We use EA to denote the amount of
energy consumed by algorithm A and EOPT the minimum energy
consumption. The performance ratio of an algorithm A is defined as
βA = EA/EOPT and the asymptotic performance ratio of algorithm
A is β∞

A = limR/r∗→∞ EA/EOPT, where r∗
= {r1, r2, . . . , rn} is the

maximum task execution requirement. If β∞

A ≤ B, we call B an
asymptotic performance bound for algorithm A.

The following theorem gives an asymptotic performance bound
for list placement algorithms.

Theorem 3. For any list placement algorithm A, the asymptotic
performance ratio of algorithm A is β∞

A ≤ B, where the asymptotic
performance bound is

B = (1 − ∆)α−1

1 +

∆

Kj


,

with

Kj =
φj − 1

φj(φ
α−1
j − 1)

.

Proof. Similar to the proof of Theorem1,we know that the amount
of energy consumed by algorithm A is

EA = Rsα−1
j + R′(sα−1

j+1 − sα−1
j ),

and the actual schedule length of algorithm A is

TA = Tj − R′


1
sj

−
1

sj+1


.

The problem of choosing S is actually to choose a subset of tasks
such that TA ≤ T , i.e.,

Tj − R′


1
sj

−
1

sj+1


≤ T ,

which implies that

R′
≥

Tj − T
1/sj − 1/sj+1

=
Tj∆

1/sj − 1/sj+1
=

(R/sj)∆
1/sj − 1/sj+1

=
R∆

1 − 1/φj
= M,

and that R′ is minimized so that the energy consumption EA is
minimized. This is exactly the minimum subset sum problem.

It is clear that by using any list placement algorithm A, we
always get

R′ <
R∆

1 − 1/φj
+ r∗,

where r∗
= {r1, r2, . . . , rn} is the maximum task execution

requirement; otherwise, if R′
≥ M + r∗, we can take one object

away while still fill the bag. This implies that

EA < Rsα−1
j +


R∆

1 − 1/φj
+ r∗


(sα−1

j+1 − sα−1
j )

= R

sα−1
j +

∆

1 − 1/φj
(sα−1

j+1 − sα−1
j )


+ r∗(sα−1

j+1 − sα−1
j ).

It has been known from [50] that if processors have continuous
clock frequency and supply voltage and execution speed and
power levels, the minimum energy consumption is

ẼOPT =
Rα

Tα−1
.

Such minimum energy consumption ẼOPT gives a lower bound for
the minimum energy consumption EOPT when processors have
discrete clock frequency and supply voltage and execution speed
and power levels, i.e.,

EOPT ≥ ẼOPT = R(R/T )α−1
= R


sj

1 − ∆

α−1

.



K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28 23
Hence, we get the asymptotic performance ratio of algorithm A as

β∞

A = lim
R/r∗→∞

EA
EOPT

≤ lim
R/r∗→∞

EA
ẼOPT

=


1 − ∆

sj

α−1 
sα−1
j +

∆

1 − 1/φj
(sα−1

j+1 − sα−1
j )


= (1 − ∆)α−1


1 +

∆

1 − 1/φj
(φα−1

j − 1)


= (1 − ∆)α−1

1 +

∆

Kj


,

where

Kj =
φj − 1

φj(φ
α−1
j − 1)

.

The theorem is proven. �

The following corollary gives a worst-case asymptotic perfor-
mance bound an average-case asymptotic performance bound for
list placement algorithms.

Corollary 2. For any list placement algorithm A, a worst-case
asymptotic performance bound for algorithm A is β∞

A ≤ Bworst, where

Bworst =
(α − 1)α−1

αα
·
(Kj + 1)α

Kj
.

If ∆ is a random variable uniformly distributed in (0, 1 − 1/φj],
an average-case asymptotic performance bound for algorithm A is
β∞

A ≤ Baverage, where

Baverage =
1
α


1 +

1
(α + 1)Kj

·
φj

φj − 1


1 −

1

φα+1
j


.

Proof. If we view the asymptotic performance bound B in
Theorem 3 as a function of ∆, i.e.,

B(∆) = (1 − ∆)α−1

1 +

∆

Kj


,

then we obtain

∂B(∆)

∂∆
= (1 − ∆)α−2

·
1 − (α − 1)Kj − α∆

Kj
.

To maximize B(∆), we need ∂B(∆)/∂∆ = 0, that is,

1 − (α − 1)Kj − α∆ = 0.

Consequently, when

∆ =
1 − (α − 1)Kj

α
,

B(∆) reaches its maximum value of

Bworst =


(α − 1)(Kj + 1)

α

α−1 Kj + 1
αKj


=

(α − 1)α−1

αα
·
(Kj + 1)α

Kj
.

Table 4
Numerical data for the asymptotic performance bound in Theorem 3 (α = 3).

z φj = 1.4 φj = 1.8 φj = 2.2 φj = 2.6 φj = 3.0

1 1.0182710 1.0631269 1.1278684 1.2099579 1.3082222
2 1.0342661 1.1176178 1.2371359 1.3879991 1.5680000
3 1.0480441 1.1638044 1.3286592 1.5357595 1.7820000
4 1.0596637 1.2020188 1.4032952 1.6548753 1.9528889
5 1.0691837 1.2325926 1.4619008 1.7469822 2.0833333
6 1.0766629 1.2558578 1.5053329 1.8137164 2.1760000
7 1.0821600 1.2721462 1.5344483 1.8567138 2.2335556
8 1.0857339 1.2817896 1.5501038 1.8776104 2.2586667
9 1.0874433 1.2851200 1.5531564 1.8780421 2.2540000

10 1.0873469 1.2824691 1.5444628 1.8596450 2.2222222
11 1.0855037 1.2741689 1.5248800 1.8240549 2.1660000
12 1.0819722 1.2605511 1.4952648 1.7729079 2.0880000
13 1.0768114 1.2419477 1.4564740 1.7078400 1.9908889
14 1.0700800 1.2186904 1.4093646 1.6304871 1.8773333
15 1.0618367 1.1911111 1.3547934 1.5424852 1.7500000
16 1.0521404 1.1595417 1.2936172 1.4454703 1.6115556
17 1.0410498 1.1243141 1.2266929 1.3410783 1.4646667
18 1.0286237 1.0857600 1.1548774 1.2309453 1.3120000
19 1.0149208 1.0442114 1.0790274 1.1167072 1.1562222
20 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

As for the average-case asymptotic performance bound for
algorithm A, we notice that

B(∆)d∆ =


(1 − ∆)α−1


1 +

∆

Kj


d∆

= −
1
α


(1 − ∆)α


1 +

∆

Kj


+

1
(α + 1)Kj

(1 − ∆)α+1


.

