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Abstract Mobile edge computing (MEC) has been
widely applied to numerous areas and aspects of human
life and modern society. Many such applications can be
represented as directed acyclic graphs (DAG). Device-
edge-cloud fusion provides a new kind of heteroge-
neous, distributed, and collaborative computing envi-
ronment to support various MEC applications. DAG
scheduling is a procedure employed to effectively and
efficiently manage and monitor the execution of tasks
that have precedence constraints on each other. In this
paper, we investigate the NP-hard problems of DAG
scheduling and energy-constrained DAG scheduling
on mobile devices, edge servers, and cloud servers by
designing and evaluating new heuristic algorithms. Our
contributions to DAG scheduling can be summarized
as follows. First, our heuristic algorithms guarantee
that all task dependencies are correctly followed by
keeping track of the number of remaining predecessors
that are still not completed. Second, our heuristic algo-
rithms ensure that all wireless transmissions between
a mobile device and edge/cloud servers are performed
one after another. Third, our heuristic algorithms allow
an edge/cloud server to start the execution of a task as
soon as the transmission of the task is finished. Fourth,
we derive a lower bound for the optimal makespan such
that the solutions of our heuristic algorithms can be
compared with optimal solutions. Our contributions to
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energy-constrained DAG scheduling can be summa-
rized as follows. First, our heuristic algorithms ensure
that the overall computation energy consumption and
communication energy consumption does not exceed
the given energy constraint. Second, our algorithms
adopt an iterative and progressive procedure to deter-
mine appropriate computation speed and wireless com-
munication speeds while generating a DAG schedule
and satisfying the energy constraint. Third, we derive
a lower bound for the optimal makespan and eval-
uate the performance of our heuristic algorithms in
such a way that their heuristic solutions are compared
with optimal solutions. To the author’s knowledge, this
is the first paper that considers DAG scheduling and
energy-constrained DAG scheduling on edge and cloud
servers with sequential wireless communications and
overlapped communication and computation to mini-
mize makespan.

Keywords Device-edge-cloud fusion · Directed
acyclic graphs · Energy constraint · Heuristic
algorithm · Makespan · Power consumption ·
Task scheduling

1 Introduction

1.1 Background and Challenges

Mobile edge computing (MEC) has been widely
applied to numerous areas and aspects of human
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life and modern society, such as augmented reality,
autonomous vehicles, healthcare monitoring, indus-
trial IoT, smart homes, smart cities, and video surveil-
lance. Many such applications can be represented
as directed acyclic graphs (DAG) [2,4,11,12,15,18–
20,22,27]. Typically, an MEC application includes dif-
ferent types of tasks with interdependencies, e.g., data
collection, data fusion, data preprocessing, decision-
making, event recognition, monitoring and sensing,
object detection, object recognition, predictive main-
tenance, and process control.

Device-edge-cloud fusion provides a new kind of
heterogeneous, distributed, and collaborative comput-
ing environment to support various MEC applica-
tions that include and involve communication-intensive
tasks, computation-intensive tasks, and data-intensive
tasks [3,16,17,21,25,26]. A mobile device can han-
dle real-time monitoring and initial data processing
tasks for real-time control and response, immediate
decision-making, and time reduction between data
acquisition and analysis. Edge server processing can
enhance responsiveness, minimize latency, and reduce
the need for transmitting large volumes of data to the
cloud. Non-real-time tasks and complex analytics can
be offloaded to a cloud server for more extensive and
comprehensive analysis and massive data storage.

DAG scheduling is a procedure employed to effec-
tively and efficiently manage and monitor the exe-
cution of tasks that have precedence constraints on
each other [1,9]. In the context of a device-edge-cloud
collaborative computing platform, where computing
tasks are distributed across user equipments (UE), edge
servers (ES), and cloud servers (CS), DAG scheduling
becomes critical and crucial for optimizing resource
utilization in a device-edge-cloud collaborative com-
puting platform and minimizing execution time in pro-
cessing an MEC application with interdependent tasks.

There are several challenges for DAG scheduling on
multiple heterogeneous edge and cloud servers. First,
the precedence constraints among the tasks should
be properly handled in the sense that a task can be
scheduled only when all its predecessors are com-
pleted. Second, since tasks are all generated on a mobile
device (i.e., a UE), task allocation and assignment to
the edge and cloud servers can be accomplished only
by sequential transmission from the mobile device to
the edge and cloud servers via wireless communica-
tion. Third, to maximize the utilization of computa-
tion and communication resources, on the same server,

wireless communication of one task can overlap with
wired communication and computation of another task.
Fourth, as in traditional scheduling theory, the opti-
mization objective is the makespan and the perfor-
mance of a heuristic algorithm should be compared
with that of an optimal algorithm.

Energy-constrained DAG scheduling on multiple
heterogeneous edge and cloud servers incurs addi-
tional difficulties and challenges. First, the total energy
consumption to process and execute a DAG, which
includes both computation energy consumption and
communication energy consumption, cannot exceed a
certain given energy budget. Second, the computation
speed for a task executed locally on a UE or the wire-
less communication speed for a task executed remotely
on an edge server or a cloud server needs to be decided
together with a schedule. Third, as mentioned above,
the makespan of a heuristic algorithm should be com-
pared with that of an optimal algorithm, which is a
major challenge for energy-constrained DAG schedul-
ing with sequential wireless communications and over-
lapped communication and computation.

1.2 New Contributions

In this paper, we investigate the NP-hard problems of
DAG scheduling and energy-constrained DAG schedul-
ing on mobile devices, edge servers, and cloud servers
by designing and evaluating new heuristic algorithms.
Our contributions to DAG scheduling can be summa-
rized as follows.

• First, our heuristic algorithms guarantee that all
task dependencies are correctly followed by keep-
ing track of the number of remaining predecessors
that are still not completed.

• Second, our heuristic algorithms ensure that all
wireless transmissions between a mobile device
and edge/cloud servers are performed one after
another.

• Third, our heuristic algorithms allow an edge/cloud
server to start the execution of a task as soon as the
transmission of the task is finished.

• Fourth, we derive a lower bound for the optimal
makespan such that the solutions of our heuristic
algorithms can be compared with optimal solutions.

Our contributions to energy-constrained DAG schedul-
ing can be summarized as follows.
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• First, our heuristic algorithms ensure that the over-
all computation energy consumption and commu-
nication energy consumption does not exceed the
given energy constraint.

• Second, our algorithms adopt an iterative and pro-
gressive procedure to determine appropriate com-
putation speed and wireless communication speeds
while generating a DAG schedule and satisfying the
energy constraint.

• Third, we derive a lower bound for the optimal
makespan and evaluate the performance of our
heuristic algorithms in such a way that their heuris-
tic solutions are compared with optimal solutions.

To the author’s knowledge, this is the first paper
that considers DAG scheduling and energy-constrained
DAG scheduling on edge and cloud servers with
sequential wireless communications and overlapped
communication and computation to minimize makespan.
The primary purpose of this paper is to compare our
heuristic schedules with optimal schedules, not to com-
pare the heuristic schedules among themselves.

The rest of the paper is organized as follows. In
Section 2, we describe our DAG scheduling models on
edge and cloud servers, including the server model, the
task model, and the communication and computation
model. In Section 3, we define our DAG-scheduling
problem, develop our heuristic algorithms, derive a
lower bound for the optimal schedule length, and exper-
imentally evaluate the performance of our heuristic
algorithms. In Section 4, we describe the power con-
sumption models and discuss the energy consump-
tion and energy efficiency of our heuristic algorithms.
In Section 5, we define our energy-constrained DAG
scheduling problem, present our heuristic algorithms,
derive a lower bound for the optimal schedule length,
and conduct experimental performance evaluation. In
Section 6, we review related research. In Section 7, we
summarize the paper and point out some future research
directions.

2 Scheduling Models

In this section, we describe our DAG scheduling models
on edge and cloud servers, including the server model,
the task model, and the communication and compu-
tation model. We also discuss the extensibility of our
models. The appendix gives a summary of all notations
and their definitions.

2.1 Server Model

A heterogeneous and distributed device-edge-cloud
collaborative computing system has m + 1 servers:
S0, S1, S2, ..., Sm . Figure 1 illustrates such a system,
where we assume that there are m1 edge servers (ES):
S1, ..., Sm1 , and m2 cloud servers (CS): Sm1+1, ...,

Sm1+m2 , with m = m1 + m2.
S0 is the UE. S j can be either an ES or a CS, where

1 ≤ j ≤ m. s j is the computation speed (measured
by billion instructions per second (Bips)) of S j , where
0 ≤ j ≤ m. c j is the wireless communication speed
(measured by million bits per second (Mbps)) of S j ,
where 1 ≤ j ≤ m. w j is the wired (i.e., the Internet)
communication speed (measured by million bits per
second (Mbps)) of S j (if S j is a CS). Each CS has a
communication frontend (CF) to handle wireless com-
munication.

For convenience, if S j is an ES, S j is also called
ES j ; and if S j is a CS, S j is also called CS j with its
CF j (see Fig. 1, where we have UE, ES1, ..., ESm1 ,
CSm1+1, ..., CSm1+m2 , CFm1+1, ..., CFm1+m2 ).

2.2 Task Model

A directed acyclic graph (DAG) is represented as G =
(T ,≺), where T = {T1, T2, ..., Tn} is a set of tasks
and ≺⊆ T × T is a set of precedence constraints. A
task Ti = (di , ri ), where 1 ≤ i ≤ n, is specified by the
amount of communication di (measured by million bits
(MB)) and the amount of computation ri (measured by
billion instructions (BI)).

G is initially on the UE, i.e., all tasks are generated
on a mobile device. A task can be executed on the UE
or offloaded to an ES or a CS via wireless and wired
communication for execution.

Scheduling independent tasks in a device-edge-
cloud collaborative computing system has been con-
sidered in [16,17]. Scheduling precedence-constrained
tasks is more difficult than scheduling independent
tasks.

2.3 Communication and Computation Model

There are three task execution modes.

• Device execution – If Ti is executed on the UE, the
execution time is ti = ri/s0.
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Fig. 1 A heterogeneous
and distributed
device-edge-cloud
collaborative computing
system

• Edge execution – If Ti is executed on ES j , the exe-
cution time is ti = di/c j + ri/s j , where di/c j is
the wireless communication time and ri/s j is the
computation time.

• Cloud execution – If Ti is executed on CS j , the
execution time is ti = di/c j +di/w j +ri/s j , where
di/c j is the wireless communication time, di/w j

is the wired communication time, and ri/s j is the
computation time.

Notice that all wireless communications are sequen-
tial, i.e., when tasks are offloaded from the UE to the
ES and CS, the UE can only communicate with at most
one S j at a time, where 1 ≤ j ≤ m. This is different
from and more difficult than [13–15], where the UE
can simultaneously communicate with all the S j ’s. For
convenience, we may assume that there is a virtual and
imaginary server S′

0, that is responsible for all wire-
less communications from the S0 to all the S j ’s, where
1 ≤ j ≤ m.

We would like to mention that for an ES j , the wire-
less communication (done by S′

0) and the computation
(done by ES j ) may not be consecutive, i.e., there could
be some time delay due to the unavailability of ES j .
Similarly, for a CS j , the wireless communication (done
by S′

0), the wired communication (done by CF j ), and
the computation (done by CS j ) may not be consecutive.

For an ES j , the wireless communication of one task
Ti can overlap with the computation of another task
Ti ′ , i.e., while Ti is transmitted to ES j , ES j is com-
puting Ti ′ . For a CS j , the wireless communication of
one task Ti can overlap with the wired communication
and computation of another task Ti ′ , i.e., while Ti is
transmitted to CF j , Ti ′ is transmitted to CS j and to
be computed by CS j . This is different from and more

difficult than [16,17], where a server S j must receive
all tasks assigned to S j , and then start to execute these
tasks.

