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a b s t r a c t

We consider the problem of optimal energy allocation and lifetime maximization in heterogeneous
wireless sensor networks. We construct a probabilistic model for heterogeneous wireless sensor
networks where sensors can have different sensing range, different transmission range, different energy
consumption for data sensing, and different energy consumption for data transmission, and the stream
of data sensed and transmitted from a sensor and the stream of data relayed by a sensor to a base station
are all treated as Poisson streams. We derive the probability distribution and the expectation of the
number of data transmissions during the lifetime of each sensor and the probability distribution and the
expectation of the lifetime of each sensor. In all these analysis, energy consumption of data sensing and
data transmission and data relay are all taken into consideration. We develop an algorithm to find an
optimal initial energy allocation to the sensors such that the network lifetime in the sense of the identical
expected sensor lifetime is maximized. We show how to deal with a large amount of energy budget that
may cause excessive computational time by developing accurate closed form approximate expressions
of sensor lifetime and network lifetime and optimal initial energy allocation. We derive the expected
number of working sensors at any time. Based on such results, we can find the latest time such that the
expected number of sensors that are still functioning up to that time is above certain threshold.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A wireless sensor network consists of dozens to thousands
of low cost, low power, and energy constrained sensors. These
sensors are inexpensive and highly integrated electronic devices
capable of sensing, processing, receiving, and transmitting data.
Wireless sensor networks have been widely used in numerous ap-
plications. These applications includemonitoring climate (temper-
ature and humidity) and environment (habitat, moving objects,
water pollution), detecting physical phenomenon (acoustic or seis-
mic waves), sensing and diagnosing faults (factory production, in-
dustrial supply lines, power grids), measuring data (human and
vehicle traffic intensity), monitoring security (human and vehicle
intrusion),military surveillance, andbattlefield information collec-
tion [8,9].

The lifetime of awireless sensor network has been an important
research and application issue due to limited battery power
in sensors and infeasibility of replacing and recharging sensor
batteries. Energy consumption in these networks contains two
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components, namely, data sensing and data transmission. The
first component includes the energy required for a sensor to be
in an active sensing mode and the energy used in computing
and processing sensed data and images. The second component
includes energy consumed to transmit sensed data to a base station
(also called sink, collector, access point, gateway) and to relay data
transmission from other sensors to the base station.

There are three different perspectives in studying the life-
time maximization problem of wireless sensor networks. The
first perspective is to consider only the first component of en-
ergy consumption. In [4,5,10,22], improving and maximizing
network lifetime becomes a disjoint set covers problem. The
second perspective is to consider only the second component of
energy consumption. In [6,11,16,17,19], the problem of network
lifetime maximization is a data transmission scheduling and en-
ergy consumption minimization problem. The third perspective is
to consider both components of energy consumption. In [1,2,26],
both data sensing and transmission costs are taken into considera-
tion in assigning different roles to the sensors for sensing, relaying,
and aggregating data. In all the above studies, the lifetime maxi-
mization problem of wireless sensor networks is formulated as an
integer programming or linear programming problem that can be
solved by using various heuristics.We argue that the lifetimemax-
imization problem of wireless sensor networks should be studied
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from the third perspective. On the one hand, transmitting a datum
costs much more energy than sensing a datum. On the other hand,
a sensor consumes energy even though it does not transmit any
datum.

A number of strategies have been proposed in the literature
to increase the lifetime of a sensor network. The first method is
to use redundant sensors [25]. At any moment, only a subset of
sensors (called a sub-network [1]) are active and other sensors are
in the sleeping mode to save energy consumption, as long as the
active sensors can provide necessary connectivity among themand
appropriate coverage of an area of interest. The second method is
to deploy sensors according to a nonuniformdistribution, such that
sensors are distributed more densely in the region closer to a base
station [23]. Such a nonuniform distribution reduces the burden
of data transmission on the sensors closer to the base station and
increases the lifetime of these sensors and also the lifetime of the
entire sensor network. The third method is to use aggregation and
forwarding nodes instead of or in addition to sensing nodes for data
transmission to a base station [13,24]. These relay nodes not only
mitigate geometric deficiency of a network, but also provide extra
energy for data fusion and transmission.

While all these approaches have their merit, each has its dis-
advantages. The sensor redundancy method is costly, since multi-
ples of necessary number of sensors are employed. Furthermore,
sensors in sub-networks activated after staying for a long time of
sleeping mode in severe weather conditions may not function as
properly as newly deployed sensors and aremore likely to be faulty
sensors. A nonuniform distribution of sensors causes overly cover-
age of the region closer to a base station, while the region far away
from the base station is not well covered. Using relay nodes simply
reduces the lifetimemaximization problemof the original network
to the lifetime maximization problem of the sub-network of relay
nodes.

A different approach can be taken to maximize the lifetime of
a sensor network. It is clear that once sensors are deployed and
activated, the lifetime of the sensors as well as the entire sensor
network are determined by the initial battery energy capacities. It
is also clear that sensors closer to a base station should be given
more energy than sensors further away from the base station;
otherwise, when sensors near the base station have exhausted
their energy, a network becomes nonfunctional even if other
sensors have significant remaining energy [15]. It has been found
that if sensors are equipped with the same initial energy, after the
lifetime of a network is over, up to 90% of the initial energy remains
unused [18]. Therefore, the question to be answered is, ‘‘Given a
total energy budget, how to allocate the energy to the sensors such
that the lifetime of a sensor network is maximized?’’ This problem
has been addressed by several researchers. In [1], the problem of
optimal initial energy allocation to sensors with known sensing
and transmission rates are defined and solved as a mixed integer
linear programming problem. In [20], a wireless sensor network
is divided into coronas and optimal initial energy allocation to
sensors in different coronas are obtained. In [21], optimal initial
energy allocations to sensors in linear and planar sensor networks
are derived.

We notice that to properly solve the problem of optimal initial
energy allocation and network lifetime maximization, we need
to have a precise definition of network lifetime and an analytical
expression of network lifetime. Unfortunately, there has been no
clear and unified definition of the lifetime of a sensor network.
One definition is that the lifetime of a sensor network is the time
when the first sensor runs out of battery power, or, all sensors
that have direct connection with a base station run out of battery
power, since these sensors play critical roles and tend to die sooner
than other sensors. Therefore, the lifetime of a sensor network is
optimized when all sensors in the network die at the same time.

Our approach in this paper is to allocate an initial energy budget
to sensors in a sensor network such that all sensors have the same
expected lifetime, and the lifetime of the entire sensor network is
defined as the identical expected sensor lifetime.

Another definition of the lifetime of a sensor network is
the latest time such that the number of sensors that are still
functioning up to that time is above certain threshold. A low
number of working sensors implies reduced coverage of an area
of interest, reduced connectivity among the sensors and a base
station, increased data transmission failures, and nonfunctionality
of a sensor network. We find that the probability distribution
function of the random number of working sensors at any time is
extremely difficult to characterize analytically. The reason is that
the lifetime of the sensors are correlated. Consider the path from
a sensor s to a base station. When a sensed datum is transmitted
from s to the base station, the datum is transmitted by all the
sensors on the path. Therefore, more data sensed by s not only
consume battery power of s and reduce the lifetime of s, but also
consume battery powers of all the sensors on the path and reduce
the lifetime of all these sensors.

To solve the problem of optimal initial energy allocation and
network lifetime maximization, we need to know clearly and
exactly the relationship between the lifetime of a sensor and its
initial energy and the relationship between the network lifetime
and total energy budget. Unfortunately, there has been little
such analytical results on the lifetime of sensors and sensor
networks. In [7], a fairly general expression of expected sensor
network lifetime is given. However, the expression does not
include individual sensors and cannot be used for optimal energy
allocation. In [21], expressions of expected sensor network lifetime
are derived for linear and planar sensor networks. However, it is
not clear how the expected lifetime of an arbitrary sensor network
can be obtained.