Consequently, if ∆ is a random variable uniformly distributed in
(0, 1 − 1/φj], we have

B(∆) =
1

1 − 1/φj

 1−1/φj

0
B(∆)d∆

=
1

1 − 1/φj

 1−1/φj

0
(1 − ∆)α−1


1 +

∆

Kj


d∆

=
1
α

·
φj

φj − 1


(1 − ∆)α


1 +

∆

Kj



+
1

(α + 1)Kj
(1 − ∆)α+1

 
0

1−1/φj

=
1
α


1 +

1
(α + 1)Kj

·
φj

φj − 1


1 −

1

φα+1
j


.

Thus, B(∆) is an average-case asymptotic performance bound for
algorithm A. �

In Table 4, we demonstrate numerical data for the asymptotic
performance bound B in Theorem 3. Assume that α = 3. For φj =

1.4, 1.8, 2.2, 2.6, 3.0,we show the asymptotic performance bound
for the asymptotic performance ratio β∞

A , i.e., B = (1−∆)α−1(1+

∆/Kj), for ∆ = 0.05z(1 − 1/φj), where 1 ≤ z ≤ 20. We observe
that the asymptotic performance bound B is an increasing function
of ∆ until B reaches its maximum value, and then B becomes a
decreasing function of ∆ as ∆ further increases.

In Table 5, we demonstrate numerical data for the worst-
case asymptotic performance bound Bworst in Corollary 2. For
α = 3.0, 3.5, 4.0, 4.5, 5.0, and φ = 1.1, 1.2, 1.3, . . . , 3.0, we
show the worst-case asymptotic performance bound Bworst for the
asymptotic performance ratio β∞

A . We observe that the worst-case
asymptotic performance bound Bworst is very close to optimal for
α = 3 and φ < 2.

In Table 6, we demonstrate numerical data for the average-
case asymptotic performance bound Baverage in Corollary 2. For



24 K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28
Table 5
Numerical data for the worst-case asymptotic performance bound in Corollary 2.

φ α = 3.0 α = 3.5 α = 4.0 α = 4.5 α = 5.0

1.1 1.0068302 1.0099729 1.0136967 1.0180067 1.0229086
1.2 1.0251621 1.0368580 1.0508142 1.0670988 1.0857918
1.3 1.0526222 1.0774496 1.1073771 1.1427102 1.1838120
1.4 1.0876199 1.1297250 1.1811146 1.2426612 1.3154182
1.5 1.1290535 1.1923768 1.2707575 1.3661506 1.4809616
1.6 1.1761391 1.2645470 1.3756506 1.5132186 1.6819808
1.7 1.2283052 1.3456697 1.4955298 1.6844440 1.9208126
1.8 1.2851268 1.4353742 1.6303882 1.8807677 2.2003687
1.9 1.3462819 1.5334232 1.7803924 2.1033837 2.5240035
2.0 1.4115226 1.6396730 1.9458293 2.3536713 2.8954322
2.1 1.4806556 1.7540460 2.1270708 2.6331503 3.3186786
2.2 1.5535279 1.8765127 2.3245501 2.9434511 3.7980420
2.3 1.6300171 2.0070783 2.5387453 3.2862943 4.3380733
2.4 1.7100245 2.1457744 2.7701680 3.6634767 4.9435609
2.5 1.7934694 2.2926513 3.0193547 4.0768604 5.6195187
2.6 1.8802855 2.4477741 3.2868613 4.5283654 6.3711794
2.7 1.9704178 2.6112186 3.5732586 5.0199642 7.2039887
2.8 2.0638205 2.7830689 3.8791289 5.5536773 8.1236012
2.9 2.1604548 2.9634153 4.2050636 6.1315698 9.1358780
3.0 2.2602881 3.1523527 4.5516614 6.7557489 10.2468838

Table 6
Numerical data for the average-case asymptotic performance bound in Corollary 2.

φ α = 3.0 α = 3.5 α = 4.0 α = 4.5 α = 5.0

1.1 1.0045523 1.0066454 1.0091240 1.0119907 1.0152482
1.2 1.0167593 1.0245288 1.0337796 1.0445452 1.0568642
1.3 1.0350148 1.0514457 1.0711645 1.0943204 1.1210877
1.4 1.0582313 1.0859697 1.1195848 1.1595001 1.2062175
1.5 1.0856481 1.1271513 1.1780093 1.2391647 1.3117541
1.6 1.1167187 1.1743452 1.2458195 1.3329477 1.4379448
1.7 1.1510409 1.2271062 1.3226645 1.4408394 1.5855306
1.8 1.1883128 1.2851246 1.4083709 1.5630694 1.7555981
1.9 1.2283033 1.3481852 1.5028879 1.7000344 1.9494903
2.0 1.2708333 1.4161393 1.6062500 1.8522514 2.1687500
2.1 1.3157615 1.4888864 1.7185533 2.0203276 2.4150837
2.2 1.3629752 1.5663614 1.8399387 2.2049392 2.6903378
2.3 1.4123834 1.6485258 1.9705805 2.4068177 2.9964817
2.4 1.4639120 1.7353606 2.1106780 2.6267395 3.3355972
2.5 1.5175000 1.8268622 2.2604500 2.8655186 3.7098700
2.6 1.5730966 1.9230384 2.4201300 3.1240012 4.1215841
2.7 1.6306596 2.0239062 2.5899632 3.4030620 4.5731177
2.8 1.6901531 2.1294895 2.7702042 3.7036010 5.0669401
2.9 1.7515468 2.2398178 2.9611148 4.0265408 5.6056090
3.0 1.8148148 2.3549248 3.1629630 4.3728256 6.1917695

α = 3.0, 3.5, 4.0, 4.5, 5.0, and φ = 1.1, 1.2, 1.3, . . . , 3.0, we
show the average-case asymptotic performance bound Baverage
for the asymptotic performance ratio β∞

A . We observe that the
average-case asymptotic performance bound Baverage is noticeably
lower than the worst-case asymptotic performance bound Bworst,
especially for large α and φ.