2.4 Model Extensibility

We would like to mention that our models in this paper
can be extended easily to accommodate more sophisti-
cated DAG execution situations.

The first issue is inter-task communication between
a predecessor taskTi and and a successor taskTi ′ , where
Ti ≺ Ti ′ . This can happen when Ti ′ needs the results
generated by Ti . We consider several different cases. (1)
If bothTi andTi ′ are executed on the same S j , there is no
data communication time. (2) If Ti and Ti ′ are executed
on S j and S j ′ respectively with j, j ′ ≥ 1, data commu-
nication can be handled by wired communication and
the communication time can be converted to computa-
tion time, i.e., we can treat r j ′ to be certain increased
amount to equivalently include the wired communica-
tion time from S j and S j ′ . (3) If Ti is executed on S j

with j ≥ 1 and Ti ′ is executed on S0, data commu-
nication can be handled by wireless communication;
however, S0 receives data instead of transmitting data.
Hence, the communication time can again be converted
to computation time. (4) If Ti is executed on S0 and Ti ′
is executed on S j with j ≥ 1, data communication
should be handled by wireless communication and S0

transmits data. In this case, the communication time
can be added to the wireless communication time of
Ti ′ , i.e., we can treat d j ′ to be certain increased amount
to include the wireless communication time from S0

and S j .
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The second issue is output data collection. Suppose
T ′ is the task set that generates final results (i.e., output
data) which should be collected together. To handle this
issue, we can add a dummy task Tn+1 with dn+1 =
rn+1 = 0 and Ti ≺ Tn+1 for all Ti ∈ T ′. Of course,
both dn+1 and rn+1 might be adjusted based on the
above discussion of inter-task communication.

As can be seen later, our algorithms make schedul-
ing decisions solely based on task readiness and server
availability and do not rely on the ri ’s and the di ’s,
the above adjustments of ri and di do not affect our
algorithms at all.

3 DAG Scheduling

In this section, we consider DAG scheduling on edge
and cloud servers. We define our DAG-scheduling
problem, present a motivational example, develop our
heuristic algorithms, analyze the time complexity,
derive a lower bound for the optimal schedule length,
and experimentally evaluate the performance of our
heuristic algorithms.

3.1 Problem Definition

In this section, we define our DAG-scheduling problem.
A schedule determines when and where to execute

Ti , including wireless communication, wired commu-
nication, and computation, for all 1 ≤ i ≤ n. The
makespan is the time when all servers finish their com-
putations.

Our DAG scheduling problem in this paper can be
described as follows.

Problem 1: DAG Scheduling on Edge and Cloud
Servers.
Input: Servers S0, S1, S2, ..., Sm , and a DAG G =
(T ,≺).
Output: A schedule of G on S0, S1, S2, ..., Sm with the
minimum makespan.

The above problem is NP-hard even for the follow-
ing extreme case: (1) tasks are independent, i.e., ≺= ∅;
(2) there is no communication cost, i.e., di = 0 for all
1 ≤ i ≤ n; (3) there is only one ES, i.e., m = 1; (4)
s0 = s1. In this simple case, the classic partition prob-
lem ([6], p. 47) can be reduced to our problem, in the
sense that the set {r1, r2, ..., rn} has a partition if and
only if the makespan is 0.5(r1 + r2 + · · · + rn).

Due to the NP-hardness of the problem, we are only
able to produce heuristic solutions. Therefore, there is
a challenging issue of comparing a heuristic solution
with an optimal solution.

3.2 The DSECS-H Algorithm

In this section, we present a motivational example,
develop our heuristic algorithms, and analyze the time
complexity.

3.2.1 A Motivational Example

Let us consider S0, S1, S2, where S1 is an ES and S2 is
a CS. Assume that we have G = (T ,≺), where T =
{T1, T2, T3, T4, T5}, and T2 ≺ T3, T2 ≺ T4, T2 ≺ T5,
as shown below:

�
T1

�
T2

�

T3

�

T4

�

T5

�
�� ����

A sample schedule is demonstrated in Fig. 2. Each
box stands for a communication or computation activ-
ity. T1 is executed on S0. T2, T3, T5 are offloaded to S1.
T4 is offloaded to S2. S′

0 is responsible for all wireless
communications.

Notice that the wireless transmission of T3 to S1

overlaps with the computation of T2 on S1, and the
wireless transmission of T5 to S1 overlaps with the com-
putation of T3 on S1. After T3 is transmitted to S1, the
computation of T3 is delayed because S1 is process-
ing T2. S1 becomes idle after T3 is completed, since
the transmission of T5 is not completed yet. The pro-
cessing of T4 on S2 requires wired communication and
computation.

3.2.2 Heuristic Algorithms

Our algorithm is called DSECS-H (DAG Scheduling
on Edge and Cloud Servers with Heuristic H ). Since
H can vary, DSECS-H is essentially a class of task-
scheduling algorithms.

Our greedy algorithms (see Algorithm 1) are based
on the classic list-scheduling algorithm [7].
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Fig. 2 Illustration of the
motivational example

Initially, tasks inT are arranged to a list L according
to some heuristic H (line (1)).

Let CompRT j be the computation ready time of S j ,
i.e., the time when S j is ready for the next computa-
tion if S j is the UE or an ES, and for the next wired
communication plus computation if S j is a CS, where
0 ≤ j ≤ m. Initially, CompRT j = 0, for all 0 ≤ j ≤ m
(lines (2)–(4)).

Let CommRT be the wireless communication ready
time, i.e., the time when S′

0 is ready for the next wireless
communication. Initially, CommRT = 0 (line (5)).

A global clock is used, which is set to 0 initially (line
(6)).

Each repetition of the while-loop (lines (7)–(36))
schedules one ready task on one available server.

A task is ready to be scheduled if all its predecessors
have been finished. Lines (8)–(17) find a ready task.
The first ready task Ti in L is chosen (line (16)) and
removed from L (line (17)). If there is no ready task
due to precedence constraints, we will have to wait for
some currently running tasks to be finished (lines (8)–
(15)). Each repetition of the while-loop (lines (8)–(15))
only waits for one finished task. The loop is repeated
until there is a ready task (line (8)). In each repetition,
we find

j = argminS j is computing{CompRT j }

(line (9)), i.e., S j is the first server to finish its task.
The clock is set to be CompRT j (line (10)). Assume

that S j is processing Ti (line (11)). Then, Ti is the first
currently running task to be finished. Hence, all prece-
dence constraints between Ti and its successors Ti ′ , i.e.,
Ti ≺ Ti ′ , are released (lines (12)–(14)).

A server S j is available if CompRT j ≤ clock. Lines
(18)–(26) find an available server. If there are several
available servers, the first one is chosen (line (18)).
If there is no available server, we will have to wait for
some currently running tasks to be finished (lines (19)–
(26)). Lines (20)–(25) are actually identical to lines
(9)–(14).

The ready task Ti is scheduled on the available server
S j at clock (lines (27)–(35)). If S j is the UE (line
(27)), we set CompRT0 = clock + ri/s0 (line (28)).
If S j is an ES (line (29)), we set CommRT = CommRT
+ di/c j (line (30)) and CompRT j = max{CommRT,
clock} + ri/s j (line (31)). If S j is a CS (line (32)),
we set CommRT = CommRT + di/c j (line (33)) and
CompRT j = max{CommRT, clock} + di/w j + ri/s j
(line (34)). Notice that lines (30) and (33) guarantee
sequential wireless communication, and lines (31) and
(34) allow overlapped communication and computa-
tion. Also, lines (31) and (34) mean that if wireless
communication takes such a long time that CommRT
> clock, Ti is scheduled at time CommRT, not clock.
This causes S j to wait for some amount of time.

When the while-loop in lines (7)–(36) is completed,
we have the following makespan of G:

makespan(G) = max
0≤ j≤m

{CompRT j }.
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Algorithm 1: DAG Scheduling on Edge and Cloud Servers
with Heuristic H (DSECS-H )

Input: Servers S0, S1, S2, ..., Sm , and a DAG G = (T ,≺).
Output: A schedule ofG on S0, S1, S2, ..., Sm with the min-
imum makespan.

make a list L of tasks by using heuristic H ; //heuristics
(1)

for ( j ← 0; j ≤ m; j++) do (2)
CompRT j ← 0; (3)

end do; (4)
CommRT ← 0; //to guarantee sequential wireless com-

munication (5)
clock ← 0; //global clock (6)
while (L is not empty) do //each repetition schedules

one task (7)
//choose a ready task Ti
while (there is no ready task) do //precedence con-

straint (8)
j ← argminS j is computing{CompRT j }; //S j is

the next server to complete a task (9)
clock ← CompRT j ; (10)
Ti ← the task just finished on S j ; (11)
for (each successor Ti ′ of Ti ) do (12)

release the precedence constraint Ti ≺ Ti ′ ;
(13)

end do; (14)
end do; (15)
Ti ← the first ready task in L; //the first ready task

(16)
remove Ti from L; (17)
//choose an available server S j
j ← the smallest j ′ such that CompRT j ′ ≤ clock;

//the first available server (18)
if ( j is not found) (19)

j ← argminS j is computing{CompRT j }; //S j is
the next server to complete a task (20)

clock ← CompRT j ; //S j is now available (21)
Ti ← the task just finished on S j ; (22)
for (each successor Ti ′ of Ti ) do (23)

release the precedence constraint Ti ≺ Ti ′ ;
(24)

end do; (25)
end if; (26)
//schedule Ti on S j at clock
if ( j = 0) //S j is the UE (27)

CompRT0 ← clock + ri/s0; (28)
else if (S j is an ES) (29)

CommRT ← CommRT + di/c j ; //sequential
wireless communication (30)

CompRT j ← max{CommRT, clock} + ri/s j ;
//overlapped comm and comp (31)

else //S j is a CS (32)
CommRT ← CommRT + di/c j ; //sequential

wireless communication (33)
CompRT j ← max{CommRT, clock} + di/w j

+ ri/s j ; //overlapped comm and comp (34)
end if; (35)

end do. (36)

3.2.3 Time Complexity

The time complexity of the DSECS-H algorithm is
analyzed as follows.

Line (1) takes O(n log n) time.
Lines (2)–(4) take O(m) time.
Line (9) takes O(m) time. Since line (9) is executed

at most n times, the overall time to execute line (9) is
O(mn). The overall time to execute lines (12)–(14) is
O(n2). Hence, the overall time to execute lines (8)–(15)
is O(mn + n2).

Line (18) takes O(m) time. Since line (18) is exe-
cuted at most n times, the overall time to execute line
(18) is O(mn). Line (20) takes O(m) time. Since line
(20) is executed at most n times, the overall time to
execute line (20) is O(mn). The overall time to exe-
cute lines (23)–(25) is O(n2). Hence, the overall time
to execute lines (18)–(26) is O(mn + n2).

Lines (27)–(35) take O(1) time. Since lines (27)–
(35) is executed n times, the overall time to execute
lines (27)–(35) is O(n).

To summarize, the time complexity of the DSECS-
H algorithm is O(mn + n2).

3.3 A Lower Bound

In this section, we derive a lower bound for the optimal
schedule length, i.e., makespan∗(G).

Let γ = min1≤i≤n{di/ri }. We consider G ′ =
(T ′,∅), where T ′ = {T ′

1, T
′
2, ..., T

′
n}, with di = γ ri ,

for all 1 ≤ i ≤ n. It is clear that each task T ′
i in G ′

has less amount of communication than Ti in G; fur-
thermore, G ′ does not have any precedence constraint.
Therefore, we have

makespan∗(G) ≥ makespan∗(G ′).

For each server S j , define R j to be the total amount
of computation on S j , Dj = γ R j to be the total amount
of communication of tasks processed on S j , and Wj to
be the total waiting time of S j , where 0 ≤ j ≤ m.

