
Journal of Computer and System Sciences 140 (2024) 103492
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

journal homepage: www.elsevier.com/locate/jcss

Performance modeling and analysis for randomly walking

mobile users with Markov chains

Keqin Li

Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 June 2022
Received in revised form 15 August 2023
Accepted 4 October 2023
Available online 18 October 2023

Keywords:
Average response time
Computation offloading
Markov chain
Mobility
Performance prediction
Queueing system
Random walk

We treat user equipments (UEs) and mobile edge clouds (MECs) as M/G/1 queueing sys-
tems, which are the most suitable, powerful, and manageable models. We propose a com-
putation offloading strategy which can satisfy all UEs served by an MEC and develop an
efficient method to find such a strategy. We use discrete-time Markov chains, continuous-
time Markov chains, and semi-Markov processes to characterize the mobility of UEs, and
calculate the joint probability distribution of the locations of UEs at any time. We extend
our Markov chains to incorporate mobility cost into consideration, and are able to obtain
the average response time of a UE with location change penalty. We can algorithmically
predict the overall average response time of tasks generated on a UE and also demonstrate
numerical data and examples. We consider the power constrained MEC speed setting prob-
lem and develop an algorithm to solve the problem for two power consumption models.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Mobile edge computing (i.e., multi-access edge computing) enables cloud computing capabilities and service environ-
ments available at the edge of any network. By running applications closer to the cellular customers, network congestion
can be reduced and applications can perform better with shorter response time. Mobile edge computing has been exten-
sively used in collaborative computing, connected cars, content delivery, edge video caching, healthcare, mobile big data
analytics, service function chaining, smart enterprises, smart grids, and smart venues.

There are multiple challenges in modeling and analyzing the performance of mobile user equipments (UEs) in a mobile
edge computing (also called fog computing) environment with multiple heterogeneous mobile edge clouds (MECs). Adequate
and analytical formulation of UEs and MECs with dynamicity, interaction, mobility, randomness, and cost using mathemat-
ically tractable models and methods is critical in performance analysis and prediction for mobile users. (1) Dynamicity – A
UE has an infinite sequence of tasks dynamically generated for the UE to process, i.e., a UE does not just process a finite
and static set of tasks. (2) Interaction – There are multiple UEs which share the computing and communication resources
in the MECs. An MEC does not just serve one UE, but many UEs. (3) Mobility – UEs move among the MECs’ service areas,
i.e., the location of a UE can change, and a UE may request for services from different MECs at different times. (4) Random-
ness – Task computation and communication requirements, task execution times, and the movement of UEs are all random

E-mail address: lik@newpaltz.edu.
https://doi.org/10.1016/j.jcss.2023.103492
0022-0000/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2023.103492
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2023.103492&domain=pdf
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.jcss.2023.103492

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Table 1
Overview of mathematical models and analytical methods.

Challenge Model and Method

Mobility and Cost Markov chains: DTMC, CTMC, SMP, and extensions,
Performance prediction

Dynamicity and Randomness Queueing systems: M/M/1, M/G/1, M/M/m, M/G/m,
Multi-variable optimization, Randomized online offloading

Interaction (Computation offloading) Non-cooperative games, Combinatorial optimization,
Lyapunov optimization

and unknown in advance. (5) Cost – When a UE moves from one MEC to another, it may incur mobility cost for service
adjustment, i.e., temporarily losing service from the MECs for certain amount of time.

Table 1 gives an overview of the mathematical models and analytical methods that have been adopted to handle the
various challenges mentioned above, including non-cooperative games [5,10,14,16,20], combinatorial optimization [17,18],
and Lyapunov optimization [7] to deal with interaction and computation offloading; queueing systems [15], multi-variable
optimization [8,9], and randomized online offloading [19] to handle dynamicity and randomness. However, very little model
and method has been developed for mobility and cost. The motivation of this paper is to construct the model of Markov
chains and to apply the method of performance prediction for mobile UEs, which are novel in the literature.

1.2. Contributions

In this paper, we model, analyze, and predict the performance of mobile users in fog computing using queueing systems
and Markov chains. We consider a mobile edge computing environment with multiple mobile UEs and multiple heteroge-
neous MECs. The main contributions of the paper are summarized as follows.

• First, to handle task dynamicity and randomness, we treat the UEs and the MECs as M/G/1 queueing systems, which
are the most suitable and powerful and manageable models that are able to capture and characterize task infinity and
stochasticity.

• Second, for task interaction, we propose a computation offloading strategy which can satisfy all UEs served by an MEC
in the sense that all UEs and the MEC have the same average task response time, and develop an efficient method to
find such a strategy.

• Third, for random movement, we use discrete-time Markov chains, continuous-time Markov chains, and semi-Markov
processes to characterize the mobility of UEs, and are able to calculate the joint probability distribution of the locations
of UEs at any time.

• Fourth, we extend our Markov chains to incorporate mobility cost into consideration, and are able to obtain the average
response time of a UE with location change penalty, and to examine the impact of deterministic and probabilistic
transition time on performance.

• Fifth, based on the above analytical results, we can algorithmically predict the overall average response time of tasks
generated on a UE averaged over all UE distributions and times, and also demonstrate numerical data and examples.

• Sixth, we consider the power constrained MEC speed setting problem and develop an algorithm to solve the problem
for two power consumption models, which is applicable to all UE mobility models, as well as the random location
distribution model.

To the best of the author’s knowledge, this is the first paper which adopts Markov chains to formulate random mobility
of UEs and at the same time, applies queueing systems to predict the performance of randomly mobile UEs. The paper
makes tangible contributions to accurate and analytical performance prediction for randomly walking mobile users in fog
computing based on solid and rigorous mathematical models and methods.

The paper is organized as follows. In Section 2, we describe our mathematical models. In Section 3, we develop our
analytical methods. In Section 4, we predict the performance of randomly walking mobile UEs. In Section 5, we demonstrate
some numerical data and examples. In Section 6, we derive performance predictions in closed-form for homogeneous UEs
and MECs. In Section 7, we consider mobility cost and service delay for location change. In Section 8, we discuss speed
setting for MECs with power consumption constraint. In Section 9, we mention extensibility of our models and methods. In
Section 10, we comment on some related work. Finally, we conclude the paper in Section 11.

2. Mathematical models

In this section, we describe our mathematical models. Table 2 provides a list of notations and their definitions used in
this paper.

2.1. Queueing systems

In this section, we present queueing models for UEs and MECs.
2

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Table 2
Summary of notations and definitions.

Notation Definition

m the number of mobile user equipments
n the number of mobile edge clouds
λi the task arrival rate of UEi

λ̂i the arrival rate of the substream of tasks of UEi processed on an MEC
ri the random execution requirement of a task generated on UEi

di the random amount of data to be communicated between UEi and an MEC
si the computation speed of UEi

xi the random task execution time on UEi

ρi the utilization of UEi

W i the average task waiting time of UEi

T i the average task response time of UEi

I j the set of indices of UEs at MEC j

λ̃ j the task arrival rate of MEC j

s̃ j the computation speed of MEC j

ci, j the communication speed between UEi and MEC j

x̃ j the random task execution time on MEC j

ρ̃ j the utilization of MEC j

W̃ j the average task waiting time of MEC j

T̃ i, j the average response time of tasks offloaded from UEi to MEC j

T̃ j the average task response time of MEC j

pi(j, j′) the transition probability of UEi from MEC j to MEC j′
Pi the n × n transition probability matrix of UEi

J = (j0, j1, ..., jm−1), a distribution of the UEs, where UEi is at MEC ji

p(J , J ′) the transition probability from J to J ′
P the joint nm × nm transition probability matrix of m UEs
qi(j, j′) the transition rate of UEi from MEC j to MEC j′
Q i the n × n transition rate matrix of UEi

q(J , J ′) the transition rate from J to J ′
Q the joint nm × nm transition rate matrix of m UEs
τi, j the random sojourn time of UEi at MEC j

π
(t)
i (j) the probability that UEi is at MEC j at time t

π
(t)
i = [π(t)

i (0),π
(t)
i (1), ...,π

(t)
i (n − 1)], the probability vector of UEi at time t

πi = [πi(0),πi(1), ...,πi(n − 1)], the stationary probability vector of UEi

π(t)(J) the probability of distribution J at time t
π(t) = [π(t)(0),π(t)(1), ...,π(t)(N − 1)], the joint probability vector at time t
π = [π(0),π(1), ...,π(N − 1)], the joint stationary probability vector
Ti(J) the average response time of tasks generated on UEi under J

T (t)
i the instantaneous average response time of tasks generated on UEi at time t

T ∗
i the overall average response time of tasks generated on UEi

T (∞)
i the stationary average response time of tasks generated on UEi

� mobility cost, transition time, service delay, and location change penalty
T̃ (t)

j the instantaneous average response time of MEC j at time t

T̃ (∞)
j the stationary average response time of MEC j

ξ j ,α j , P∗
j , β j parameters of power consumption models

B(t)
j (B j) the probability that MEC j is busy at time t (in a stationary state)

We consider a mobile edge computing environment with multiple UEs and multiple MECs. There are m heterogeneous
UEs: UE0, UE1, ..., UEm−1, and there are n heterogeneous MECs: MEC0, MEC1, ..., MECn−1. Each UE and MEC is modeled as
an M/G/1 queueing system. Fig. 1 shows UEi1 , UEi2 , ..., UEib , which are in the service area of MEC j . Notice that the M/G/1
queueing systems for UEi1 , UEi2 , ..., UEib , and MEC j are not tandem, in the sense that a task received by UEik is either
processed on UEik , or instantly offloaded to MEC j and processed on MEC j (see Section 2.2).