4.2. Scheduling on multiprocessor computers

Now, we consider a multiprocessor computer with m > 1
processors. Again, our scheduling algorithm A1–A2 to solve the
problem of minimizing energy consumption with schedule length
constraint on a multiprocessor computer with m > 1 processors
contains two components, namely, a list scheduling algorithm A1
which is used to produce a partition R1, R2, . . . , Rm, and amodified
list placement algorithm A2 which is used to produce a schedule of
tasks inRk onprocessor kwith time constraint T , where 1 ≤ k ≤ m.

The following result gives aworst-case asymptotic performance
bound for algorithm A1–A2.

Theorem 4. For any list scheduling algorithm A1 and any list
placement algorithm A2, the asymptotic performance ratio of
algorithm A1–A2 is β∞

A1–A2
≤ B, where the worst-case asymptotic

performance bound is

B =
(α − 1)α−1

αα
·
(K + 1)α

K
,

and

K =
φ − 1

φ(φα−1 − 1)
,

with φ = max{φ1, φ2, . . . , φd}.

Proof. It has been known from [50] that for a given partition
R1, R2, . . . , Rm of the n tasks into m groups generated by any
list scheduling algorithm A1, if processors have continuous clock
frequency and supply voltage and execution speed and power
levels, the minimum energy consumption on processor k is

Ẽk =
Rα
k

Tα−1
,

where 1 ≤ k ≤ m, and the minimum energy consumed by all the
n tasks to meet the time deadline T is

Ẽ =
Rα
1 + Rα

2 + · · · + Rα
m

Tα−1
.

Let EA2,k denote the energy consumed by algorithm A2 on
processor kwith time constraint T , where 1 ≤ k ≤ m. In the proof
of Theorem 3, we have already shown that for any list placement
algorithm A2, we have

lim
Rk/r∗→∞

EA2,k
Ẽk

= (1 − ∆k)
α−1


1 +

∆k

Kjk


,

where we assume that Tk,jk > T ≥ Tk,jk+1, with Tk,jk = Rk/sjk , and
1 ≤ jk ≤ d − 1, and T = Tk,jk(1 − ∆k) = (Rk/sjk)(1 − ∆k), where
0 < ∆k ≤ 1−1/φjk , for all 1 ≤ k ≤ m. Furthermore, by Corollary 2
and a similar argument in the proof of Theorem 2, we know that

lim
Rk/r∗→∞

EA2,k
Ẽk

≤
(α − 1)α−1

αα
·
(K + 1)α

K
,

for all 1 ≤ k ≤ m, where

K = min{K1, K2, . . . , Kd} =
φ − 1

φ(φα−1 − 1)
,

with φ = max{φ1, φ2, . . . , φd}.
Notice that the total amount of energy consumed by algorithm

A1–A2 is

EA1–A2 = EA2,1 + EA2,2 + · · · + EA2,m.

Since

lim
R/r∗→∞

EA2,k
Ẽ

=
Ẽk
Ẽ

lim
Rk/r∗→∞

EA2,k
Ẽk

=
Rα
k

Rα
1 + Rα

2 + · · · + Rα
m

lim
Rk/r∗→∞

EA2,k
Ẽk

≤
Rα
k

Rα
1 + Rα

2 + · · · + Rα
m

·
(α − 1)α−1

αα
·
(K + 1)α

K
,

for all 1 ≤ k ≤ m, we have

lim
R/r∗→∞

EA1–A2
Ẽ

= lim
R/r∗→∞

EA2,1 + EA2,2 + · · · + EA2,m
Ẽ

=

m
k=1

lim
R/r∗→∞

EA2,k
Ẽ

≤

m
k=1

Rα
k

Rα
1 + Rα

2 + · · · + Rα
m



K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28 25
·
(α − 1)α−1

αα
·
(K + 1)α

K

=
(α − 1)α−1

αα
·
(K + 1)α

K
.

Let EOPT denote the minimum energy consumption when
processors have discrete clock frequency and supply voltage and
execution speed and power levels, and ẼOPT denote the minimum
energy consumption when processors have continuous clock
frequency and supply voltage and execution speed and power
levels. Clearly, we have EOPT ≥ ẼOPT. It has been proven in [50]
that for any list scheduling algorithm A1, as R/r∗

→ ∞, we have
Ẽ/ẼOPT → 1. Consequently, the asymptotic performance ratio of
algorithm A1–A2 is

β∞

A1–A2 = lim
R/r∗→∞

EA1–A2
EOPT

≤ lim
R/r∗→∞

EA1–A2
ẼOPT

=


lim

R/r∗→∞

EA1–A2
Ẽ


lim

R/r∗→∞

Ẽ

ẼOPT



≤
α − 1

αα/(α−1)
·
(K + 1)α/(α−1)

K 1/(α−1)
.

This proves the theorem. �

5. Simulation results

In this section, we present simulation results for the nine
algorithms developed in this paper, which are SRF-SOF, SRF-
LP, SRF-LOF, LS-SOF, LS-LP, LS-LOF, LRF-SOF, LRF-LP, and LRF-
LOF. Our experimental performance evaluation is based on two
performance measures, namely, normalized schedule length and
normalized energy consumption.

The normalized schedule length NSLA of an algorithm A that
solves the problem of minimizing schedule length with energy
consumption constraint is defined as

NSLA =
TA

((m/E)(R/m)α)1/(α−1)
,

where the denominator is a lower bound for the optimal schedule
length evenwhen processors have continuous clock frequency and
supply voltage and execution speed and power levels [50].

We notice that NSLA serves as a performance bound for the
performance ratio βA = TA/TOPT of any algorithm A that solves the
problem of minimizing schedule length with energy consumption
constraint on a multiprocessor computer. When the ri’s and E are
random variables, TA, TOPT, βA, and the NSLA all become random
variables. It is clear that for the problem of minimizing schedule
length with energy consumption constraint, we have β̄A ≤ NSLA,
i.e., the expected performance ratio is no greater than the expected
normalized schedule length.