For a task Ti computed on CS j , we have

di/w j + ri/s j = γ ri/w j + ri/s j = ri (γ /w j + 1/s j )

= ri/(w j s j/(γ s j + w j ))

= ri/(s j/(1 + γ s j/w j )).

Hence, we can treat

s j ← s j/(1 + γ s j/w j )

123



   60 Page 8 of 27 Journal of Grid Computing            (2024) 22:60 

as the effective computation speed of CS j . This way,
all ES and CS can be unified.

It is clear that

makespan∗(G ′) = max
{
CompRT0, CompRT1, ...,

CompRTm, CommRT
}
,

where

CompRT j = R j/s j + Wj ≥ R j/s j ,

for all 0 ≤ j ≤ m. Also, we have

CommRT = D1/c1 + D2/c2 + · · · + Dm/cm

= γ (R1/c1 + R2/c2 + · · · + Rm/cm).

Consequently, we get

makespan∗(G ′) ≥ max{R0/s0, R1/s1, R2/s2, ...,

Rm/sm, γ (R1/c1 + R2/c2 + · · · + Rm/cm)}.
Let B be defined as follows:

B = max{R0/s0, R1/s1, R2/s2, ..., Rm/sm, γ (R1/c1

+R2/c2 + · · · + Rm/cm)},
which is treated as a function of R0, R1, R2, ..., Rm .
The above discussion implies that the minimum value
of B over different choices of R0, R1, R2, ..., Rm can
be a lower bound for the optimal schedule length
makespan∗(G ′) (and makespan∗(G) as well).

Let R = R0+R1+R2+· · ·+Rm be the total amount
of computation, and S = s0 + s1 + s2 +· · ·+ sm be the
aggregated computation speed of a device-edge-cloud
collaborative computing system.

We need to minimize B, subject to the condition
R0 + R1 + R2 + · · · + Rm = R. Note that since we
are finding a lower bound, we will treat this as a pure
numerical optimization problem, whose solution may
not be realized by any real schedule.

To this end, we let

R0/s0 = R1/s1 = R2/s2 = · · · = Rm/sm = τ,

for some τ . (Notice that this does not guarantee the
minimization of B yet if the wireless communication
cost is too high, as shown below.) Then, we have R j =
s jτ , which gives R = (s0 + s1 + s2 +· · ·+ sm)τ = Sτ ,
τ = R/S, and R j = (s j/S)R, for all 0 ≤ j ≤ m.

Therefore, we have

B ≥ max{R/S, γ ((s1/S)(R/c1) + (s2/S)(R/c2)

+ · · · + (sm/S)(R/cm))},

that is,

B ≥ (R/S) max{1, γ (s1/c1 + s2/c2 + · · · + sm/cm)}.

Notice that γ (s1/c1 + s2/c2 + · · · + sm/cm) stands for
the amount of wireless communication on S′

0.
If γ (s1/c1 + s2/c2 + · · · + sm/cm) ≤ 1 (Fig. 3(a)),

then B ≥ R/S.
If γ (s1/c1 + s2/c2 + · · · + sm/cm) > 1 (Fig. 3(b)),

we need to move some tasks to the UE (Fig. 3(c)). For
the same amount of workload moved to the UE, we try
to maximize the reduction of R1/c1 + R2/c2 + · · · +
Rm/cm . Therefore, we move tasks from those S j ’s with
small c j ’s. Without loss of generality, we assume that
c1 ≤ c2 ≤ · · · ≤ cm . Let R′ = R1 + · · · + Rk−1 + R′

k
be the amount of workload moved to the UE, such that

(R0 + R′)/s0 = γ ((Rk − R′
k)/ck + Rk+1/ck+1

+ · · · + Rm/cm).

In the above identity, the left-hand side is the
increased computation time of the UE, and the right-
hand side is the reduced wireless communication time
of S′

0. The index k is determined such that

(R0 +R1 +· · ·+Rk−1)/s0 < γ (Rk/ck +Rk+1/ck+1 +· · ·+Rm/cm),

and

(R0 + R1 +· · ·+ Rk−1 + Rk )/s0 ≥ γ (Rk+1/ck+1 +· · ·+ Rm/cm ).

Since

(R0+R1+· · ·+Rk−1+R′
k )/s0 = γ ((Rk−R′

k )/ck+· · ·+Rm/cm ),

we get

(1+γ s0/ck)R
′
k = γ s0(Rk/ck+· · ·+Rm/cm)−(R0+R1+· · ·+Rk−1),

which implies that

R′
k = (γ s0(Rk/ck + · · · + Rm/cm) − (R0 + R1

+ · · · + Rk−1))/(1 + γ s0/ck).

Then, we obtain

B ≥ (R0 + R′)/s0.
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Fig. 3 Illustration of the
lower bound

123



   60 Page 10 of 27 Journal of Grid Computing            (2024) 22:60 

Notice that R′ is defined in such a way that for the
same amount of increase to CompRT0, CommRT is
decreased for the most amount. Also, R0 cannot be
reduced, since any reduction means that more tasks are
assigned to some S j , 1 ≤ j ≤ n, and CommRT will be
increased.

The above discussion can be summarized as follows.

Theorem 1 We have the following lower bound for the
optimal makespan. If γ (s1/c1+s2/c2+· · ·+sm/cm) ≤
1, then

makespan∗(G) ≥ R/S.

If γ (s1/c1 + s2/c2 + · · · + sm/cm) > 1, then

makespan∗(G) ≥ (R0 + R′)/s0.

We use B̄ to denote the lower bound in Theorem 1.

3.4 Performance Evaluation

In this section, we experimentally evaluate the perfor-
mance of our heuristic algorithms.

3.4.1 Parameter Settings

We consider a device-edge-cloud collaborative com-
puting system with one UE (i.e., S0), m1 = 4 ES (i.e.,
S1, S2, S3, S4), and m2 = 2 CS (i.e., S5, S6). The com-
putation speeds s j , wireless communication speeds c j ,
and wired communication speeds w j are given below.
These (and other) parameters are chosen based on the
current computation and communication technologies.

S0 S1 S2 S3 S4 S5 S6

s j (Bips) 1.5 2.8 2.7 2.6 2.5 3.5 3.6
c j (Mbps) 35 40 45 50 55 60
w j (Mbps) 95 90

The computation requirements (i.e., the ri ’s) are
independent and identically distributed (i.i.d.) random
variables uniformly distributed in the range [1.5, 5.0]
GI. The communication requirement is di = γi ri in the
range [1.5, 25.0] MB, where the γi ’s are i.i.d. random
variables uniformly distributed in the range [γ, 5.0]
MB/GI. We set γ = 1.0 for computation-intensive
tasks and γ = 3.0 for communication-intensive tasks.

A DAG is a random graph, where the existence of
arcs (Ti , Ti ′) with i < i ′ are independent of each other
with identical probability p.

3.4.2 Experimental Results

There are several heuristics H , e.g., H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50
[13,15]. These heuristics are: Original Order (ORG),
Smallest Requirement First (SRF), Largest Require-
ment First (LRF), Smallest Data First (SDF), Largest
Data First (LDF), Smallest Requirement-Data-Ratio
First (SRD), Largest Requirement-Data-Ratio First
(LRD), Best of k Random Orders (RANk).

It is clear that

makespan(G)/makespan∗(G) ≤ makespan(G)/B̄.

Thus, the expectation of the ratio makespan(G)/B̄, i.e.,
E(makespan(G)/B̄), can be considered as an expected
performance bound of our heuristic algorithms. For
given n and H , the expected performance bound can
be obtained experimentally as follows. We gener-
ate M random DAGs: G1,G2, ...,GM . For each Gk ,
we run algorithm DSECS-H , get its makespan(Gk),
calculate the lower bound B̄, and record the ratio
makespan(Gk)/B̄. The average of the M ratios is
returned as the expected performance bound. We set
M = 2, 000 for all experiments.

In Table 1, for each combination of n = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected performance bound for sparse
DAG (p = 2/n) with computation-intensive tasks
(γ = 1.0), where the 99% confidence interval (C.I.)
is ±1.52179%.

In Table 2, for each combination of n = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected performance bound for sparse
DAG (p = 2/n) with communication-intensive tasks
(γ = 3.0), where the 99% confidence interval (C.I.) is
±1.27554%.

In Table 3, for each combination of n = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected performance bound for dense
DAG (p = 5/n) with computation-intensive tasks
(γ = 1.0), where the 99% confidence interval (C.I.)
is ±1.43607%.
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Table 1 Expected Performance Bound for Sparse DAG with Computation-Intensive Tasks (p = 2/n, γ = 1.0, 99% C.I. = ±1.52179%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 2.40280 2.40300 2.41920 2.38099 2.42418 2.43530 2.39627 1.97798 1.90146 1.87509

40 1.55366 1.69899 1.68168 1.68101 1.70558 1.71947 1.66473 1.42007 1.38201 1.36777

60 1.35547 1.49587 1.47842 1.48081 1.50139 1.51907 1.46901 1.29204 1.26716 1.25731

80 1.27979 1.39832 1.37902 1.38368 1.40350 1.42210 1.37393 1.23858 1.22225 1.21503

100 1.24157 1.33830 1.32517 1.32714 1.35164 1.37834 1.32170 1.21144 1.19727 1.19146

120 1.21775 1.30361 1.28903 1.29302 1.31621 1.33526 1.28640 1.19281 1.18166 1.17666

140 1.20252 1.27577 1.26687 1.26833 1.29099 1.30929 1.26322 1.18149 1.17203 1.16769

160 1.18892 1.25501 1.24347 1.24782 1.27442 1.29152 1.24345 1.17113 1.16270 1.15895

180 1.17978 1.23998 1.23344 1.23339 1.25912 1.27781 1.22875 1.16500 1.15691 1.15344

200 1.17356 1.22838 1.21863 1.22273 1.24477 1.26663 1.21720 1.15967 1.15244 1.14918

Table 2 Expected Performance Bound for Sparse DAG with Communication-Intensive Tasks (p = 2/n, γ = 3.0, 99% C.I. =
±1.27554%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 2.32740 2.31583 2.34526 2.30668 2.33654 2.32589 2.34218 1.97437 1.91137 1.89149

40 1.64170 1.74415 1.74220 1.74578 1.74143 1.74421 1.74187 1.53458 1.50490 1.49316

60 1.48540 1.58975 1.58348 1.58815 1.57966 1.58453 1.58547 1.43391 1.41660 1.41007

80 1.42583 1.51809 1.51212 1.51237 1.51098 1.51292 1.50522 1.39414 1.38241 1.37741

100 1.39858 1.47549 1.46472 1.47240 1.46381 1.46971 1.46908 1.37425 1.36416 1.36029

120 1.37699 1.44220 1.43805 1.43937 1.43535 1.43805 1.43787 1.35957 1.35190 1.34878

140 1.36606 1.42318 1.41899 1.42589 1.41631 1.41729 1.41921 1.35125 1.34390 1.34124

160 1.35619 1.40881 1.40448 1.40645 1.40147 1.40337 1.40096 1.34367 1.33777 1.33503

180 1.35047 1.39414 1.39227 1.39442 1.39103 1.39244 1.39194 1.33935 1.33385 1.33131

200 1.34388 1.38526 1.38359 1.38502 1.38207 1.38214 1.38111 1.33453 1.32945 1.32732

Table 3 Expected Performance Bound for Dense DAG with Computation-Intensive Tasks (p = 5/n, γ = 1.0, 99% C.I. = ±1.43607%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 4.13048 3.74695 3.94916 3.80075 3.91101 3.82846 3.87072 3.25277 3.14199 3.11207

40 2.29334 2.14749 2.23183 2.16350 2.21291 2.18398 2.18565 1.87111 1.80926 1.78897

60 1.68262 1.67141 1.70060 1.68345 1.69448 1.69175 1.68101 1.47872 1.44075 1.42675

80 1.42250 1.48363 1.48912 1.48638 1.49165 1.49007 1.48369 1.32650 1.30213 1.29285

100 1.30204 1.38599 1.38526 1.37867 1.38774 1.39291 1.38195 1.25342 1.23591 1.22911

120 1.25594 1.33351 1.33284 1.33490 1.33575 1.34037 1.32856 1.22118 1.20809 1.20262

140 1.22516 1.29724 1.29583 1.29405 1.29354 1.30212 1.29038 1.19746 1.18653 1.18194

160 1.20469 1.27144 1.26657 1.26792 1.27320 1.27586 1.26538 1.18265 1.17301 1.16899

180 1.19155 1.25340 1.25070 1.24894 1.25254 1.25683 1.24738 1.17315 1.16468 1.16114

200 1.18192 1.23408 1.23076 1.23242 1.23479 1.24159 1.23065 1.16469 1.15718 1.15381
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In Table 4, for each combination of n = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected performance bound for dense
DAG (p = 5/n) with communication-intensive tasks
(γ = 3.0), where the 99% confidence interval (C.I.) is
±1.42009%.