Each UEi has a Poisson stream of tasks with arrival rate λi (measured by the number of tasks per second). Task com-
putation requirements are independent and identically distributed (i.i.d.) random variables ri (measured by the number of
billion instructions (BI)) with mean ri and second moment r2

i . Task communication requirements are i.i.d. random variables
di (measured by the number of million bits (MB)) with mean di and second moment d2

i . Therefore, our model can ac-
commodate an infinite sequence of dynamically and stochastically generated random tasks, instead of a finite collection of
deterministic and known tasks.

(Notation: z and z2 stand for the mean and the second moment of a random variable z.)
The computation speed of UEi is si (measured by BI/second). If a task generated on UEi is executed locally on UEi , the

execution time (measured by second) is a random variable

xi = ri
,

si

3

K. Li Journal of Computer and System Sciences 140 (2024) 103492
� � �

�

��
��

M/G/1

� � �

�

��
��

M/G/1

� � �

�

��
��

M/G/1

� � ���
��

M/G/1

��
�

UEi1

λi1

λ̂i1

UEi2

λi2

λ̂i2

UEib

λib

λ̂ib

MEC j

λ̃ j

Fig. 1. A queueing model for multiple UEs in the service area of MEC j with I j = {i1, i2, ..., ib}. These UEs offload tasks to MEC j .

with mean

xi = ri

si
,

and second moment

x2
i = r2

i

s2
i

,

for all 0 ≤ i ≤ m − 1.
The computation speed of MEC j is s̃ j (measured by BI/second). The communication speed between UEi and MEC j is

ci, j (measured by MB/second). If a task generated on UEi is executed remotely on MEC j , the execution time (measured by
second) is a random variable

x̃i, j = ri

s̃ j
+ di

ci, j
,

which is the computation time ri/s̃ j plus the communication time di/ci, j , with mean

x̃i, j = ri

s̃ j
+ di

ci, j
,

and second moment

x̃2
i, j = r2

i

s̃2
j

+ 2
ridi

s̃ jci, j
+ d2

i

c2
i, j

,

for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.

2.2. Resource sharing

Let I j = {i1, i2, ..., ib} denote the set of indices of UEs at MEC j . All UEs at MEC j share and compete for the computing
power and service capacity of MEC j by offloading computation tasks to MEC j . These UEs do not have common interest
4

K. Li Journal of Computer and System Sciences 140 (2024) 103492
UEi1

λi1 − λ̂i1

T ′
i1

Ti1

UEi2

λi2 − λ̂i2

T ′
i2

Ti2

UEib

λib − λ̂ib

T ′
ib

T ib

MEC j

λ̃ j = λ̂i1 + λ̂i2 + · · · + λ̂ib

T̃ j

� � �

T

Fig. 2. A computation offloading strategy which makes all UEs served by MEC j and MEC j itself having the same average task response time.

in optimizing their combined performance, but each UE is interested in optimizing its own performance. While a non-
cooperative game can be played by the UEs [14], a Nash equilibrium is analytically hard to characterize and capture.

We use λ̂i to represent the arrival rate of the substream of tasks of UEi processed on MEC j . Let Ti be the average task
response time of UEi , and T̃ j be the average task response time of MEC j . For an MEC j , our computation offloading strategy is
to find λ̂i , i ∈ I j , and to get T , such that all UEs served by MEC j and MEC j itself have the same average task response time,
i.e., Ti = T̃ j = T , for all i ∈ I j . Such a strategy treats all UEs equally and satisfies all of them.

The above computation offloading strategy is illustrated in Fig. 2. Let T ′
ik

be the average task response time of UEik

without any offloading. In the beginning, Tik = T ′
ik

. By offloading λ̂ik amount of workload to MEC j (see Fig. 1), Tik is
reduced, while T̃ j is increased. As illustrated by the dashed line in Fig. 2, it is clear that there exist λ̂i1 , ̂λi2 , ..., ̂λib , such that
Ti1 = Ti2 = · · · = Tib = T̃ j = T .

2.3. Random walks

In this section, we discuss mobility modeling for randomly walking UEs.
The main concern is the geographical relationship between a UE and the MECs. In mobile edge computing, the location

of a UE is essentially the MEC to which the UE can offload tasks. It is assumed that each MEC has certain service area (i.e.,
the big circles in Fig. 3). The service areas of different MECs do not overlap. At any moment, a UE is in the service area of
only one MEC (i.e., the UE is at the MEC) and the UE can offload its tasks to the MEC.

When a UE walks, it essentially moves from the service area of one MEC to the service area of another MEC, i.e., changes
its location from one MEC to another MEC. Moving in the same service area is considered as still. Movements of different
UEs are independent of each other. The trajectory of a UE is entirely random and not available in advance.

We would like to mention that when a UE moves from one MEC to another MEC, the service areas of both MECs are
affected, since all UEs in the service areas of both MECs need to decide their new computation offloading strategies. It may
take a little amount of time for both MECs to re-stabilize. To make our analysis in Sections 3.1–3.2 manageable, we will
assume that such time overhead is small and its impact is negligible.

Markov chains are suitable, convenient, and effective for modeling random walks. We will consider both discrete-time
Markov chains (DTMC) and continuous-time Markov chains (CTMC), and their extension, i.e., semi-Markov processes (SMP),
which make it possible to calculate the joint probability distribution of the locations of UEs at any time. The knowledge of
5

K. Li Journal of Computer and System Sciences 140 (2024) 103492
MEC0

MEC1 MEC2

�UE0

�UE1

�UE2

�UE3

�UE4

�UE5

�UE6

Fig. 3. Each MEC has certain service area (i.e., the big circle). Mobile UEs randomly walk among the circles. I0 = {0,4,5}. I1 = {1,6}. I2 = {2,3}.

random distribution of UEs among MECs is a key component in and the most challenging part of mobility modeling of UEs,
and decisive to performance analysis of mobile UEs.

2.3.1. Discrete-time Markov chains
In our DTMC, time is divided into slots of equal length (e.g., 10 minutes) numbered as t = 1, 2, 3, At the beginning

of each time slot, a UE may move from one MEC to another MEC. The movement of UEi is governed by an n × n transition
probability matrix

Pi = [pi(j, j′)],
where pi(j, j′), 0 ≤ j, j′ ≤ n − 1, is the transition probability of UEi from MEC j to MEC j′ in a time slot. This means that
when UEi is at MEC j , it stays there (but still can move in the service area of MEC j) for a random number of time slots
(which is geometrically distributed with parameter 1 − pi(j, j) and mean 1/(1 − pi(j, j))) and then transitions to another
MEC.

A Markov chain defined by Pi can be represented by a directed graph Gi = (V , Ei), with vertex v j ∈ V representing MEC j ,
and edge (v j, v j′) ∈ Ei with weight pi(j, j′) �= 0 representing the transition probability from MEC j to MEC j′ . We assume
that Gi is strongly connected, i.e., there is a directed path from every vertex to every other vertex, for all 0 ≤ i ≤ m − 1.

