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Abstract Given a group of heterogeneous blade
servers in a cloud computing environment or a
data center of a cloud computing provider, each
having its own size and speed and its own amount
of preloaded special tasks, we are facing the prob-
lem of optimal distribution of generic tasks over
these blade servers, such that the average re-
sponse time of generic tasks is minimized. Such
performance optimization is important for a cloud
computing provider to efficiently utilize all the
available resources and to deliver the highest
quality of service. We develop a queueing model
for a group of heterogeneous blade servers, and
formulate and solve the optimal load distribution
problem of generic tasks for multiple heteroge-
neous blade servers in a cloud computing environ-
ment in two different situations, namely, special
tasks with and without higher priority. Extensive
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numerical examples and data are demonstrated
and some important observations are made. It is
found that server sizes, server speeds, task execu-
tion requirement, and the arrival rates of special
tasks all have significant impact on the average
response time of generic tasks, especially when
the total arrival rate of generic tasks is large. It is
also found that the server size heterogeneity and
the server speed heterogeneity do not have much
impact on the average response time of generic
tasks. Furthermore, larger (smaller, respectively)
heterogeneity results in shorter (longer, respec-
tively) average response time of generic tasks.

Keywords Blade server · Cloud computing ·
Optimal load distribution · Queueing model ·
Response time

1 Introduction

Cloud computing delivers hosted services over
the Internet, such that access to shared hard-
ware, software, databases, information, and all
resources are provided to users on-demand, like
electricity and other public utilities. A public or
private or hybrid cloud provides easy and scalable
access to computing resources and IT services
[4]. Typical cloud computing providers deliver
common applications online, which are accessed
from a web browser, while the software and data
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are stored on servers. Users no longer need the
knowledge of, expertise in, or control over the
technology infrastructure in the cloud that sup-
ports their computing requirements. Cloud com-
puting provides a new supplement, delivery, and
consumption model for IT services based on the
Internet. It typically involves the provision of dy-
namically scalable and often virtualized resources
as a service over the Internet. It is a byproduct
and consequence of the ease-of-access to remote
computing sites provided by the Internet [3].

One form of cloud computing is server con-
solidation, which is an effective approach to the
efficient usage of computer server resources in or-
der to reduce the total number of servers or server
locations that an organization requires. Currently,
server sprawl is a common situation, in which mul-
tiple under-utilized servers take up more space
and consume more energy than can be justified
by their workload. According to a recent report,
many companies typically run at 15–20 % of their
capacity, which is not a sustainable ratio in the
current economic environment [5]. Businesses are
increasingly turning to server consolidation as one
means of cutting unnecessary costs and maximiz-
ing return on investment in the data centers.

One approach to server consolidation is the use
of blade servers or blade centers to maximize the
efficient use of space and energy. A blade server
is a server chassis housing multiple server blades.
Blade servers allow more processing power in
less rack space, simplifying cabling and reducing
power consumption. Enterprises moving to blade
servers can experience as much as 85 % reduc-
tion in cabling for blade installations over con-
ventional rack or tower servers. The advantage
of blade servers comes not only from the con-
solidation benefits of housing several servers in a
single chassis, but also from the consolidation of
associated resources (like storage and networking
equipment) into a smaller architecture that can be
managed through a single interface [6].

A server blade is a thin, modular electronic
circuit board containing one, two, or more mi-
croprocessors and memory, that can be easily
inserted into a blade server, which is a space-
saving rack with many similar server blades. Each
blade is a server in its own right, often dedi-
cated to specific applications such as file sharing,

Web page serving and caching, SSL encrypting
of Web communication, transcoding of Web page
content for smaller displays, and streaming audio
and video content. It is conceivable that as server
technologies further develop, server blades can
also accommodate general purpose applications
(i.e., nondedicated generic tasks) which can be
executed on any server blades, in addition to
special purpose applications (i.e., dedicated spe-
cial tasks) which must be executed on designated
server blades.

Like other server systems, a group of blade
servers can also be managed by load distribution
and balancing. Load balancing means distribut-
ing workload among two or more servers so that
more work gets done in the same amount of time
and all users get served faster. Load balancing
has been the main reason for computer server
clustering, i.e., the use of multiple servers to form
what appears to users as a single high performance
system. Cloud-based applications depend even
more heavily on load balancing and optimization
than traditional enterprise applications. For end
users, load balancing capabilities will be seriously
considered when they select a cloud computing
provider. For cloud providers, load balancing ca-
pabilities will be a source of revenue, which is
directly related to service quality (e.g., task re-
sponse time). Hence, an efficient load balancing
strategy is a key component to building out any
cloud computing architecture.

For blade servers, the problem of load distri-
bution and balancing has its specific formulation.
Since each blade server has its dedicated special
tasks, i.e., tasks that need to be performed by
the blade server, load distribution and balancing
can only be performed for nondedicated generic
tasks. Therefore, given a group of heterogeneous
blade servers in a cloud computing environment
or a data center of a cloud computing provider,
each having its own size and speed and its own
amount of preloaded special tasks, we are facing
the problem of optimal distribution of generic
tasks over these blade servers, such that the av-
erage response time of generic tasks is minimized.
Such performance optimization is important for a
cloud computing provider to efficiently utilize all
the available resources and to deliver the highest
quality of service.
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Optimal Load Distribution for Multiple Heterogeneous Blade Servers 29

Optimal load distribution of generic tasks with-
out special tasks for a group of heterogeneous
multiserver queueing systems was studied in [2].
Optimal load distribution of generic tasks to-
gether with special tasks has been studied before
for cluster and Grid computing environments,
where each server is modeled as a queueing sys-
tem with a single server [12]. In our investigation
of this paper, each blade server is treated as a
queueing system with multiple servers (i.e., mul-
tiple server blades). To the best of our knowledge,
optimal load distribution of generic tasks together
with special tasks for a group of heterogeneous
multiserver queueing systems has not been con-
sidered before.

