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a b s t r a c t

The most effective way to maximize the lifetime of a wireless sensor network (WSN) is to allocate initial
energy to sensors such that they exhaust their energy at the same time. The lifetime of a WSN as well
as an optimal initial energy allocation are determined by a network design. The main contribution of
the paper is to show that the lifetime of a WSN can be maximized by an optimal network design. We
represent the network lifetime as a function of the number m of annuli and show that m has significant
impact on network lifetime. We prove that if the energy consumed by data transmission is proportional
to dα

+ c , where d is the distance of data transmission and α and c are some constants, then for a circular
area of interest with radius R, the optimal number of annuli that maximizes the network lifetime is
m = R((α − 1)/c)1/α for an arbitrary sensor density function.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) provide pervasive instru-
mentation that enables us to observe and interactwith the physical
and social world and to realize the vision of an embedded Internet.
WSNs consisting of mass-produced intelligent sensors have been
widely used in environmental andhabitatmonitoring, climate con-
trol, surveillance, intelligent alarms, structural monitoring, eco-
physiology, equipment maintenance, medical diagnostics, disaster
management, emergence response, asset tracking, healthcare, and
manufacturing process flow [9,10].

Due to severe energy constraint in sensors, the lifetime of a
WSN has gained substantial research attention [13]. Energy con-
sumption in WSNs contains two components, namely, the energy
required for data sensing and the energy used for data transmis-
sion. Research in lifetime maximization of WSNs has been focused
on the first component only [5,6,11,25], and the second compo-
nent only [7,12,17,18,22], and both components [1,2,29]. We be-
lieve that the lifetime maximization problem of WSNs should be
studied by taking both components of energy consumption into
consideration [8].
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Several methods have been proposed to increase the lifetime
of a WSN, including redundant sensors [28], nonuniform sensor
distributions [26], and aggregation and forwarding nodes for data
transmission [15,27]. All these methods are based on the observa-
tion that sensors consume their battery power at different speeds.
In particular, sensors close to a base station consume energy much
faster than sensors far away from the base station [16,21]. There-
fore, the most effective way to maximize the lifetime of a WSN is
to allocate initial energy to sensors such that they exhaust their
energy at the same time [1,20,23,24].

We find that the lifetime of a WSN as well as an optimal initial
energy allocation are determined by a network design. Network
lifetimemaximization is a two-stage process, namely, optimal net-
work design andoptimal energy allocation. In reality, aWSNdesign
includes the locations, sensing ranges, communication ranges, and
data generation rates of all sensors, energy consumption for both
data sensing and data transmission, as well as a routing algorithm
for data transmission to a base station (i.e., a sink). All these factors
have impact on sensor and network lifetime as well as optimal en-
ergy allocation [20].

The main contribution of the paper is to show that the lifetime
of a WSN can be maximized by an optimal network design. By
proper modeling and simplification, we represent the network
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Fig. 1. A circular area of radius Rwithm annuli.

lifetime obtained by optimal energy allocation as a function of the
number m of annuli and show that m has a significant impact on
network lifetime. We prove that if the energy consumed by data
transmission is proportional to dα

+ c , where d is the distance
of data transmission and α and c are some constants, then for a
circular area of interestwith radius R, the optimal number of annuli
that maximizes the network lifetime is

m = R


α − 1
c

1/α

,

for an arbitrary sensor density function. (Notice that for real
applications,m should be rounded to the nearest integer, i.e., either
⌊m⌋ or ⌈m⌉; however, we will eliminate such notations for clarity
of presentation.)

The organization of the paper is as follows. In Section 2, we
present the network model used in our study. In Section 3, we
develop analytical forms of network lifetime and optimal energy
allocation. In Section 4, we derive the optimal number of annuli
for a uniform distribution. In Section 5, we extend our results in
Section 3 to arbitrary sensor density functions. In Section 6, we
derive the optimal number of annuli for a nonuniform distribution.
In Section 7, we demonstrate numerical examples. In Section 8, we
prove our general result. We conclude the paper in Section 9.

2. The network model

Let us consider a circular area of interest A which has radius R
meters (see Fig. 1). Assume that A is divided into m annuli (also
called coronae) A1, A2, . . . , Am bym circles with radii r1, r2, . . . , rm
centered at a sink, where 0 < r1 < r2 < · · · < rm =

R [23]. For convenience, we assume that there is A0 with width
r0 = 0 which contains a sink. All sensors report sensory data
to the sink. For a fixed R, the number m of annuli as well as the
sequence of values (r1, r2, . . . , rm−1) is called a network design or
a network configuration, which has a significant impact on energy
consumption and network lifetime.

Annulus Aj has width rj − rj−1, where 1 ≤ j ≤ m. In this paper,
we consider the case when all annuli have identical width r , i.e.,
rj − rj−1 = r for all 1 ≤ j ≤ m. In other words, we have rj = jr ,
where r = R/m.