2.3.2. Continuous-time Markov chains
In our CTMC, a UE can change its location at any time. The movement of UEi is governed by an n × n transition rate

matrix

Q i = [qi(j, j′)],
where qi(j, j′), 0 ≤ j �= j′ ≤ n − 1, is the transition rate of UEi from MEC j to MEC j′ . Additionally, we have

qi(j, j) = −
∑
j′ �= j

qi(j, j′),

for all 0 ≤ j ≤ n − 1. This means that when UEi is at MEC j , it stays there for y j′ amount of time and then transitions to
MEC j′ , if y j′ = min j′′ �= j{y j′′ }, where y j′′ is an exponential random variable with parameter qi(j, j′′). Equivalently, this also
means that when UEi is at MEC j , it stays there for a random amount of time (called the holding time), which is exponentially
distributed with parameter
6

K. Li Journal of Computer and System Sciences 140 (2024) 103492
∑
j′ �= j

qi(j, j′) or − qi(j, j),

and then transitions to MEC j′ with probability

p′
i(j, j′) = qi(j, j′)∑

j′′ �= j

qi(j, j′′)
.

The transition probability matrix

P′
i = [p′

i(j, j′)]
defines an embedded DTMC of the CTMC defined by Q i . P′

i does not have any self-loop.
Similar to DTMC, we can also construct a directed graph Gi = (V , Ei) for the Markov chain defined by Q i , which is actu-

ally identical to the underlying directed graph of P′
i . Furthermore, we assume that the directed graph is strongly connected.

2.3.3. Semi-Markov processes
A DTMC or a CTMC can be extended to an SMP, where the sojourn time τi, j of UEi at MEC j can have an arbitrary (not

necessarily exponential) probability distribution. At the moment when UEi changes its location, the motion is controlled by
an embedded DTMC with transition probability matrix P′

i . The movement of UEi is specified by τi,0, τi,1, ..., τi,n−1, and P′
i .

If τi, j is fixed at some constant τ for all 0 ≤ i ≤ m −1 and 0 ≤ j ≤ n −1, an SMP becomes a DTMC. If τi, j is an exponential
random variable, an SMP becomes a CTMC.

3. Analytical methods

In this section, we develop our analytical methods.

3.1. Average response time

In this section, we give the average response time of each UE and MEC.
The arrival rate of the substream of tasks of UEi processed locally at UEi is λi − λ̂i . The average task response time Ti of

UEi is

Ti = xi + W i,

where W i is the average task waiting time of UEi :

W i = (λi − λ̂i)x2
i

2(1 − ρi)
,

and ρi is the utilization of UEi :

ρi = (λi − λ̂i)xi,

for all 0 ≤ i ≤ m − 1 ([11], p. 190).
Let I j = {i | UEi is at MEC j} be the set of indices of UEs at MEC j . All these UEs offload their tasks to MEC j . The task

arrival rate of MEC j is

λ̃ j =
∑
i∈I j

λ̂i .

The average task response time T̃ j of MEC j is

T̃ j = x̃ j + W̃ j,

where W̃ j is the average task waiting time of MEC j :

W̃ j = λ̃ j x̃2
j

2(1 − ρ̃ j)
,

and
7

K. Li Journal of Computer and System Sciences 140 (2024) 103492
x̃ j = 1

λ̃ j

∑
i∈I j

λ̂i x̃i, j = 1

λ̃ j

∑
i∈I j

λ̂i

(
ri

s̃ j
+ di

ci, j

)
,

and

x̃2
j = 1

λ̃ j

∑
i∈I j

λ̂i x̃2
i, j = 1

λ̃ j

∑
i∈I j

λ̂i

(
r2

i

s̃2
j

+ 2
ridi

s̃ jci, j
+ d2

i

c2
i, j

)
,

and ρ̃ j is the utilization of MEC j :

ρ̃ j = λ̃ j x̃ j,

for all 0 ≤ j ≤ n − 1.

3.2. Computation offloading

In this section, we consider our computation offloading strategy.
The main challenge is how to find λ̂i and T , such that ρ̃ j < 1, and Ti = T̃ j = T , for all i ∈ I j . In the following, we develop

an efficient method for this purpose.
The following theorem characterizes our computation offloading strategy.

Theorem 1. Our computation offloading strategy for MEC j is

λ̂i = λi − 2(T − xi)

x2
i + 2xi(T − xi)

, (1)

for all i ∈ I j , where T satisfies

f (T) = T − 1∑
i∈I j

(
λi − 2(T − xi)

x2
i + 2xi(T − xi)

) ∑
i∈I j

(
λi − 2(T − xi)

x2
i + 2xi(T − xi)

)(
ri

s̃ j
+ di

ci, j

)
(2)

+

∑
i∈I j

(
λi − 2(T − xi)

x2
i + 2xi(T − xi)

)(
r2

i

s̃2
j

+ 2
ridi

s̃ jci, j
+ d2

i

c2
i, j

)

2

(
1 −

∑
i∈I j

(
λi − 2(T − xi)

x2
i + 2xi(T − xi)

)(
ri

s̃ j
+ di

ci, j

)) = 0.

Proof. The proof is given in Appendix A. �
Notice that

λ̂i = λi − 2

x2
i

T − xi
+ 2xi

,

that is, λ̂i is a decreasing function of T . As T increases, λ̂i decreases, so is T̃ j . Therefore, f (T) = T − T̃ j is an increasing
function of T , and the equation f (T) = 0 can be solved by using the bisection search algorithm.

Since 0 ≤ λ̂i ≤ λi , we obtain

xi ≤ Ti ≤ T ′
i = xi + λi x2

i

2(1 − λi xi)
,

and

xi ≤ T ≤ xi + λi x2
i

2(1 − λi xi)
,

for all i ∈ I j . This means that T can be searched in the following interval [Tlb, Tub] with
8

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Tlb = max
i∈I j

{xi}, and Tub = min
i∈I j

{
xi + λi x2

i

2(1 − λi xi)

}
.

Let � = Tub − Tlb be the length of the above search interval. Assume that the search terminates when the length of
the search interval is no more than ε (i.e., the accuracy requirement). Then, the standard bisection search algorithm can be
completed in O (log(�/ε)) time.

We would like to mention that the λ̂i ’s are obtained simultaneously for all i ∈ I j using Eq. (1), and these λ̂i ’s are
dependent of each other through T , which is obtained by solving Eq. (2).

3.3. Mobility analysis

In this section, we analyze randomized location distribution of UEs, which is the result of random walks of UEs. For both
DTMC and CTMC, and a special type of SMP, we are able to calculate the joint probability distribution of the locations of
UEs at any time, which is crucial for performance analysis and prediction of mobile UEs.

3.3.1. Discrete-time Markov chains
Let the set of possible locations of UEi be

Ni = { ji | 0 ≤ ji ≤ n − 1},
for all 0 ≤ i ≤ m − 1. Then, the Cartesian product

N = N0 × N1 × · · · × Nm−1

gives the set of location distributions of the UEs, where

J = (j0, j1, ..., jm−1) ∈ N

represents a location distribution of the UEs, such that UEi is at MEC ji . For convenience, J = (j0, j1, ..., jm−1) is treated as
an m-digit radix-n integer (j0 j1 · · · jm−1)n in the range 0, 1, ..., N − 1:

J = j0nm−1 + j1nm−2 + · · · + jm−1n0,

for all 0 ≤ j0, j1, ..., jm−1 ≤ n − 1, where N = |N | = nm is the number of location distributions.
To include interaction among UEs into consideration, we need to consider the joint random walk of the m UEs, which is a

joint DTMC with the joint transition probability matrix:

P = [p(J , J ′)],
where p(J , J ′) is the transition probability from J to J ′ . Let us assume that J = (j0, j1, ..., jm−1) and J ′ = (j′0, j′1, ..., j′m−1).
Notice that J is changed to J ′ if and only if UEi changes from MEC ji to MEC j′i (which happens with probability pi(ji, j′i)),
for all 0 ≤ i ≤ m − 1, simultaneously:

J = (j0, j1, ..., jm−1)⏐⏐⏐⏐�UE0

⏐⏐⏐⏐�UE1

⏐⏐⏐⏐�UEm−1

J ′ = (j′0, j′1, ..., j′m−1)

Since the UEs move independently, we have

p(J , J ′) =
m−1∏
i=0

pi(ji, j′i),

for all 0 ≤ j0, j1, ..., jm−1, j′0, j′1, ..., j′m−1 ≤ n − 1. Note that each J can transition to nm different J ′ .
Let π(t)(J) be the probability of J at time t , and

π(t) = [π(t)(0),π(t)(1), ...,π(t)(N − 1)]
be the joint probability vector (i.e., the joint probability distribution of the locations of the UEs) at time t . (Note: If the
location distribution of the UEs is treated as a random variable with N as the support, then π(t) is actually the probability
mass function (pmf) of this random variable at time t .) Then, π(t) can be calculated by using the following equation:

π(t) = π(0)Pt,
9

K. Li Journal of Computer and System Sciences 140 (2024) 103492
for all t = 1, 2, 3, ..., where π(0) gives the initial location distribution of the UEs at time 0 ([11], p. 32). Unfortunately, due
to the large size (nm × nm) of matrix P, even one matrix multiplication takes O (n3m) time, which is excessively long even
for moderate values of m and n.