The normalized energy consumption NECA of an algorithm A
that solves the problem of minimizing energy consumption with
schedule length constraint is defined as

NECA =
EA

Rα/(mT )α−1
,

where the denominator is a lower bound for the minimum
energy consumption even when processors have continuous clock
frequency and supply voltage and execution speed and power
levels [50].

It is noticed that NECA is a performance bound for the
performance ratio βA = EA/EOPT of any algorithm A that solves the
problem of minimizing energy consumption with schedule length
constraint on amultiprocessor computer. It is also clear that for the
problem of minimizing energy consumption with schedule length
constraint, we have β̄A ≤ NECA, i.e., the expected performance
ratio is no greater than the expected normalized schedule length.

Notice that for a given power allocation and task scheduling
algorithm A, the expected normalized schedule length NSLA
and the expected normalized energy consumption NECA are
determined by m, n, α, s1, s2, . . . , sd, the probability distribution
of the ri’s, and the probability distribution of ∆. In our simulations,
the number of processors is set as m = 10. The number of tasks
is in the range n = 10, 20, 30, . . . , 200. The parameter α is set
as 3. As mentioned earlier, we assume that the number of speed
levels is large enough to accommodate the needs our algorithms.
Furthermore, we assume that φ1 = φ2 = · · · = φd−1 =

φ = 2. For convenience, we assume that sj = φj for j =

0, ±1, ±2, . . . , such that the value of d is sufficiently large. The
ri’s are independent and identically distributed random variables
with a uniform distribution in [0, 1]. For the expected normalized
schedule length NSLA, the energy constraint E is set as E =

Rsα−1
j (1+∆), where j is any value and∆ has a uniformdistribution

in [0, φα−1
−1). For the expected normalized energy consumption

NECA, the time constraint T is set as T = ((R/m)/sj)(1 − ∆) (R/m
is approximately Rk), where j is any value and ∆ has a uniform
distribution in (0, 1 − 1/φ].

In Tables 7 and 8, we show our simulation results. For each
combination of n and algorithm A ∈ { SRF-SOF, SRF-LP, SRF-
LOF, LS-SOF, LS-LP, LS-LOF, LRF-SOF, LRF-LP, LRF-LOF}, we generate
5000 sets of n tasks, produce their schedules by using algorithm
A, calculate their NSLA (or NECA), and report the average of NSLA
(or NECA), which is the experimental value of NSLA (or NECA). The
99% confidence interval (CI) of all the data in the same table is also
given. We observe the following facts.

• The performance of all these algorithms improves as n
increases. The expected normalized schedule length NSLA (the
expected normalized energy consumption NECA, respectively)
decreases as n increases, i.e., R/r∗ increases, and eventually
approaches the average-case asymptotic performance bound
Baverage whose exact value is analytically not available. (Notice
that Tables 3 and 6 are only for uniprocessor computers.)

• For the expected normalized schedule length NSLA, the speed of
convergence depends on algorithm A. It is clear that algorithm
LRF leads to faster speed of convergence than LS and SRF, and
algorithm LOF leads to faster speed of convergence than LP and
SOF. Algorithm LRF-LOF performs the best among all these nine
algorithms.

• For the expected normalized energy consumption NECA, the
speeds of convergence of all these algorithms are about the
same.

Notice that for multiprocessor computers, there is no average-
case performance analysis similar to that of Corollary 1. The
reason is that after the energy allocation according to the proof of
Theorem 2, it is impossible to have a uniform distribution for ∆k,
where 1 ≤ k ≤ m. Even though we know the distribution of E, we
do not know the distribution of Ek. Similarly, for multiprocessor
computers, there is no average-case performance analysis similar
to that of Corollary 2. It is impossible to provide T such that ∆k in
the proof of Theorem 4 has a uniform distribution for all 1 ≤ k ≤

m.

6. Concluding remarks

We have addressed energy and time constrained task schedul-
ing on multiprocessor computers with discrete clock frequency
and supply voltage and execution speed and power levels. We



26 K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28
Table 7
Simulation results for the expected NSL (99% CI = ±0.548%).

n SRF-SOF SRF-LP SRF-LOF LS-SOF LS-LP LS-LOF LRF-SOF LRF-LP LRF-LOF

10 2.6627937 2.6531092 2.6651033 2.6506262 2.6514494 2.6621895 2.6606938 2.6504537 2.6590911
20 1.9073127 1.8607263 1.7933438 1.8379552 1.8165155 1.7889429 1.6230521 1.6127421 1.5995227
30 1.5780350 1.5125698 1.3969578 1.5464532 1.5119938 1.4675845 1.4195489 1.4037548 1.3348711
40 1.4509819 1.3871110 1.2896858 1.4382028 1.3980687 1.3480303 1.3372592 1.3149214 1.2395246
50 1.3854113 1.3223044 1.2473871 1.3729157 1.3305447 1.2825567 1.2849894 1.2672456 1.1977052
60 1.3403008 1.2815090 1.2222159 1.3315909 1.2857138 1.2427048 1.2523527 1.2376041 1.1767710
70 1.3094400 1.2554527 1.2059391 1.3009057 1.2583646 1.2184541 1.2299720 1.2184488 1.1617892
80 1.2876245 1.2353795 1.1957224 1.2795055 1.2384573 1.2027791 1.2162788 1.2040222 1.1545888
90 1.2706625 1.2211495 1.1857643 1.2631078 1.2218291 1.1893480 1.2057288 1.1922161 1.1481900