Since the value of s1/c1 + s2/c2 + · · · + sm/cm is
0.37435, we have γ (s1/c1 + s2/c2 +· · ·+ sm/cm) < 1
when γ = 1.0, and γ (s1/c1+s2/c2+· · ·+sm/cm) > 1
when γ = 3.0.

We have the following observations.
First, all our heuristic algorithms can produce near-

optimal schedules whose makespans are very close to
the optimal makespans, in the sense that the expected
performance bounds are very close to one, especially
when n gets large. This means that our heuristic algo-
rithms are able to efficiently utilize all communica-
tion and computation resources in processing both
computation-intensive and communication-intensive
tasks with both sparse and dense precedence constraints
on a device-edge-cloud collaborative computing sys-
tem.

Second, the simple ORG strategy seems to perform
better than SRF, LRF, SDF, LDF, SRD, and LRD,
except for small n and dense DAG. This means that
all these sorting methods are not really productive.
This phenomenon has been observed in other studies
(e.g., [15]), primarily due to precedence constraints.
Furthermore, RAN10, RAN30, and RAN50 can fur-
ther improve the scheduling performance by spending
more execution time.

4 Energy Aspects of Algorithm DSECS-H

In this section, we consider the energy aspects of our
heuristic algorithms. We describe the power consump-
tion models and discuss the energy consumption and
energy efficiency of algorithm DSECS-H .

4.1 Power Consumption Models

In this section, we describe the power consumption
models for both computation and communication.

The computation power consumption model of the
UE is P0(s0) = ξsα

0 + Ps (measured by Watts), where
ξ (measured by Watts/Bipsα) and α are technology-
dependent constants, and Ps (measured by Watts) is
the static component of power consumption.

The power consumption model of the wireless com-
munication channel between the UE and S j (ES j or
CS j ) is Pj (c j ) = (2c j /b j −1)/β j (measured by Watts),
for all 1 ≤ j ≤ m, where b j is the channel bandwidth
(measured by Mbps) and β j (measured by Watts−1) is
a combined quantity of several factors such as back-
ground noise power, interference on the communica-
tion channel, and channel gain [13–17].

If task Ti is executed locally on the UE with compu-
tation speed s0,i , the computation energy consumption
of Ti is Ei = P0(s0,i )(ri/s0,i ) = ((ξsα

0,i + Ps)/s0,i )ri
(measured by Joules).

If task Ti is executed remotely on S j (ES j or CS j )
with wireless communication speed c j,i , where 1 ≤
j ≤ m, the communication energy consumption of Ti

Table 4 Expected Performance Bound for Dense DAG with Communication-Intensive Tasks (p = 5/n, γ = 3.0, 99% C.I. =
±1.42009%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 3.74595 3.43154 3.62118 3.44106 3.60525 3.51841 3.52553 2.98030 2.87563 2.84741

40 2.17508 2.06998 2.14115 2.07026 2.13674 2.10185 2.10265 1.83548 1.78787 1.77207

60 1.69552 1.69051 1.71521 1.69586 1.71280 1.69982 1.69947 1.55267 1.52449 1.51493

80 1.52744 1.56268 1.57657 1.56415 1.56998 1.56557 1.56713 1.45240 1.43493 1.42838

100 1.44494 1.49864 1.50134 1.49507 1.49745 1.49716 1.49969 1.40383 1.39166 1.38732

120 1.40567 1.45834 1.46167 1.46113 1.46066 1.45796 1.45776 1.37839 1.36792 1.36424

140 1.38555 1.43451 1.43407 1.43425 1.43184 1.43224 1.43422 1.36267 1.35470 1.35140

160 1.36875 1.41733 1.41575 1.41562 1.41290 1.41249 1.41433 1.35168 1.34511 1.34230

180 1.35869 1.40212 1.40051 1.40043 1.40120 1.40029 1.40200 1.34413 1.33841 1.33614

200 1.35216 1.39179 1.38939 1.39198 1.39174 1.39002 1.39076 1.33930 1.33407 1.33175
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is Ei = Pj (c j,i )(di/c j,i ) = ((2c j,i/b j − 1)/(β j c j,i ))di
(measured by Joules).

Note that to execute Ti , either s0,i or c j,i needs to be
decided.

The total energy consumption of G is

energy(G) =
∑

1≤i≤n

Ei ,

which is actually the cost measure of task execution in
a device-edge-cloud collaborative computing system.

4.2 Energy Consumption of Algorithm DSECS-H

In this section, we discuss the energy consumption of
algorithm DSECS-H .

We keep the same parameter settings of Section 3.4,
and have the following additional parameter settings
for our power consumption models. For the compu-
tation power consumption model of the UE, we have
ξ = 0.1 Watts/Bips2, α = 2.0, and Ps = 0.05 Watts.
For the wireless communication power consumption
model, we have the following.

S1 S2 S3 S4 S5 S6

b j (Mbps) 30 31 32 33 34 35
β j
(1/Watts)

2.00 1.95 1.90 1.85 1.80 1.75

For givenn and H , the expected energy consumption
E(energy(G)) can be obtained experimentally as fol-
lows. We generate M random DAGs: G1,G2, ...,GM .
For each Gk , we run algorithm DSECS-H and record
its energy(Gk). The average of the M values is returned
as the expected energy consumption. We set M =
2, 000 for all experiments.

The following experimental data demonstrate the
expected energy consumption of algorithm DSECS-H .

In Table 5, for each combination of n = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected energy consumption for sparse
DAG (p = 2/n) with computation-intensive tasks
(γ = 1.0), where the 99% confidence interval (C.I.)
is ±0.70704%.

In Table 6, for each combination of n = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected energy consumption for sparse
DAG (p = 2/n) with communication-intensive tasks

(γ = 3.0), where the 99% confidence interval (C.I.) is
±0.51276%.

In Table 7, for each combination of n = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected energy consumption for dense
DAG (p = 5/n) with computation-intensive tasks
(γ = 1.0), where the 99% confidence interval (C.I.)
is ±0.78192%.

In Table 8, for each combination of n = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected energy consumption for dense
DAG (p = 5/n) with communication-intensive tasks
(γ = 3.0), where the 99% confidence interval (C.I.) is
±0.62684%.

We have the following observations. First, all our
heuristic algorithms consume about the same amount
of energy. Second, for a DAG with n computation-
intensive tasks, energy(G) is approximately 0.235n;
and for a DAG with n communication-intensive tasks
energy(G) is approximately 0.3n.

4.3 Energy Efficiency of Algorithm DSECS-H

In this section, we discuss the energy efficiency of algo-
rithm DSECS-H .

Although the algorithm DSECS-H is not designed
for energy-constrained scheduling. we can still discuss
its energy efficiency as follows.

For a DAG G, let makespan(G) and energy(G) be
the schedule length and energy consumption of algo-
rithm DSECS-H . For the same amount of energy(G),
let makespan∗(G) be the optimal makespan. Then, the
ratio

efficiency(G) = makespan∗(G)/makespan(G)

can be considered as the energy efficiency of algorithm
DSECS-H .

It is clear that

makespan∗(G)/makespan(G) ≥ B̃/makespan(G),

where B̃ (to be derived in Section 5.3) is a lower
bound for the optimal schedule length with the same
amount energy(G) of energy consumption. Thus,
the expectation of the ratio B̃/makespan(G), i.e.,
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Table 5 Energy Consumption of Algorithm DSECS-H for Sparse DAG with Computation-Intensive Tasks (p = 2/n, γ = 1.0, 99%
C.I. = ±0.70704%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 5.25690 5.20378 5.25063 5.28155 5.09136 5.08201 5.35309 4.81817 4.72339 4.68742

40 9.57491 9.69376 9.67312 9.73800 9.58115 9.62126 9.79132 9.23099 9.11750 9.07257

60 14.04051 14.23726 14.23624 14.26279 14.14735 14.17814 14.30262 13.71243 13.58984 13.53962

80 18.63047 18.86624 18.82656 18.88147 18.75787 18.82186 18.91034 18.29237 18.15751 18.10301

100 23.16895 23.44626 23.38256 23.45007 23.33332 23.38686 23.45066 22.80907 22.66670 22.60476

120 27.68007 27.93240 27.89900 27.94640 27.85031 27.91281 27.94712 27.30382 27.14151 27.07647

140 32.27595 32.54579 32.50402 32.52563 32.45330 32.51684 32.53156 31.87076 31.69856 31.62714

160 36.86984 37.16050 37.08973 37.12506 37.07385 37.15664 37.13822 36.45239 36.26689 36.20269

180 41.48573 41.76185 41.72579 41.71689 41.69105 41.78362 41.74044 41.03490 40.85207 40.77478

200 46.02644 46.30710 46.26708 46.27677 46.25526 46.34147 46.25825 45.55519 45.36210 45.28757

Table 6 Energy Consumption of Algorithm DSECS-H for Sparse DAG with Communication-Intensive Tasks (p = 2/n, γ = 3.0,
99% C.I. = ±0.51276%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 6.32859 6.29596 6.32187 6.31170 6.26748 6.25472 6.38032 6.00163 5.92675 5.90140

40 12.12313 12.20325 12.19612 12.22237 12.14284 12.16865 12.25481 11.86329 11.78331 11.75289

60 17.93047 18.04962 18.03923 18.05953 17.98085 18.00466 18.08178 17.68269 17.60116 17.56777

80 23.83000 23.99710 23.96880 24.00202 23.93057 23.93659 24.02149 23.60140 23.51599 23.47969

100 29.74313 29.90316 29.88353 29.91801 29.84154 29.84910 29.92699 29.51154 29.41797 29.37956

120 35.67137 35.83432 35.81745 35.85008 35.77973 35.78401 35.85664 35.42654 35.32630 35.28631

140 41.55752 41.72418 41.71850 41.75721 41.65944 41.66820 41.75939 41.31225 41.20842 41.16508

160 47.46421 47.63089 47.61243 47.63938 47.57163 47.56408 47.64953 47.19192 47.08193 47.04013

180 53.37779 53.54649 53.52223 53.55921 53.48947 53.48394 53.58070 53.10807 52.99688 52.94526

200 59.33916 59.51665 59.48565 59.52784 59.45357 59.43591 59.51429 59.04968 58.93568 58.88864

Table 7 Energy Consumption of Algorithm DSECS-H for Dense DAG with Computation-Intensive Tasks (p = 5/n, γ = 1.0, 99%
C.I. = ±0.78192%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 6.22141 5.87902 6.09661 6.08055 5.88169 5.78615 6.17188 5.46866 5.35231 5.31870

40 10.39848 10.13468 10.27899 10.33913 10.03454 9.99365 10.46098 9.66102 9.52389 9.47796