In this paper, we consider the problem of optimal energy
allocation and lifetime maximization in heterogeneous wireless
sensor networks. Our main contributions are summarized as
follows.

• Heterogeneous Sensor Network Modeling—We construct a
heterogeneous wireless sensor network model (Sections 2 and
3). Virtually all existing research use a homogeneous sensor
network model (with few exceptions [12]), i.e., all sensors have
the same sensing range, the same transmission range, the same
energy consumption for data sensing, and the same energy
consumption for data transmission. In our model, sensors can
have different sensing range, different transmission range,
different energy consumption for data sensing, and different
energy consumption for data transmission. Furthermore, the
locations of sensors can have arbitrary distributions and a
sensor network can have an arbitrary topology. Sensors can
have different initial battery energy capacities.

• Probabilistic Data Sensing and Transmission Modeling—
Virtually all existing research use a deterministic data sensing
and transmission model, i.e., the number of data sensed and
transmitted from a sensor and the number of data relayed by
a sensor to a base station in one unit of time are all constants.
In our model, the stream of data sensed and transmitted from
a sensor and the stream of data relayed by a sensor to a base
station are all treated as Poisson streams defined in Section 2.

• Sensor and Network Lifetime Analysis—We are able to derive
the probability distribution and the expectation of the number
of data transmissions during the lifetime of each sensor
(Theorem 1 in Section 4). Based on these results, we are able
to derive the probability distribution and the expectation of the
lifetime of each sensor (Theorem 2 in Section 4). These results
form the basis of our optimal energy allocation, sensor network
lifetime maximization, and analysis of the expected number of
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working sensors. In all these analysis, energy consumption of
data sensing and data transmission and data relay are all taken
into consideration.

• Optimal Energy Allocation and Network Lifetime Maximi-
zation—We develop an algorithm to find an optimal initial
energy allocation to the sensors such that the network lifetime
in the sense of the identical expected sensor lifetime is
maximized (Section 5). We also show how to deal with a
large amount of energy budget that may cause excessive
computational time by developing accurate closed form
approximate expressions of sensor lifetime and network
lifetime and optimal initial energy allocation (Theorems 3–6 in
Section 6 and Theorem 8 in Appendix).

• Working Sensors—We are able to derive the expected number
of working sensors at any time (Theorem 7 in Section 7). Based
on such results, we can find the latest time such that the
expected number of sensors that are still functioning up to that
time is above certain threshold.

To the best of our knowledge, there has been no probabilistic mod-
eling of heterogeneous wireless sensor networks, no analytical
expression of sensor and network lifetime of an arbitrary heteroge-
neous wireless sensor network, and no optimal energy allocation
methodwhichmaximizes the lifetime of a heterogeneous wireless
sensor network. In this sense, this papermakes significant progress
in and contribution to the study of wireless sensor network
lifetime.

2. The network model

We first describe our model of heterogeneous wireless sensor
networks and introduce the notations used in this paper.

Throughout the paper, we use P[e] to denote the probability
of an event e. For a random variable X , we use fX (x) to represent
the probability density function (pdf) of X, FX (x) to represent the
cumulative distribution function (cdf) of X , and X to represent the
expectation of X .

A heterogeneous wireless sensor network contains a set S of N
heterogeneous sensors S = {s1, s2, . . . , sN}, which cover an area
of interest A in a two dimensional Euclidean space. We are not
interested in the size and shape of A and assume that the sensors
are distributed in A such that the sensors are connected and A is
well covered by S.

An area of interest A is characterized by a parameter ρ, which
is the rate of data generation per unit of area in A, assuming that A
is homogeneous. The times T between successive data generated
per unit of area are independent and identically distributed (i.i.d.)
random variables with a common exponential pdf,

fT (t) = ρe−ρt ,

and the expectation of T is T = 1/ρ, where ρ is the expected
number of data generated within one unit of area during one unit
of time. The sequence of data generated from each unit of area
form a Poisson stream of data with arrival rate ρ. Such a data
generationmodel is applicable to sensing areas where events to be
detected happen randomly with exponentially distributed inter-
event times, such as motion detection, traffic intensity measuring,
and intrusionmonitoring. For applicationswhere data are reported
periodically, the lifetime of a sensor is predictable and the wireless
sensor network lifetimemaximization problembecomes trivial. All
sensed data have the same size (i.e., the number of bits or bytes).

A sensor si, where 1 ≤ i ≤ N , is specified as a septuple
si = (xi, yi, Bi, Ri, pi, qi, Ei), whose components are described as
follows. The pair (xi, yi) is the location of si in a two dimensional
Euclidean space, i.e., the x- and y-coordinates. The communication
range of si (i.e., the set of locations that can be reached by the
communication signals of si) is Bi, which can be of any size and

shape, regular or irregular. A typical case is a circle with radius ci.
The sensing range of si is Ri, which can be of any size and shape,
regular or irregular. A typical case is a circle with radius ri. The
amount of energy consumed by si during sensing and receiving
data per unit of time is pi. The amount of energy consumed by si
to transmit one sensed datum is qi. The initial energy allocated to
si is Ei.

A base station, denoted by s0, has location (x0, y0) and trans-
mission range B0, which is large enough such that si is in B0 as
long as s0 is in Bi. The (xi, yi, Bi)’s, where 0 ≤ i ≤ N , define an
undirected graph G, which has N + 1 nodes, namely, the N sensors
s1, s2, . . . , sN and a base station s0. There is an edge between si and
sj if and only if si and sj arewithin the communication range of each
other. For circular communication ranges, this means that

(xi − xj)2 + (yi − yj)2 ≤ min(ci, cj),

where 0 ≤ i, j ≤ N .
It is clear that the sequence of data sensed by a sensor si form a

Poisson stream of data with arrival rateµi = Riρ, which is actually
a combination of Ri Poisson streams with arrival rate ρ, where for
convenience, we have used Ri to denote the size of the sensing
range of si. For circular sensing ranges, we have Ri = πr2i . Hence,
the times Ti between successive data sensed by si are i.i.d. random
variables with a common exponential pdf,
fTi(t) = µie−µit .

The expectation of Ti is T i = 1/µi, whereµi is the expectednumber
of data sensed by si per unit of time to be sent to a base station.

Two randomized routing methods can be used in a heteroge-
neous wireless sensor network. The first method is based on a
randomized breadth-first search (RBFS) tree of G with root s0 es-
tablished for data transmission from the sensors s1, s2, . . . , sN to
the base station s0 (see Section 3). Each sj has a unique path from
sj to s0, namely, (sj, si1 , si2 , . . . , sik , s0), where si1 , si2 , . . . , sik are
k ≥ 0 intermediate nodes. Each sensed datum collected by sj is
sent to s0 along this path. This implies that sensor sj contributes
a Poisson stream of data with arrival rate µj to each sensor in
{si1 , si2 , . . . , sik}. Let Di denote the set of sensors sj such that si is on
the path from sj to s0, i.e., the set of descendants of si in the RBFS
tree. Then,
βi = µi +


sj∈Di

µj

is the rate of the actual Poisson stream (a combination of
|Di| + 1 Poisson streams) of data transmitted and relayed by si.
Equivalently, βi can be represented as

βi = µi +

sj∈Ci

βj,

where Ci is the set of children of si in an RBFS tree. The second
randomized routing method is described in Section 3.

Notice that the above model can be easily extended to wireless
links that are unreliable and unstable. Assume that data losses
on a link occur independently. Furthermore, if a data loss occurs,
there is no retransmission. To consider possible data loss, we use
ξij to denote the reliability of the link between si and sj. Since the
intensity of a Poisson stream can be scaled by a factor between 0
and 1 (notice that ξij is such a value, which reduces the actual rate
of a Poisson stream), we have

βi = µi +

sj∈Ci

ξijβj,

where ξij is the probability that a datum from sj is relayed by si, i.e.,
the chance that the datum is successfully transmitted on the link
between si and sj.