100 1.2571234 1.2099720 1.1791448 1.2480708 1.2099745 1.1808149 1.1956781 1.1843063 1.1426318
110 1.2453771 1.2000902 1.1748636 1.2389628 1.2006062 1.1734898 1.1889156 1.1768732 1.1389374
120 1.2349509 1.1925040 1.1709599 1.2272486 1.1925177 1.1690677 1.1819901 1.1710082 1.1382297
130 1.2275895 1.1870073 1.1670815 1.2195753 1.1862007 1.1646078 1.1763297 1.1667280 1.1367946
140 1.2191585 1.1809062 1.1635122 1.2136861 1.1802097 1.1599714 1.1721043 1.1621538 1.1334180
150 1.2130956 1.1777033 1.1617430 1.2076149 1.1755992 1.1587206 1.1691728 1.1588820 1.1340065
160 1.2096720 1.1737784 1.1591710 1.2014031 1.1719383 1.1555972 1.1655089 1.1549036 1.1310444
170 1.2030821 1.1700972 1.1568725 1.1979739 1.1688821 1.1535698 1.1639257 1.1535769 1.1327832
180 1.2001909 1.1663476 1.1553638 1.1937645 1.1660122 1.1505158 1.1616800 1.1514544 1.1316846
190 1.1954581 1.1643199 1.1535240 1.1917164 1.1626359 1.1504688 1.1589337 1.1494556 1.1318445
200 1.1929093 1.1632193 1.1528457 1.1874242 1.1601478 1.1478626 1.1568164 1.1463886 1.1292879
Table 8
Simulation results for the expected NEC (99% CI = ±1.415%).

n SRF-SOF SRF-LP SRF-LOF LS-SOF LS-LP LS-LOF LRF-SOF LRF-LP LRF-LOF

10 4.4035621 4.4268208 4.4273344 4.4118209 4.4345747 4.3931841 4.4046844 4.4119929 4.4097261
20 2.2082212 2.2293548 2.2487686 2.0943158 2.1063697 2.1172441 1.8949531 1.9231441 1.9520099
30 1.7926217 1.8131297 1.8277041 1.7435763 1.7652009 1.7837458 1.6562990 1.7032158 1.7233051
40 1.6292817 1.6415019 1.6636407 1.6036847 1.6172160 1.6357266 1.5460615 1.5794236 1.6096659
50 1.5387299 1.5523530 1.5717763 1.5224977 1.5391586 1.5528148 1.4887687 1.5151398 1.5461654
60 1.4860855 1.4967544 1.5129503 1.4748531 1.4909989 1.5037466 1.4533972 1.4728249 1.4934220
70 1.4484483 1.4652334 1.4740507 1.4407390 1.4572177 1.4679866 1.4277042 1.4463159 1.4672424
80 1.4222806 1.4371573 1.4479055 1.4161548 1.4306426 1.4399494 1.3992306 1.4213839 1.4426356
90 1.4061707 1.4145159 1.4275958 1.4006336 1.4083174 1.4247135 1.3898933 1.4050381 1.4217626

100 1.3885308 1.3988607 1.4121022 1.3851371 1.3979123 1.4071813 1.3786933 1.3900597 1.4035455
110 1.3777139 1.3851678 1.3973236 1.3766578 1.3833436 1.3931982 1.3659468 1.3797409 1.3931678
120 1.3659509 1.3751669 1.3864855 1.3637074 1.3734461 1.3859370 1.3614404 1.3710160 1.3848408
130 1.3553616 1.3678461 1.3782386 1.3552720 1.3650039 1.3764768 1.3501051 1.3624730 1.3713060
140 1.3519278 1.3600004 1.3678148 1.3471772 1.3602783 1.3685951 1.3445761 1.3573125 1.3665716
150 1.3432114 1.3536814 1.3591455 1.3454590 1.3525593 1.3616739 1.3409090 1.3504305 1.3592882
160 1.3398802 1.3484211 1.3568213 1.3391282 1.3453472 1.3536476 1.3352940 1.3453661 1.3563311
170 1.3384126 1.3433291 1.3517670 1.3390302 1.3449947 1.3496369 1.3323613 1.3376515 1.3500502
180 1.3328860 1.3371342 1.3469822 1.3334055 1.3377823 1.3439984 1.3261517 1.3350548 1.3420405
190 1.3301356 1.3388385 1.3423936 1.3283203 1.3348592 1.3410373 1.3235238 1.3328611 1.3389523
200 1.3256016 1.3312320 1.3370636 1.3223971 1.3342259 1.3380277 1.3225960 1.3309612 1.3355932
considered the problem of minimizing schedule length with en-
ergy consumption constraint and the problem of minimizing en-
ergy consumption with schedule length constraint. We proved
that both problems are NP-hard even on a uniprocessor computer
with only two speed levels. We developed a type of algorithms to
solve the above problems. Such an algorithm contains two compo-
nents, namely, a list scheduling algorithm for task scheduling and
a list placement algorithm for speed determination. We derived
a worst-case asymptotic performance bound and an average-case
asymptotic performance bound for our algorithms on uniprocessor
computers, and a worst-case asymptotic performance bound on
multiprocessor computers. We also conducted extensive simula-
tions to verify our analytical results. We found that our algorithms
produce near-optimal solutions and are practically very useful.

References

[1] S. Albers, Energy-efficient algorithms, Commun. ACM 53 (5) (2010) 86–96.
[2] J. Augustine, S. Irani, C. Swamy, Optimal power-down strategies, SIAM J.

Comput. 37 (5) (2008) 1499–1516.
[3] H. Aydin, R. Melhem, D. Mossé, P. Mejía-Alvarez, Power-aware scheduling for

periodic real-time tasks, IEEE Trans. Comput. 53 (5) (2004) 584–600.
[4] E. Bampis, C. Dürr, F. Kacem, I. Milis, Speed scaling with power down

scheduling for agreeable deadlines, Sustain. Comput.: Inform. Syst. 2 (4) (2012)
184–189.
[5] N. Bansal, T. Kimbrel, K. Pruhs, Speed scaling to manage energy and
temperature, J. ACM 54 (1) (2007) article no. 3.

[6] P. Baptiste, M. Chrobak, C. Dürr, Polynomial-time algorithms for minimum
energy scheduling, ACM Trans. Algorithms 8 (3) (2012) article no. 26.

[7] J.A. Barnett, Dynamic task-level voltage scheduling optimizations, IEEE Trans.
Comput. 54 (5) (2005) 508–520.

[8] A. Beloglazov, R. Buyya, Y.C. Lee, A. Zomaya, A taxonomy and survey of energy-
efficient data centers and cloud computing systems, Adv. Comput. 82 (2011)
47–111.