60 14.57401 14.50417 14.57730 14.64539 14.37570 14.35937 14.72364 13.98255 13.83381 13.77647

80 18.92579 18.98543 19.04309 19.09346 18.83966 18.82468 19.18381 18.43436 18.28134 18.22172

100 23.33028 23.50968 23.52339 23.60930 23.35706 23.36066 23.66671 22.90105 22.74553 22.68302

120 27.82300 28.03515 28.06074 28.13328 27.90152 27.90260 28.19157 27.40692 27.25102 27.17940

140 32.40266 32.59326 32.60978 32.68193 32.48492 32.47779 32.73817 31.95051 31.77977 31.71364

160 36.99663 37.21547 37.23352 37.29318 37.08866 37.12240 37.33818 36.53723 36.35504 36.28698

180 41.54582 41.79528 41.78088 41.83182 41.63435 41.67551 41.90106 41.08176 40.89632 40.80867

200 46.06396 46.33474 46.33047 46.34653 46.17278 46.19072 46.39667 45.57148 45.36910 45.29252
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Table 8 Energy Consumption of Algorithm DSECS-H for Dense DAG with Communication-Intensive Tasks (p = 5/n, γ = 3.0,
99% C.I. = ±0.62684%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 7.03908 6.75713 6.92223 6.79541 6.86775 6.74655 6.92914 6.42200 6.33290 6.30835

40 12.47435 12.30171 12.39915 12.32913 12.31973 12.23055 12.47254 11.94227 11.83508 11.79833

60 18.24005 18.14272 18.19505 18.18746 18.12064 18.08482 18.27808 17.79086 17.68666 17.64640

80 24.08079 24.06203 24.10227 24.08717 24.02194 23.98257 24.15624 23.68952 23.57554 23.53352

100 29.88991 29.91633 29.95630 29.94762 29.87145 29.85729 30.00902 29.53279 29.42300 29.38158

120 35.77255 35.84276 35.86089 35.87067 35.80249 35.78976 35.91778 35.44151 35.32785 35.28479

140 41.69945 41.77727 41.81507 41.80701 41.75421 41.73076 41.84973 41.36909 41.25102 41.20509

160 47.58536 47.69247 47.72353 47.72245 47.65645 47.65026 47.77009 47.26797 47.15207 47.10229

180 53.47705 53.57827 53.59913 53.60558 53.55407 53.54149 53.64658 53.14879 53.02676 52.97977

200 59.38878 59.49472 59.52308 59.52575 59.49075 59.47347 59.56541 59.05835 58.92835 58.87296

E(B̃/makespan(G)), can be considered as a lower
bound for E(efficiency(G)), i.e., the expected energy
efficiency of DSECS-H .

For given n and H , the expected energy efficiency
can be obtained experimentally as follows. We gen-
erate M random DAGs: G1,G2, ...,GM . For each Gk ,
we run algorithm DSECS-H , get its makespan(Gk) and
energy(Gk), calculate the lower bound B̃ with energy
budget energy(Gk), and record the ratio B̃/makespan
(Gk). The average of the M ratios is returned as
a lower bound for the expected energy efficiency
E(efficiency(G)). We set M = 2, 000 for all exper-
iments. The following experimental data demonstrate
the expected energy efficiency of algorithm DSECS-H .

In Table 9, for each combination of n = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display E(B̃/makespan(G)) for sparse DAG (p =
2/n) with computation-intensive tasks (γ = 1.0),
where the 99% confidence interval (C.I.) is ±1.35898.

In Table 10, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG,
SRF, LRF, SDF, LDF, SRD, LRD, RAN10, RAN30,
RAN50, we display E(B̃/makespan(G)) for sparse
DAG (p = 2/n) with communication-intensive tasks
(γ = 3.0), where the 99% confidence interval (C.I.) is
±1.14423%.

In Table 11, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG,
SRF, LRF, SDF, LDF, SRD, LRD, RAN10, RAN30,
RAN50, we display E(B̃/makespan(G)) for dense
DAG (p = 5/n) with computation-intensive tasks

(γ = 1.0), where the 99% confidence interval (C.I.)
is ±1.50151%.

In Table 12, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG,
SRF, LRF, SDF, LDF, SRD, LRD, RAN10, RAN30,
RAN50, we display E(B̃/makespan(G)) for dense
DAG (p = 5/n) with communication-intensive tasks
(γ = 3.0), where the 99% confidence interval (C.I.) is
±1.43717%.

We have the following observations. First, all our
heuristic algorithms can achieve reasonably high energy
efficiency, especially when n gets large. In particu-
lar, for DAG with computation-intensive tasks, the
expected energy efficiency can be over 75%; and DAG
with communication-intensive tasks, the expected energy
efficiency can be over 65%. This means that our heuris-
tic algorithms are able to efficiently utilize all energy
resources in processing both computation-intensive
and communication-intensive tasks with both sparse
and dense precedence constraints on a device-edge-
cloud collaborative computing system. Second, the
simple ORG strategy seems to perform better than SRF,
LRF, SDF, LDF, SRD, and LRD. Furthermore, RAN10,
RAN30, and RAN50 can further improve energy effi-
ciency by spending more execution time.

5 Energy-Constrained DAG Scheduling

In this section, we consider energy-constrained DAG
scheduling on edge and cloud servers. We define our
energy-constrained DAG scheduling problem, present
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Table 9 Energy Efficiency of Algorithm DSECS-H for Sparse DAG with Computation-Intensive Tasks (p = 2/n, γ = 1.0, 99% C.I.
= ±1.35898%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 0.39761 0.39385 0.39227 0.39723 0.39349 0.39164 0.39812 0.47207 0.48943 0.49532

40 0.58997 0.54196 0.54514 0.54633 0.53804 0.53659 0.54848 0.63778 0.65446 0.66152

60 0.67157 0.61441 0.61800 0.61844 0.60811 0.60212 0.62262 0.70228 0.71500 0.72056

80 0.70760 0.65306 0.65608 0.65488 0.64575 0.63833 0.66025 0.73065 0.74016 0.74431

100 0.73132 0.68000 0.68509 0.68331 0.67136 0.66229 0.68956 0.74904 0.75679 0.76025

120 0.74540 0.69777 0.70361 0.70181 0.68905 0.67964 0.70623 0.76003 0.76712 0.77042

140 0.75479 0.71214 0.71811 0.71743 0.70236 0.69291 0.72061 0.76717 0.77385 0.77651

160 0.76203 0.72344 0.72772 0.72711 0.71214 0.70162 0.73216 0.77307 0.77897 0.78157

180 0.76724 0.73053 0.73722 0.73486 0.72107 0.70933 0.73794 0.77718 0.78263 0.78495

200 0.77189 0.73696 0.74429 0.74184 0.72799 0.71630 0.74404 0.78029 0.78545 0.78772

Table 10 Energy Efficiency of Algorithm DSECS-H for Sparse DAG with Communication-Intensive Tasks (p = 2/n, γ = 3.0, 99%
C.I. = ±1.14423%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 0.39593 0.39118 0.38805 0.39366 0.38943 0.39093 0.38940 0.45282 0.46603 0.47070

40 0.53609 0.50460 0.50772 0.50490 0.50871 0.50727 0.50531 0.56965 0.58068 0.58465

60 0.59071 0.55194 0.55425 0.55325 0.55446 0.55426 0.55504 0.60932 0.61676 0.61928

80 0.61206 0.57657 0.58086 0.57772 0.58066 0.57947 0.57992 0.62544 0.63096 0.63333

100 0.62492 0.59504 0.59657 0.59395 0.59738 0.59683 0.59634 0.63518 0.63952 0.64139

120 0.63313 0.60653 0.60796 0.60649 0.60876 0.60965 0.60699 0.64160 0.64541 0.64699

140 0.63899 0.61354 0.61585 0.61476 0.61624 0.61614 0.61677 0.64602 0.64933 0.65070

160 0.64345 0.62043 0.62213 0.62085 0.62359 0.62251 0.62241 0.64948 0.65221 0.65337

180 0.64657 0.62572 0.62722 0.62626 0.62804 0.62712 0.62879 0.65178 0.65444 0.65562

200 0.64926 0.63028 0.63255 0.63082 0.63284 0.63210 0.63307 0.65386 0.65632 0.65735

Table 11 Energy Efficiency of Algorithm DSECS-H for Dense DAG with Computation-Intensive Tasks (p = 5/n, γ = 1.0, 99% C.I.
= ±1.50151%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 0.23388 0.25523 0.24218 0.25054 0.24502 0.24900 0.24796 0.29240 0.30246 0.30551

40 0.41593 0.43574 0.42549 0.43280 0.42540 0.42874 0.42842 0.49702 0.51284 0.51896

60 0.55125 0.54851 0.54057 0.54727 0.54290 0.54583 0.54502 0.61613 0.63173 0.63790

80 0.64544 0.61605 0.61458 0.61790 0.61408 0.61331 0.61929 0.68495 0.69762 0.70256

100 0.69472 0.65636 0.65802 0.65862 0.65585 0.65373 0.65781 0.72193 0.73202 0.73607

120 0.72278 0.68263 0.68469 0.68581 0.68060 0.67932 0.68606 0.74366 0.75180 0.75531

140 0.74107 0.70042 0.70278 0.70267 0.69991 0.69857 0.70423 0.75707 0.76387 0.76678

160 0.75149 0.71406 0.71559 0.71535 0.71420 0.70959 0.71705 0.76479 0.77087 0.77379

180 0.75959 0.72386 0.72666 0.72619 0.72322 0.72108 0.72781 0.77160 0.77691 0.77918

200 0.76534 0.73229 0.73335 0.73463 0.73219 0.73016 0.73484 0.77622 0.78117 0.78319
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Table 12 Energy Efficiency of Algorithm DSECS-H for Dense DAG with Communication-Intensive Tasks (p = 5/n, γ = 3.0, 99%
C.I. = ±1.43717%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 0.24865 0.26649 0.25716 0.26646 0.25808 0.26152 0.26104 0.30549 0.31630 0.31946

40 0.42151 0.43699 0.42524 0.43695 0.42856 0.43270 0.43156 0.48748 0.49967 0.50398

60 0.51919 0.51899 0.51325 0.51912 0.51461 0.51811 0.51535 0.56468 0.57464 0.57773

80 0.57602 0.55986 0.55939 0.56130 0.56060 0.55980 0.56047 0.60157 0.60901 0.61170

100 0.60636 0.58511 0.58403 0.58571 0.58499 0.58440 0.58539 0.62279 0.62793 0.63000

120 0.62108 0.60019 0.59886 0.59873 0.59949 0.59835 0.59843 0.63348 0.63787 0.63960

140 0.63192 0.60951 0.60967 0.61014 0.60952 0.61071 0.61066 0.64127 0.64455 0.64610

160 0.63806 0.61723 0.61812 0.61814 0.61692 0.61750 0.61738 0.64575 0.64891 0.65020

180 0.64208 0.62243 0.62269 0.62273 0.62372 0.62289 0.62218 0.64892 0.65148 0.65261

200 0.64585 0.62690 0.62820 0.62767 0.62856 0.62833 0.62875 0.65172 0.65407 0.65521

our heuristic algorithms, derive a lower bound for the
optimal schedule length, and conduct experimental per-
formance evaluation.

5.1 Problem Definition

In this section, we define our energy-constrained DAG
scheduling problem.

The most important factors that affect both schedule
length and energy consumption are computation and
communication speeds. While the computation speeds
s j of the servers and the wired communication speeds
w j cannot be determined by the UE, the computation
speed s0 of the the UE and all wireless communication
speeds c j can be controlled by the UE.

Our energy-constrained DAG scheduling problem
can be defined as follows.