Assume that there are N sensors s1, s2, . . . , sN uniformly dis-
tributed in A (later, we will consider nonuniform sensor distribu-
tions). We use s0 to represent a sink. All sensors in Aj are designed
in such a way that they have the same transmission range rj − rj−1.
All sensors also have certain sensing range. It is assumed that N is
sufficiently large such that a WSN is connected. Furthermore, it is
Fig. 2. A data transmission path.

assumed that the sensing range is sufficiently large such that A is
well covered. Let Nj be the number of sensors in Aj. Then, we have

Nj =


πr2j − πr2j−1

πR2


N =


r2j − r2j−1

R2


N =


2j − 1
m2


N,

and N = N1 + N2 + · · · + Nm.
The amount of energy consumed by a sensor to sense and

receive data in one unit of time is pmJ/s.
The amount of energy needed to transmit one bit over distance

d meters is (a1dα
+ a2) pJ, where a1 is the energy required to

run a transmitter amplifier, a2 is the energy used to activate a
transmitter circuitry, and 2 ≤ α ≤ 6 is a constant [14]. The above
expression has significant implication in minimizing energy cost
of data transmission in WSNs. Consider a sensor sj1 which sends
a bit to another sensor sj2 along a path (si0 , si1 , si2 , . . . , sik) with k
hops, where i0 = j1 and ik = j2 (see Fig. 2). For simplicity, we
assume that the (k+ 1) sensors are on the same line, such that the
distance between sj1 and sj2 is d, and the distance between sil−1 and
sil is dl, for all 1 ≤ l ≤ k, with d1 + d2 + · · · + dk = d. Then, the
energy consumed by the above data transmission is a function of
d1, d2, . . . , dk,

E(d1, d2, . . . , dk) =

k
l=1

(a1dα
l + a2).

It has been known that due to the convexity of dα , the above
function is minimized when d1 = d2 = · · · = dk = d/k [3,23].
Hence, E(d1, d2, . . . , dk) becomes a function of k,

E(k) = k

a1


d
k

α

+ a2


=

a1dα

kα−1
+ a2k.

It is clear that tominimize E(k), the first termprefersmultiple hops
of short distance,while the second termprefers a single hop of long
distance. The function E(k) is minimized when

dE(k)
dk

= −
a1(α − 1)dα

kα
+ a2 = 0,

that is,

k =


a1
a2

(α − 1)
1/α

d,

which gives

E(k) =


a1
a2

(α − 1)
1/α 

α

α − 1


a2d

= a1/α1 a1−1/α
2


α

(α − 1)1−1/α


d.

Such a phenomenon inspires the optimal network configuration
problem solved in this paper.

Assume that each datum has size b bytes = 8b bits. Then, the
amount of energy needed to transmit one datum over distance d
meters is

q = 8b(a1dα
+ a2) pJ = 8a1b


dα

+
a2
a1


pJ

=
8a1b
106 (dα

+ c) mJ = a(dα
+ c) mJ,
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where a = a1b/125,000 mJ/mα and c = a2/a1 mα . For instance,
when b = 25 bytes, a1 = 10 pJ/bit/mα, a2 = 50 nJ/bit =

50,000 pJ/bit, we have a = 0.002 mJ/mα, c = 5000 mα , and
q = 0.002dα

+ 10 mJ. Based on the above discussion, we know
that the amount of energy consumed by a sensor in Aj to transmit
a datum is

qj = a((rj − rj−1)
α

+ c) = a(rα
+ c) mJ,

for all 1 ≤ j ≤ m.
When a datum is transmitted from a sensor sj in Aj to the sink s0,

the datum is sent along a path (sj, sj−1, sj−2, . . . , s1, s0) from sj to
s0, where si ∈ Ai for all j ≥ i ≥ 0. Assume that each sensor senses
and transmitsµ data to a sink per second. This implies that sensors
in Aj contributeNjµ data transmissions per second to all Ai’s, where
1 ≤ i ≤ j. It is also assumed that all sensors in Aj are treated equally
such that they all perform the same amount of data transmission.
Since there are (Nj + Nj+1 + · · · + Nm)µ data transmissions to be
performed by Nj sensors in Aj per second, a sensor in Aj performs
βj data transmissions in one unit of time, where

βj =
1
Nj

(Nj + Nj+1 + · · · + Nm)µ =


r2m − r2j−1

r2j − r2j−1


µ

=


m2

− (j − 1)2

2j − 1


µ,

for all 1 ≤ j ≤ m.
A sensor in Aj is equipped with Ej amount of initial energy. Let

E denote the total energy budget, i.e.,

E =

m
j=1

NjEj.

Once a sensor is deployed, Ej is not renewable or replenishable.
The network lifetime is determined by the initial energy allocation
(E1, E2, . . . , Em), which is determined by a network design, i.e.,
(r1, r2, . . . , rm−1).

3. Network lifetime and optimal energy allocation

The energy consumed by a sensor in Aj in one unit of time is
p + βjqj, which implies that the lifetime of a sensor in Aj is

Lj =
Ej

p + βjqj
.

A reasonable definition of network lifetime L is

L = min(L1, L2, . . . , Lm),

since when all sensors in Aj run out of battery power, a WSN
becomes disconnected and in-operational. It is clear that L is
maximized if and only if L1 = L2 = · · · = Lm, that is, all sensors die
at the same time; otherwise, we can allocate energy from sensors
whichwork longer to sensorswhich die sooner so that the network
lifetime is increased.