The following theorem suggests a more efficient way to calculate

Pt = [p(t)(J , J ′)]
based on

Pt
i = [p(t)

i (j, j′)],
where 0 ≤ i ≤ m − 1.

(Note: Recall that the Kronecker product of two n × n matrices A = [aij] and B is an n2 × n2 matrix

A ⊗ B = [aijB],
that is, a matrix of matrices.)

Theorem 2. For all J = (j0, j1, ..., jm−1) and J ′ = (j′0, j′1, ..., j′m−1) and t ≥ 1, we have

p(t)(J , J ′) =
m−1∏
i=0

p(t)
i (ji, j′i).

Equivalently, Pt is the Kronecker product of the Pt
i ’s:

Pt = Pt
1 ⊗ Pt

2 ⊗ · · · ⊗ Pt
m.

Proof. The joint random walk changes from J to J ′ in t steps if and only if UEi changes from MEC ji to MEC j′i in t steps,
for all 0 ≤ i ≤ m − 1, simultaneously. Hence, we get

p(t)(J , J ′) =
m−1∏
i=0

p(t)
i (ji, j′i),

due to the independence of the UEs.
For Kronecker product, we can verify that if

B = [b(J , J ′)] = A1 ⊗ A2 ⊗ · · · ⊗ Am,

where

Ai = [ai(j, j′)],
and 0 ≤ i ≤ m − 1, then, we have

B(J , J ′) =
m−1∏
i=0

ai(ji, j′i),

for all J = (j0, j1, ..., jm−1) and J ′ = (j′0, j′1, ..., j′m−1). �
To reduce the computation time, we may first calculate

Pt
i = [p(t)

i (j, j′)],
for all 0 ≤ i ≤ m − 1, each can be computed in O (n3 log t) time with O (log t) matrix multiplications. Then, we calculate

Pt = [p(t)(J , J ′)],
where

p(t)(J , J ′) =
m−1∏
i=0

p(t)
i (ji, j′i),

for J = (j0, j1, ..., jm−1) and J ′ = (j′ , j′ , ..., j′). Actually, Pt is the Kronecker product of the Pt ’s:
0 1 m−1 i

10

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Pt = Pt
1 ⊗ Pt

2 ⊗ · · · ⊗ Pt
m.

Hence, based on Pt
i , where 0 ≤ i ≤ m − 1, Pt can be computed in O (mn2m) time (much shorter than O (n3m) time before),

where we notice that Pt has n2m components, each can be computed in O (m) time.
Let π(t)

i (j) be the probability that UEi is with MEC j at time t , and

π
(t)
i = [π(t)

i (0),π
(t)
i (1), ...,π

(t)
i (n − 1)]

be the probability vector of UEi (i.e., the probability mass function of the random location of UEi with support Ni) at time
t .

The following theorem suggests an even more efficient way to calculate the joint probability vector.

Theorem 3. For all t = 1, 2, 3, ..., π(t)
i can be calculated by using the following equation:

π
(t)
i = π

(0)
i Pt

i , (3)

where π(0)
i is the initial location distribution of UEi at time 0. If J = (j0, j1, ..., jm−1), we have

π(t)(J) =
m−1∏
i=0

π
(t)
i (ji). (4)

Proof. The computation of π(t)
i is standard (see, e.g., [11], p. 32). The computation of π(t)(J) is based on the fact that the

joint random walk has location distribution J at time t if and only if UEi is with MEC ji at time t , for all 0 ≤ i ≤ m − 1. �
Based on π(t)

i , where 0 ≤ i ≤ m − 1, π(t) can be computed in O (mnm) time (much shorter than O (n2m) time before),
where we notice that π(t) has nm components, each can be computed in O (m) time. Further time reduction seems difficult,
since π(t) has nm components to compute.

Furthermore, let

πi = lim
t→∞π

(t)
i = [πi(0),πi(1), ...,πi(n − 1)]

be the stationary probability vector of UEi and

π = lim
t→∞π(t) = [π(0),π(1), ...,π(N − 1)]

be the joint stationary probability vector. According to the Fundamental Theorem of Markov Chains ([2], p. 66), if Gi is strongly
connected, there is a unique stationary probability vector πi .

Theorem 4. πi can be obtained by solving the linear system of equations:

πi = πiPi, (5)

with the condition

πi(0) + πi(1) + · · · + πi(n − 1) = 1,

for all 0 ≤ i ≤ m − 1. Furthermore, for J = (j0, j1, ..., jm−1), we have

π(J) =
m−1∏
i=0

πi(ji). (6)

Proof. The computation of πi is well known ([11], p. 31). The computation of π(J) is based on the fact that the joint
random walk has location distribution J if and only if UEi is with MEC ji , for all 0 ≤ i ≤ m − 1. �
3.3.2. Continuous-time Markov chains

For m UEs, we need to consider their joint CTMC with the joint transition rate matrix

Q = [q(J , J ′)],
where q(J , J ′) is the transition rate from J to J ′ . It is observed that Q is not a straightforward combination of the Q i ’s.
11

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Let J = (j0, ..., ji, ..., jm−1) and J ′ = (j0, ..., j′i, ..., jm−1). Since at any instant time, only one UE can move,

J = (j0, ..., ji, ..., jm−1)⏐⏐⏐⏐�UEi

J ′ = (j0, ..., j′i, ..., jm−1)

we have

q(J , J ′) = qi(ji, j′i),

for all 0 ≤ i ≤ m − 1 and 0 ≤ j0, ..., ji �= j′i, ..., jm−1 ≤ n − 1. It is clear that each J can transition to m(n − 1) different J ′ .
Furthermore, we have

q(J , J) = −
∑
J ′ �= J

q(J , J ′) =
m−1∑
i=0

qi(ji, ji) = −
m−1∑
i=0

∑
j′i �= ji

qi(ji, j′i),

for all 0 ≤ J = (j0, ..., ji, ..., jm−1) ≤ N − 1.
Again, let π(t)(J) be the probability of J at time t , and

π(t) = [π(t)(0),π(t)(1), ...,π(t)(N − 1)]
be the joint probability vector at time t . Then, with the initial location distribution π(0) of the UEs, π(t) can be calculated
by using the following equation:

π(t) = π(0) exp(Qt),

where

exp(Qt) = I + Qt + (Qt)2

2! + (Qt)3

3! + · · · ,

for all t > 0 ([11], p. 51). (Note: I is the identity matrix.) Unfortunately, as we have already known, the above computation
is inefficient due to the large size (nm × nm) of matrix Q .

Let π(t)
i (j) be the probability that UEi is with MEC j at time t , and

π
(t)
i = [π(t)

i (0),π
(t)
i (1), ...,π

(t)
i (n − 1)]

be the probability vector of UEi at time t .

Theorem 5. For all t > 0, π(t)
i can be calculated by using the following equation:

π
(t)
i = π

(0)
i exp(Qit), (7)

where

exp(Qit) = I + Qit + (Qit)
2

2! + (Qit)
3

3! + · · · , (8)

for all 0 ≤ i ≤ m − 1. Based on π(t)
i , we can get

π(t)(J) =
m−1∏
i=0

π
(t)
i (ji),

for J = (j0, j1, ..., jm−1).

Proof. The computation of π(t)
i is standard ([11], p. 51). The computation of π(t)(J) is identical to Eq. (4) in Theorem 3. �

To reduce both memory space and computation time, we first calculate π(t)
i , for all 0 ≤ i ≤ m − 1. Based on π(t)

i , we can
get π(t)(J), for all 0 ≤ J ≤ N − 1. Due to the small size (n × n) of Q i , the above computation is much faster.