[9] L. Benini, A. Bogliolo, G. De Micheli, A survey of design techniques for system-
level dynamic power management, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 8 (3) (2000) 299–316.

[10] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M.Q. Dang,
K. Pentikousis, Energy-efficient cloud computing, Comput. J. 53 (7) (2010)
1045–1051.

[11] D.P. Bunde, Power-aware scheduling for makespan and flow, in: Proceedings
of the 18th ACM Symposium on Parallelism in Algorithms and Architectures,
2006, pp. 190–196.

[12] H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, P.W.H. Wong, Energy
efficient online deadline scheduling, in: Proceedings of the 18th ACM–SIAM
Symposium on Discrete Algorithms, 2007, pp. 795–804.

[13] A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design,
IEEE J. Solid-State Circuits 27 (4) (1992) 473–484.

[14] S. Cho, R.G.Melhem, On the interplay of parallelization, program performance,
and energy consumption, IEEE Trans. Parallel Distrib. Syst. 21 (3) (2010)
342–353.

[15] V. Devadas, H. Aydin, On the interplay of voltage/frequency scaling and device
power management for frame-based real-time embedded applications, IEEE
Trans. Comput. 61 (1) (2012) 31–44.

http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref1
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref2
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref3
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref4
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref5
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref6
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref7
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref8
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref9
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref10
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref13
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref14
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref15


K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28 27
[16] D. Donofrio, L. Oliker, J. Shalf, M.F. Wehner, C. Rowen, J. Krueger, S. Kamil, M.
Mohiyuddin, Energy-efficient computing for extreme-scale science, Computer
42 (11) (2009) 62–71.

[17] W.-C. Feng, The importance of being low power in high performance
computing, CTWatchQuarterly 1 (3) (2005) Los Alamos National Laboratory.

[18] W.-c. Feng, K.W. Cameron, The green500 list: encouraging sustainable
supercomputing, Computer 40 (12) (2007) 50–55.

[19] V.W. Freeh, D.K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B.L. Rountree, M.E.
Femal, Analyzing the energy–time trade-off in high-performance computing
applications, IEEE Trans. Parallel Distrib. Syst. 18 (6) (2007) 835–848.

[20] A. Gara, et al., Overview of the Blue Gene/L system architecture, IBM J. Res. Dev.
49 (2–3) (2005) 195–212.

[21] M.R. Garey, D.S. Johnson, Computers and Intractability—A Guide to the Theory
of NP-Completeness, W. H. Freeman, New York, 1979.

[22] S.K. Garg, C.S. Yeo, A. Anandasivam, R. Buyya, Environment-conscious
scheduling of HPC applications on distributed cloud-oriented data centers, J.
Parallel Distrib. Comput. 71 (6) (2011) 732–749.

[23] M.E.T. Gerards, Algorithmic power management—energy minimization under
real-time constraints (Ph.D. thesis), University of Twente, Netherlands, 2014.

[24] R.L. Graham, Bounds onmultiprocessing timing anomalies, SIAM J. Appl. Math.
17 (2) (1969) 416–429.

[25] S.L. Graham, M. Snir, C.A. Patterson (Eds.), Getting up to speed: the future of
supercomputing, in: Committee on the Future of Supercomputing, in: National
Research Council, National Academies Press, 2005.

[26] J.-J. Han, X. Wu, D. Zhu, H. Jin, L.T. Yang, J.-L. Gaudiot, Synchronization-aware
energy management for VFI-based multicore real-time systems, IEEE Trans.
Comput. 61 (12) (2012) 1682–1696.

[27] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M.B. Srivastava, Power optimization
of variable-voltage core-based systems, IEEE Trans. Comput.-AidedDes. Integr.
Circuits Syst. 18 (12) (1999) 1702–1714.

[28] http://en.wikipedia.org/wiki/Dynamic_voltage_scaling.
[29] http://en.wikipedia.org/wiki/LongHaul.
[30] http://en.wikipedia.org/wiki/LongRun.
[31] http://en.wikipedia.org/wiki/Moore’s_law.
[32] http://en.wikipedia.org/wiki/SpeedStep.
[33] http://science.energy.gov/∼/media/ascr/ascac/pdf/meetings/20140210/

Top10reportFEB14.pdf.
[34] http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_

6_a.
[35] http://www.green500.org/lists/green201506.
[36] http://www.tomshardware.com/reviews/cpu-performance-

comparison,3370-17.html.
[37] http://www.top500.org/lists/2015/06/.
[38] https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-

creating-national-strategic-computing-initiative.
[39] F. Hu, J.J. Evans, Power and environment aware control of Beowulf clusters,

Cluster Comput. 12 (3) (2009) 299–308.
[40] C. Im, S. Ha, H. Kim, Dynamic voltage scheduling with buffers in low-power

multimedia applications, ACM Trans. Embedded Comput. Syst. 3 (4) (2004)
686–705.

[41] Intel, Enhanced Intel SpeedStep Technology for the Intel Pentium M
Processor—White Paper, March 2004.

[42] S. Irani, S. Shukla, R. Gupta, Algorithms for power savings, ACM Trans.
Algorithms 3 (4) (2007) article no. 41.

[43] S.U. Khan, I. Ahmad, A cooperative game theoretical technique for joint
optimization of energy consumption and response time in computational
grids, IEEE Trans. Parallel Distrib. Syst. 20 (3) (2009) 346–360.

[44] C.M. Krishna, Y.-H. Lee, Voltage-clock-scaling adaptive scheduling techniques
for low power in hard real-time systems, IEEE Trans. Comput. 52 (12) (2003)
1586–1593.

[45] W.-C. Kwon, T. Kim, Optimal voltage allocation techniques for dynamically
variable voltage processors, ACM Trans. Embedded Comput. Syst. 4 (1) (2005)
211–230.

[46] Y.-H. Lee, C.M. Krishna, Voltage-clock scaling for low energy consumption in
fixed-priority real-time systems, Real-Time Syst. 24 (3) (2003) 303–317.

[47] W.-K. Lee, S.-W. Lee, W.-O. Siew, Hybrid model for dynamic power
management, IEEE Trans. Consum. Electron. 55 (2) (2009) 656–664.