To have an identical lifetime L for all the sensors, i.e.,

Ej
p + βjqj

= L,

we need

Ej = L(p + βjqj),

for all 1 ≤ j ≤ m. Since N1E1 + N2E2 + · · · + NmEm = E, i.e.,
m
j=1

NjL(p + βjqj) = E,
we get

L =
E

m
j=1

Nj(p + βjqj)
,

and

Ej =
(p + βjqj)E

m
j=1

Nj(p + βjqj)
,

for all 1 ≤ j ≤ m. An initial energy allocation (E1, E2, . . . , Em) that
results in L1 = L2 = · · · = Lm = L is called an optimal energy
allocation.

Notice that for a uniform distribution of sensors, we have
m
j=1

Nj(p + βjqj) =

m
j=1

Njp +

m
j=1

Njβjqj

= Np +

m
j=1

(Nj + Nj+1 + · · · + Nm)µqj

= Np +

m
j=1


r2m − r2j−1

R2


Nµa((rj − rj−1)

α
+ c)

= Np +
Nµa
R2

m
j=1

(r2m − r2j−1)((rj − rj−1)
α

+ c)

= N


p +

µa
R2

m
j=1

(r2m − r2j−1)((rj − rj−1)
α

+ c)


.

Hence, the network lifetime is

L =
E

N


p +

µa
R2

m
j=1

(r2m − r2j−1)((rj − rj−1)α + c)

 .

Since

p + βjqj = p +
1
Nj

(Nj + Nj+1 + · · · + Nm)

× µa((rj − rj−1)
α

+ c)

= p +


r2m − r2j−1

r2j − r2j−1


µa((rj − rj−1)

α
+ c),

we obtain the optimal energy allocation

Ej =
E
N

·

p +


r2m−r2j−1

r2j −r2j−1


µa((rj − rj−1)

α
+ c)

p +
µa
R2

m
j=1

(r2m − r2j−1)((rj − rj−1)α + c)
,

for all 1 ≤ j ≤ m.
It is clear that the network lifetime L is a function of

r1, r2, . . . , rm−1. To maximize the network lifetime, we need to
minimize the following function:

F(r1, r2, . . . , rm−1) =
1
R2

m
j=1

(r2m − r2j−1)((rj − rj−1)
α

+ c),

where r0 = 0 and rm = R. The above function gives the average
number of mα taken by a single data transmission. It is clear that
F(r1, r2, . . . , rm−1) is a quantity determined by a network design
(r1, r2, . . . , rm−1) and F(r1, r2, . . . , rm−1) determines the energy
expenditure of data transmission.

When all annuli have identical width r , i.e., r1 = r2 = · · · =

rm = r , an optimal network design is actually an optimal choice
ofm, the number of annuli. This is the focus of our investigation in
this paper.
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4. Optimal number of annuli—uniform distributions

When all annuli have identical width r = R/m, the function
F(r1, r2, . . . , rm−1) becomes a function ofm:

F(m) =
1
R2

m
j=1

(m2
− (j − 1)2)r2(rα

+ c)

=

m
j=1


1 −


j − 1
m

2


R
m

α

+ c


=


m −

1
m2

m
j=1

(j − 1)2


R
m

α

+ c


=


m −

1
m2

·
m(m − 1)(2m − 1)

6


R
m

α

+ c


=


4m2

+ 3m − 1
6m


cmα

+ Rα

mα


=

1
6


4 cmα+2

+ 3 cmα+1
− cmα

+ 4Rαm2
+ 3Rαm − Rα

mα+1


=

1
6


4 cm + 3c −

c
m

+
4Rα

mα−1
+

3Rα

mα
−

Rα

mα+1


.

To minimize F(m), we consider
dF(m)

dm
=

1
6


4c +

c
m2 −

4(α − 1)Rα

mα
−

3αRα

mα+1 +
(α + 1)Rα

mα+2


=

1
6


4 cmα+2

+ cmα
− 4(α − 1)Rαm2

− 3αRαm + (α + 1)Rα

mα+2


.

To satisfy the condition dF(m)/dm = 0, we need to solve the equa-
tion

4cmα+2
+ cmα

− 4(α − 1)Rαm2
− 3αRαm + (α + 1)Rα

= 0.

Although there is no closed-form solution to the above equation, it
can be solved numerically by using the bisection method [4, p. 22].

Notice that by considering only the dominant terms in the
above equation, we get

4cmα+2
− 4(α − 1)Rαm2

= 0,

that is,

cmα
− (α − 1)Rα

= 0.

The last equation implies that

m ≈ R


α − 1
c

1/α

,

which can be used as an approximate solution to the equation ofm.
By using the above closed-form approximation ofm and the fact

that

F(m) ≈
2m
3


R
m

α

+ c


,

we get network lifetime

L =
E

N(p + µaF(m))

≈
E

N

p + µa ·

2m
3

 R
m

α
+ c


≈

E

N

p + µa ·

2
3R


α−1
c

1/α  c
α−1 + c


=

E

N

p +

2
3αµaR

 c
α−1

1−1/α
 .
Table 1
Optimal number of annuli.

α Optimal m Numerical solution Closed-form approximation

2.0 3 3.29258 2.82843
2.5 8 8.21365 7.79612
3.0 15 15.07804 14.73613
3.5 23 23.08025 22.79705
4.0 32 31.54171 31.30169
4.5 40 40.01296 39.80528
5.0 48 48.22777 48.04498
5.5 56 56.04305 55.87994
6.0 63 63.39276 63.24555

Notice that the function

g(α) = α


c

α − 1

1−1/α

is an increasing function of α, since dg(α)/dα > 0 for all α ≥ 2.
The last equation for Lmeans that for a given energy budget E, the
lifetime of a WSN is a decreasing function of seven parameters:
N, p, α, µ, R, a, and c. In other words, the network lifetime is
reduced if there are more sensors, more energy consumption for
sensing and receiving data, increased value of α, increased sensor
reporting rate, larger area of interest, more energy consumption
for transmitter amplification and activation.