For the purpose of lifetime analysis, the specification of a sensor
si can be simplified as a quartet si = (βi, pi, qi, Ei), where βi is
determined by xi, yi, Bi, and Ri.
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Fig. 1. An algorithm to calculate data transmission rates.

3. Data transmission rate

Asmentioned earlier, theN sensors in a heterogeneouswireless
sensor network plus a base station define an undirected graph G =

(S ∪ {s0}, E), where S = {s1, s2, . . . , sN} contains N heterogeneous
sensors; s0 is a base station; and there is an edge {si, sj} ∈ E if
and only if si and sj are within the communication range of each
other, for all 0 ≤ i, j ≤ N . The N + 1 nodes in G can be divided
into levels. A node si is in level l if its shortest distance to s0 is l,
that is, the minimum number of links on a path from si to s0 is l.
Hence, level 0 only contains s0. Level 1 contains neighbors of s0. In
general, for all l ≥ 1, level l + 1 contains the neighbors of nodes
in level l that are not in levels l − 1 and l. For each node si in level
l ≥ 1, a neighbor of si in level l − 1 is called a potential parent of si.
One of the potential parents of si, which is chosen randomly from
the set of all potential parents of si with a uniform distribution, is
called the parent of si and is represented by parent[si]. Such a set of
parent–child relationship define a randomized breadth-first search
(RBFS) tree.

When a datum is transmitted from sj to s0, it is sent to the parent
of sj, and then from the parent of sj to s0. Hence, the path from a
sensor sj to s0 is

(sj, parent[sj], parent[parent[sj]], . . . , s0),

which is a shortest path from sj to s0. This implies that sj contributes
a Poisson stream of data transmission with arrival rate µj to each
sensor si on the path from sj to s0. The random selection of the
parent of a node among its potential parents ensures that data
transmissions are evenly distributed among the sensors, especially
those close to a base station.

Our optimal energy allocation algorithm needs the data trans-
mission rate βi of each sensor si, where 1 ≤ i ≤ N . In Fig. 1,
we describe our algorithm to calculate the data transmission rates
β1, β2, . . . , βN , when given an undirected graph G = (S ∪ {s0}, E),
where S = {s1, s2, . . . , sN}, and sensor si has data sensing rate µi,
for all 1 ≤ i ≤ N .

An RBFS tree can be constructed by using the standard breadth-
first search (BFS) algorithm (lines (1)–(25)). An array visited[] and a
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queue Q are used as in the standard BFS algorithm (lines (1)–(25)).
The root of the tree is s0 (lines (6)–(8)). An array potential_parents[]
is used to save the set of potential parents of each node. Every
time a new potential parent s of a node s′ is detected, s is added
to potential_parents[s′] (lines (14) and (17)). When a node s detects
a neighbor s′ which has been visited (line (12)) and has a higher
level number (line (13)), multiple potential parents exist. In this
case, s is added to potential_parents[s′] (line (14)). When a node s
detects an unvisited neighbor s′ (line (15)), s becomes a potential
parent of s′ and is added to potential_parents[s′] (line (17)). A level[]
array is used to record the level number of each node in the RBFS
tree, where the level of a node is its distance to the root s0 (lines
(7) and (18)).

A parent[] array is used to record the RBFS tree. Every node si
remembers its parent in the RBFS tree (line (24)), where parent[si]
is randomly and uniformly chosen from potential_parents[si]. The
parent[] array is used to recover the path fromeachnode to the root
(lines (30)–(34)). The data transmission rate βi of sensor si includes
its data sensing rateµi (line (27)) and the sensing rateµj (line (32))
if si is on the path from sj to s0 (lines (30) and (33)), for all 1 ≤ i ≤ N
(line (26)) and for all 1 ≤ j ≤ N (line (29)).

The second randomized routing method in a heterogeneous
wireless sensor network is based on the potential parents of a
node. Each time when a sensed datum collected by sj is sent to s0,
the datum is sent to one of the potential parents si of sj, where si
is chosen from potential_parents[sj] randomly and uniformly. For
different datum, different si may be selected. A sensor sj is called a
potential child of si if si is a potential parent of sj. Let Ci be the set
of potential children of si and Pj = |potential_parents[sj]| be the
number of potential parents of sj in an RBFS tree. Then, we have

βi = µi +

sj∈Ci

βj

Pj
,

for all si in level l, where 1 ≤ l ≤ h − 1, and h is the height of
an RBFS tree. The above equation means that sensor sj contributes
a Poisson stream of data with arrival rate βj/Pj to each sensor in
potential_parents[sj]. To calculate data transmission rates for the
second routingmethod, lines (29)–(35) in Fig. 1 aremodified as fol-
lows (assuming that h = max(level[s1], level[s2], . . . , level[sN ])):

Again, the last equation for βi can be extended to incorporate
link reliability, i.e.,

βi = µi +

sj∈Ci

ξij


βj

Pj


,

as we did in the last section.
An example sensor network is shown in Fig. 2, which has

N = 8 sensors. An RBFS tree of the network is given in Fig. 3,
where we have potential_parents[s3] = potential_parents[s4] =

{s1, s2}. Assume that s3 chooses parent[s3] = s1, and s4 chooses
parent[s4] = s2. Therefore, in the first randomized routingmethod,
we have C1 = {s3, s5, s6}, C2 = {s4, s7, s8}, β1 = µ1+β3+β5+β6,
and β2 = µ2 + β4 + β7 + β8. On the other hand, in the second
randomized routing method, we have C1 = {s3, s4, s5, s6}, C2 =

{s3, s4, s7, s8}, β1 = µ1 + 0.5β3 + 0.5β4 + β5 + β6, and β2 =

µ2 + 0.5β3 + 0.5β4 + β7 + β8.

Fig. 2. A sensor network.

Fig. 3. An RBFS tree.

4. Sensor lifetime

Assume that a sensor network starts operation at time zero.
Let Mi denote the random number of data transmissions

performed by si during its lifetime. Let Ti,1, Ti,2, Ti,3, . . . be a
sequence of inter-transmission times of si, and

Sj = Ti,1 + Ti,2 + · · · + Ti,j,

where j ≥ 1. Clearly, Sj is the time when si performs the j’s data
transmission. Notice that the maximum number of data transmis-
sions that can be performed by si is

mi =


Ei
qi


,

assuming that all these data are available at time zero. Therefore,
Mi is a random variable in the range 0 ≤ Mi ≤ mi.

The following theorem gives the probability distribution and
the expectation of Mi.

Theorem 1. The probability distribution of Mi is given by

P[Mi = j]

=


1 − FS1


Ei − qi

pi


, j = 0;

FSj


Ei − jqi

pi


− FSj+1


Ei − ( j + 1)qi

pi


, 1 ≤ j < mi;

FSmi


Ei − miqi

pi


, j = mi;

and the expectation of Mi is

M i =

mi
j=1


1 − exp


−βi


Ei − jqi

pi



×

j−1
k=0

1
k!


βi


Ei − jqi

pi

k


,

where mi = ⌊Ei/qi⌋.

Proof. It is easy to see that the reason that Mi = 0 is that it takes
too long to wait for the first sensed datum, or, by the time S1 the
first sensed datum is generated, the battery of si does not have
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enough power to transmit the datum, since S1pi amount of energy
has been consumed. This means that Ei − S1pi < qi, that is,

P[Mi = 0] = P

S1 >

Ei − qi
pi


= 1 − FS1


Ei − qi

pi


.

For si to transmit at least j sensed data, where 1 ≤ j ≤ mi, we need
the condition

Sjpi + jqi ≤ Ei,

where Sjpi is the amount of energy required to wait for j sensed
data and jqi is the amount of energy to transmit the j sensed data.
Consequently, for all 1 ≤ j ≤ mi, we have

P[Mi ≥ j] = P

Sj ≤

Ei − jqi
pi


= FSj


Ei − jqi

pi


.