It should be noticed that our results in this
paper not only provide new theoretical insights,
but also are applicable to other server systems,
such as

• a cluster of traditional heterogeneous clusters
of PCs or workstations (i.e., multiple clusters,
or a multicluster, or a cluster of clusters),

• or a cluster of heterogeneous multicore server
processors (i.e., multiple multicore processors),

as long as the application environment is similar,
i.e., there are generic tasks and the servers are
preloaded with special tasks.

Load distribution and balancing in general par-
allel and distributed computing systems have been
extensively studied and a huge body of literature
exists (see the excellent collection [15]). In par-
ticular, the problems of optimal load distribution
have been investigated by using queueing models
[7, 17], with various performance metrics such
as weighted mean response time [9], arithmetic
average response time [10], probability of load im-
balance [11], probability of load balancing success
[13], mean response ratio [16], and mean miss rate
[2]. Optimal load distribution in a heterogeneous
distributed computer system with both generic
and dedicated applications was studied in [1, 14].

The remainder of the paper is organized as
follows. In Section 2, we describe a queueing
model for a group of heterogeneous blade servers.
In Sections 3 and 4 we formulate and solve our
optimal load distribution problem of generic tasks
for multiple heterogeneous blade servers in a
cloud computing environment in two different

situations, namely, special tasks with and with-
out higher priority. In Section 5, we demonstrate
extensive numerical data and point out several
important observations. We conclude the paper in
Section 6.

2 Modeling Blade Servers

To formulate and study the problem of optimal
load distribution and balancing for multiple het-
erogeneous blade servers in a cloud computing en-
vironment, we need a model for a blade server and
a group of blade servers. A queueing model for a
group of n heterogeneous blade servers S1, S2, ...,
Sn of sizes m1, m2, ..., mn is given in Fig. 1. Assume
that a blade server Si has mi identical server blades
(similarly, a cluster of mi servers or a multicore
server processor with mi cores). In this paper, a
blade server (in general, a cluster of traditional
servers or a multicore server processor) is treated
as an M/M/m queueing system which is elaborated
as follows.

There is a Poisson stream of generic tasks with
arrival rate λ′, i.e., the inter-arrival times are in-
dependent and identically distributed (i.i.d.) ex-
ponential random variables with mean 1/λ′. A
load distribution and balancing algorithm will split
the stream into n substreams, such that the ith
substream with arrival rate λ′

i is sent to server
Si, where 1 ≤ i ≤ n, and λ′ = λ′

1 + λ′
2 + · · · + λ′

n.
There is an independent Poisson stream of special
tasks with arrival rate λ′′

i to server Si. Hence, the
actual task arrival stream to Si is a merged stream
of two separate streams, one for generic tasks with
arrival rate λ′

i and one for special tasks with arrival
rate λ′′

i . It is clear that the actual task arrival rate
to Si is λi = λ′

i + λ′′
i .

The task execution requirements (measured by
the number of instructions to be executed) are
i.i.d. exponential random variables r with mean r̄.
The mi server blades of server Si have identical
execution speed si (measured by the number of
instructions that can be executed in one unit of
time). Hence, the task execution times on the
server blades of Si are i.i.d. exponential random
variables xi = r/si with mean x̄i = r̄/si.

A blade server Si maintains a queue with
infinite capacity for waiting tasks when all the mi
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Fig. 1 A group of n
heterogeneous blade
servers S1, S2, ..., Sn
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server blades are busy. Two queueing disciplines
are considered in this paper.

• Special tasks without priority – Both generic
and special tasks are processed using the first-
come-first-served (FCFS) queueing discipline.
All generic and special tasks are mixed in the
waiting queue and scheduled in the same way
without any difference.

• Special tasks with priority – Special tasks have
higher priority than generic tasks and are
placed ahead of generic tasks in the waiting
queue. Special tasks are always scheduled be-
fore generic tasks, and generic tasks are sched-
uled only when there is no special task in the
waiting queue.

The processing of a task cannot be interrupted.
Once a task starts execution, it is executed until
it is completed.

3 Load Distribution with Special Tasks

Let μi = 1/x̄i = si/r̄ be the average service rate,
i.e., the average number of tasks that can be

finished by a server blade of Si in one unit of time.
The server utilization is

ρi = λi

miμi
= λi x̄i

mi
= λi

mi
· r̄

si
,

which is the average percentage of time that a
server blade of Si is busy. Since ρi < 1, it is re-
quired that λi < misi/r̄.

Let pi,k denote the probability that there are k
tasks (waiting or being processed) in the M/M/m
system for Si. Then, we have ([8], p. 102)

pi,k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pi,0
(miρi)

k

k! , k ≤ mi;

pi,0
mmi

i ρk
i

mi! , k ≥ mi;

where

pi,0 =
(

mi−1∑

k=0

(miρi)
k

k! + (miρi)
mi

mi! · 1

1 − ρi

)−1

.

Author's personal copy



Optimal Load Distribution for Multiple Heterogeneous Blade Servers 31

The probability of queueing (i.e., the probability
that a newly arrived task must wait because all
server blades are busy) is

Pq,i =
∞∑

k=mi

pi,k

=
∞∑

k=mi

pi,0
mmi

i ρk
i

mi!

= pi,0
mmi

i

mi!
∞∑

k=mi

ρk
i

= pi,0
mmi

i

mi! · ρ
mi
i

1 − ρi

= pi,0
(miρi)

mi

mi! · 1

1 − ρi

= pi,mi

1 − ρi
.

The average number of tasks (in waiting or in
execution) in Si is

N̄i =
∞∑

k=0

kpi,k

=
mi∑

k=1

kpi,k +
∞∑

k=mi+1

kpi,k

=
mi∑

k=1

kpi,0
(miρi)

k

k! +
∞∑

k=mi+1

kpi,0
mmi

i ρk
i

mi!