In Table 1, we show the optimal value of m for α = 2.0, 2.5,
3.0, . . . , 6.0, with c = 5000 and R = 200.We also give the numer-
ical solution to the equation ofm and our closed-form approximate
solution. It is clear that the optimal value ofm is the numerical so-
lution rounded to the nearest integer. It is also observed that the
closed-form approximate solution is very accurate.

Finally, the optimal energy allocation is

Ej =
E

N(p + µaF(m))


p +


m2

− (j − 1)2

2j − 1


× µa


R
m

α

+ c


,

for all 1 ≤ j ≤ m.

5. Nonuniform sensor distributions

All our studies in previous sections can be easily extended to
any sensor distributions.

Let f (r) be any sensor density function (or sensor distribution
function) in a circular area of interest A with radius R, where 0 ≤

r ≤ R. In other words, the number of sensors in a small area z with
distance r to the sink is f (r)z. The function f (r) should satisfy R

0
2πrf (r)dr = N.

The number of sensors in Aj is

Nj =

 rj

rj−1

2πrf (r)dr,

for all 1 ≤ j ≤ m. For instance, for a uniform distribution, we have

f (r) =
N

πR2
,

and R

0
2πrf (r)dr =

N
R2

 R

0
2rdr =


N
R2


r2
R
0

= N,

and

Nj =
N
R2

 rj

rj−1

2rdr =


N
R2


r2
rj
rj−1

=


r2j − r2j−1

R2


N,

for all 1 ≤ j ≤ m.
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To extend the results in Section 3, we notice that

Nj + Nj+1 + · · · + Nm =

 rm

rj−1

2πrf (r)dr.

Hence, the network lifetime is

L =
E

Np +

m
j=1

(Nj + Nj+1 + · · · + Nm)µqj

=
E

Np + µa
m
j=1

 rm
rj−1

2πrf (r)dr


((rj − rj−1)α + c)
.

Since

p + βjqj = p +
1
Nj

(Nj + Nj+1 + · · · + Nm)µa((rj − rj−1)
α

+ c)

= p +

 rm
rj−1

2πrf (r)dr rj
rj−1

2πrf (r)dr
· µa((rj − rj−1)

α
+ c),

the optimal energy allocation is

Ej = E ·

p +

 rm
rj−1

2πrf (r)dr
  rj

rj−1
2πrf (r)dr

−1
µa((rj − rj−1)

α
+ c)

Np + µa
m
j=1

 rm
rj−1

2πrf (r)dr


((rj − rj−1)α + c)
,

for all 1 ≤ j ≤ m.

6. Optimal number of annuli—nonuniform distributions

As an example of nonuniform sensor distribution, let us con-
sider

f (r) =


N

π ln(1 + 1/u)


1

r2 + uR2


,

where u > 0. It is easy to see that R

0
2πrf (r)dr =

 R

0
2πr


N

π ln(1 + 1/u)


1

r2 + uR2


dr

=
N

ln(1 + 1/u)

 R

0


1

r2 + uR2


d(r2 + uR2)

=
N

ln(1 + 1/u)

 (u+1)R2

uR2

dx
x

(letting x = r2 + uR2)

=
N

ln(1 + 1/u)
ln x
(u+1)R2

uR2

=
N

ln(1 + 1/u)
(ln((u + 1)R2) − ln(uR2))

= N.

Notice that the ratio of the largest density (when r = 0) to the
smallest density (when r = R) is (1 + 1/u). Thus, the parameter u
indicates uniformity of sensor distribution. For small u, sensors are
more densely distributed in the area closer to the sink. As u → 0,
the sensor density near the sink can be arbitrarily large. One the
other hand, as u increases, sensors are more evenly distributed in
A. For very large u, we have ln(1 + 1/u) ≈ 1/u, and

f (r) ≈


N

π(1/u)


1

r2 + uR2


=

N
π(r2/u + R2)

≈
N

πR2
.

That is, as u → ∞, f (r) approaches a uniform distribution.
The above f (r) gives rise to

Nj =
N

ln(1 + 1/u)
ln


r2j + uR2

r2j−1 + uR2



=
N

ln(1 + 1/u)
ln


j2 + um2

(j − 1)2 + um2


,

for all 1 ≤ j ≤ m. For very large u, we have

ln


r2j + uR2

r2j−1 + uR2


= ln


1 +

r2j − r2j−1

r2j−1 + uR2


≈

r2j − r2j−1

r2j−1 + uR2
,

and

Nj ≈
N

(1/u)
·

r2j − r2j−1

r2j−1 + uR2
≈


r2j − r2j−1

R2


N,

which is the Nj for a uniform distribution.
Since

Nj + Nj+1 + · · · + Nm =
N

ln(1 + 1/u)
ln


m
i=j

r2i + uR2

r2i−1 + uR2



=
N

ln(1 + 1/u)
ln


r2m + uR2

r2j−1 + uR2


,

we have

L =
E

N


p +

µa
ln(1+1/u)

m
j=1

ln


r2m+uR2

r2j−1+uR2


((rj − rj−1)α + c)

 .