Recall that CTMC Q i and its embedded DTMC P′
i have the same underlying directed graph Gi . If Gi is strongly connected,

there is a unique stationary probability vector π ′
i for DTMC P′

i , and consequently, there is a unique stationary probability
vector πi for CTMC Q i .
12

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Theorem 6. The stationary probability vector of UEi , i.e.,

πi = [πi(0),πi(1), ...,πi(n − 1)],
can be obtained by solving the linear system of equations:

πiQi = 0, (9)

with the condition

πi(0) + πi(1) + · · · + πi(n − 1) = 1,

for all 0 ≤ i ≤ m − 1. Furthermore, for J = (j0, j1, ..., jm−1), we have

π(J) =
m−1∏
i=0

πi(ji).

Proof. The computation of πi is well known ([11], p. 52). The computation of π(J) is identical to Eq. (6) in Theorem 4. �
It can also be verified that if

π ′
i = [π ′

i (0),π ′
i (1), ...,π ′

i (n − 1)]
is the unique stationary probability vector of P′

i , then we have

πi(j) = π ′
i (j)τi(j)∑

0≤ j′′≤n−1

π ′
i (j′′)τi(j′′)

,

where

τi(j) = − 1

qi(j, j)
,

is the average holding time when UEi is at MEC j , for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1 (see [26], Section 11.3.2, Theorem
11.3).

In fact, the above argument is also suitable to semi-Markov processes, where the sojourn time at an MEC can be an
arbitrary random variable (see [30], Section 7.6, Eq. (7.24)). This makes our methodology acceptable and applicable to much
wider scenarios and situations.

3.3.3. Semi-Markov processes
Consider UEi which is with MEC j0 at time 0. UEi moves to MEC j1 , MEC j2 , MEC j3 , ..., in the following way: UEi stays at

MEC jk−1 for τi, jk−1 amount of time and then moves to MEC jk , for k = 1, 2, 3, ..., where τi, j0 , τi, j1 , τi, j2 , ... are independent
and arbitrary random variables.

At time t , if we know that UEi has made k location changes, then we can easily calculate π(t)
i using Eq. (3), which is

π
(t)
i = π

(0)
i (P′

i)
k,

where P′
i is the transition probability matrix of the embedded DTMC. However, we do not know the value of k, since it is a

random variable.
We are interested in the probability mass function of k. To this end, we assume that τi, j0 , τi, j1 , τi, j2 , ... are independent

and identically distributed (i.i.d.) random variables. That is, the holding times of UEi at all MEC j ’s are i.i.d. random variables
τi .

A sequence of i.i.d. random variables τi,1, τi,2, τi,3, ... form a renewal process. We use Xi(t) to represent the number of
renewals by time t . Let

Si,k = τi,1 + τi,2 + · · · + τi,k,

where k = 0, 1, 2, If Si,k ≤ t < Si,k+1, we have Xi(t) = k.

Theorem 7. For all t > 0, π(t)
i can be calculated by using the following equation:

π
(t)
i = π

(0)
i

(∞∑
P[Xi(t) = k](P′

i)
k
)

= π
(0)
i

(∞∑
(F Si,k (t) − F Si,k+1(t))(P′

i)
k
)

. (10)

k=0 k=0

13

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Based on π(t)
i , we can get

π(t)(J) =
m−1∏
i=0

π
(t)
i (ji),

for J = (j0, j1, ..., jm−1).

(Notation: Let fY (y) and FY (y) denote the probability density function (pdf) and the cumulative distribution function (cdf)
of a random variable Y respectively. P[·] is the probability of an event.)

Proof. Since Xi(t) < k if and only if Si,k > t , we have

P[Xi(t) < k] = P[Si,k > t] = 1 − F Si,k (t).

Thus, we get

P[Xi(t) = k] = P[Xi(t) < k + 1] − P[Xi(t) < k] = F Si,k (t) − F Si,k+1(t),

for all k = 0, 1, 2, ..., with F Si,0 (t) = 1.
Based on the information of P[Xi(t) = k], we can calculate

π
(t)
i = π

(0)
i

(∞∑
k=0

P[Xi(t) = k](P′
i)

k
)

,

which is

π
(t)
i = π

(0)
i

(∞∑
k=0

(F Si,k (t) − F Si,k+1(t))(P′
i)

k
)

.

Based on π(t)
i , we can get π(t)(J) using Eq. (4), for all 0 ≤ J ≤ N − 1. �

As an interesting special case, let us consider the case when each τi is an exponential random variable with parameter
qi . This means that UEi walks according to a CTMC with

Q i = [qi(j, j′)],
where

qi(j, j) = −qi,

for all 0 ≤ j ≤ n − 1. It is clear that the corresponding embedded DTMC has

P′
i = Q i

qi
+ I.

Then, Si,k , a summation of k i.i.d. exponential random variables, has an Erlang distribution with

f Si,k (t) = qk
i tk−1e−qit

(k − 1)! ,

and

F Si,k (t) = 1 − e−qit
k−1∑
j=0

(qit) j

j! .

Consequently, we have

F Si,k (t) − F Si,k+1(t) = e−qit
(qit)k

k! ,

which yields
14

K. Li Journal of Computer and System Sciences 140 (2024) 103492
∞∑
k=0

(F Si,k (t) − F Si,k+1(t))(P′
i)

k = e−qit
∞∑

k=0

(qit)k

k! (P′
i)

k

= e−qit
∞∑

k=0

(qit)k

k!
(

Q i

qi
+ I

)k

= e−qit
∞∑

k=0

tk

k! (Q i + qiI)
k

= e−qit exp((Q i + qiI)t)

= e−qit exp(Q it)exp(Iqit)

= e−qit exp(Q it)Ieqit

= exp(Q it),

which is identical to Eq. (8) as expected.

Theorem 8. The stationary probability vector πi of UEi is the same as the stationary probability vector π ′
i of its embedded DTMC P′

i .

Proof. It is easy to see that UEi ’s SMP and its embedded DTMC P′
i have the same underlying directed graph Gi . If Gi is

strongly connected, there is a unique stationary probability vector π ′
i for DTMC P′

i , and consequently, there is a unique
stationary probability vector πi for the SMP. Furthermore, since UEi has the same expected holding time at all MECs, its
stationary probability vector is the same as that of P′

i . �
4. Performance predictions

In this section, we predict the performance of randomly walking mobile UEs.

4.1. UE-centric performance measures

In this section, we define performance measures for mobile UEs. (Later in Section 8.1, we will define performance mea-
sures for MECs.)

Let J = (j0, ..., ji, ..., jm−1) be a UE distribution, in which, UEi is at MEC ji . Then, we have I ji = {i′ | ji′ = ji}, which
includes all UEs at MEC ji The average response time of tasks offloaded from UEi to MEC ji is

T̃ i, ji = x̃i, ji + W̃ ji .

The average response time Ti(J) of tasks generated on UEi under J is

Ti(J) =
(

λi − λ̂i

λi

)
Ti + λ̂i

λi
T̃ i, ji , (11)

which is actually

Ti(J) =
(

λi − λ̂i

λi

)
Ti + λ̂i

λi

(
ri

s̃ ji

+ di

ci, ji

+ W̃ ji

)
,

where

W̃ ji = λ̃ ji x̃
2
ji

2(1 − ρ̃ ji)
.

The instantaneous average response time T (t)
i of tasks generated on UEi at time t is

T (t)
i =

N−1∑
J=0

π(t)(J)Ti(J), (12)

which is averaged over all J . The overall average response time T ∗
i of tasks generated on UEi at times t1, t2, ..., tK is

T ∗
i = 1

K

K∑
T (tk)

i , (13)

k=1

15

K. Li Journal of Computer and System Sciences 140 (2024) 103492
which is averaged over all tk . The stationary average response time T (∞)
i of tasks generated on UEi is

T (∞)
i =

N−1∑
J=0

π(J)Ti(J). (14)

T ∗
i and T (∞)

i are our ultimate performance predictions for UEi in a fog computing environment with mobile users.

We would like to emphasize that T (∞)
i is applicable as long as the joint stationary probability vector π is available, which

can be obtained not only for DTMC and CTMC, but also for any semi-Markov process, for which we know the residence time
of each UE at each MEC.

4.2. The algorithm

In this section, we devise an algorithmic procedure to obtain our performance predictions.
Algorithm 1 depicts our procedure to predict the performance of randomly walking mobile UEs with DTMC, CTMC, and

SMP. The algorithmic procedure essentially summarizes all our models and methods.
The time complexity of the algorithm can be analyzed as follows.
Line (3) takes O (log(�/ε)) time, where � is the upper limit of the search interval and ε is the accuracy requirement.