The last equation implies that

P[Mi = j] = P[Mi ≥ j] − P[Mi ≥ j + 1]

= FSj


Ei − jqi

pi


− FSj+1


Ei − ( j + 1)qi

pi


,

where 1 ≤ j < mi.
Based on P[Mi = j], we get

M i =

mi
j=1

jP[Mi = j] =

mi
j=1

FSj


Ei − jqi

pi


.

To obtain the cdf of Sj, we notice that the inter-transmission times
of sensor si, that is, Ti,1, Ti,2, Ti,3, . . . , are i.i.d. random variables
with a common exponential pdf

fTi(t) = βie−βit .

This implies that Sj has an Erlang distribution with pdf

fSj(t) =
βie−βit(βit)j−1

( j − 1)!
,

and cdf [14]

FSj(t) = 1 − e−βit

1 +

βit
1!

+
(βit)2

2!
+ · · · +

(βit)j−1

( j − 1)!


.

We can also represent FSj(t) as

FSj(t) =
γ ( j, βit)
( j − 1)!

,

where γ ( j, t) is the lower incomplete gamma function defined
as [14]

γ ( j, t) =

 t

0
xj−1e−xdx.

Therefore, the expectation ofMi is

M i =

mi
j=1


1 − exp


−βi


Ei − jqi

pi



×

j−1
k=0

1
k!


βi


Ei − jqi

pi

k


,

wheremi = ⌊Ei/qi⌋. �
Let Li denote the lifetime of si. We have

Li ≤
Ei
pi

,

where the equality is achieved when si does not transmit any
datum. Hence, Li is a random variable in the range (0, Ei/pi]. The
following theorem gives the probability distribution of Li and the
expected lifetime Li of sensor si.

Theorem 2. The probability distribution of Li is given by

P

Li =

Ei − jqi
pi



=


1 − FS1


Ei − qi

pi


, j = 0;

FSj


Ei − jqi

pi


− FSj+1


Ei − ( j + 1)qi

pi


, 1 ≤ j < mi;

FSmi


Ei − miqi

pi


, j = mi;

where mi = ⌊Ei/qi⌋. The expected lifetime of si is

Li =
Ei − M iqi

pi
,

where M i is given by Theorem 1.

Proof. Notice that Li and Mi have the following relationship:

Li =
Ei − Miqi

pi
.

It is clear that if si performs Mi data transmissions during its
lifetime, we have

Li = SMi +
Ei − SMipi − Miqi

pi
=

Ei − Miqi
pi

,

where SMi is the time towait forMi sensed data, SMipi is the amount
of energy required to wait forMi sensed data,Miqi is the amount of
energy to transmit the Mi sensed data, and (Ei − SMipi − Miqi)/pi
is the remaining survival time. In other words, except the amount
of energy Miqi used to transmit the Mi sensed data, the remaining
energy Ei − Miqi is used to sense and receive data, which gives the
sensor si lifetime (Ei − Miqi)/pi.

Since Mi is a discrete random variable having values in the
set {0, 1, 2, . . . ,mi}, the lifetime Li of sensor si is also a discrete
random variable which can only havemi + 1 possible values, i.e.,

Li =
Ei − jqi

pi
,

for all 0 ≤ j ≤ mi. It is clear that

P

Li =

Ei − jqi
pi


= P[Mi = j],

for all 0 ≤ j ≤ mi, where P[Mi = j] is given by Theorem 1. The
equation for Li is a direct consequence of the above discussion. �

5. Optimal energy allocation

The lifetime of a sensor network is optimized when all the
sensors have the same expected lifetime. This can be achieved by
an initial energy allocation (E1, E2, . . . , EN) such that L1 = L2 =

· · · = LN = L and E1 + E2 + · · · + EN = E, where Li is given by
Theorem 2 and E is the total energy budget. The lifetime of a sensor
network is defined as the identical expected sensor lifetime L.

In Fig. 4, we describe our algorithm for finding an optimal
initial energy allocation (E1, E2, . . . , EN) as well as the lifetime L
of a sensor network for a given set of N heterogeneous sensors
s1, s2, . . . , sN with βi, pi, qi, where 1 ≤ i ≤ N , and a total energy
budget E.

It is clear that Li given by Theorem 2 is an increasing function
of Ei, since more energy results in longer lifetime. Hence, given
L, there is unique Ei such that the expected lifetime of si is L
when given Ei. Our strategy to find the network lifetime L is to
search L using the standard bisection method [3, p. 22] in a well
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Fig. 4. An algorithm for optimal energy allocation.

chosen interval [Llb, Lub], such that L ∈ [Llb, Lub] (lines (8)–(29)).
To properly set Llb and Lub, we first assign equal amount of energy
to each sensor, i.e., let Ei = E/N , for all 1 ≤ i ≤ N , and
calculate Li based on Ei by using Theorem 2 (lines (1)–(4)). Due
to heterogeneity of the sensors, the Li’s computed in line (3)
are different. To obtain identical sensor lifetime, we must move
energy from the sensor with the largest Li to the sensor with the
smallest Li. Hence, we know that L ∈ [Llb, Lub], where Llb =

min(L1, L2, . . . , LN) (line (5)) and Lub = max(L1, L2, . . . , LN) (line
(6)). Beforewe go to search for L, L is given a value in line (7) in case
sensors are not too heterogeneous and the rest of the algorithm is
not executed.

The interval [Llb, Lub] is divided into two halves (line (9)) in
each repetition of the while-loop of lines (8)–(29), and the loop is
repeated until the length of the interval is sufficiently small and the
required numerical accuracy is achieved (see line (8), where the
value of ϵ is used to control numerical precision). For each L given
in line (9), we find the unique Ei such that the expected lifetime of
si is L when given Ei, for all 1 ≤ i ≤ N (lines (10)–(22)). Based on

the Ei’s, we check E ′
= E1 + E2 +· · ·+ EN (line (23)) and adjust the

search interval [Llb, Lub] based on the relationship between E ′ and
E (lines (24)–(28)).

Our strategy to find Ei for a given L is also to search Ei using the
standard bisection method in a well chosen interval [Elb, Eub], such
that Ei ∈ [Elb, Eub] (lines (11)–(21)). It is noticed that each time
when the algorithm reaches lines (11) and (12), there has been a
matching pair of Ei and Li in the sense that the expected lifetime of
si is Li when given Ei, for all 1 ≤ i ≤ N . Such a pair of Ei and Li is
initialized in line (3) and later updated in line (15). If L < Li, the
new Ei that matches with L must be in the interval [0, Ei], and we
should set Elb = 0 (line (11)) and Eub = Ei (line (12)). If L ≥ Li, the
new Ei that matches with L must be in the interval [Ei, E], and we
should set Elb = Ei (line (11)) and Eub = E (line (12)). A conditional
expression (c) ? u : v means that if a Boolean condition c is
true, the value of the expression is u; otherwise, the value of the
expression is v. The while-loop of lines (13)–(21) is repeated until
the length of the interval [Elb, Eub] is sufficiently small and the
required numerical accuracy is achieved (see line (13), where the
value of ϵ is used to control numerical precision).
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6. Large energy budget

The main problem of the above algorithm in Fig. 4 is that the
running time is too long when Ei is large. Furthermore, there
is also a problem that a numerical value may exceed the data
range represented by a computer even when Ei is not large
and when mi is, say, 30, due to such calculations as power and
factorial in Theorem 1. Fortunately, we find that bothM i and Li are
approximately linear functions of Ei when Ei is not too small. Let
Li(Ei) be a function of Ei. Then, we have

Li(Ei) = Li(E
(1)
i ) +

Li(E
(2)
i ) − Li(E

(1)
i )

E(2)
i − E(1)

i

· (Ei − E(1)
i ),

where E(1)
i and E(2)

i are small values which are able to provide
accurate approximation of Li(Ei) for large Ei.