Because

p + βjqj = p +
1
Nj

(Nj + Nj+1 + · · · + Nm)µa((rj − rj−1)
α

+ c)

= p +

ln


r2m+uR2

r2j−1+uR2


ln


r2j +uR2

r2j−1+uR2

 · µa((rj − rj−1)
α

+ c),

we obtain

Ej =
E
N

·

p + ln


r2m+uR2

r2j−1+uR2


ln


r2j +uR2

r2j−1+uR2

−1

µa((rj − rj−1)
α

+ c)

p +
µa

ln(1+1/u)

m
j=1

ln


r2m+uR2

r2j−1+uR2


((rj − rj−1)α + c)

,

for all 1 ≤ j ≤ m.
To maximize the network lifetime, we need to minimize the

following function:

F(r1, r2, . . . , rm−1)

=
1

ln(1 + 1/u)

m
j=1

ln


r2m + uR2

r2j−1 + uR2


((rj − rj−1)

α
+ c),

where r0 = 0 and rm = R.
When rj−rj−1 = r for all 1 ≤ j ≤ m, i.e., rj = jr , where r = R/m,

the function F(r1, r2, . . . , rm−1) becomes a function ofm:

F(m) =
1

ln(1 + 1/u)
F1(m),
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where

F1(m) =

m
j=1

ln


R2
+ uR2

((j − 1)r)2 + uR2


(rα

+ c)

=

m
j=1

ln


(u + 1)R2

((j − 1)R/m)2 + uR2


R
m

α

+ c


=


R
m

α

+ c
 m

j=1

ln


(u + 1)
((j − 1)/m)2 + u



=


R
m

α

+ c
 m

j=1

ln


(u + 1)m2

um2 + (j − 1)2


=


R
m

α

+ c


×

m
j=1


ln((u + 1)m2) − ln(um2

+ (j − 1)2)


=


R
m

α

+ c


×


m ln((u + 1)m2) −

m
j=1

ln(um2
+ (j − 1)2)


.

Notice that
m
j=1

ln(um2
+ (j − 1)2) ≈

 m

0
ln(um2

+ x2)dx

= x ln(um2
+ x2)

m
0 −

 m

0


2x2

um2 + x2


dx

= m ln(um2
+ m2) − 2

 m

0


1 −

um2

um2 + x2


dx

= m ln((u + 1)m2) − 2m + 2um2
 m

0

dx
um2 + x2

= m ln((u + 1)m2) − 2m + 2um2
·

1
√
um

tan−1


x
√
um

m
0

= m ln((u + 1)m2) − 2m + 2
√
um tan−1


1

√
u


.

Consequently, we get

F1(m) ≈ 2m

1 −

√
u tan−1


1

√
u


R
m

α

+ c


= 2

1 −

√
u tan−1


1

√
u


cm +

Rα

mα−1


.

To minimize F1(m), we only need to minimize

G(m) = cm +
Rα

mα−1
.

To satisfy

dG(m)

dm
= c −

(α − 1)Rα

mα
= 0,

we need

m = R


α − 1
c

1/α

,

which can be used as an approximate solution to m. Surprisingly,
the above m is independent of u and identical to that of a uniform
distribution.
The abovem yields

F1(m) = 2R


α − 1
c

1/α 
1 −

√
u tan−1


1

√
u


c

α − 1
+ c


= 2αR


c

α − 1

1−1/α 
1 −

√
u tan−1


1

√
u


.

The network lifetime is

L =
E

N(p + µaF(m))

=
E

N

p +

µa
ln(1+1/u) · F1(m)


=

E

N

p + 2αµaR

 c
α−1

1−1/α


1−
√
u tan−1(1/

√
u)

ln(1+1/u)

 .

Let us examine the function

y(u) =
1 −

√
u tan−1(1/

√
u)

ln(1 + 1/u)
.

It is clear that since

lim
u→0

tan−1


1
√
u


=

π

2
,

and

lim
u→0

ln

1 +

1
u


= ∞,

we have

lim
u→0

y(u) = 0,

that is, as sensors are more and more densely distributed around a
sink, the energy expended for data transmission becomes less and
less significant. On the other hand, for u > 1, we have

tan−1


1
√
u


=

1
√
u

−
1

3
√
u3 +

1

5
√
u5 − · · · ,

and

ln

1 +

1
u


=

1
u

−
1

2u2
+

1
3u3

− · · · ,

and

lim
u→∞

y(u) = lim
u→∞

1/(3u) − 1/(5u2) + 1/(7u3) − · · ·

1/u − 1/(2u2) + 1/(3u3) − · · ·
=

1
3
,

which yields L identical to that of a uniform distribution.
Finally, the optimal energy allocation is

Ej =
E

N(p + µaF(m))

×


p + ln


(u + 1)m2

(j − 1)2 + um2


ln


j2 + um2

(j − 1)2 + um2

−1

× µa


R
m

α

+ c


,

for all 1 ≤ j ≤ m.
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Fig. 3. F(m) vs. number of annulim (uniform distribution).

Fig. 4. Network lifetime L vs. number of annulim (uniform distribution, varying α).