Lines (5)–(6) take constant, and the for-loop in lines (4)–(7) can be done in O (|I j |) time. The for-loop in lines (2)–(8)
can be done O (n log(�/ε) + m) time, since

∑ |I j | = m, and the overall time complexity of the for-loop in lines (1)–(9) is
O (nm(n log(�/ε) + m)).

Let t = max{t1, t2, ..., tK }. For DTMC, line 12 takes O (tn3) time. For CTMC, line 12 takes O (wn3) time by computing the
first w terms, where w depends on the accuracy requirement. For SMP, line 12 takes O (vn3) time, where v is a small
constant (see Section 5.1). Line 13 takes O (n2) time. Hence, the for-loop in lines (11)–(14) can be done in O (tmn3) time for
DTMC and O (wmn3) time for CTMC and O (vmn3) time for SMP. Line (15) takes O (mnm) time. Line (17) takes O (nm) time.
The for-loop in lines (16)–(18) can be done in O (mnm) time. The overall time complexity of the for-loop in lines (10)–(19)
is O (K (tmn3 + mnm)) for DTMC and O (K (wmn3 + mnm)) for CTMC and O (K (vmn3 + mnm)) for SMP.

Line (21) takes O (K) time. The for-loop in lines (20)–(22) can be done in O (Km) time.
Line (24) takes O (n3) time. The for-loop in lines (23)–(25) can be done in O (mn3) time.
Line (26) takes O (mnm) time.
Line (28) takes O (nm) time. The for-loop in lines (27)–(29) can be done in O (mnm) time.
To summarize, the time complexity of our algorithmic procedure is O (nm+1 log(�/ε) + K (tmn3 + mnm)) for DTMC, and

O (nm+1 log(�/ε) + K (wmn3 + mnm)) for CTMC, and O (nm+1 log(�/ε) + K (vmn3 + mnm)) for SMP.

5. Numerical data and examples

In this section, we demonstrate some numerical data and examples.

5.1. Parameter setting

We consider a mobile edge computing environment with m = 7 UEs and n = 5 MECs. Our model parameters are set as
follows.

For queueing models, we set ri = 1.5 + 0.1i BI, r2
i = 1.1ri

2 BI2, di = 2.0 + 0.2i MB, d2
i = 1.1di

2
MB2, si = 2.0 + 0.1i

BI/second, xi = ri/si second, x2
i = r2

i /s2
i second2, λi = 0.99/xi tasks/second, for all 0 ≤ i ≤ m − 1; s̃ j = 3.5 + 0.2 j BI/second,

for all 0 ≤ j ≤ n − 1; and ci, j = (10 + i) + 0.5 j MB/second, for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.
Note that each UEi has utilization ρi = λi xi = 0.99, and without computation offloading to the MECs (i.e., λ̂i = 0), each

UE has average task response time over 41 seconds.
For mobility models, we consider a situation, where the MECs form a simple topology, i.e., a line. We assume that the

initial distribution of the UEs is:

MEC0 MEC1 MEC2 MEC3 MEC4

UE0,UE1 UE2 UE3 UE4 UE5,UE6

with

J = (0,0,1,2,3,4,4),

whose integer value is

J = 1 × 54 + 2 × 53 + 3 × 52 + 4 × 51 + 4 × 50 = 974.
16

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Algorithm 1: Performance predictions for randomly walking mobile UEs with DTMC/CTMC/SMP.

Input: λi , ri , r2
i , di , d2

i , si , for all 0 ≤ i ≤ m − 1; s̃ j , for all 0 ≤ j ≤ n − 1; ci, j , for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1; π(0)
i , Pi for DTMC (or Q i for CTMC,

or τi , P′
i for SMP), for all 0 ≤ i ≤ m − 1.

Output: T ∗
i and T (∞)

i , for all 0 ≤ i ≤ m − 1.

for (J = 0; J < N; J ++) do (1)
for (j = 0; j < n; j++) do (2)

find T by solving Eq. (2); (3)
for (i ∈ I j) do (4)

calculate λ̂i , i ∈ I j , by using Eq. (1); (5)
calculate Ti(J) by using Eq. (11); (6)

end do; (7)
end do; (8)

end do; (9)
for (k = 0; k < K ; k++) do (10)

for (i = 0; i < m; i++) do (11)
calculate Ptk

i for DTMC (or exp(Q i tk) for CTMC, or F Si,k (tk), (P′
i)

k for SMP); (12)

calculate π(tk)

i by using Eq. (3) for DTMC (or Eq. (7) for CTMC, or Eq. (10) for SMP); (13)
end do; (14)
calculate π(tk) by using Eq. (4); (15)
for (i = 0; i < m; i++) do (16)

calculate T (tk)

i by using Eq. (12); (17)
end do; (18)

end do; (19)
for (i = 0; i < m; i++) do (20)

calculate T ∗
i by using Eq. (13); (21)

end do; (22)
for (i = 0; i < m; i++) do (23)

find πi by solving Eq. (5) for DTMC (or Eq. (9) for CTMC, or Eq. (5) for SMP); (24)
end do; (25)
calculate π by using Eq. (6); (26)
for (i = 0; i < m; i++) do (27)

calculate T (∞)
i by using Eq. (14); (28)

end do; (29)
return T ∗

i and T (∞)
i , for all 0 ≤ i ≤ m − 1. (30)

If the UEs do not move, their average response times under J = 974 are

T0(J) = 1.34017 seconds,

T1(J) = 1.35181 seconds,

T2(J) = 1.01574 seconds,

T3(J) = 1.01292 seconds,

T4(J) = 1.01119 seconds,

T5(J) = 1.37543 seconds,

T6(J) = 1.38595 seconds,

which are much shorter than the ones without computation offloading.
For DTMC, the transition probability matrices are set as:

P0 = P5 =

⎡
⎢⎢⎢⎣

0.6 0.4 0.0 0.0 0.0
0.4 0.3 0.3 0.0 0.0
0.0 0.4 0.3 0.3 0.0
0.0 0.0 0.4 0.3 0.3
0.0 0.0 0.0 0.6 0.4

⎤
⎥⎥⎥⎦ ,

P1 = P6 =

⎡
⎢⎢⎢⎣

0.4 0.6 0.0 0.0 0.0
0.3 0.3 0.4 0.0 0.0
0.0 0.3 0.3 0.4 0.0
0.0 0.0 0.3 0.3 0.4
0.0 0.0 0.0 0.4 0.6

⎤
⎥⎥⎥⎦ ,
17

K. Li Journal of Computer and System Sciences 140 (2024) 103492
P2 = P3 = P4 =

⎡
⎢⎢⎢⎣

0.5 0.5 0.0 0.0 0.0
0.3 0.4 0.3 0.0 0.0
0.0 0.3 0.4 0.3 0.0
0.0 0.0 0.3 0.4 0.3
0.0 0.0 0.0 0.5 0.5

⎤
⎥⎥⎥⎦ .

The above matrices are set in such a way that UE0 and UE5 move more towards left, UE1 and UE6 move more towards
right, while UE2, UE3, UE4 move evenly in both directions.

For CTMC, transition rate matrices are set as:

Q 0 = Q 5 =

⎡
⎢⎢⎢⎣

−0.0014 0.0014 0.0000 0.0000 0.0000
0.0016 −0.0030 0.0014 0.0000 0.0000
0.0000 0.0016 −0.0030 0.0014 0.0000
0.0000 0.0000 0.0016 −0.0030 0.0014
0.0000 0.0000 0.0000 0.0016 −0.0016

⎤
⎥⎥⎥⎦ ,

Q 1 = Q 6 =

⎡
⎢⎢⎢⎣

−0.0016 0.0016 0.0000 0.0000 0.0000
0.0014 −0.0030 0.0016 0.0000 0.0000
0.0000 0.0014 −0.0030 0.0016 0.0000
0.0000 0.0000 0.0014 −0.0030 0.0016
0.0000 0.0000 0.0000 0.0014 −0.0014

⎤
⎥⎥⎥⎦ ,

Q 2 = Q 3 = Q 4 =

⎡
⎢⎢⎢⎣

−0.0015 0.0015 0.0000 0.0000 0.0000
0.0015 −0.0030 0.0015 0.0000 0.0000
0.0000 0.0015 −0.0030 0.0015 0.0000
0.0000 0.0000 0.0015 −0.0030 0.0015
0.0000 0.0000 0.0000 0.0015 −0.0015

⎤
⎥⎥⎥⎦ .