Let us consider an ideal case when the inter-transmission time
is fixed at Ti = 1/βi, that is, a sensor si transmits a datum every Ti
units of time. Also, assume that the lifetime Li can be evenly divided
by Ti, that is, si transmitsMi = Li/Ti = Liβi data during its lifetime.
It is clear that

Ei = Lipi + Miqi = Lipi + Liβiqi = Li(pi + βiqi),

which implies that

Li =
Ei

pi + βiqi
.

To have an identical lifetime L for all the sensors, i.e.,

Ei
pi + βiqi

= L,

we need

Ei = L(pi + βiqi),

for all 1 ≤ i ≤ N . Since E1 + E2 + · · · + EN = E, i.e.,
N
i=1

L(pi + βiqi) = E,

we get

L =
E

N
i=1

(pi + βiqi)
,

and

Ei =
(pi + βiqi)E
N
i=1

(pi + βiqi)
.

The above discussion shows that the sensor lifetime Li is a linear
function of Ei and the network lifetime L is a linear function of E.

The above analysis reveals that in an ideal case, the lifetime of
a sensor network is the initial total energy divided by the total
amount of energy consumed by all sensors in one unit of time.
We expect such a relation roughly holds for any sensor network.
In the following, we show that in a heterogeneous wireless sensor
network, if Ei is not too small, the expected number M i of data
transmissions performed by si as well as the expected lifetime Li
of sensor si are linear functions of Ei. Furthermore, for sufficiently
large E, the network lifetime L as well as the optimal energy
allocation Ei are linear functions of E.

Let us define

tj =
Ei − jqi

pi
,

where 1 ≤ j ≤ mi. Then, by Theorem 1, we have

M i = FS1(t1) + FS2(t2) + FS3(t3) + · · · + FSmi
(tmi),

where

FS1(t1) = 1 − e−βit1 ,

FS2(t2) = 1 − e−βit2


1 +

βit2
1!


,

FS3(t3) = 1 − e−βit3


1 +

βit3
1!

+
(βit3)2

2!


,

...

FSmi
(tmi)

= 1 − e−βitmi


1 +

βitmi

1!
+

(βitmi)
2

2!
+ · · · +

(βitmi)
mi−1

(mi − 1)!


.

It is clear that M i can be viewed as a function M i(Ei) of Ei. The
following theorem states that M i(Ei) is almost a linear function of
Ei for sufficiently large Ei.

Theorem 3. For any sensor si, where 1 ≤ i ≤ N, we have

dM i

dEi
=

βi

pi


e−βit1 + e−βit2

βit2
1!

+e−βit3
(βit3)2

2!
+ · · · + e−βitmi

(βitmi)
mi−1

(mi − 1)!


,

and

lim
Ei→∞

dM i

dEi
=

βi

βiqi + pi
.

Consequently, for sufficiently large Ei, we have

M i = aiEi + bi

for some constants ai and bi.

Proof. It is clear that

dM i

dEi
=

mi
j=1

dFSj(tj)

dEi
.

It is easy to verify that

dFSj(tj)

dEi
=


βi

pi


e−βitj

(βitj)j−1

( j − 1)!
,

for all 1 ≤ j ≤ mi. Therefore, we have

dM i

dEi
=

βi

pi

mi
j=1

e−βitj
(βitj)j−1

( j − 1)!
.

Without loss of generality, we only consider those Ei with Ei =

miqi, where mi is an integer, and let mi → ∞. If limmi→∞ dM i/dEi
is some constant, then limEi→∞ dM i/dEi is also the same constant,
since dM i/dEi is a continuous function of Ei. Notice that

βitj = βi


Ei − jqi

pi


= βi


miqi − jqi

pi


=

βiqi
pi

(mi − j) = wi(mi − j),

where

wi =
βiqi
pi

,
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for all 1 ≤ j ≤ mi. (Since βiqi is the expected amount of energy
consumed by si for data transmission in one unit of time, and pi is
the amount of energy consumed by si for data sensing in one unit
of time,wi is the data transmission to data sensing ratio of sensor si.)
Hence, we get

dM i

dEi
=

βi

pi

mi−1
j=1

e−wi(mi−j)
·
(wi(mi − j))j−1

( j − 1)!
.

We can show that for any wi > 0, we have

lim
mi→∞

mi−1
j=1

e−wi(mi−j)
·
(wi(mi − j))j−1

( j − 1)!
=

1
wi + 1

.

The proof of the above identity is given in Appendix. Consequently,

lim
mi→∞

dM i

dEi
=

βi

pi
·

1
wi + 1

=
βi

βiqi + pi
.

Based on the fact that

dM i

dEi
=

βi

βiqi + pi
,

for large Ei, we get

M i(Ei) = M i(E∗

i ) +


βi

βiqi + pi


(Ei − E∗

i )

=


βi

βiqi + pi


Ei + M i(E∗

i ) −


βi

βiqi + pi


E∗

i

= aiEi + bi,

for all Ei ≥ E∗

i , where E∗

i is sufficiently large, and

ai =
βi

βiqi + pi
and

bi = M i(E∗

i ) −


βi

βiqi + pi


E∗

i

are two constants. �

The expected sensor lifetime Li can be viewed as a function of Ei.
The following theorem states that Li(Ei) is almost a linear function
of Ei for sufficiently large Ei.

Theorem 4. For sufficiently large Ei, we have Li = uiEi + vi, where ui
and vi are some constants, for all 1 ≤ i ≤ N.

Proof. Since M i = aiEi + bi for sufficiently large Ei, we have

Li =
Ei − M iqi

pi

=
Ei − (aiEi + bi)qi

pi

=


1 − aiqi

pi


Ei −

biqi
pi

=
Ei

βiqi + pi
+

qi
pi


βi

βiqi + pi


E∗

i − M i(E∗

i )


(by Theorem 3)

= uiEi + vi,

where

ui =
1

βiqi + pi
and

vi =
qi
pi


βi

βiqi + pi


E∗

i − M i(E∗

i )


are two constants. �

The network lifetime L and the optimal energy allocation Ei can
be viewed as a function of E. The following theorem shows that
both L and Ei are linear functions of E.

Theorem 5. For sufficiently large energy budget E, we have

L =
E

N
i=1

(βiqi + pi)
+

N
i=1

qi
pi


βiE∗

i − M i(E∗

i )(βiqi + pi)


N
i=1

(βiqi + pi)
,

and

Ei =
(βiqi + pi)E
N
i=1

(βiqi + pi)

+

(βiqi + pi)
N
i=1

qi
pi


βiE∗

i − M i(E∗

i )(βiqi + pi)


N
i=1

(βiqi + pi)

−
qi
pi


βiE∗

i − M i(E∗

i )(βiqi + pi)

,

for all 1 ≤ i ≤ N.

Proof. Since Li = uiEi + vi = L, we have

Ei =
L − vi

ui
=

L
ui

−
vi

ui
,

for all 1 ≤ i ≤ N . Since E1 + E2 + · · · + EN = E, i.e.,
N
i=1

1
ui


L −

N
i=1

vi

ui
= E,

we get

L =

E +

N
i=1

vi
ui

N
i=1

1
ui

.

By using ui and vi from the proof of Theorem 4, we obtain

L =
E

N
i=1

(βiqi + pi)
+

N
i=1

qi
pi


βiE∗

i − M i(E∗

i )(βiqi + pi)


N
i=1

(βiqi + pi)
.

Furthermore, since Ei = L/ui − vi/ui, we get

Ei =
(βiqi + pi)E
N
i=1

(βiqi + pi)

+

(βiqi + pi)
N
i=1

qi
pi


βiE∗

i − M i(E∗

i )(βiqi + pi)


N
i=1

(βiqi + pi)

−
qi
pi


βiE∗

i − M i(E∗

i )(βiqi + pi)

,

for all 1 ≤ i ≤ N . �
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The following theorem gives our effective way to calculate
network lifetime and an optimal energy allocation for large energy
budget.