7. Numerical examples

To show a numerical example of optimal number of annuli for
a uniform distribution of sensors, we set c = 5000 and R = 200.
In Fig. 3, we display the value of F(m) (actually F(m)/10, 000) for
α = 2, 3, 4, 5, 6, where 1 ≤ m ≤ 80. We observe that for all
α, as m increases, F(m) decreases rapidly. After F(m) reaches its
minimum value, F(m) increases gradually and almost linearly as
m increases. Thus, the energy used for data transmission is very
sensitive to the choice ofm. Furthermore, for small to moderatem,
there is significant difference between the F(m) values for different
α values; however, as m increases, such a difference diminishes,
since the impact of the term (R/m)α in F(m) becomes less and
less important. Notice that the optimal m which minimizes F(m)
is given in Table 1.

In Fig. 4, we demonstrate network lifetime L as a function of
m, where 1 ≤ m ≤ 80, and show the effect of α on L. We set
p = 6, a = 0.002, c = 5000, µ = 0.03, R = 200, E/N =

100 Jules, and α = 2, 3, 4, 5, 6. We observe that for all α, as m
increases, L increases rapidly. After L reaches its maximum value,
L decreases gradually as m increases. Thus, the network lifetime
is very sensitive to the choice of m. Furthermore, for small to
moderate m, there is noticeable difference between the network
lifetime for different α values; however, as m increases, such a
difference diminishes, since the impact of the term (R/m)α in F(m)
becomes less and less important.

In Fig. 5, we demonstrate network lifetime L as a function of
sensor reporting rate µ, where 0 ≤ µ ≤ 0.1, and show the effect
of p on L. We set α = 3, a = 0.002, c = 5000, R = 200,m = 15
(the optimal choice), E/N = 100, and p = 2, 4, 6, 8, 10. It is
observed that when µ is small, the energy p consumed by a sensor
to sense and receive data in one unit of time has a strong impact
on the network lifetime. However, such an impact diminishes as µ
Fig. 5. Network lifetime L vs. sensor reporting rateµ (uniform distribution, varying
p).

Fig. 6. Network lifetime L vs. sensor reporting rateµ (uniform distribution, varying
a and c).

increases, since energy consumed by data transmission gradually
dominates the total energy expenditure.

In Fig. 6, we demonstrate network lifetime L as a function of
sensor reporting rate µ, where 0 ≤ µ ≤ 0.1, and show the effect
of a and c on L. We set p = 6, α = 3, R = 200,m = 15 (the
optimal choice), E/N = 100, and a1 = 10, 20, 30, 40, 50 and
a2 = 50, 000, which result in a = 0.002 and c = 5000, a = 0.004
and c = 2500, a = 0.006 and c = 1667, a = 0.008 and
c = 1250, a = 0.010 and c = 1000. These combinations of a and c
give rise to aF(m) = 155, 204, 254, 304, and 354, that is, increased
cost for data transmission and reduced network lifetime.

In Fig. 7, we show the normalized optimal energy allocation
Ej/E1, where 1 ≤ j ≤ m. We set p = 6, a = 0.002, c =

5000, µ = 0.03, R = 200, and α = 2 and m = 3, α = 3 and
m = 15, α = 4 and m = 32, α = 5 and m = 48, α = 6 and
m = 63. Each m is the optimal choice for the corresponding α. It
is observed that an optimal energy allocation is not balanced. In
particular, we have E1 > E2 > · · · > Em. Sensors closer to a sink
receive significantly more energy than sensors far away from the
sink. Such an imbalance increases as α increases.

To show a numerical example of optimal number of annuli for
a nonuniform distribution of sensors, we consider the following
nonuniform sensor distribution function,

f (r) =


N

π ln(1 + 1/u)


1

r2 + uR2


.

In Fig. 8, we display the above f (r), where 0 ≤ r ≤ R, assuming
that N = 10, 000, R = 200, and u = 0.125, 0.250, 0.500, 1.000,
2.000, 4.000, 8.000. It can be seen that as u increases, f (r) ap-
proaches the uniform distribution f (r) = N/(πR2) = 0.0795774.

In Figs. 9–13, we continue to use the above nonuniform sensor
density function, where u = 0.5, i.e., the ratio of the largest density
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Fig. 7. Optimal energy allocation Ej vs. j (uniform distribution).

Fig. 8. Nonuniform sensor distribution functions.

Fig. 9. F(m) vs. number of annuli m (nonuniform distribution).

to the smallest density is 3. Again, we set c = 5000 and R = 200.
In Fig. 9, we display the value of F(m) (actually F(m)/10, 000) for
α = 2, 3, 4, 5, 6, where 1 ≤ m ≤ 80. As expected, the behavior
of F(m) is similar to and less than that of a uniform distribution
in Fig. 3. Furthermore, the optimal m which minimizes F(m) is
identical to that in Table 1.

In Fig. 10, we demonstrate network lifetime L as a function of
m, where 1 ≤ m ≤ 80, and show the effect of α on L. We set
p = 6, a = 0.002, c = 5000, µ = 0.03, R = 200, E/N = 100, and
α = 2, 3, 4, 5, 6. As expected, the behavior of L is similar to and
greater than that of a uniform distribution in Fig. 4.