= miρi

mi∑

k=1

pi,0
(miρi)

k−1

(k − 1)! + pi,0
mmi

i

mi!
∞∑

k=mi+1

kρk
i

= miρi

mi−1∑

k=0

pi,0
(miρi)

k

k! + pi,0
mmi

i

mi!
∞∑

k=mi+1

kρk
i

= miρi

mi−1∑

k=0

pi,k + pi,0
mmi

i

mi! · ρ
mi+1
i

1 − ρi

(

mi + 1

1 − ρi

)

= miρi

mi−1∑

k=0

pi,k + pi,0
(miρi)

mi

mi! · ρi

1 − ρi

×
(

mi + 1

1 − ρi

)

= miρi

mi−1∑

k=0

pi,k + pi,mi

1 − ρi

(

miρi + ρi

1 − ρi

)

= miρi

mi−1∑

k=0

pi,k + Pq,i

(

miρi + ρi

1 − ρi

)

= miρi

(
mi−1∑

k=0

pi,k + Pq,i

)

+ ρi

1 − ρi
Pq,i

= miρi

⎛

⎝
mi−1∑

k=0

pi,k +
∞∑

k=mi

pi,k

⎞

⎠ + ρi

1 − ρi
Pq,i

= miρi + ρi

1 − ρi
Pq,i.

Applying Little’s result ([8], p. 17), we get the
average task response time as

Ti = N̄i

λi
= x̄i + Pq,i

mi(1 − ρi)
x̄i = x̄i

(

1+ Pq,i

mi(1 − ρi)

)

.

Notice that the average length of the waiting
queue in Si is the average number of tasks in the
system minus the average number of busy server
blades, i.e.,

N̄q,i = N̄i − miρi = ρi

1 − ρi
Pq,i.

By Little’s result again, the average waiting time
in the waiting queue is

Wi = Ti − x̄i = N̄q,i

λi
= Pq,i

mi(1 − ρi)
x̄i = W0,i

1 − ρi
,

where

W0,i = Pq,i
x̄i

mi
= Pq,iW∗

i ,

and

W∗
i = x̄i

mi
.

Notice that W0,i is the expected time until a
server blade is available, i.e., the product of the
probability Pq,i of queueing and W∗

i , and W∗
i

is the expected time until the next completion
of a task, i.e., the expectation of the minimum
value of mi i.i.d. exponential random variables
with mean x̄i. (It should be mentioned that due
to the memoryless property of an exponential
distribution, the remaining execution time of a
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task is always the same random variable as be-
fore, no matter how long the task has been exe-
cuted. Hence, the time until the next completion
of a task is always the same random variable, i.e.,
the minimum value of mi i.i.d. exponential random
variables with mean x̄i.) Notice that ρi = λiW∗

i =
λi x̄i/mi = (λ′

i + λ′′
i )x̄i/mi = ρ ′

i + ρ ′′
i , where ρ ′

i =
λ′

i x̄i/mi = λ′
iW

∗
i and ρ ′′

i = λ′′
i x̄i/mi = λ′′

i W∗
i .

Notice that due to multiple server blades, a task
t does not need to wait until all tasks in front of
it are completed. Actually, Wi includes W0,i and
N̄q,i = λiWi completions of task executions. The
reason is that after W0,i amount of time, the first
task in the waiting queue will be executed, and
after N̄q,i completions of task executions, task t
is at the front of the waiting queue and will be
scheduled to be executed. Therefore, we have

Wi = W0,i + N̄q,iW∗
i = W0,i + λiWiW∗

i ,

which yields

Wi = W0,i

1 − λiW∗
i

= W0,i

1 − λi x̄i/mi
= W0,i

1 − ρi
.

The above argument is important since it can
be adapted to find the average waiting time of
generic tasks when special tasks have higher pri-
ority (see the next section).

For special tasks without priority, since all
generic and special tasks are mixed in the waiting
queue and scheduled using the FCFS queueing
discipline in the same way with no difference, the
average response time T ′

i of generic tasks in server
Si is

T ′
i = Ti = x̄i

(

1 + Pq,i

mi(1 − ρi)

)

,

where

Pq,i = pi,mi

1 − ρi
,

pi,mi = pi,0
(miρi)

mi

mi! ,

and

pi,0 =
(

mi−1∑

k=0

(miρi)
k

k! + mmi
i

mi! · ρ
mi
i

1 − ρi

)−1

.

Therefore, we get

T ′
i = x̄i

(

1 + pi,0
mmi−1

i

mi! · ρ
mi
i

(1 − ρi)2

)

.

The average response time T ′ of all generic tasks
in the group of n blade servers is

T ′ = λ′
1

λ′ T ′
1 + λ′

2

λ′ T ′
2 + · · · + λ′

n

λ′ T ′
n,

which is the main performance measure that
needs to be optimized.

Our optimal load distribution problem for mul-
tiple heterogeneous blade servers in a cloud com-
puting environment can be specified as follows:
given the number of blade servers n, the sizes of
the servers m1, m2, ..., mn, the execution speeds of
the servers s1, s2, ..., sn, the arrival rates of special
tasks on the servers λ′′

1, λ
′′
2, ..., λ

′′
n, the total arrival

rate of generic tasks λ′, and the average task
execution requirement r̄, find the arrival rates of
generic tasks on the servers λ′

1, λ
′
2, ..., λ

′
n, such that

the average response time of generic tasks T ′ is
minimized, subject to the constraint

F(λ′
1, λ

′
2, ..., λ

′
n) = λ′,

where

F(λ′
1, λ

′
2, ..., λ

′
n) = λ′

1 + λ′
2 + · · · + λ′

n,

and ρi < 1, i.e., λ′
i < mi/x̄i − λ′′

i , for all 1 ≤ i ≤ n.
We can minimize T ′ by using the method of

Lagrange multiplier, namely,

∇T ′(λ′
1, λ

′
2, ..., λ

′
n) = φ∇F(λ′

1, λ
′
2, ..., λ

′
n),

that is,

∂T ′

∂λ′
i

= φ,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier.
It is clear that

∂T ′

∂λ′
i

= 1

λ′

(

T ′
i + λ′

i
∂T ′

i

∂λ′
i

)

,

where

∂T ′
i

∂λ′
i

= ∂T ′
i

∂ρi
· ∂ρi

∂λ′
i
= x̄i

mi
· ∂T ′

i

∂ρi
,

that is,

1

λ′

(

T ′
i + ρ ′

i
∂T ′

i

∂ρi

)

= φ, (1)
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where

∂T ′
i

∂ρi
= x̄i

mmi−1
i

mi!
(

∂pi,0

∂ρi
· ρ

mi
i

(1 − ρi)2

+ pi,0
ρ

mi−1
i (mi − (mi − 2)ρi)

(1 − ρi)3

)

,

and

∂pi,0

∂ρi
= −p2

i,0

(
mi−1∑

k=1

mk
i ρ

k−1
i

(k − 1)! + mmi
i

mi!