Theorem 6. If E∗
= E∗

1 +E∗

2 +· · ·+E∗

N is certain (sufficiently large)
amount of energy budget allocated to the N sensors such that si gets
E∗

i and all the sensors have the same expected lifetime

L∗
=

E∗

i − M i(E∗

i )qi
pi

,

where L∗ is also the network life and the E∗

i ’s are obtained by the
optimal energy allocation algorithm, then for large energy budget E,
we have

L =
E − E∗

N
i=1

(βiqi + pi)
+ L∗,

and

Ei =
(βiqi + pi)
N
i=1

(βiqi + pi)
(E − E∗) + E∗

i ,

for all 1 ≤ i ≤ N.

Proof. Notice that
qi
pi


βiE∗

i − M i(E∗

i )(βiqi + pi)


= qi(βiL∗
− M i(E∗

i )).

For very large energy budget E, by Theorem 5, the network lifetime
is

L =
E

N
i=1

(βiqi + pi)
+

N
i=1

qi(βiL∗
− M i(E∗

i ))

N
i=1

(βiqi + pi)

=
E

N
i=1

(βiqi + pi)
+

N
i=1

βiqiL∗
−

N
i=1

M i(E∗

i )qi

N
i=1

(βiqi + pi)

=
E

N
i=1

(βiqi + pi)
+

N
i=1

βiqiL∗
−

N
i=1

(E∗

i − piL∗)

N
i=1

(βiqi + pi)

=
E

N
i=1

(βiqi + pi)
+

N
i=1

(βiqi + pi)L∗
−

N
i=1

E∗

i

N
i=1

(βiqi + pi)

=
E − E∗

N
i=1

(βiqi + pi)
+ L∗.

Similarly, by the fact that Ei = L/ui − vi/ui, the optimal energy
allocation is

Ei =
(βiqi + pi)(E − E∗)

N
i=1

(βiqi + pi)

+ (βiqi + pi)L∗
−

qi
pi


βiE∗

i − M i(E∗

i )(βiqi + pi)


=
(βiqi + pi)(E − E∗)

N
i=1

(βiqi + pi)
+ (βiqi + pi)L∗

− qi(βiL∗
− M i(E∗

i ))

=
(βiqi + pi)(E − E∗)

N
i=1

(βiqi + pi)
+ piL∗

+ M i(E∗

i )qi

=
(βiqi + pi)
N
i=1

(βiqi + pi)
(E − E∗) + E∗

i ,

for all 1 ≤ i ≤ N . �

7. Working sensors

LetW (t) denote the number of sensors which are still working
at time t . The lifetime of two sensors si and sj are correlated if si
is on the path from sj to s0. Consequently, W (t) is an extremely
complicated random variable whose pdf and cdf are unknown, due
to the extensive correlation among sensor lifetime. Fortunately, we
can find the expectation ofW (t) without knowing its pdf.

The following theorem gives the expectation ofW (t).

Theorem 7. The expected number of sensors which are still working
at time t ≥ 0 is

W (t) = N −

N
i=1

FLi(t),

where

FLi(t) =


FSni


Ei − niqi

pi


, 0 ≤ t <

Ei
pi

;

1, t ≥
Ei
pi

;

with

ni =


Ei − pit

qi


.

Proof. It is clear thatW (t) is the summation of the probability that
si is still functioning at time t , for all 1 ≤ i ≤ N , that is,

W (t) =

N
i=1

P[si is still functioning at time t].

Notice that the probability that si is still functioning at time t is
equivalent to the probability that the lifetime of si is at least t , i.e.,
Li ≥ t . Thus, we get

W (t) =

N
i=1

P[Li ≥ t]

=

N
i=1

(1 − P[Li ≤ t])

=

N
i=1

(1 − FLi(t))

= N −

N
i=1

FLi(t).

When 0 ≤ t < Ei/pi, we have
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FLi(t) = P [Li ≤ t]

= P

Ei − Miqi

pi
≤ t


= P


Mi ≥

Ei − pit
qi


= P [Mi ≥ ni]

=

mi
j=ni

P [Mi = j] ,

where

ni =


Ei − pit

qi


≥ 1.

By Theorem 1, the last summation is

FLi(t) = FSni


Ei − niqi

pi


.

Finally, we notice that FLi(t) = 1 when t ≥ Ei/pi. �

Notice thatW (t) is a nonincreasing function of t . Therefore, for
any threshold N∗, we can find the largest t∗ such that W (t) ≥ N∗

for all t ≤ t∗, and t∗ can be considered as the lifetime of a sensor
network with respect to N∗.

8. Numerical examples

Let us consider an area of interest A which is a square of size
d × d m2 with d = 50 m. The area A is divided into d2 = 2500
identical square cells of size 1 m2. A base station is in the center
of A.

There are N = 100 heterogeneous sensors randomly dis-
tributed in A. We consider two probability distributions of the sen-
sors. The first distribution is a uniform distribution, i.e., all the xi’s
and the yi’s are uniformly and independently distributed in the
range [0, d]. The seconddistribution is a truncatednormal distribu-
tion, i.e., all the xi’s and the yi’s are independently distributed in the
range [0, d] according to a normal distributionwithmeanµ = d/2
and variance σ 2

= d2/16. In our numerical examples, a normal
randomnumber is discarded if thenumber is not in the range [0, d].

The sensor communication radii, i.e., the ci’s, are uniformly and
independently distributed in the range [c ′, c ′′

] = [10, 15] with
mean c = (c ′

+ c ′′)/2 = 12.5 m. The sensing range of si is
set as ri = ci/2, for all 1 ≤ i ≤ N , namely, ri is in the range
[r ′, r ′′

] = [5.0, 7.5] with mean r = (r ′
+ r ′′)/2 = 6.25 m and

linearly proportional to the communication radius.
The parameter pi is in the range [0.00050, 0.00075] (in Watts)

with pi = 0.0001ri, that is, pi is in the range 0.50–0.75 mW with
mean p = 0.0001r = 0.625 mW and linearly proportional to
the sensing range. The parameter qi is in the range [0.025, 0.050]
(in Joules) with qi = 0.005 + 0.0002c2i , that is, qi is in the range
25–50 mJ with mean

q =
1

c ′′ − c ′

 c′′

c′
(0.005 + 0.0002c2)dc = 36.67 mJ,

and proportional to the square of the communication radius ci.
The (xi, yi, ci)’s determine the topology G of a heterogeneous

wireless sensor network. Two random graphs G1 and G2 are pro-
duced for the uniform and the normal distributions respectively.
An RBFS tree Ti is constructed forGi by using the algorithm in Fig. 1,
where i = 1, 2. In addition to the root, T1 has four levels and the
number of nodes on levels 1–4 are (19, 48, 28, 5), and T2 has three
levels and the number of nodes on levels 1–3 are (44, 44, 12). It is
observed that due to the nature of a normal distribution, sensors in

Fig. 5. Network lifetime L vs. data generation rate ρ (uniform distribution).

Fig. 6. Network lifetime L vs. data generation rate ρ (normal distribution).

Fig. 7. Expected number of working sensors at time t (uniform distribution).

G2 are deployedmore densely in areas closer to a base station than
in areas further away from the base station.

The (xi, yi, ri)’s determine the coverage of A. A normal
distribution leads to less coverage of areas far away from the base
station. It is observed that 99.16% cells are covered by at least one
sensor in G1, while only 94.36% cells are covered by at least one
sensor in G2.

We would like to mention that the difference of the numerical
data in Figs. 5–8 between the two randomized routing methods
is too small to be noticed. The two routing methods yield about
the same network lifetime and about the same expected number
of working sensors.