In Fig. 11, we demonstrate network lifetime L as a function of
sensor reporting rateµ, where 0 ≤ µ ≤ 0.1, and show the effect of
p on L. We set α = 3, a = 0.002, c = 5000, R = 200,m = 15 (the
optimal choice), E/N = 100, and p = 2, 4, 6, 8, 10. As expected,
the behavior of L is similar to and greater than that of a uniform
distribution in Fig. 5.
Fig. 10. Network lifetime L vs. number of annuli m (nonuniform distribution,
varying α).

Fig. 11. Network lifetime L vs. sensor reporting rate µ (nonuniform distribution,
varying p).

Fig. 12. Network lifetime L vs. sensor reporting rate µ (nonuniform distribution,
varying a and c).

Fig. 13. Optimal energy allocation Ej vs. j (nonuniform distribution).
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Fig. 14. Network lifetime L vs. u (nonuniform distribution, varying α).

In Fig. 12, we demonstrate network lifetime L as a function of
sensor reporting rate µ, where 0 ≤ µ ≤ 0.1, and show the effect
of a and c on L. We set p = 6, α = 3, R = 200,m = 15 (the
optimal choice), E/N = 100, and a1 = 10, 20, 30, 40, 50 and a2 =

50, 000, which result in a = 0.002 and c = 5000, a = 0.004 and
c = 2500, a = 0.006 and c = 1667, a = 0.008 and c = 1250, a =

0.010 and c = 1000. These combinations of a and c give rise to
aF(m) = 138, 182, 227, 271, and 315. As expected, the behavior of L
is similar to and greater than that of a uniform distribution in Fig. 6.

In Fig. 13, we show the normalized optimal energy allocation
Ej/E1, with 1 ≤ j ≤ m. We set p = 6, a = 0.002, c = 5000, µ =

0.03, R = 200, and α = 2 and m = 3, α = 3 and m = 15, α = 4
and m = 32, α = 5 and m = 48, α = 6 and m = 63. Each m
is the optimal choice for the corresponding α. It is observed that a
nonuniform sensor distribution results in more balanced optimal
energy allocation than a uniform distribution in Fig. 7.

In Fig. 14, we demonstrate network lifetime L as a function of
u, where 0 < u ≤ 5, and show the impact of u on L. We set
p = 6, a = 0.002, c = 5000, µ = 0.03, R = 200, E/N = 100, and
α = 2 with m = 3, α = 3 with m = 15, α = 4 with m = 32,
α = 5 with m = 48, α = 6 with m = 63. We observe that when
u < 1, the network lifetime can be increased noticeably by using
a nonuniform sensor distribution. As u increases, the network life-
time approaches that of a uniform distribution.

8. A general result

Recall that a sensor density function f (r) satisfies R

0
2πrf (r)dr = N.

In fact, we require the above condition to be satisfied for all N > 0.
This means that f (r) can be represented as f (r) = Ng(r), where R

0
2πrg(r)dr = 1.

The following theorem is the main result of the paper.

Theorem 1. The optimal number of annuli that maximizes the
network lifetime is

m = R


α − 1
c

1/α

,

and the optimal annulus width is

r =


c

α − 1

1/α

,

for any sensor density function.
Proof. Recall that the network lifetime is

L =
E

Np + µa
m
j=1

 rm
rj−1

2πrf (r)dr


((rj − rj−1)α + c)

=
E

N


p + µa

m
j=1

 rm
rj−1

2πrg(r)dr


((rj − rj−1)α + c)



=
E

N


p + µa

 R
m

α
+ c

 m
j=1

 R
(j−1)R/m 2πrg(r)dr

 .

Notice that
m
j=1

 R

(j−1)(R/m)

2πrg(r)dr


≤

m
j=1

 R

0
2πrg(r)dr


= m.

Also, we have

m
j=1

 R

(j−1)(R/m)

2πrg(r)dr


≥

k
j=1

 R

(k−1)(R/m)

2πrg(r)dr


= k
 R

(k−1)(R/m)

2πrg(r)dr


,

for all 1 ≤ k ≤ m. For convenience, let φ = (k − 1)/m, i.e.,
k = φm + 1, where 0 ≤ φ ≤ 1, and we treat φ as a continuous
variable. Then, we get

k
 R

(k−1)(R/m)

2πrg(r)dr


= (φm + 1)
 R

φR
2πrg(r)dr


> m


φ

 R

φR
2πrg(r)dr


.

Consider the function

h(φ) = φ

 R

φR
2πrg(r)dr.

Because h(0) = h(1) = 0 and h(φ) ≥ 0, there is a φ∗ which
maximizes h(φ). Since
m
j=1

 R

(j−1)(R/m)

2πrg(r)dr


≥ mh(φ),

for all 0 ≤ φ ≤ 1, we have
m
j=1

 R

(j−1)(R/m)

2πrg(r)dr


≥ mh(φ∗).

The above discussion implies that
m
j=1

 R

(j−1)(R/m)

2πrg(r)dr


= Cm + o(m) ≈ Cm,

for large m, where h(φ∗) ≤ C ≤ 1 is some constant.
Now, the network lifetime is

L =
E

N

p + Cµam

 R
m

α
+ c

 ,
which is maximized when

F(m) = m


R
m

α

+ c

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is minimized. By considering dF(m)/dm = 0, we get

m = R


α − 1
c

1/α

,

and

r =
R
m

=


c

α − 1

1/α

.