Problem 2: Energy-Constrained DAG Scheduling
on Edge and Cloud Servers.
Input: Servers S0, S1, S2, ..., Sm , a DAG G = (T ,≺),
and energy budget E .
Output: A schedule of G on S0, S1, S2, ..., Sm , and the
computation speed s0,i or the wireless communication
speed c j,i to execute each Ti , where 1 ≤ i ≤ n, such
that makespan(G) is minimized and that energy(G) ≤
E .

We assume that E is reasonably large, since there
is minimum energy consumption for computation and
communication for each task [13].

The above problem is NP-hard even for the follow-
ing extreme case: (1) tasks are independent, i.e., ≺= ∅;
(2) there is no communication cost, i.e., di = 0 for all

1 ≤ i ≤ n; (3) there is only one ES, i.e., m = 1; (4)
ξ = 1, α = 2, and Ps = 0; (5) c1, b1, β1 are unre-
lated. In this simple case, there is no communication
energy consumption but only computation energy con-
sumption on the UE. Hence, we have energy(G) =
(ξsα

0 + Ps)(R0/s0) = E , that is, R0s0 = E , which
gives s0 = E/R0. In the ideal case, the makespan is
minimized when S0 and S1 have the same execution
time, that is, R0/s0 = R1/s1, or, R2

0/E = (R−R0)/s1,
which yields s1R2

0 + ER0 − ER = 0, and

R0 =
√
E2 + 4s1ER − E

2s1
.

The classic subset sum problem ([6], p. 223) can be
reduced to our problem, in the sense that the set
{r1, r2, ..., rn} has a subset whose sum is exactly R0

if and only if makespan(G) = R0/s0, where R0 and
s0 are given above. If there is no such a subset, then
makespan(G) > R0/s0.

5.2 The ECDSECS-H Algorithm

In this section, we develop a heuristic algorithm to solve
the DAG scheduling problem on edge and cloud servers
with energy constraints.

Our energy-constrained DAG scheduling algorithm,
called ECDSECS-H (Energy-Constrained DAG Sche-
duling on Edge and Cloud Servers with Heuristic H ,
see Algorithm 2), is extended from the DSECS-H algo-
rithm. The ECDSECS-H algorithm chooses an iden-
tical computation speed s0 and an identical wireless
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communication speed c j , where 1 ≤ j ≤ m, for all
tasks.

Algorithm 2: Energy-Constrained DAG Scheduling on
Edge and Cloud Servers with Heuristic H (ECDSECS-H )

Input: Servers S0, S1, S2, ..., Sm , a DAG G = (T ,≺), and
energy budget E .
Output: A schedule of G on S0, S1, S2, ..., Sm , the com-
putation speed s0, the wireless communication speed c j ,
where 1 ≤ j ≤ m, such that makespan(G) is minimized
and that energy(G) ≤ E .

set s0, c1, c2, ..., cm to some reasonable initial values;
(1)

call algorithm DSECS-H to get makespan(G) and
energy(G); (2)

φ ← 0; (3)
if (energy(G) > E) (4)

repeat //iterative and progressive speed adjustment
(5)

φ ← φ − �; (6)
s0 ← (1 + φ)s0; c j ← (1 + φ)c j , 1 ≤ j ≤ m;

//decrease comp/comm speeds (7)
call algorithm DSECS-H to get makespan(G)

and energy(G); (8)
until (energy(G) ≤ E); (9)

else if (energy(G) < E) (10)
φ ← φ + �; (11)
s0 ← (1 + φ)s0; c j ← (1 + φ)c j , 1 ≤ j ≤ m;

//increase comp/comm speeds (12)
call algorithm DSECS-H to get makespan′(G) and

energy′(G); (13)
while (energy′(G) ≤ E) do //iterative and progres-

sive speed adjustment (14)
record the schedule and s0, c1, c2, ..., cm ; (15)
φ ← φ + �; (16)
s0 ← (1 + φ)s0; c j ← (1 + φ)c j , 1 ≤ j ≤ m;

//increase comp/comm speeds (17)
call algorithm DSECS-H to get makespan′(G)

and energy′(G); (18)
end do; (19)

end if. (20)

Initially, s0 and the c j ’s are set to some reasonable
initial values (line (1)). Then, algorithm DSECS-H is
called as an initial attempt (line (2)). If energy(G) = E ,
the algorithm finishes; otherwise, s0 and the c j ’s are
adjusted to satisfy the energy constraint (lines (3)–
(20)). The speed of adjustment is controlled by param-
eters φ and �. φ is initially set to 0 (line (3)) and � is
fixed.

If energy(G) > E (line (4)), s0 and the c j ’s should
be decreased such that energy(G) ≤ E (lines (5)–(9)).
The value of φ, as well as the values of s0 and the
c j ’s, are gradually reduced (lines (6)–(7)). Algorithm
DSECS-H is called to check the reduced energy(G)

(line (8)). The process is repeated until energy(G) ≤ E
(line (9)).

If energy(G) < E (line (10)), s0 and the c j ’s can be
increased while keeping energy(G) ≤ E (lines (11)–
(19)). The value of φ, as well as the values of s0 and
the c j ’s, are gradually increased (lines (11)–(12) and
(16)–(17)). Algorithm DSECS-H is called to check the
increased energy(G) (lines (13) and (18)). An improved
schedule is acceptable only if energy(G) ≤ E (lines
(14–15)).

The initial values of s0, c1, c2, ..., cm determine
the execution time and solution quality of algorithm
ECDSECS-H . If these values are far from the opti-
mal values, algorithm ECDSECS-H completes later
and produces lower-quality solutions. If these values
are close to the optimal values, algorithm ECDSECS-
H completes sooner and produces higher-quality solu-
tions.

The value of � determines the execution time and
solution quality of algorithm ECDSECS-H . If � is
too big, algorithm ECDSECS-H completes sooner and
produces lower-quality solutions. If � is too small,
algorithm ECDSECS-H completes later and produces
higher-quality solutions.

In Section 5.4, we show experimental data of the
impact of � on the execution time and solution quality
of algorithm ECDSECS-H .

5.3 A Lower Bound

In this section, we derive a lower bound for the optimal
schedule length in energy-constrained scheduling.

It has been proved in [12] that for the same amount
of computation energy consumption, the overall com-
putation time of all tasks executed on the UE is mini-
mized when all tasks have the same computation speed
s0. Hence, the total computation energy consumption
on the UE is ((ξsα

0 + Ps)/s0)R0.
Furthermore, it has also been proved in [12] that for

the same amount of communication energy consump-
tion, the overall wireless communication time of all
tasks executed on S j is minimized when all tasks have
the same wireless communication speed c j . Hence,
the total communication energy consumption for S j is
((2c j /b j −1)/(β j c j ))Dj = γ ((2c j /b j −1)/(β j c j ))R j .

We consider the same B defined in Section 3.3, i.e.,

B = max{R0/s0, R1/s1, R2/s2, ..., Rm/sm, D1/c1

+D2/c2 + · · · + Dm/cm}.
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We need to minimize B, subject to the condition
R0 + R1 + R2 + · · · + Rm = R, and

((ξsα
0 +Ps)/s0)R0+

m∑

j=1

γ ((2c j /b j −1)/(β j c j ))R j =E,

by choosing s0 and c1, c2, ..., cm . The minimized B can
be a lower bound for the optimal schedule length.

Again, we consider R j = (s j/S)R, for all 0 ≤ j ≤
m, such that B is minimized. The remaining issue is
how to minimize the wireless communication time, i.e.,
D1/c1 + D2/c2 + · · · + Dm/cm .

The total wireless communication time is

T ′ =
m∑

j=1

Dj/c j =
m∑

j=1

γ (R j/c j )

=
m∑

j=1

γ (R/S)(s j/c j ) = γ (R/S)

m∑

j=1

s j/c j .

The total wireless communication energy consump-
tion is

E ′ =
m∑

j=1

γ (2c j /b j − 1)/(β j c j )R j

=
m∑

j=1

γ (R/S)s j (2
c j /b j − 1)/(β j c j )

= γ (R/S)

m∑

j=1

s j (2
c j /b j − 1)/(β j c j ).

Both T ′ and E ′ can be treated as functions of
c1, c2, ..., cm , i.e., T ′(c1, c2, ..., cm) and
E ′(c1, c2, ..., cm).

For a given s0, the total computation energy con-
sumption on the UE is

((ξsα
0 + Ps)/s0)R0 = (ξsα

0 + Ps)(R/S).

We try to minimizeT ′(c1, c2, ..., cm) subject to the con-
dition

E ′(c1, c2, ..., cm) = E − (ξsα
0 + Ps)(R/S).

To this end, we use the Lagrange multiplier system:

∇T ′(c1, c2, ..., cm) = λ∇E ′(c1, c2, ..., cm),

where λ is a Lagrange multiplier. The above equation
is actually

∂T ′(c1, c2, ..., cm)/∂c j = λ∂E ′(c1, c2, ..., cm)/∂c j ,

that is,

− s j
c2
j

= λs j · 2c j /b j (ln 2/b j )c j − (2c j /b j − 1)

β j c2
j

,

and equivalently,

2c j /b j ((ln 2/b j )c j − 1) + 1

β j
= −1

λ
,

for all 1 ≤ j ≤ m.
Our numerical procedure to find s0 and c1, c2, ..., cm

is as follows.
First, for a given λ, we can find c j numerically by

noticing that the left-hand side of the above equation is
an increasing function of c j .

Second, by choosing λ appropriately, we can decide
c1, c2, ..., cm such that E ′(c1, c2, ..., cm) = E−(ξsα

0 +
Ps)(R/S) by noticing that E ′(c1, c2, ..., cm) is an
increasing function of λ.

Finally, by choosing s0 appropriately, we can decide
s0 such that T ′(c1, c2, ..., cm) = R/S by noticing that
T ′(c1, c2, ..., cm) − R/S is an increasing function of
s0.

The above discussion is summarized in the following
theorem.

Theorem 2 A lower bound for the optimal makespan
in energy-constrained DAG scheduling is

makespan∗(G) ≥ R/S = R/(s0 + s1 + s2 +· · ·+ sm),

where s0 is obtained using the above numerical proce-
dure for the energy budget E.

We use B̃ to denote the lower bound in Theorem 2.

5.4 Performance Evaluation

In this section, we experimentally evaluate the perfor-
mance of algorithm ECDSECS-H .

We keep the same parameter settings of Sections 3.4
and 4.2. The energy budget is E = 0.235n for a DAG
with n computation-intensive tasks and E = 0.3n
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for a DAG with n communication-intensive tasks. The
parameter � is 0.01. (Notice that the values of our
energy budget E are taken from Tables 5–8. However,
observations in this section should still hold for other
values of E .)

5.4.1 Expected Performance Bound

For given n and H , the expected performance bound
can be obtained experimentally as follows. We gener-
ate M random DAGs: G1,G2, ...,GM . For each Gk ,
we run algorithm ECDSECS-H with energy budget
E , get its makespan(Gk), calculate the lower bound
B̃ with energy constraint E , and record the ratio
makespan(Gk)/B̃. The average of the M ratios is
returned as the expected performance bound. We set
M = 2, 000 for all experiments.

The following experimental data demonstrate the
expected performance bound of algorithm ECDSECS-H .

In Table 13, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected performance bound for sparse
DAG (p = 2/n) with computation-intensive tasks
(γ = 1.0), where the 99% confidence interval (C.I.)
is ±2.71486%.

In Table 14, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected performance bound for sparse
DAG (p = 2/n) with communication-intensive tasks
(γ = 3.0), where the 99% confidence interval (C.I.) is
±2.13717%.

In Table 15, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected performance bound for dense
DAG (p = 5/n) with computation-intensive tasks
(γ = 1.0), where the 99% confidence interval (C.I.)
is ±2.75421%.