In Figs. 5 and 6, we show network lifetime L (in seconds)
as a function of ρ for the two probability distributions, where
ρ = 0.0001, 0.0002, 0.0003, . . . , 0.0010 data/m2/s, and E =

1000, 2000, . . . , 5000 J. The number of sensed data received by the
base station per second is d2ρ, which is in the range [0.25,2.50]. For
a typical sensor with ri = r = 6.25 m, pi = p = 0.000625 W,
and qi = q = 0.03667 J, in a typical sensing environment
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Fig. 8. Expected number of working sensors at time t (normal distribution).

with ρ = 0.0005 data/m2/s, and βi = µi = πr2ρ =

0.06135923 data/s (by ignoring the data relayed), we find that
we can calculate M i for Ei = 1 J with mi = 27. Beyond
that, we will encounter numerical inaccuracy. Hence, the data
in the figures are calculated by using Theorem 6 with E∗

=

100 J, such that the average amount of energy allocated to each
sensor is approximately E∗/N = 1 J, which is enough for
m = ⌊(E∗/N)/q⌋ = 27 data transmissions. Our numerical
computations reveal that dM i/dEi is almost a constant when Ei ≥

20qi, which is roughly 0.7334 J, i.e., E∗
= 100 is sufficiently large

to apply Theorem 6. The parameter ϵ in Fig. 4 is set as ϵ = 10−7.
It is observed that the normal distribution of sensors leads to

less traffic burden on sensors closer to the base station and results
in longer network lifetime. It is also observed that as ρ increases,
the percentage of energy devoted to data sensing, i.e.,

L(p1 + p2 + · · · + pN)/E ≈ LNp/E,

decreases (equivalently, the percentage of energy devoted to data
transmission increases) noticeably. For instance, for the uniform
distribution, when ρ = 0.0001, the percentage of energy for data
sensing is at least 36%; however, when ρ = 0.001, the percentage
of energy for data sensing is no more than 6%.

In Figs. 7 and 8, we show the expected number of working
sensors W (t) for the two probability distributions, where ρ =

0.0001 and E = 100, 200, . . . , 500 J. For the first routing method
and the five values of E, the network lifetime L is 607, 1189,
1771, 2353, and 2935, respectively, for the uniform distribution,
and 717, 1411, 2105, 2798, and 3492, respectively, for the normal
distribution. For the second routing method and the five values
of E, the network lifetime L is 613, 1201, 1789, 2377, and 2965,
respectively, for the uniform distribution, and 715, 1407, 2098,
2790, and 3481, respectively, for the normal distribution. It is
observed that as t increases, W (t) remains at N for most of the
time and drops to zero in a very short period of time. This means
that all sensors die at about the same time. It is also observed that
W (t) is about N/2 at time t = L. The significance of these data
is that we can easily determine the network lifetime with respect
to a threshold N∗. For instance, for the uniform distribution, when
E = 500 and N∗

= 80, the network lifetime is t∗ = 2770 for the
first routingmethod and t∗ = 2800 for the second routingmethod,
since we haveW (t) ≥ N∗ for all t ≤ t∗.

Additional data are demonstrated in Tables 1–3 for a typical
sensor with βi = 0.06135923 data/s, pi = 0.000625 W, qi =

0.03667 J, Ei = 1 J, and mi = 27. In Table 1, we show the
probability distribution ofMi calculated byusing Theorem1,where
a zero probability means that the probability is too small to be
shown within the given range of accuracy. The above probability
distribution yields M i = 20.865650614068464 (by Theorem 1)
and Li = 375.770547171375028 (by Theorem 2). In Table 2,
we show the derivative dM i/dEi calculated by using Theorem 3.

Table 1
The probability distribution ofMi .

j P[Mi = j]

0 0.000000000000000
1 0.000000000000000
2 0.000000000000000
3 0.000000000000000
4 0.000000000000000
5 0.000000000000000
6 0.000000000000000
7 0.000000000000000
8 0.000000000000000
9 0.000000000000000

10 0.000000000000006
11 0.000000000000570
12 0.000000000044048
13 0.000000002591118
14 0.000000114027680
15 0.000003666395794
16 0.000083495370354
17 0.001292809458138
18 0.012895057526243
19 0.077092922488284
20 0.250456358120700
21 0.385764127695034
22 0.231385848163540
23 0.039874819472959
24 0.001149079567642
25 0.000001699073387
26 0.000000000004503
27 0.000000000000000

Table 2
The derivative dM i/dEi .

Ei dM i/dEi

0.1 18.9528223466
0.2 18.7645478475
0.3 21.7335949666
0.4 21.4597651289
0.5 21.3103069680
0.6 21.3376806818
0.7 21.3441760714
0.8 21.3421062901
0.9 21.3418918811
1.0 21.3420271870
1.1 21.3420291302
1.2 21.3420212103
1.3 21.3420217057
1.4 21.3420221226
1.5 21.3420220622
1.6 21.3420220429
1.7 21.3420220478
1.8 21.3420220486
1.9 21.3420220482
2.0 21.3420220482

It is observed that dM i/dEi quickly approaches a constant as
Ei increases. In Table 3, we compare the exact value of the
expected sensor lifetime Li obtained by using Theorem 2 and the
approximate sensor lifetime Li obtained by using Theorem 4. In
Theorem 4, we set E∗

i = 1, which gives ui = 347.8208823862, and
vi = 27.9496647852. It is observed that our approximate values
are extremely close to the exact values with negligible differences.
These data validate the legitimacy of our approach developed in
Section 6.

9. Concluding remarks

We have addressed the problem of optimal energy allocation
and lifetime maximization in heterogeneous wireless sensor
networks. We construct a probabilistic model for heterogeneous
wireless sensor networks such that the lifetime of sensors as well
as an entire network can be studied analytically.We are able to find
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Table 3
The expected sensor lifetime.

Ei Li (exact) Li (approximate)

1.0 375.7705471714 375.7705471714
1.1 410.5526220144 410.5526354100
1.2 445.3347102611 445.3347236486
1.3 480.1167992685 480.1168118872
1.4 514.8988874477 514.8989001258
1.5 549.6809756467 549.6809883645
1.6 584.4630638918 584.4630766031
1.7 619.2451521322 619.2451648417
1.8 654.0272403703 654.0272530803
1.9 688.8093286088 688.8093413189
2.0 723.5914168475 723.5914295575
2.1 758.3735050861 758.3735177961
2.2 793.1555933247 793.1556060348
2.3 827.9376815633 827.9376942734
2.4 862.7197698019 862.7197825120
2.5 897.5018580406 897.5018707506
2.6 932.2839462792 932.2839589892
2.7 967.0660345178 967.0660472278
2.8 1001.8481227564 1001.8481354665
2.9 1036.6302109950 1036.6302237051
3.0 1071.4122992336 1071.4123119437

optimal initial energy allocation such that all sensors exhaust their
battery power at about the same time and the lifetime of a sensor
network is significantly prolonged. We also know the expected
number of working sensors at any time, so that the lifetime of a
wireless sensor network can be predicted.

We would like to mention that our optimal energy allocation
algorithm developed in this paper is a centralized and offline
algorithm. While it is applicable to many static and stable sensor
networks which are optimally designed and carefully deployed,
there are many other sensor networks which are randomly
deployed and even dynamically changing. Therefore, extension
and modification of our method into a distributed, online, and
adaptive algorithm becomes an interesting and important topic for
further investigation.
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Appendix

In the proof of Theorem 3, we need the following result.

Theorem 8. For any wi > 0, we have

lim
mi→∞

mi−1
j=1

e−wi(mi−j)
·
(wi(mi − j))j−1

( j − 1)!
=

1
wi + 1

. (1)

Proof. We are going to show the following,

lim
mi→∞

mi−1
j=1

(mi − j)j−1

( j − 1)!
· w

j−1
i e−wi(mi−j)

= 1 − wi + w2
i − w3

i + w4
i − · · · .