· ρ
mi−1
i (mi − (mi − 1)ρi)

(1 − ρi)2

)

,

for all 1 ≤ i ≤ n.
Given n, m1, m2, ..., mn, x̄1, x̄2, ..., x̄n,

λ′′
1, λ

′′
2, ..., λ

′′
n, and λ′, our algorithms to find φ

and λ′
1, λ

′
2, ..., λ

′
n and T ′ are given in Figs. 2 and 3.

Our main observation in solving the equation
∂T ′/∂λ′

i = φ is that T ′ is a convex function of λ′
i,

i.e., ∂T ′/∂λ′
i is an increasing function of λ′

i. In
Fig. 2, we present an algorithm to find λ′

i, when
given mi, x̄i, λ′′

i , λ′, and φ. Basically, the algorithm
searches for λ′

i in an interval [lb , ub ] by using the
bisection method (lines (9)–(18)), where lb = 0
(line (2)) such that ∂T ′/∂λ′

i (with λ′
i = 0) < φ,

and ub is gradually increased (line (5)), starting
from some small value (line (3)), such that ∂T ′/∂λ′

i
(with λ′

i = ub) ≥ φ. When ub is increased, it is also
made sure that ub < mi/x̄i − λ′′

i (lines (6)–(7)). In
the algorithm, ε is a very small quantity.

In Fig. 3, we present an algorithm to find φ and
λ′

1, λ
′
2, ..., λ

′
n and T ′, when given n, m1, m2, ..., mn,

x̄1, x̄2, ..., x̄n, λ′′
1, λ

′′
2, ..., λ

′′
n, and λ′. Our main ob-

servation is that F is an increasing function of
λ′

1, λ
′
2, ..., λ

′
n, which, when obtained by algorithm

Find_λ′
i, are also increasing functions of φ. In lines

(1)–(27), we determine φ. Again, φ is searched in
an interval [lb , ub ] by using the bisection method
(lines (14)–(26)), where lb = 0 (line (12)) such

Fig. 2 An algorithm to find λ′
i
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Fig. 3 An algorithm to calculate the minimized T ′
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Optimal Load Distribution for Multiple Heterogeneous Blade Servers 35

that F < λ′ (with φ = 0), and ub is gradually in-
creased (line (5)) such that F ≥ λ′ (with φ = ub).
Once φ is available, we can calculate λ′

1, λ
′
2, ..., λ

′
n

(lines (28)–(31)) and T ′ (lines (32)–(36)).

Example 1 Let us consider a group of n = 7 het-
erogeneous blade servers. The sizes of the servers
are mi = 2i, and the speeds of the servers are
si = 1.7 − 0.1i (giga instructions per second), for
all 1 ≤ i ≤ n, i.e., we have a mixture of smaller
servers with faster speeds and larger servers with
slower speeds. The task execution requirement
is r̄ = 1 (giga instructions). The arrival rates of
special tasks are λ′′

i = 0.3mi/x̄i, for all 1 ≤ i ≤ n,
i.e., each blade server is preloaded by special tasks
that contribute 30 % to server utilization. It is
clear that the maximum arrival rate of generic
tasks is

λ′
max =

n∑

i=1

(
mi

x̄i
− λ′′

i

)

.

In this example, we assume that λ′ = 0.5λ′
max =

23.52, which needs to be distributed on the n
servers. The value of λ′ implies that generic tasks
contribute 0.5(100 %–30 %) = 35 % to server
utilization, and the overall server utilization is
roughly 65 %. The optimal load distribution λ′

1, λ′
2,

..., λ′
n of generic tasks found by our algorithms are

given in Table 1. The minimized average response
time of generic tasks is T ′ = 0.8964703 s. In Ta-
ble 1, we also show server utilizations ρ1, ρ2, ..., ρn.
It is observed that for the optimal load distribu-
tion of generic tasks, the n servers have different
utilizations.

Closed-form solutions of λ′
1, λ

′
2, ..., λ

′
n and T ′

can be obtained for some very special cases. For
instance, let us consider the case where m1 =

m2 = · · · = mn = 1, i.e., each server has only one
blade.

Theorem 1 If m1 = m2 = · · · = mn = 1, the aver-
age response time T ′ of all generic tasks in the
group of n blade servers is minimized when

λ′
i = 1

x̄i

⎛

⎝1 − ρ ′′
i −

√
x̄i(1 − ρ ′′

i )

λ′φ

⎞

⎠ ,

for all 1 ≤ i ≤ n, where

φ =
⎛

⎝

⎛

⎝
1√
λ′

n∑

i=1

√
1 − ρ ′′

i

x̄i

⎞

⎠

/(
n∑

i=1

1 − ρ ′′
i

x̄i
− λ′

)⎞

⎠

2

.

Proof When mi = 1, we have

pi,0 = 1 − ρi,

T ′
i = x̄i

1 − ρi
,

∂pi,0

∂ρi
= −1,

and

∂T ′
i

∂ρi
= x̄i

(1 − ρi)2
,

for all 1 ≤ i ≤ n. Based on (1), i.e.,

1

λ′

(

T ′
i + ρ ′

i
∂T ′

i

∂ρi

)

= φ,

we get

1

λ′

(
x̄i

1 − ρi
+ ρ ′

i
x̄i

(1 − ρi)2

)

= φ,

Table 1 Numerical data
in Example 1

i mi si xi λ′
i λ′′

i ρi

1 2 1.6 0.6250000 0.6652046 0.9600000 0.5078764
2 4 1.5 0.6666667 1.8802882 1.8000000 0.6133814
3 6 1.4 0.7142857 2.9973639 2.5200000 0.6568290
4 8 1.3 0.7692308 3.9121948 3.1200000 0.6761726
5 10 1.2 0.8333333 4.5646028 3.6000000 0.6803836
6 12 1.1 0.9090909 4.8769307 3.9600000 0.6694644
7 14 1.0 1.0000000 4.6234149 4.2000000 0.6302439
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that is,

1

λ′ · x̄i

1 − ρi

(

1 + ρ ′
i

1 − ρi

)

= φ.