In Table 16, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and H = ORG, SRF,
LRF, SDF, LDF, SRD, LRD, RAN10, RAN30, RAN50,
we display the expected performance bound for dense
DAG (p = 5/n) with communication-intensive tasks
(γ = 3.0), where the 99% confidence interval (C.I.) is
±2.66240%.

We have the following observations.
First, all our heuristic algorithms can produce near-

optimal schedules whose makespans are reasonably
close to the optimal makespans, in the sense that the
expected performance bounds are reasonably close
to one, especially when n gets large. This means
that our heuristic algorithms are able to efficiently
utilize all communication, computation, and energy
resources in processing both computation-intensive
and communication-intensive tasks with both sparse
and dense precedence constraints on a device-edge-
cloud collaborative computing system.

Second, the simple ORG strategy seems to perform
better than SRF, LRF, SDF, LDF, SRD, and LRD,
except for small n and dense DAG. Furthermore,
RAN10, RAN30, and RAN50 can further improve the
scheduling performance by spending more execution
time.

Table 13 Expected Performance Bound of Algorithm ECDSECS-H for Sparse DAG with Computation-Intensive Tasks (p = 2/n,
γ = 1.0, 99% C.I. = ±2.71486%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 3.18607 3.00364 3.18489 3.08685 3.03324 2.98346 3.18168 2.24781 2.20330 2.18627

40 1.71462 1.91488 1.90237 1.91783 1.91166 1.91393 1.90850 1.58641 1.55911 1.54772

60 1.48682 1.66184 1.64178 1.65335 1.65748 1.66878 1.63900 1.43152 1.41378 1.40664

80 1.38900 1.53474 1.51982 1.51970 1.53996 1.55733 1.51123 1.35722 1.34400 1.33901

100 1.34503 1.45976 1.45032 1.44487 1.47574 1.49012 1.43936 1.32004 1.30896 1.30394

120 1.31881 1.41816 1.40713 1.40798 1.43303 1.45314 1.40121 1.29884 1.28907 1.28446

140 1.29781 1.38292 1.37658 1.37446 1.40428 1.42227 1.36872 1.28122 1.27261 1.26876

160 1.28771 1.36228 1.35917 1.35429 1.38641 1.40552 1.35216 1.27314 1.26498 1.26105

180 1.27263 1.33873 1.33371 1.33099 1.36770 1.39049 1.32678 1.25839 1.25084 1.24719

200 1.26671 1.33073 1.32279 1.32200 1.35705 1.37685 1.31737 1.25297 1.24554 1.24236
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Table 14 Expected Performance Bound of Algorithm ECDSECS-H for Sparse DAG with Communication-Intensive Tasks (p = 2/n,
γ = 3.0, 99% C.I. = ±2.13717%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 2.92931 2.89041 3.00328 2.88611 2.93881 2.86721 2.95327 2.30313 2.25512 2.23828

40 1.91126 2.06605 2.05666 2.06842 2.04653 2.04172 2.06559 1.77593 1.74707 1.73607

60 1.69692 1.83956 1.83075 1.83773 1.81980 1.81845 1.83285 1.63667 1.62009 1.61231

80 1.62163 1.73402 1.71703 1.73502 1.70995 1.71488 1.72976 1.58228 1.56828 1.56266

100 1.58181 1.67225 1.66511 1.67377 1.65603 1.65859 1.66579 1.55211 1.54116 1.53613

120 1.56008 1.64074 1.63244 1.64185 1.62638 1.62630 1.63437 1.53667 1.52724 1.52279

140 1.54407 1.61534 1.60524 1.61332 1.60105 1.60089 1.60743 1.52439 1.51631 1.51222

160 1.53529 1.59470 1.58507 1.59351 1.58351 1.58231 1.58774 1.51693 1.50846 1.50487

180 1.52378 1.57867 1.57437 1.57802 1.57315 1.57125 1.57204 1.50854 1.50122 1.49802

200 1.52214 1.57342 1.56620 1.57443 1.56215 1.56300 1.56772 1.50725 1.49990 1.49655

Table 15 Expected Performance Bound of Algorithm ECDSECS-H for Dense DAG with Computation-Intensive Tasks (p = 5/n,
γ = 1.0, 99% C.I. = ±2.75421%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 7.45765 5.64024 6.78798 6.11835 6.39495 6.04709 6.44084 3.97143 3.88615 3.86401

40 2.88418 2.54009 2.73190 2.59724 2.64794 2.57632 2.64450 2.08832 2.04252 2.02565

60 1.84088 1.87222 1.90087 1.89440 1.89559 1.87027 1.88425 1.64223 1.61137 1.59935

80 1.52267 1.62310 1.62640 1.63174 1.62895 1.62164 1.62423 1.45800 1.43853 1.43029

100 1.41208 1.51648 1.51670 1.51996 1.52405 1.52761 1.50812 1.37702 1.36394 1.35810

120 1.35206 1.44787 1.44533 1.44869 1.45279 1.45298 1.44633 1.32688 1.31687 1.31214

140 1.31868 1.40416 1.40019 1.40284 1.40600 1.41110 1.39899 1.29907 1.28963 1.28530

160 1.29923 1.37591 1.37320 1.37452 1.38017 1.38627 1.36914 1.28209 1.27388 1.27019

180 1.28824 1.35750 1.35206 1.35553 1.35855 1.36321 1.35185 1.27123 1.26355 1.26004

200 1.27097 1.33458 1.33085 1.32985 1.33765 1.34306 1.32544 1.25636 1.24912 1.24557

Table 16 Expected Performance Bound of Algorithm ECDSECS-H for Dense DAG with Communication-Intensive Tasks (p = 5/n,
γ = 3.0, 99% C.I. = ±2.66240%)

n ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 5.89939 4.69521 5.43295 4.72985 5.30305 4.97625 5.10744 3.54697 3.47463 3.45219

40 2.62849 2.43332 2.55528 2.44687 2.53154 2.47490 2.50718 2.10484 2.06394 2.04921

60 1.94340 1.96079 1.98190 1.95637 1.96803 1.95900 1.97596 1.77271 1.74643 1.73615

80 1.73367 1.79212 1.78469 1.79257 1.78194 1.77850 1.79203 1.65005 1.63192 1.62445

100 1.64241 1.70551 1.70271 1.70957 1.70156 1.69993 1.70661 1.59330 1.57839 1.57246

120 1.59596 1.65916 1.65737 1.66169 1.65737 1.65316 1.65944 1.56221 1.55025 1.54482

140 1.56473 1.62377 1.61829 1.62244 1.61345 1.61219 1.62191 1.53694 1.52733 1.52335

160 1.55227 1.60507 1.60337 1.60608 1.60007 1.59823 1.60329 1.52876 1.51969 1.51576

180 1.53688 1.58468 1.58193 1.58573 1.57794 1.58004 1.58407 1.51578 1.50771 1.50414

200 1.52685 1.57206 1.56897 1.57253 1.56652 1.56632 1.57219 1.50889 1.50161 1.49844
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5.4.2 Impact of �

For given n and �, we generate M random DAGs:
G1,G2, ...,GM . For eachGk , we run algorithm ECDS-
ECS-H with H = ORG, get its makespan(Gk) and the
numberCk of times that algorithm DSECS-H is called,
calculate the lower bound B̃ with energy constraint
E , and record the ratio makespan(Gk)/B̃. The aver-
age of the M ratios and the average of C1,C2, ...,CM

are reported. We set M = 10, 000 for all experiments.
The following experimental data demonstrate the

impact of � on the execution time and solution quality
of algorithm ECDSECS-H .

In Table 17, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and� = 0.01, 0.02,

0.03, 0.04, 0.05, we display the expected performance
bound and the expected number of times that algorithm
DSECS-H is called, for sparse DAG (p = 2/n) with
computation-intensive tasks (γ = 1.0), where the 99%
confidence interval (C.I.) is ±2.09%.

In Table 18, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and� = 0.01, 0.02,

0.03, 0.04, 0.05, we display the expected performance
bound and the expected number of times that algorithm
DSECS-H is called, for sparse DAG (p = 2/n) with
communication-intensive tasks (γ = 3.0), where the
99% confidence interval (C.I.) is ±2.05%.

In Table 19, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and� = 0.01, 0.02,

0.03, 0.04, 0.05, we display the expected performance
bound and the expected number of times that algorithm
DSECS-H is called, for dense DAG (p = 5/n) with

computation-intensive tasks (γ = 1.0), where the 99%
confidence interval (C.I.) is ±1.88%.

In Table 20, for each combination ofn = 20, 40, 60,

80, 100, 120, 140, 160, 180, 200, and� = 0.01, 0.02,

0.03, 0.04, 0.05, we display the expected performance
bound and the expected number of times that algorithm
DSECS-H is called, for dense DAG (p = 5/n) with
communication-intensive tasks (γ = 3.0), where the
99% confidence interval (C.I.) is ±1.76%.

We have the following observations. First, as �

becomes small, the expected performance bound dec-
reases; that is, algorithm ECDSECS-H produces bet-
ter schedules. Second, as � becomes small, algo-
rithm DSECS-H is called more times and algo-
rithm ECDSECS-H takes longer time. However, the
expected number of times that algorithm DSECS-H is
called is quite small, unless when n is very small.

6 Related Research

In this section, we review related research.
DAG scheduling in mobile edge computing has

been investigated by several researchers with diversi-
fied optimization objectives such as execution latency
minimization, energy consumption minimization, and
execution reliability maximization. Cai et al. developed
a context-aware greedy task scheduling algorithm to
minimize the task completion time and a dependency-
aware task rescheduling algorithm to cope with the
failure of edge servers [2]. Duan et al. proposed a
resource pipeline scheme with the objective of min-
imizing the makespan in DAG scheduling [4]. Li et

Table 17 Impact of � on Algorithm ECDSECS-H for Sparse DAG with Computation-Intensive Tasks (p = 2/n, γ = 1.0, 99% C.I.
= ±2.09%)

n � = 0.01 � = 0.02 � = 0.03 � = 0.04 � = 0.05

20 3.27190, 21.04 3.28772, 12.00 3.31245, 8.90 3.33983, 7.30 3.38677, 6.30

40 1.76322, 10.16 1.77165, 6.95 1.78017, 5.69 1.79144, 4.96 1.79974, 4.45

60 1.50107, 8.28 1.50800, 6.26 1.51594, 5.35 1.52310, 4.71 1.53159, 4.24

80 1.40684, 7.53 1.41261, 5.92 1.41979, 5.11 1.42605, 4.52 1.43409, 4.05

100 1.35569, 7.22 1.36168, 5.84 1.36791, 5.07 1.37416, 4.48 1.38011, 4.00

120 1.32667, 6.87 1.33182, 5.64 1.33729, 4.89 1.34268, 4.32 1.34908, 3.85

140 1.30699, 6.70 1.31225, 5.54 1.31711, 4.81 1.32274, 4.23 1.32909, 3.76

160 1.29097, 6.51 1.29562, 5.43 1.30035, 4.71 1.30579, 4.14 1.31195, 3.68

180 1.27899, 6.41 1.28307, 5.37 1.28735, 4.66 1.29282, 4.09 1.29882, 3.61

200 1.27026, 6.34 1.27412, 5.33 1.27873, 4.62 1.28377, 4.05 1.29036, 3.57
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Table 18 Impact of � on Algorithm ECDSECS-H for Sparse DAG with Communication-Intensive Tasks (p = 2/n, γ = 3.0, 99%
C.I. = ±2.05%)