Notice that
mi−1
j=1

(mi − j)j−1

( j − 1)!
· w

j−1
i e−wi(mi−j)

=

mi−1
j=1

(mi − j)j−1

( j − 1)!
· w

j−1
i

∞
k=0

(−1)k
(mi − j)k

k!
· wk

i

=

mi−1
j=1

∞
k=0

(−1)k
(mi − j)j−1+k

( j − 1)!k!
· w

j−1+k
i .

It is easy to see that for all n ≥ 0, ifmi > n+ 1 (which is really the
case sincemi → ∞), the coefficient of wn

i is

(−1)n


(mi − 1)n

0!n!
−

(mi − 2)n

1!(n − 1)!
+

(mi − 3)n

2!(n − 2)!

− · · · + (−1)n
(mi − n − 1)n

n!0!


,

by setting j = 1, 2, 3, . . . , n + 1 and k = n, n − 1, n − 2, . . . , 0.
Now we need to show that

(mi − 1)n

0!n!
−

(mi − 2)n

1!(n − 1)!
+

(mi − 3)n

2!(n − 2)!

− · · · + (−1)n
(mi − n − 1)n

n!0!
= 1,

for all integers n ≥ 0 and mi > n + 1. By replacing mi − 1 by m,
the above equation becomes

mn

0!n!
−

(m − 1)n

1!(n − 1)!
+

(m − 2)n

2!(n − 2)!

− · · · + (−1)n
(m − n)n

n!0!
= 1, (2)

for all integers n ≥ 0 and m > n. Eq. (2) is equivalent ton
0


mn

−

n
1


(m − 1)n +

n
2


(m − 2)n

− · · · + (−1)n
n
n


(m − n)n = n!. (3)

To prove Eq. (3), let us assume that we have n candies to be given
to n boys and (m − n) girls. We are going to give the candies to
the kids such that each boy gets exactly one candy. The numberW
of ways to give the candies is obviously n!. We can figure out W
by following another reasoning. LetWi denote the number of ways
to give the candies to the m kids such that a kid may receive more
than one candy but i particularly chosen boys do not get any candy.
Clearly, we have

Wi =

n
i


(m − i)n,

where
 n

i


is the number of ways to choose the i boys who do not

get any candy and (m − i)n is the number of ways to give the n
candies to the remaining (m − i) kids such that a kid may receive
more than one candy. It is clear by the Principle of Inclusion and
Exclusion,

W = W0 − W1 + W2 − · · · + (−1)nWn,

where the right hand side guarantees that each boy receives one
candy. The last equation is exactly Eq. (3) we need to prove. �

Remark 1. We would like to mention that although Eqs. (2) and
(3) are proven for integers m > n, they hold for all reals m, even
negativem. In fact, Eq. (3) is a special case of the following general
result. Let

S(n,m, k) =

n
0


mk

−

n
1


(m − 1)k +

n
2


(m − 2)k

− · · · + (−1)n
n
n


(m − n)k,

where n ≥ 0 is an integer, m is any real number, and 0 ≤ k ≤ n is
an integer. Then, we have

S(n,m, k) =


0, 0 ≤ k ≤ n − 1;
n!, k = n.
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The above result can be proven by induction on both n ≥ 0 and
0 ≤ k ≤ n. The base cases of n ≤ 1 and 0 ≤ k ≤ n, and n ≥ 0
and k = 0 can be verified easily. For the general case of n > 1 and
1 ≤ k ≤ n, we notice that for all 1 ≤ j ≤ n,
n
j


(m − j)k =


n
j


(m − j)(m − j)k−1

= m

n
j


(m − j)k−1

− j

n
j


(m − j)k−1

= m

n
j


(m − j)k−1

− n

n − 1
j − 1


× ((m − 1) − ( j − 1))k−1.

The above equation implies thatn
0


mk

−

n
1


(m − 1)k +

n
2


(m − 2)k

− · · · + (−1)n
n
n


(m − n)k

= m

n
0


mk−1

−

n
1


(m − 1)k−1

+

n
2


(m − 2)k−1

− · · · + (−1)n
n
n


(m − n)k−1



+ n


n − 1
0


(m − 1)k−1

−


n − 1
1


((m − 1) − 1)k−1

+ · · · + (−1)n−1

n − 1
n − 1


((m − 1) − (n − 1))k−1


,

namely,

S(n,m, k) = mS(n,m, k − 1) + nS(n − 1,m − 1, k − 1).

By the induction hypothesis, we get

S(n,m, k) =


m × 0 + n × 0 = 0, 0 ≤ k ≤ n − 1;
m × 0 + n(n − 1)! = n!, k = n.

Remark 2. We replace wi by x and take integration on both sides
of Eq. (1) in [0, wi]. Then, by the Fundamental Theorem of Calculus,
Eq. (1) is equivalent to

lim
mi→∞

mi−1
j=1

 wi

0


xj−1e( j−mi)x ·

(mi − j)j−1

( j − 1)!


dx

=

 wi

0


1

x + 1


dx. (4)

We notice that wi

0


xj−1e( j−mi)x ·

(mi − j)j−1

( j − 1)!


dx

=
(mi − j)j−1

( j − 1)!

 wi

0
xj−1e( j−mi)xdx.

Since
xj−1e( j−mi)xdx

= e( j−mi)x
j−1
k=0

(−1)k
( j − 1)!xj−1−k

( j − 1 − k)!( j − mi)k+1

= −( j − 1)!e( j−mi)x
j−1
k=0

xj−1−k

( j − 1 − k)!(mi − j)k+1
,

we have wi

0
xj−1e( j−mi)xdx

= ( j − 1)!


1

(mi − j)j
− e( j−mi)wi

×

j−1
k=0

w
j−1−k
i

( j − 1 − k)!(mi − j)k+1



=
( j − 1)!
(mi − j)j


1 −

1
e(mi−j)wi

j−1
k=0

((mi − j)wi)
j−1−k

( j − 1 − k)!


,

and wi

0


xj−1e( j−mi)x ·

(mi − j)j−1

( j − 1)!


dx

=
1

mi − j


1 −

1
e(mi−j)wi

j−1
k=0

((mi − j)wi)
j−1−k

( j − 1 − k)!


.

The last equation implies that Eq. (4) is identical to

lim
mi→∞

mi−1
j=1

1
mi − j


1 −

1
e(mi−j)wi

j−1
k=0

((mi − j)wi)
k

k!


= ln(wi + 1), (5)

or, equivalently, replacing j bymi − j,

lim
mi→∞

mi−1
j=1

1
j


1 −

1
ejwi

mi−j−1
k=0

( jwi)
k

k!


= ln(wi + 1). (6)

Eq. (5) is identical to

lim
mi→∞

mi−1
j=1

γ ( j, (mi − j)wi)

(mi − j)( j − 1)!
= ln(wi + 1), (7)

or, equivalently, replacing j bymi − j,

lim
mi→∞

mi−1
j=1

γ (mi − j, jwi)

j(mi − j − 1)!
= ln(wi + 1). (8)

Eq. (7) is identical to

lim
mi→∞

mi−1
j=1

1
(mi − j)( j − 1)!

 (mi−j)wi

0
xj−1e−xdx

= ln(wi + 1), (9)

or, equivalently, replacing j bymi − j,

lim
mi→∞

mi−1
j=1

1
j(mi − j − 1)!

 jwi

0
xmi−j−1e−xdx

= ln(wi + 1). (10)

Let T1, T2, T3, . . . be i.i.d. random variables with a common
exponential pdf

fT (t) = wie−wit .

Then, Sj = T1 + T2 + · · · + Tj has an Erlang distribution with pdf

fSj(t) =
wie−wit(wit)j−1

( j − 1)!
.
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Eq. (5) is also identical to

lim
mi→∞

mi−1
j=1

FSj(mi − j)

(mi − j)
= ln(wi + 1), (11)

or, equivalently, replacing j bymi − j,

lim
mi→∞

mi−1
j=1

FSmi−j( j)

j
= ln(wi + 1). (12)
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