Consequently, we have

1

λ′ · x̄i

1 − ρi
· 1 − ρ ′′

i

1 − ρi
= φ,

that is,

(1 − ρi)
2 = x̄i(1 − ρ ′′

i )

λ′φ
.

Since ρi < 1, this implies that

ρi = 1 −
√

x̄i(1 − ρ ′′
i )

λ′φ
,

and

ρ ′
i = 1 − ρ ′′

i −
√

x̄i(1 − ρ ′′
i )

λ′φ
,

for all 1 ≤ i ≤ n. Since ρ ′
i = λ′

i x̄i/mi = λ′
i x̄i, we ob-

tain

λ′
i = 1

x̄i

⎛

⎝1 − ρ ′′
i −

√
x̄i(1 − ρ ′′

i )

λ′φ

⎞

⎠ ,

for all 1 ≤ i ≤ n. By the fact that λ′
1 + λ′

2 + · · · +
λ′

n = λ′, we get

λ′ =
n∑

i=1

1 − ρ ′′
i

x̄i
−

⎛

⎝
1√
λ′

n∑

i=1

√
1 − ρ ′′

i

x̄i

⎞

⎠
1√
φ

,

which gives rise to

n∑

i=1

1 − ρ ′′
i

x̄i
− λ′ =

⎛

⎝
1√
λ′

n∑

i=1

√
1 − ρ ′′

i

x̄i

⎞

⎠
1√
φ

,

and

√
φ =

⎛

⎝
1√
λ′

n∑

i=1

√
1 − ρ ′′

i

x̄i

⎞

⎠

/(
n∑

i=1

1 − ρ ′′
i

x̄i
− λ′

)

,

and

φ =
⎛

⎝

⎛

⎝
1√
λ′

n∑

i=1

√
1 − ρ ′′

i

x̄i

⎞

⎠

/(
n∑

i=1

1 − ρ ′′
i

x̄i
− λ′

)⎞

⎠

2

.

The theorem is proved. 	


4 Special Tasks of Higher Priority

In this section, we consider special tasks with
higher priority than generic tasks, which are
placed ahead of generic tasks in a waiting queue
and are always scheduled before generic tasks.

First of all, we establish the following theorem,
which gives the average response time of generic
tasks when they are scheduled with special tasks
of higher priority.

Theorem 2 The average response time of generic
tasks in server Si is

T ′
i = x̄i

(

1 + pi,0
mmi−1

i

mi! · 1

1 − ρ ′′
i

· ρ
mi
i

(1 − ρi)2

)

. (2)

Remark Compared to T ′
i where special tasks do

not have priority, the T ′
i in this theorem has an

extra factor of 1/(1 − ρ ′′
i ), due to special tasks of

higher priority.

Proof To find the average response time of
generic tasks when they are scheduled with special
tasks of higher priority, we need to figure out the
average waiting time of generic tasks. To this end,
we also need to find the average waiting time of
special tasks.

Let Nq,i = N′
q,i + N′′

q,i, where N′
q,i and N′′

q,i are
the average numbers of generic and special tasks
in the waiting queue of server Si respectively. Let
W ′

i and W ′′
i denote the average waiting time of

generic and special tasks respectively. Then, by
Little’s result, we have N′

q,i = λ′
iW

′
i and N′′

q,i =
λ′′

i W ′′
i . Since all special tasks are in front of generic

tasks, we get

W ′′
i = W0,i + N′′

q,iW
∗
i = W0,i + λ′′

i W ′′
i W∗

i ,

Author's personal copy



Optimal Load Distribution for Multiple Heterogeneous Blade Servers 37

which gives

W ′′
i = W0,i

1 − λ′′
i W∗

i

= W0,i

1 − λ′′
i (x̄i/mi)

= W0,i

1 − ρ ′′
i

= Pq,iW∗
i

1 − ρ ′′
i

= Pq,i

mi(1 − ρ ′′
i )

x̄i.

Let Mi = λ′′
i W ′

i be the average number of special
tasks that arrive to server Si while a generic task is
in the waiting queue. Notice that W ′

i includes W0,i

and Nq,i completions of task executions and Mi

additional completions of task executions. There-
fore, we have

W ′
i = W0,i + (Nq,i + Mi)W∗

i

= W0,i + (N′
q,i + N′′

q,i + Mi)W∗
i

= W0,i + (λ′
iW

′
i + λ′′

i W ′′
i + λ′′

i W ′
i)W∗

i

= W0,i + (λiW ′
i + λ′′

i W ′′
i )W∗

i ,

which yields

W ′
i = W0,i + λ′′

i W ′′
i W∗

i

1 − λiW∗
i

= W0,i + ρ ′′
i W ′′

i

1 − ρi

= W0,i + W0,iρ
′′
i /(1 − ρ ′′

i )

1 − ρi

= W0,i

(1 − ρ ′′
i )(1 − ρi)

= Pq,i

mi(1 − ρ ′′
i )(1 − ρi)

x̄i.

The average response time of generic tasks in
server Si is

T ′
i = x̄i + W ′

i = x̄i

(

1 + Pq,i

mi(1 − ρ ′′
i )(1 − ρi)

)

,

which is actually

T ′
i = x̄i

(

1 + pi,0
mmi−1

i

mi! · 1

1 − ρ ′′
i

· ρ
mi
i

(1 − ρi)2

)

.

This proves the theorem. 	