Again, the above matrices are set in such a way that UE0 and UE5 move more towards left, UE1 and UE6 move more towards
right, while UE2, UE3, UE4 move evenly in both directions. The mean holding time is between 333 seconds and 714 seconds.

For SMP, the random holding time τi of UEi at all MECs has a normal distribution N(μi , σ 2
i) with mean μi = 350 + 50i

and variance σ 2
i = 0.01μ2

i (σi = 0.1μi), whose pdf is

fτi (t) = 1√
2πσi

e−((t−μi)/σi)
2/2,

and whose cdf is

Fτi (t) = 1√
2πσi

tˆ

−∞
e−((t′−μi)/σi)

2/2dt′,

for all 0 ≤ i ≤ m − 1. It is well known that

X = τi − μi

σi

is a standard normal random variable with mean 0 and variance 1, whose pdf is

f X (x) = 1√
2π

e−x2/2,

and whose cdf is

F X (x) = �(x) = 1√
2π

xˆ

−∞
e−(x′)2/2dx′.

Furthermore,

Fτi (t) = �

(
t − μi

σi

)
.

It is well known that the summation of independent normal random variables is also a normal random variable. Specifically,
Si,k , which is a summation of k i.i.d. normal random variable, has the normal distribution N(kμi , kσ 2

i). Therefore, we get

F Si,k (t) = �

(
t − kμi√

)
,

kσi

18

K. Li Journal of Computer and System Sciences 140 (2024) 103492
and

P[Xi(t) = k] = F Si,k (t) − F Si,k+1(t) = �

(
t − kμi√

kσi

)
− �

(
t − (k + 1)μi√

k + 1σi

)
,

for all k = 0, 1, 2, Since a normal distribution is dominantly in the range [μi − 4σi, μi + 4σi] (probability > 0.9999), the
summation in Eq. (10) is numerically calculated for k in the range

(√
4σ 2

i + μit − 2σi

μi

)2

≤ k ≤
(√

4σ 2
i + μit + 2σi

μi

)2

− 1.

The transition probability matrices of the embedded DTMC are set as:

P′
0 = P′

5 =

⎡
⎢⎢⎢⎣

0.0 1.0 0.0 0.0 0.0
0.6 0.0 0.4 0.0 0.0
0.0 0.6 0.0 0.4 0.0
0.0 0.0 0.6 0.0 0.4
0.0 0.0 0.0 1.0 0.0

⎤
⎥⎥⎥⎦ ,

P′
1 = P′

6 =

⎡
⎢⎢⎢⎣

0.0 1.0 0.0 0.0 0.0
0.4 0.0 0.6 0.0 0.0
0.0 0.4 0.0 0.6 0.0
0.0 0.0 0.4 0.0 0.6
0.0 0.0 0.0 1.0 0.0

⎤
⎥⎥⎥⎦ ,

P′
2 = P′

3 = P′
4 =

⎡
⎢⎢⎢⎣

0.0 1.0 0.0 0.0 0.0
0.5 0.0 0.5 0.0 0.0
0.0 0.5 0.0 0.5 0.0
0.0 0.0 0.5 0.0 0.5
0.0 0.0 0.0 1.0 0.0

⎤
⎥⎥⎥⎦ .

Again, the above matrices are set in such a way that UE0 and UE5 move more towards left, UE1 and UE6 move more
towards right, while UE2, UE3, UE4 move evenly in both directions. The mean holding times are between 350 seconds and
650 seconds. For i < i′ , UEi has shorter holding time than UEi′ , thus moves more quickly than UEi′ .

5.2. Numerical data

We now display and discuss our numerical data.
In Table 3, we display T (t)

i , T ∗
i , and T (∞)

i , for all 0 ≤ i ≤ m − 1, and t = 1, 2, 3, ..., 10, for discrete-time Markov chains.

In Table 4, we display T (t)
i , T ∗

i , and T (∞)
i , for all 0 ≤ i ≤ m − 1, and t = 500, 1000, 1500, ..., 5000, for continuous-time

Markov chains.
In Table 5, we display T (t)

i , T ∗
i , and T (∞)

i , for all 0 ≤ i ≤ m − 1, and t = 500, 1000, 1500, ..., 5000, for semi-Markov
processes.

It is easily observed that as time goes on, the average response times T (t)
i of some UEs (UE0, UE1, UE2, UE3 in Table 3,

and UE0, UE1, UE2 in Table 4) increase and then decrease, while the average response times of other UEs (UE4, UE5, UE6 in
Table 3, and UE3, UE4, UE5, UE6 in Table 4) always increase. The data in Fig. 5 are very irregular. As time goes on, T (t)

i can
jump up and down. For each UEi , the average response time T (t)

i eventually reaches its stationary value T (∞)
i .

We would like to clarify and confirm that the UEs have identical average task response times only when they are at the
same MEC. However, they are likely to have different T (t)

i , T ∗
i , and T (∞)

i .

One important observation is that for all DTMC, CTMC, and SMP, T (t)
i , T ∗

i , and T (∞)
i , are longer than Ti(974) when

the UEs do not move, for all 0 ≤ i ≤ m − 1, especially for UE2, UE3, UE4. In other words, random mobility damages the
performance of the UEs.

This can be explained using the classic balls and bins model. Let us consider m balls and n boxes (or bins), where m ≥ n.
Each ball is independently thrown into a bin that is chosen uniformly at random. A placement is a distribution of the balls
among the bins. There are nm placements. We are interested in F (m, n), the number of placements which result in no empty
bin.

Theorem 9. We have the following recurrence relation to calculate F (m, n):

F (m,1) = 1,

F (m,n) = nm −
((

n
)

F (m,n − 1) +
(

n
)

F (m,n − 2) + · · · +
(

n
)

F (m,1)

)
, n > 1.
1 2 n − 1

19

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Table 3
Performance predictions for randomly walking mobile UEs (DTMC).

UE0 UE1 UE2 UE3 UE4 UE5 UE6

T (1)
i 1.30274 1.34634 1.36511 1.38769 1.37804 1.38827 1.37487

T (2)
i 1.30265 1.36019 1.40392 1.43741 1.41493 1.40779 1.38060

T (3)
i 1.32489 1.39143 1.41894 1.44857 1.43055 1.44526 1.40396

T (4)
i 1.33948 1.40030 1.42461 1.44829 1.43848 1.46431 1.41975

T (5)
i 1.35026 1.40322 1.42789 1.44786 1.44477 1.47805 1.43230

T (6)
i 1.35743 1.40103 1.42904 1.44718 1.44938 1.48654 1.44164

T (7)
i 1.36248 1.39706 1.42926 1.44676 1.45313 1.49242 1.44902

T (8)
i 1.36600 1.39222 1.42886 1.44644 1.45617 1.49641 1.45484

T (9)
i 1.36852 1.38728 1.42816 1.44620 1.45868 1.49922 1.45952

T (10)
i 1.37034 1.38255 1.42732 1.44602 1.46075 1.50120 1.46329

T ∗
i 1.34448 1.38616 1.41831 1.44024 1.43849 1.46595 1.42798

T (∞)
i 1.37579 1.35253 1.41923 1.44524 1.47120 1.50671 1.48020

Table 4
Performance predictions for randomly walking mobile UEs (CTMC).

t = 500 UE0 UE1 UE2 UE3 UE4 UE5 UE6

T (t)
i 1.33159 1.36164 1.38609 1.38479 1.39440 1.38923 1.39715

T (2t)
i 1.34651 1.37859 1.40928 1.42565 1.42024 1.41933 1.42204

T (3t)
i 1.35817 1.38800 1.41475 1.43124 1.43136 1.44350 1.44239

T (4t)
i 1.36437 1.38999 1.41588 1.43226 1.43874 1.46009 1.45701

T (5t)
i 1.36716 1.38816 1.41536 1.43260 1.44408 1.47126 1.46741

T (6t)
i 1.36814 1.38486 1.41422 1.43279 1.44802 1.47884 1.47487

T (7t)
i 1.36825 1.38130 1.41295 1.43293 1.45094 1.48407 1.48027

T (8t)
i 1.36797 1.37801 1.41176 1.43302 1.45313 1.48772 1.48421

T (9t)
i 1.36756 1.37520 1.41074 1.43310 1.45476 1.49031 1.48711

T (10t)
i 1.36714 1.37291 1.40990 1.43316 1.45598 1.49217 1.48924

T ∗
i 1.36069 1.37987 1.41009 1.42715 1.43917 1.46165 1.46017

T (∞)
i 1.36530 1.36507 1.40696 1.43332 1.45963 1.49728 1.49543

Table 5
Performance predictions for randomly walking mobile UEs (SMP).