[48] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing
systems under different operating conditions, IEEE Trans. Parallel Distrib. Syst.
22 (8) (2011) 1374–1381.

[49] K. Li, Average-case performance analysis of an approximation algorithm for
maximum subset sum using recurrence relations, Comput. Math. Appl. 36 (6)
(1998) 63–75.

[50] K. Li, Performance analysis of power-aware task scheduling algorithms on
multiprocessor computers with dynamic voltage and speed, IEEE Trans.
Parallel Distrib. Syst. 19 (11) (2008) 1484–1497.

[51] K. Li, Algorithms and analysis of energy-efficient scheduling of parallel
tasks, in: I. Ahmad, S. Ranka (Eds.), Handbook of Energy-Aware and Green
Computing, Vol. 1, CRC Press/Taylor & Francis Group, 2012, pp. 331–360.
(Chapter 15).

[52] K. Li, Energy efficient scheduling of parallel tasks on multiprocessor
computers, J. Supercomput. 60 (2) (2012) 223–247.

[53] K. Li, Power allocation and task scheduling on multiprocessor computers with
energy and time constraints, in: A.Y. Zomaya, Y.C. Lee (Eds.), Energy-Efficient
Distributed Computing Systems, John Wiley & Sons, 2012, pp. 1–37. (Chapter
1).
[54] K. Li, Scheduling precedence constrained tasks with reduced processor energy
onmultiprocessor computers, IEEE Trans. Comput. 61 (12) (2012) 1668–1681.

[55] K. Li, Energy-efficient and high-performance processing of large-scale parallel
applications in data centers, in: S.U. Khan, A.Y. Zomaya (Eds.), Data Centers,
Springer, 2015, pp. 1–33. (Chapter 1).

[56] K. Li, Power and performancemanagement for parallel computations in clouds
and data centers, J. Comput. System Sci. 82 (2016) 174–190.

[57] M. Li, B.J. Liu, F.F. Yao, Min-energy voltage allocation for tree-structured tasks,
J. Comb. Optim. 11 (2006) 305–319.

[58] K. Li, X. Tang, K. Li, Energy-efficient stochastic task scheduling on heteroge-
neous computing systems, IEEE Trans. Parallel Distrib. Syst. 25 (11) (2014)
2867–2876.

[59] M. Li, F.F. Yao, An efficient algorithm for computing optimal discrete voltage
schedules, SIAM J. Comput. 35 (3) (2006) 658–671.

[60] M. Li, A.C. Yao, F.F. Yao, Discrete and continuous min-energy schedules
for variable voltage processors, Proc. Natl. Acad. Sci. USA 103 (11) (2006)
3983–3987.

[61] J.R. Lorch, A.J. Smith, PACE: a new approach to dynamic voltage scaling, IEEE
Trans. Comput. 53 (7) (2004) 856–869.

[62] G. Lovász, F. Niedermeier, H. de Meer, Performance tradeoffs of energy-aware
virtual machine consolidation, Cluster Comput. 16 (3) (2013) 481–496.

[63] R.N. Mahapatra, W. Zhao, An energy-efficient slack distribution technique
for multimode distributed real-time embedded systems, IEEE Trans. Parallel
Distrib. Syst. 16 (7) (2005) 650–662.

[64] M.Marinoni, G. Buttazzo, Elastic DVSmanagement in processors with discrete
voltage/frequency modes, IEEE Trans. Ind. Inf. 3 (1) (2007) 51–62.

[65] J. Mei, K. Li, K. Li, Energy-aware task scheduling in heterogeneous computing
environments, Cluster Comput. 17 (2) (2014) 537–550.

[66] B.C. Mochocki, X.S. Hu, G. Quan, A unified approach to variable voltage
scheduling for nonideal DVS processors, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 23 (9) (2004) 1370–1377.

[67] V.A. Patil, V. Chaudhary, Rack aware scheduling in HPC data centers: an energy
conservation strategy, Cluster Comput. 16 (3) (2013) 559–573.

[68] K. Pruhs, R. van Stee, P. Uthaisombut, Speed scaling of tasks with precedence
constraints, in: T. Erlebach, G. Persinao (Eds.), Approximation and Online
Algorithms, in: Lecture Notes in Computer Science, vol. 3879, Springer-Verlag,
Berlin, Heidelberg, 2006, pp. 307–319.

[69] G. Qu, What is the limit of energy saving by dynamic voltage scaling, in:
Proceedings of the International Conference on Computer-AidedDesign, 2001,
pp. 560–563.

[70] G. Quan, X.S. Hu, Energy efficient DVS schedule for fixed-priority real-time
systems, ACM Trans. Embedded Comput. Syst. 6 (4) (2007) Article no. 29.

[71] N.B. Rizvandi, J. Taheri, A.Y. Zomaya, Some observations on optimal frequency
selection in DVFS-based energy consumption minimization, J. Parallel Distrib.
Comput. 71 (8) (2011) 1154–1164.

[72] C. Rusu, R. Melhem, D. Mossé, Maximizing rewards for real-time applications
with energy constraints, ACM Trans. Embedded Comput. Syst. 2 (4) (2003)
537–559.

[73] D. Shin, J. Kim, Power-aware scheduling of conditional task graphs in real-time
multiprocessor systems, in: Proceedings of the International Symposium on
Low Power Electronics and Design, 2003, pp. 408–413.

[74] D. Shin, J. Kim, S. Lee, Intra-task voltage scheduling for low-energy hard real-
time applications, IEEE Des. Test Comput. 18 (2) (2001) 20–30.

[75] M.B. Srivastava, A.P. Chandrakasan, R.W. Rroderson, Predictive system shut-
down and other architectural techniques for energy efficient programmable
computation, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 4 (1) (1996)
42–55.

[76] M.R. Stan, K. Skadron, Guest editors’ introduction: power-aware computing,
IEEE Comput. 36 (12) (2003) 35–38.

[77] O.S. Unsal, I. Koren, System-level power-aware design techniques in real-time
systems, Proc. IEEE 91 (7) (2003) 1055–1069.