Our optimal load distribution problem for mul-
tiple heterogeneous blade servers in a cloud com-
puting environment with prioritized special tasks
can be formulated and solved in a similar way
to that in the last section. The only difference is
that the average response time of generic tasks
in server Si is modified as (2), and the partial
derivative ∂T ′

i/∂ρi is modified as follows:

∂T ′
i

∂ρi
= x̄i

mmi−1
i
mi! · 1

1 − ρ′′
i

×
⎛

⎝
∂pi,0

∂ρi
· ρ

mi
i

(1 − ρi)
2

+ pi,0
ρ

mi−1
i (mi − (mi − 2)ρi)

(1 − ρi)
3

⎞

⎠,

for all 1 ≤ i ≤ n.

Example 2 Let us consider the same system in Ex-
ample 1. All parameters remain the same, except
that special tasks have higher priority than generic
tasks. The optimal load distribution λ′

1, λ′
2, ..., λ′

n of
generic tasks found by our algorithms are given in
Table 2. The minimized average response time of
generic tasks is T ′ = 0.9209392 s, which is greater
than that in Example 1, where special tasks have
no priority.

Similar to the last section, we can also consider
the case where m1 = m2 = · · · = mn = 1, i.e., each
server has only one blade.

Theorem 3 If m1 = m2 = · · · = mn = 1, the aver-
age response time T ′ of all generic tasks in the
group of n blade servers with prioritized special
tasks is minimized when

λ′
i = 1

x̄i

⎛

⎝1 − ρ ′′
i −

√
(

λ′φ
x̄i

+ ρ ′′
i

1 − ρ ′′
i

)−1
⎞

⎠ ,

for all 1 ≤ i ≤ n, where φ is the root of the follow-
ing equation:

λ′ =
n∑

i=1

1

x̄i

⎛

⎝1 − ρ ′′
i −

√
(

λ′φ
x̄i

+ ρ ′′
i

1 − ρ ′′
i

)−1
⎞

⎠ .
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Table 2 Numerical data
in Example 2

i mi si xi λ′
i λ′′

i ρi

1 2 1.6 0.6250000 0.5908113 0.9600000 0.4846285
2 4 1.5 0.6666667 1.7714948 1.8000000 0.5952491
3 6 1.4 0.7142857 2.8813939 2.5200000 0.6430231
4 8 1.3 0.7692308 3.8136848 3.1200000 0.6667005
5 10 1.2 0.8333333 4.5164617 3.6000000 0.6763718
6 12 1.1 0.9090909 4.9419622 3.9600000 0.6743911
7 14 1.0 1.0000000 5.0041912 4.2000000 0.6574422

Proof When mi = 1, we have

T ′
i = x̄i

(

1 + 1

1 − ρ ′′
i

· ρi

1 − ρi

)

,

and

∂T ′
i

∂ρi
= x̄i

(1 − ρ ′′
i )(1 − ρi)2

,

for all 1 ≤ i ≤ n. Based on (1), i.e.,

1

λ′

(

T ′
i + ρ ′

i
∂T ′

i

∂ρi

)

= φ,

we get

1

λ′

(

x̄i

(

1 + 1

1 − ρ ′′
i

· ρi

1 − ρi

)

+ ρ ′
i

x̄i

(1 − ρ ′′
i )(1 − ρi)2

)

= φ,

that is,

x̄i

λ′

(

1 + ρi

(1 − ρ ′′
i )(1 − ρi)

+ ρ ′
i

(1 − ρ ′′
i )(1 − ρi)2

)

= φ.

Notice that

1 + ρi

(1 − ρ′′
i )(1 − ρi)

+ ρ′
i

(1 − ρ′′
i )(1 − ρi)2

= 1 + 1

1 − ρ′′
i

(
1

1 − ρi
− 1

)

+ ρ′
i

(1 − ρ′′
i )(1 − ρi)2

= 1 − 1

1 − ρ′′
i

+ 1

(1 − ρ′′
i )(1 − ρi)

+ ρ′
i

(1 − ρ′′
i )(1 − ρi)2

= − ρ′′
i

1 − ρ′′
i

+ 1

(1 − ρ′′
i )(1 − ρi)

(

1 + ρ′
i

1 − ρi

)

= 1

(1 − ρi)2
− ρ′′

i

1 − ρ′′
i
.

Therefore, we have

x̄i

λ′

(
1

(1 − ρi)2
− ρ ′′

i

1 − ρ ′′
i

)

= φ,

that is,

1

(1 − ρi)2
= λ′φ

x̄i
+ ρ ′′

i

1 − ρ ′′
i
,

which implies that

ρi = 1 −
√

(
λ′φ
x̄i

+ ρ ′′
i

1 − ρ ′′
i

)−1

,

and

ρ ′
i = 1 − ρ ′′

i −
√

(
λ′φ
x̄i

+ ρ ′′
i

1 − ρ ′′
i

)−1

,

and

λ′
i = 1

x̄i

⎛

⎝1 − ρ ′′
i −

√
(

λ′φ
x̄i

+ ρ ′′
i

1 − ρ ′′
i

)−1
⎞

⎠ ,

for all 1 ≤ i ≤ n. Again, to find φ, we use the fact
that λ′

1 + λ′
2 + · · · + λ′

n = λ′, namely,

λ′ =
n∑

i=1

1

x̄i

⎛

⎝1 − ρ ′′
i −

√
(

λ′φ
x̄i

+ ρ ′′
i

1 − ρ ′′
i

)−1
⎞

⎠ .

Hence, φ is the root of the above equation. 	


5 Numerical Data

In this section, we demonstrate some numerical
data and provide some important observations.
Notice that all parameters are chosen for the pur-
pose of illustration.
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Recall that given n heterogeneous blade
servers, our parameters for optimal load distrib-
ution of generic tasks are

• m1, m2, ..., mn: the sizes of the servers;
• s1, s2, ..., sn: the execution speeds of the server

blades;
• r̄: the average task execution requirement;
• λ′′

1, λ
′′
2, ..., λ

′′
n: the arrival rates of special tasks.

Given the above parameters and the total arrival
rate of generic tasks λ′, the optimal arrival rates
λ′

1, λ
′
2, ..., λ

′
n of generic tasks on the servers and

the minimized average response time T ′ of generic
tasks can be found by using our algorithms.