n � = 0.01 � = 0.02 � = 0.03 � = 0.04 � = 0.05

20 2.94183, 14.66 2.95639, 9.03 2.96934, 7.00 2.98714, 5.90 3.00443, 5.19

40 1.90698, 8.61 1.91422, 6.17 1.92284, 5.14 1.93057, 4.50 1.94071, 4.03

60 1.70086, 7.13 1.70721, 5.43 1.71419, 4.61 1.72188, 4.05 1.72970, 3.62

80 1.62634, 6.42 1.63231, 4.99 1.63940, 4.25 1.64702, 3.73 1.65649, 3.33

100 1.58766, 6.03 1.59294, 4.75 1.59959, 4.04 1.60671, 3.54 1.61542, 3.15

120 1.56363, 5.67 1.56906, 4.50 1.57578, 3.84 1.58299, 3.36 1.59171, 2.99

140 1.54690, 5.48 1.55203, 4.38 1.55858, 3.73 1.56622, 3.26 1.57461, 2.90

160 1.53657, 5.29 1.54159, 4.24 1.54820, 3.60 1.55563, 3.14 1.56447, 2.79

180 1.52751, 5.13 1.53247, 4.11 1.53893, 3.49 1.54698, 3.04 1.55602, 2.71

200 1.52127, 4.97 1.52649, 4.00 1.53264, 3.39 1.54074, 2.95 1.54916, 2.63

Table 19 Impact of � on Algorithm ECDSECS-H for Dense DAG with Computation-Intensive Tasks (p = 5/n, γ = 1.0, 99% C.I.
= ±1.88%)

n � = 0.01 � = 0.02 � = 0.03 � = 0.04 � = 0.05

20 7.40213, 39.22 7.42118, 20.30 7.53338, 14.15 7.64914, 11.06 7.97806, 9.39

40 2.90243, 17.03 2.91927, 9.61 2.94303, 7.09 2.96399, 5.78 2.98735, 4.98

60 1.86436, 9.24 1.87742, 6.05 1.89201, 4.86 1.90475, 4.19 1.92048, 3.74

80 1.55042, 7.26 1.56194, 5.37 1.57150, 4.54 1.58262, 3.99 1.59255, 3.58

100 1.42973, 6.88 1.43866, 5.35 1.44587, 4.59 1.45525, 4.04 1.46281, 3.61

120 1.36725, 6.66 1.37449, 5.36 1.38049, 4.63 1.38716, 4.09 1.39548, 3.65

140 1.32997, 6.51 1.33558, 5.34 1.34130, 4.63 1.34748, 4.08 1.35517, 3.63

160 1.30861, 6.42 1.31396, 5.31 1.31860, 4.62 1.32433, 4.06 1.33133, 3.60

180 1.29179, 6.35 1.29636, 5.29 1.30145, 4.59 1.30684, 4.03 1.31327, 3.56

200 1.28084, 6.20 1.28521, 5.20 1.28960, 4.50 1.29522, 3.94 1.30125, 3.47

Table 20 Impact of � on Algorithm ECDSECS-H for Dense DAG with Communication-Intensive Tasks (p = 5/n, γ = 3.0, 99%
C.I. = ±1.76%)

n � = 0.01 � = 0.02 � = 0.03 � = 0.04 � = 0.05

20 6.02406, 28.02 6.04898, 14.90 6.11113, 10.55 6.17086, 8.35 6.31649, 7.09

40 2.62300, 10.88 2.63486, 6.77 2.64656, 5.27 2.65957, 4.45 2.67444, 3.91

60 1.96011, 7.47 1.96869, 5.25 1.97955, 4.34 1.99037, 3.76 2.00251, 3.36

80 1.74361, 6.37 1.75094, 4.74 1.76001, 3.99 1.76852, 3.49 1.78026, 3.13

100 1.64477, 5.93 1.65196, 4.57 1.65954, 3.88 1.66849, 3.39 1.67828, 3.03

120 1.59735, 5.62 1.60362, 4.41 1.61144, 3.73 1.61933, 3.26 1.62914, 2.91

140 1.57024, 5.32 1.57613, 4.21 1.58360, 3.57 1.59218, 3.12 1.60038, 2.78

160 1.55001, 5.25 1.55568, 4.19 1.56253, 3.55 1.57038, 3.10 1.57908, 2.76

180 1.53796, 5.11 1.54323, 4.09 1.55011, 3.47 1.55799, 3.02 1.56693, 2.69

200 1.52911, 4.90 1.53451, 3.93 1.54134, 3.34 1.54940, 2.90 1.55840, 2.59
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al. studied online placing and scheduling dependent
tasks with deadlines and on-demand function config-
uration on edge servers, aiming to satisfy as many
deadlines as possible [11]. Li et al. employed deep
reinforcement learning to develop DAG task schedul-
ing algorithms and UAV (unmanned aerial vehicles)
deployment optimization algorithms [12]. Li devel-
oped a class of pre-power-allocation algorithms and
a class of post-power-allocation algorithms for both
energy-constrained and time-constrained precedence
constrained tasks scheduling [15]. Li et al. proposed
an orchestration framework to reduce both execution
latency and failure probability for applications having
interdependent tasks [18]. Liang et al. tried to mini-
mize makespan in DAG scheduling through offloading
order adjusting and execution frequency scaling [19].
Liu et al. formulated DAG task scheduling as an inte-
ger programming problem to minimize the overall task
completion time while ensuring a high execution suc-
cess rate [20]. Shang et al. considered task schedul-
ing for DAG-based applications in MEC to maximize
the execution reliability given energy consumption and
execution latency constraints [22]. Zhu et al. proposed
a multi-objective cuckoo search algorithm to minimize
execution latency and energy consumption with execu-
tion reliability constraint [27].

Several researchers have studied task scheduling
in device-edge-cloud collaborative computing environ-
ments. Dreibholz and Mazumdar proposed a lightweight
task-scheduling framework from a cloud service provi-
der perspective, for applications using both cloud and
edge platforms [3]. Li designed heuristic algorithms
for scheduling independent tasks on multiple cloud-
assisted edge servers with energy constraints [17].
Ma et al. solved the dynamic task scheduling prob-
lem in cloud-assisted mobile edge computing (includ-
ing both peer task scheduling among edge nodes and
cross-layer task scheduling from edge nodes to the
cloud), aiming at minimizing average task response
time within resource budget limit [21]. Yin et al. devel-
oped a multi-objective task scheduling mechanism and
integrated it into a cloud-edge computing framework
for intelligent production lines, aiming to reduce ser-
vice latency and energy consumption by using particle
swarm optimization and gravitational search algorithm
[25]. Zhang et al. established a hierarchical architecture
for edge-cloud collaborative environments to reduce
delay and latency in dynamic real-time task schedul-

ing with deadlines and time sensitivity [26]. However,
there is a lack of DAG scheduling in device-edge-cloud
collaborative computing environments, and this paper
has made efforts in this direction.

Energy-aware DAG and workflow scheduling in
data center networks, distributed cloud, edge-cloud,
and cloud-edge environments has also been considered
by some researchers. Fraga et al. proposed a heuris-
tic approach to scheduling real-time flows in data cen-
ter networks to optimize the temporal requirements
while reducing the energy consumption in the net-
work infrastructure [5]. Hussain et al. developed a
deadline-constrained energy-aware workflow schedul-
ing algorithm to minimize energy costs when schedul-
ing workflow tasks on heterogeneous servers in geo-
graphically distributed cloud data centers [8]. Jayanetti
et al. adopted a deep reinforcement learning model
to establish a desired trade-off between the conflict-
ing objectives of energy optimization and time min-
imization for precedence-constrained tasks schedul-
ing in edge-cloud environments [10]. Wen and Xu
designed an improved genetic algorithm to optimize
energy consumption under time delay constraints in
task offloading scheduling [23]. Xiao et al. proposed a
heterogeneous earliest completion time algorithm for
workflow scheduling by considering computing perfor-
mance, transmission delay, energy consumption, and
cost of cloud and edge nodes [24].

Energy-constrained task scheduling on heteroge-
neous edge and cloud servers in the context of com-
binatorial optimization has been addressed before by
the author [13,15–17]. However, among the major fea-
tures mentioned in this paper, while all these papers
studied energy-constrained scheduling by speed set-
ting, only [16,17] considered edge servers and cloud
servers (i.e., wireless and wired communications), only
[15] considered precedence constraint, only [16,17]
supported sequential wireless communications, none
implemented overlapped communication and compu-
tation, and only [16,17] derived lower bounds for
optimal makespan. In this paper, we simultaneously
included and incorporated edge and cloud collabo-
rative computing, precedence constraint, sequential
transmission, overlapped communication and compu-
tation, comparison with optimal solutions, energy bud-
get, computation and communication speed setting in
heuristic DAG-scheduling on multiple heterogeneous
edge and cloud servers.
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Feature [13] [15] [16] [17] this paper

edge and cloud fusion × × � � �
precedence constraint × � × × �
sequential transmission × × � � �
overlapped communication and computation × × × × �
optimal makespan × × � � �
energy constraint � � � � �
computation and communication speed setting � � � � �

It is noticed that in all the above work, there is little
existing paper that includes performance comparison
with optimal solutions, except [16,17].

7 Summary

We have studied the NP-hard problems of DAG
scheduling and energy-constrained DAG scheduling on
mobile devices, edge servers, and cloud servers, where
all wireless communications are performed sequen-
tially and wireless communication of one task can
overlap with wired communication and computation
of another task on the same server. We have designed
and evaluated new heuristic algorithms. One strong and
unique feature of our study is to derive a lower bound
for the optimal makespan such that the solutions of
our heuristic algorithms can be compared with opti-
mal solutions. These efforts and investigations have
not been seen in the existing literature. This paper has
made significant and substantial contributions to DAG
scheduling in device-edge-cloud collaborative comput-
ing systems.

Further research can be conducted towards the fol-
lowing directions. First, more effective and efficient
heuristic algorithms with better performance (in terms
of both solution quality and execution time) should be
designed and tighter lower bounds should be derived.
Second, joint optimization of schedule length and
energy consumption, together with the performance-
cost trade-off, can be studied. Third, more sophisticated
application environments with multiple mobile devices
and user equipments sharing and competing for edge
and cloud servers can be considered.

Appendix: Notations and Definitions

Notation Definition

m1 the number of edge servers (ES)
m2 the number of cloud servers (CS)
m = m1 + m2, the number of servers
S0 the UE
S′

0 a virtual server responsible for all wireless
communications of S0

S j the j th server (either an ES or a CS), 1 ≤ j
≤ m

ES j S j if S j is an ES
CS j S j if S j is a CS
CF j the communication frontend of CS j
s j the computation speed (measured by Bips)

of S j
c j the wireless communication speed

(measured by Mbps) of S j
w j the wired communication speed (measured

by Mbps) of S j (if S j is a CS)
G = (T ,≺), a directed acyclic graph
T = {T1, T2, ..., Tn}, a set of tasks
≺ ⊆ T × T , a set of precedence constraints
n the number of tasks
Ti = (di , ri ), the i th task, 1 ≤ i ≤ n
di the amount of communication (measured by

MB) of Ti
ri the amount of computation (measured by

BI) of Ti
ti the execution time of Ti
H a heuristic
CompRT j the computation ready time of S j , 0 ≤ j

≤ m
CommRT the wireless communication ready time of

S′
0

clock a global clock
makespan(G) = max0≤ j≤m{CompRT j }, the makespan of

G
makespan∗(G) the optimal schedule length of G
γ = min1≤i≤n{di/ri }
R j the total amount of computation on S j
D j the total amount of communication of tasks

processed on S j
W j the total waiting time of S j
R = R0 + R1 + R2 + · · · + Rm , the total

amount of computation
S = s0 + s1 + s2 + · · · + sm , the aggregated

computation speed
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Notation Definition

B a lower bound for the optimal schedule
length

P0 computation power consumption of the UE
Ps static power consumption of the UE
ξ, α parameters of the computation power

consumption model
Pj power consumption of the wireless

communication channel between the UE
and S j

b j the channel bandwidth
β j a combined quantity of several factors of a

wireless communication channel
Ei the energy consumption of Ti
energy(G) the total energy consumption of G
φ,� control parameters of the ECDSECS-H

algorithm
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