This proves the theorem. �

As an example, let us consider a uniform distribution with

g(r) =
1

πR2
,

and

h(φ) = φ

 R

φR
2πrg(r)dr = φ(1 − φ2).

Since

dh(φ)

dφ
= 1 − 3φ2,

we get φ∗
= 1/

√
3 and h(φ∗) = 2/(3

√
3) and 2/(3

√
3) ≤ C ≤ 1.

As we have already known, the actual value of C is 2/3.
As another example, let us consider a nonuniform distribution

with

g(r) =


1

π ln(1 + 1/u)


1

r2 + uR2


,

and

h(φ) = φ

 R

φR
2πrg(r)dr =

φ

ln(1 + 1/u)
ln


u + 1
u + φ2


,

where u = 0.5. Since

dh(φ)

dφ
=

1
π ln(1 + 1/u)


ln


u + 1
u + φ2


−

2φ2

u + φ2


,

wegetφ∗
= 0.5085156 and h(φ∗) = 0.3155675 and 0.3155675 ≤

C ≤ 1, by solving the equation

y(φ) = ln


u + 1
u + φ2


−

2φ2

u + φ2
= 0.

The above equation can be solved by using the bisection method,
i.e., by searching φ∗ in the range [0, 1] and noticing that y(φ) is a
decreasing function of φ in [0, 1]. As we have already known, the
actual value of C is

C =
2(1 −

√
u tan−1(1/

√
u))

ln(1 + 1/u)
=

2 −
√
2 tan−1

√
2

ln 3
= 0.5907255.

For large u, we have

ln


u + 1
u + φ2


= ln


1 +

1 − φ2

u + φ2


≈

1 − φ2

u + φ2
.

Therefore,

y(φ) ≈
1 − φ2

u + φ2
−

2φ2

u + φ2
=

1 − 3φ2

u + φ2
= 0,
from which we get φ∗
≈ 1/

√
3 = 0.5773502 and

h(φ∗) =
φ∗

ln(1 + 1/u)
ln


u + 1
u + (φ∗)2


≈

φ∗

1/u


1 − (φ∗)2

u + (φ∗)2


(since ln(1 + 1/u) ≈ 1/u for large u)

=
φ∗(1 − (φ∗)2)

1 + (φ∗)2/u

≈ φ∗(1 − (φ∗)2) (since (φ∗)2/u ≈ 0 for large u)

=
2

3
√
3

= 0.3849001,

and

C =
2(1 −

√
u tan−1(1/

√
u))

ln(1 + 1/u)
≈

2
3

= 0.6666667,

which are exactly the same as those of a uniform distribution. For
instance, when u = 10, we have φ∗

= 0.5712372 and h(φ∗) =

0.3787868 and C = 0.6602845.
Finally, we emphasize that what we have optimized is the

average amount of energy consumed by all data transmissions and
the network lifetime, not the energy consumption of an individual
data transmission. Consider a sensor si in Aj with distance d from
sink s0, where (j − 1)r < d ≤ jr . According to our previous
discussion in Section 2, theminimum amount of energy consumed
by a data transmission from si to s0 is the smaller one of

a(j − 1)


d
j − 1

α

+ c


and

aj


d
j

α

+ c


,

where j = ⌈d/r⌉. Therefore, the minimum amount of energy
consumed by a data transmission from si to s0 is no greater than

a

d
r


d

⌈d/r⌉

α

+ c


≤ a

d
r


(rα

+ c),

where the right hand side of the above inequality is exactly the
actual amount of energy consumed by a data transmission from
si to s0 and the equality holds only when si is on the boundary of
Aj and Aj+1. Hence, energy consumptions for most sensors are not
minimized.

9. Concluding remarks

While most existing sensor network lifetime maximization
techniques focus on network design (i.e., various ways of sensor
placement), assuming that all sensors are equipped with the
same amount of initial energy, we take a different approach,
i.e., incorporating optimal initial energy allocation into optimal
network design. Since sensors closer to a sink deplete their energy
more quickly, they need to be equipped with different energy
levels. In our design, this is indeed the case, since β1 > β2 > · · · >
βm, and E1 > E2 > · · · > Em. In fact, Figs. 7 and 13 demonstrate
that the difference among the Ej’s can be very significant.

Assuming that the available energy are allocated to the sensors
such that the lifetime of a sensor network is maximized, we treat
the lifetime of the sensor network as a function of the network
design. For a circular area with multiple annuli, the lifetime of a
sensor network is a function of the radii. When all the annuli have
the same width, the lifetime of a sensor network is a function of
the number of annuli. By representing the network lifetime as a
function of the number m of annuli, we have shown that m has
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significant impact on the lifetime of WSNs. We have found the
optimal number of annuli that maximizes the network lifetime for
arbitrary sensor density functions.

The investigation in this paper assumes that all annuli have
identical widths based on the observation that energy consump-
tion of a data transmission is minimized when all hops have the
same distance. The strength of the approach is that a closed-form
expression of the optimal number of annuli can be found analyti-
cally. However, the weakness of the approach is that it is not clear
whether the method yields an optimal network design. It is worth
further investigation whether identical annulus widths give the
maximum network lifetime. It is possible that an optimal network
design has different widths of annuli. The results obtained along
this direction should be compared with the results in this paper.
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