In Figs. 4 and 5, we show the impact of server
sizes on the average response time T ′ of generic
tasks. We consider five groups of n = 7 heteroge-
neous blade servers:

• Group 1: (m1, m2, m3, m4, m5, m6, m7) = (1, 3,

5, 7, 9, 11, 13);
• Group 2: (m1, m2, m3, m4, m5, m6, m7) = (1, 3,

5, 8, 10, 12, 14);
• Group 3: (m1, m2, m3, m4, m5, m6, m7) = (2, 4,

6, 8, 10, 12, 14);
• Group 4: (m1, m2, m3, m4, m5, m6, m7) = (3, 5,

7, 8, 10, 12, 14);
• Group 5: (m1, m2, m3, m4, m5, m6, m7) = (3, 5,

7, 9, 11, 13, 15).

The total size (i.e., the total number of server blades)
is m = m1 + m2 + · · · + mn = 49, 53, 56, 59, 63 in

the five groups respectively. The server speeds
are si = 1.7 − 0.1i, for all 1 ≤ i ≤ n. The task ex-
ecution requirement is r̄ = 1. The arrival rates of
special tasks are λ′′

i = 0.3mi/x̄i, for all 1 ≤ i ≤ n.
For each group, the minimized average response
time T ′ of generic tasks is plotted as a function
of the total arrival rate of generic tasks λ′ in
two different cases, namely, special tasks without
priority in Fig. 4 and special tasks with priority in
Fig. 5. It is obvious that the average response time
T ′ of generic tasks with prioritized special tasks
is greater than that with non-prioritized special
tasks. It is observed that slight increment of m
noticeably reduces the average response time T ′
of generic tasks, i.e., server sizes have significant
impact on the average response time T ′ of generic
tasks, especially when λ′ is large.

In Figs. 6 and 7, we show the impact of server
speeds on the average response time T ′ of generic
tasks. We consider a group of n = 7 heteroge-
neous blade servers of sizes mi = 2i, for all 1 ≤
i ≤ n. The server speeds are si = s − 0.1i, for all
1 ≤ i ≤ n, with s = 1.5, 1.6, 1.7, 1.8, 1.9. The task
execution requirement is r̄ = 1. The arrival rates
of special tasks are λ′′

i = 0.3mi/x̄i, for all 1 ≤ i ≤ n.
For each s, the minimized average response time
T ′ of generic tasks is plotted as a function of the
total arrival rate of generic tasks λ′ in two different
cases, namely, special tasks without priority in
Fig. 6 and special tasks with priority in Fig. 7. It
is observed that slight increment of s noticeably

Fig. 4 T ′ vs. λ′ and m
(special tasks without
priority)
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Fig. 5 T ′ vs. λ′ and m
(special tasks with
priority)
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reduces the average response time T ′ of generic
tasks, i.e., server speeds have significant impact
on the average response time T ′ of generic tasks,
especially when λ′ is large.

In Figs. 8 and 9, we show the impact of the task
execution requirement on the average response
time T ′ of generic tasks. We consider a group of
n = 7 heterogeneous blade servers of sizes mi =
2i, for all 1 ≤ i ≤ n. The server speeds are si =
1.7 − 0.1i, for all 1 ≤ i ≤ n. The task execution re-
quirement is r̄ = 0.8, 0.9, 1.0, 1.1, 1.2. The arrival
rates of special tasks are λ′′

i = 0.3mi/x̄i, for all 1 ≤
i ≤ n. For each r̄, the minimized average response

time T ′ of generic tasks is plotted as a function
of the total arrival rate of generic tasks λ′ in
two different cases, namely, special tasks without
priority in Fig. 8 and special tasks with priority
in Fig. 9. It is observed that slight increment of r̄
noticeably increases the average response time T ′
of generic tasks, i.e., task execution requirement
has significant impact on the average response
time T ′ of generic tasks, especially when λ′ is
large.

In Figs. 10 and 11, we show the impact of
arrival rates of special tasks on the average re-
sponse time T ′ of generic tasks. We consider a

Fig. 6 T ′ vs. λ′ and s
(special tasks without
priority)
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Fig. 7 T ′ vs. λ′ and s
(special tasks with
priority)
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group of n = 7 heterogeneous blade servers of
sizes mi = 2i, for all 1 ≤ i ≤ n. The server speeds
are si = 1.7 − 0.1i, for all 1 ≤ i ≤ n. The task ex-
ecution requirement is r̄ = 1. The arrival rates of
special tasks are λ′′

i = y(mi/x̄i), for all 1 ≤ i ≤ n,
where y = 0.20, 0.25, 0.30, 0.35, 0.40. For each y,
the minimized average response time T ′ of generic
tasks is plotted as a function of the total arrival
rate of generic tasks λ′ in two different cases,
namely, special tasks without priority in Fig. 10
and special tasks with priority in Fig. 11. It is
observed that slight increment of the arrival rates

of special tasks noticeably increases the average
response time T ′ of generic tasks, i.e., the arrival
rates of special tasks have significant impact on
the average response time T ′ of generic tasks,
especially when λ′ is large.

Recall that the server utilization is

ρi = (λ′
i + λ′′

i )
r̄

misi
< 1,

which implies that

λ′
i <

misi

r̄
− λ′′

i .

Fig. 8 T ′ vs. λ′ and r̄
(special tasks without
priority)
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Fig. 9 T ′ vs. λ′ and r̄
(special tasks with
priority)
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The right-hand side of the above inequality is the
saturation point of λ′

i. The maximum arrival rate
of generic tasks is

λ′
max =

n∑

i=1

(misi

r̄
− λ′′

i

)
.

The right-hand side of the above inequality is
the saturation point of λ′. All reduction of the
average response time T ′ of generic tasks is due
to the increment of the saturation point of λ′. As a

rule-of-thumb, to reduce T ′, we need to increase
λ′

max, e.g., to increase mi or si, or to reduce r̄ or λ′′
i .