[78] G.L. Valentini, W. Lassonde, S.U. Khan, N. Min-Allah, S.A. Madani, J. Li, L. Zhang,
L. Wang, N. Ghani, J. Kolodziej, H. Li, A.Y. Zomaya, C.-Z. Xu, P. Balaji, A. Vishnu,
F. Pinel, J.E. Pecero, D. Kliazovich, P. Bouvry, An overview of energy efficiency
techniques in cluster computing systems, Cluster Comput. 16 (1) (2013) 3–15.

[79] V. Venkatachalam, M. Franz, Power reduction techniques for microprocessor
systems, ACM Comput. Surv. 37 (3) (2005) 195–237.

[80] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced CPU
energy, in: Proceedings of the 1st USENIX Symposium on Operating Systems
Design and Implementation, 1994, pp. 13–23.

[81] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, R. Lauwereins,
Energy-aware runtime scheduling for embedded-multiprocessor SOCs, IEEE
Des. Test Comput. 18 (5) (2001) 46–58.

[82] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced CPU energy, in:
Proceedings of the 36th IEEE Symposiumon Foundations of Computer Science,
1995, pp. 374–382.

[83] H.-S. Yun, J. Kim, On energy-optimal voltage scheduling for fixed-priority hard
real-time systems, ACM Trans. Embedded Comput. Syst. 2 (3) (2003) 393–430.

[84] B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, Theoretical and practical limits
of dynamic voltage scaling, in: Proceedings of the 41st Design Automation
Conference, 2004, pp. 868–873.

http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref16
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref17
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref18
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref19
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref20
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref21
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref22
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref23
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref24
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref25
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref26
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref27
http://en.wikipedia.org/wiki/Dynamic_voltage_scaling
http://en.wikipedia.org/wiki/LongHaul
http://en.wikipedia.org/wiki/LongRun
http://en.wikipedia.org/wiki/Moore's_law
http://en.wikipedia.org/wiki/SpeedStep
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.green500.org/lists/green201506
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.top500.org/lists/2015/06/
https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref39
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref40
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref42
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref43
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref44
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref45
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref46
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref47
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref48
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref49
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref50
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref51
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref52
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref53
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref54
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref55
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref56
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref57
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref58
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref59
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref60
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref61
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref62
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref63
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref64
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref65
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref66
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref67
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref68
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref70
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref71
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref72
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref74
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref75
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref76
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref77
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref78
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref79
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref81
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref83


28 K. Li / J. Parallel Distrib. Comput. 95 (2016) 15–28
[85] L.M. Zhang, K. Li, D.C.-T. Lo, Y. Zhang, Energy-efficient task scheduling
algorithms on heterogeneous computerswith continuous and discrete speeds,
Sustain. Comput.: Inform. Syst. 3 (2) (2013) 109–118.

[86] L. Zhang, K. Li, Y. Xu, F. Zhang, K. Li, Maximizing reliability with energy
conservation for parallel task scheduling in a heterogeneous cluster, Inform.
Sci. 319 (2015) 113–131.

[87] X. Zhong, C.-Z. Xu, Energy-awaremodeling and scheduling for dynamic voltage
scaling with statistical real-time guarantee, IEEE Trans. Comput. 56 (3) (2007)
358–372.

[88] D. Zhu, R. Melhem, B.R. Childers, Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems, IEEE
Trans. Parallel Distrib. Syst. 14 (7) (2003) 686–700.

[89] D. Zhu, D. Mossé, R. Melhem, Power-aware scheduling for AND/OR graphs in
real-time systems, IEEE Trans. Parallel Distrib. Syst. 15 (9) (2004) 849–864.

[90] J. Zhuo, C. Chakrabarti, Energy-efficient dynamic task scheduling algorithms
for DVS systems, ACM Trans. Embedded Comput. Syst. 7 (2) (2008) Article no.
17.

[91] S. Zhuravlev, J.C. Saez, S. Blagodurov, A. Fedorova, M. Prieto, Survey of energy-
cognizant scheduling techniques, IEEE Trans. Parallel Distrib. Syst. 24 (7)
(2013) 1447–1464.

[92] Z. Zong, A. Manzanares, X. Ruan, X. Qin, EAD and PEBD: two energy-aware
duplication scheduling algorithms for parallel tasks on homogeneous clusters,
IEEE Trans. Comput. 60 (3) (2011) 360–374.
Keqin Li is a SUNY Distinguished Professor of computer
science in the State University of New York. He is also a
Distinguished Professor of Chinese National Recruitment
Program of Global Experts (1000 Plan) at Hunan Uni-
versity, China. He was an Intellectual Ventures endowed
visiting chair professor at the National Laboratory for In-
formation Science and Technology, Tsinghua University,
Beijing, China, during 2011–2014. His current research in-
terests include parallel computing and high-performance
computing, distributed computing, energy-efficient com-
puting and communication, heterogeneous computing

systems, cloud computing, big data computing, CPU–GPU hybrid and cooperative
computing, multicore computing, storage and file systems, wireless communica-
tion networks, sensor networks, peer-to-peer file sharing systems, mobile com-
puting, service computing, Internet of things and cyber–physical systems. He has
published over 400 journal articles, book chapters, and refereed conference pa-
pers, and has received several best paper awards. He is currently or has served
on the editorial boards of IEEE Transactions on Parallel and Distributed Systems, IEEE
Transactions on Computers, IEEE Transactions on Cloud Computing, Journal of Parallel
and Distributed Computing, International Journal of Parallel, Emergent and Distributed
Systems, International Journal of High Performance Computing and Networking, Op-
timization Letters, and International Journal of Big Data Intelligence. He is an IEEE
Fellow.

http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref85
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref86
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref87
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref88
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref89
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref90
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref91
http://refhub.elsevier.com/S0743-7315(16)00021-6/sbref92

	Energy and time constrained task scheduling on multiprocessor computers with discrete speed levels
	Introduction
	The model of power consumption
	Energy constrained scheduling
	Scheduling on uniprocessor computers
	Scheduling on multiprocessor computers

	Time constrained scheduling
	Scheduling on uniprocessor computers
	Scheduling on multiprocessor computers

	Simulation results
	Concluding remarks
	References