In Figs. 12 and 13, we show the impact of server
size heterogeneity on the average response time
T ′ of generic tasks. We consider five groups of n =
7 heterogeneous blade servers:

• Group 1: (m1, m2, m3, m4, m5, m6, m7) = (1, 2,

2, 8, 14, 14, 15);
• Group 2: (m1, m2, m3, m4, m5, m6, m7) = (2, 4,

6, 8, 10, 12, 14);

Fig. 10 T ′ vs. λ′ and λ′′
i

(special tasks without
priority)
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Fig. 11 T ′ vs. λ′ and λ′′
i

(special tasks with
priority)
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• Group 3: (m1, m2, m3, m4, m5, m6, m7) = (4, 6,

6, 8, 10, 10, 12);
• Group 4: (m1, m2, m3, m4, m5, m6, m7) = (6, 6,

8, 8, 8, 10, 10);
• Group 5: (m1, m2, m3, m4, m5, m6, m7) = (8, 8,

8, 8, 8, 8, 8).

The server speeds are si = 1.3, for all 1 ≤ i ≤ n.
Hence, all the groups have the same total num-
ber of blades, i.e., m = m1 + m2 + · · · + mn = 56,
and all the blades have the same speed s = 1.3.
However, these groups have decreased degree
of size heterogeneity, with Group 1 being the
most heterogeneous and Group 5 being the least

heterogeneous. The task execution requirement is
r̄ = 1. The arrival rates of special tasks are λ′′

i =
0.3mi/x̄i, for all 1 ≤ i ≤ n. Notice that the total
arrival rate of special tasks is

λ′′ =
n∑

i=1

λ′′
i =

n∑

i=1

0.3
mi

x̄i
= 0.3

n∑

i=1

mis
r̄

= 0.3
s
r̄

n∑

i=1

mi = 0.3 × 1.3 × 56 = 21.84,

which is the same for all groups. For each group,
the minimized average response time T ′ of generic
tasks is plotted as a function of the total arrival

Fig. 12 T ′ vs. λ′ and size
heterogeneity (special
tasks without priority)
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Fig. 13 T ′ vs. λ′ and size
heterogeneity (special
tasks with priority)
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rate of generic tasks λ′ in two different cases,
namely, special tasks without priority in Fig. 12
and special tasks with priority in Fig. 13. It is
observed that although the five groups of servers
have significant difference in sizes, they have al-
most identical average response time T ′ of generic
tasks when the generic tasks are optimally distrib-
uted. In other words, the server size heterogene-
ity does not have much impact on the average
response time T ′ of generic tasks. Surprisingly,
from Group 1 to Group 5, T ′ is actually sightly
increasing, i.e., larger (smaller, respectively)
size heterogeneity results in shorter (longer,
respectively) T ′.

In Figs. 14 and 15, we show the impact of server
speed heterogeneity on the average response time
T ′ of generic tasks. We consider five groups of n =
7 heterogeneous blade servers:

• Group 1: (s1, s2, s3, s4, s5, s6, s7) = (0.1, 0.5,

0.9, 1.3, 1.7, 2.1, 2.5);
• Group 2: (s1, s2, s3, s4, s5, s6, s7) = (0.4, 0.7,

1.0, 1.3, 1.6, 1.9, 2.2);
• Group 3: (s1, s2, s3, s4, s5, s6, s7) = (0.7, 0.9,

1.1, 1.3, 1.5, 1.7, 1.9);
• Group 4: (s1, s2, s3, s4, s5, s6, s7) = (1.0, 1.1,

1.2, 1.3, 1.4, 1.5, 1.6);

Fig. 14 T ′ vs. λ′ and
speed heterogeneity
(special tasks without
priority)
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Fig. 15 T ′ vs. λ′ and
speed heterogeneity
(special tasks with
priority)
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• Group 5: (s1, s2, s3, s4, s5, s6, s7) = (1.3, 1.3,

1.3, 1.3, 1.3, 1.3, 1.3).

The server sizes are mi = 8, for all 1 ≤ i ≤ n.
Hence, all the servers have the same size m =
8 and all the groups have the same total speed
m(s1 + s2 + · · · + sn) = 72.8, but the blades have
different speeds. These groups have decreased de-
gree of speed heterogeneity, with Group 1 being
the most heterogeneous and Group 5 being the
least heterogeneous. The task execution require-
ment is r̄ = 1. The arrival rates of special tasks
are λ′′

i = 0.3mi/x̄i, for all 1 ≤ i ≤ n. Notice that the
total arrival rate of special tasks is

λ′′ =
n∑

i=1

λ′′
i =

n∑

i=1

0.3
mi

x̄i
= 0.3

n∑

i=1

msi

r̄

= 0.3
m
r̄

n∑

i=1

si = 0.3 × 72.8 = 21.84,

which is the same for all groups. For each group,
the minimized average response time T ′ of generic
tasks is plotted as a function of the total ar-
rival rate of generic tasks λ′ in two different
cases, namely, special tasks without priority in
Fig. 14 and special tasks with priority in Fig. 15.
It is observed that although the five groups of
servers have significant difference in speeds, they
have very close average response time T ′ of
generic tasks when the generic tasks are opti-
mally distributed. In other words, the server speed

heterogeneity does not have much impact on the
average response time T ′ of generic tasks. Sur-
prisingly, from Group 1 to Group 5, T ′ is ac-
tually sightly increasing, i.e., larger (smaller, re-
spectively) speed heterogeneity results in shorter
(longer,respectively) T ′.

6 Conclusions

We have proposed the problem of optimal load
distribution of generic tasks on multiple heteroge-
neous blade servers preloaded with special tasks
in a cloud computing environment. The problem is
formulated as a multivariable optimization prob-
lem based on a queuing model. We developed
algorithms to find the numerical solution of an
optimal load distribution and the minimum aver-
age response time of generic tasks. We have con-
sidered two different situations of special tasks,
namely, special tasks with and without higher pri-
ority. We also demonstrated extensive numerical
examples and data. We found that server sizes,
server speeds, task execution requirement, and
the arrival rates of special tasks all have significant
impact on the average response time of generic
tasks, especially when the total arrival rate of
generic tasks is large. We also found that the
server size heterogeneity and the server speed het-
erogeneity do not have much impact on the aver-
age response time of generic tasks. Furthermore,
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larger (smaller, respectively) heterogeneity results
in shorter (longer, respectively) average response
time of generic tasks.
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