t = 500 UE0 UE1 UE2 UE3 UE4 UE5 UE6

T (1t)
i 1.42119 1.43245 1.20672 1.34770 1.18796 1.40132 1.39919

T (2t)
i 1.30236 1.24448 1.46930 1.47622 1.33078 1.56516 1.54194

T (3t)
i 1.18864 1.56229 1.60712 1.49032 1.25982 1.65518 1.65422

T (4t)
i 1.47587 1.39374 1.52190 1.47805 1.56107 1.33897 1.46138

T (5t)
i 1.38380 1.33863 1.38043 1.45664 1.39909 1.50085 1.47068

T (6t)
i 1.50869 1.49757 1.55216 1.41804 1.61634 1.48060 1.61237

T (7t)
i 1.40974 1.29626 1.49056 1.47553 1.35457 1.56245 1.52963

T (8t)
i 1.61103 1.41043 1.54908 1.49850 1.67734 1.72303 1.63456

T (9t)
i 1.39261 1.33737 1.43638 1.46200 1.48164 1.44412 1.50251

T (10t)
i 1.38461 1.33727 1.41982 1.45517 1.48177 1.49569 1.44387

T ∗
i 1.40785 1.38505 1.46335 1.45582 1.43504 1.51674 1.52503

T (∞)
i 1.39975 1.37962 1.44108 1.46675 1.49237 1.52803 1.50481

Proof. Let E(m, n, k) denote the number of placements which result in exactly k empty bins, where 0 ≤ k ≤ n − 1. Then, we
have

E(m,n,0) + E(m,n,1) + E(m,n,2) + · · · + E(m,n,n − 1) = nm.

It is easy to see that

E(m,n,k) =
(

n

k

)
F (m,n − k),

for all 0 ≤ k ≤ n − 1, where
(n

k

)
is the number of ways to choose k empty bins from n bins, and F (m, n −k) is the number of

placements of the m balls into the remaining (n −k) non-empty bins. Since F (m, n) = E(m, n, 0) is the number of placements
which result in no empty bin, we have the following recurrence relation to calculate F (m, n):
20

K. Li Journal of Computer and System Sciences 140 (2024) 103492
F (m,n) = nm −
n−1∑
k=1

E(m,n,k) = nm −
n−1∑
k=1

(
n

k

)
F (m,n − k),

for n > 1. The base case of F (m, 1) = 1 is straightforward. �
For instance, when m = 7 and n = 1, 2, 3, 4, 5, 6, 7, it is straightforward to verify that

n = 1 : F (7,1) = 1, 1m = 1, F (7,1)/1m = 100.0%;
n = 2 : F (7,2) = 126, 2m = 128, F (7,2)/2m = 98.4%;
n = 3 : F (7,3) = 1806, 3m = 2187, F (7,3)/3m = 82.6%;
n = 4 : F (7,4) = 8400, 4m = 16384, F (7,4)/4m = 51.3%;
n = 5 : F (7,5) = 16800, 5m = 78125, F (7,5)/5m = 21.5%;
n = 6 : F (7,6) = 15120, 6m = 279936, F (7,6)/6m = 5.4%;
n = 7 : F (7,7) = 5040 = 7!, 7m = 823543, F (7,7)/7m = 0.6%.

The above calculation means that for a fixed m, as n increases, the percentage of placements which result in no empty bins
reduces quickly.

If the balls and bins are interpreted as UEs and MECs, the placements of balls into the bins are location distributions of
the UEs among the MECs. E(m, n, k) is the number of location distributions which result in exactly k idle MECs which serve
no UEs. F (m, n) is the number of location distributions which result in no idle MEC, i.e., the MECs are fully utilized. Taking
our case of m = 7 and n = 5 as an example, we have

E(7,5,0) = 16800,

E(7,5,1) = 42000,

E(7,5,2) = 18060,

E(7,5,3) = 1260,

E(7,5,4) = 5.

Therefore, the chances to have one and two idle MECs are as high as

E(7,5,1)/57 = 42000/78125 = 53.8%,

E(7,5,2)/57 = 18060/78125 = 23.1%,

while the chance to have no idle MEC is only

E(7,5,0)/57 = 16800/78125 = 21.5%.

The expected fraction of empty bins (i.e., idle MECs) is(
1 − 1

n

)m

≈ 1

em/n
for large n,

which is 1/e = 36.8% when m = n, and 1/e2 = 13.5% when m = 2n. In our case, it is 0.87 = 21.0%.
Due to random motion and distribution of the UEs, the MECs are not most efficiently utilized. It is not surprising to see

that the average response times of randomly walking UEs are longer than the ones when they are still and static, and each
MEC serves one or two UEs, such as J = 974.

Furthermore, random mobility could result in dense gathering of UEs, and surge and fluctuate the average response time.
For instance, when the UEs walk according to SMP, at t = 4000,

π
(t)
0 = (0.06133,0.59008,0.06815,0.26226,0.01817),

π
(t)
1 = (0.06164,0.15358,0.23116,0.34556,0.20805),

π
(t)
2 = (0.08904,0.32192,0.17808,0.32192,0.08904),

π
(t)
3 = (0.12509,0.24982,0.25018,0.24982,0.12509),

π
(t)
4 = (0.03909,0.42181,0.07819,0.42181,0.03909),

π
(t)
5 = (0.04449,0.61816,0.04943,0.27474,0.01318),

π
(t)
6 = (0.03270,0.22595,0.12262,0.50838,0.11035).

It is observed that the probabilities for UE0, UE2, UE4, UE5, UE6 to be at MEC1 and MEC3 are very high. Hence, T (4000)
i is

noticeably longer than usual for i = 0, 2, 4, 5, 6 (see Table 5).
21

K. Li Journal of Computer and System Sciences 140 (2024) 103492
6. Homogeneous UEs and MECs

In this section, we derive performance predictions in closed-form for homogeneous UEs and MECs.

Homogeneous UEs have the same λi , ri , r2
i , di , d2

i , si , Pi for DTMC (or Q i for CTMC, or τi, P′
i for SMP), for all 0 ≤ i ≤ m −1,

and the same ci, j , for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1. Homogeneous MECs have the same s̃ j , for all 0 ≤ j ≤ n − 1.
Furthermore, we assume that UEi always moves into the MEC j ’s with equal probability.

Theorem 10. For all DTMC/CTMC/SMP, if UEi moves into the MEC j ’s with equal probability, a perfectly balanced location distribution
is maintained after each location change and at any time.

Proof. The proof is given in Appendix A. �
Notice that π(t)

i (j) = 1/n for all 0 ≤ i ≤ m −1 and 0 ≤ j ≤ n −1 and t ≥ 0 implies that π(t)(J) = 1/N , for all 0 ≤ J ≤ N −1
and t ≥ 0 (see Eq. (4)), that is, all location distributions are equally probable.

Consider UEi which is at MEC j . Let b = |I j |, which is a random variable with support {1, 2, ..., m}. The following theorem
gives its pmf.

Theorem 11. The probability mass function of b is

P[|I j| = b] = 1

nm−1

(
m − 1

b − 1

)
(n − 1)m−b, (15)

for all 1 ≤ b ≤ m.

Proof. The above result can be explained as follows. Except UEi , there are (m − 1) UEs, which have nm−1 different location
distributions among the n MECs. There are

(m−1
b−1

)
different ways to choose (b − 1) UEs which join I j . For the remaining

(m − b) UEs, there are (n − 1)m−b different location distributions. The result follows if all location distributions are equally
probable. �

Let Ti,b represent the average response time of UEi when |I j | = b. A perfectly balanced location distribution gives rise to

T (t)
i = T ∗

i = T (∞)
i =

m∑
b=1

P[|I j| = b]Ti,b, (16)

for all t ≥ 0.
In the following, we derive a closed-form expression of Ti,b . Since all UEs are homogeneous, we have λ̃ j = bλ̂i . To

guarantee Ti = T̃ j = Ti,b , we need

Ti = xi + (λi − λ̂i)x2
i

2(1 − (λi − λ̂i)xi)
= x̃ j + bλ̂i x̃2

j

2(1 − bλ̂i x̃ j)
= T̃ j,

that is,

(xi − x̃ j) − x2
i (λ̂i − λi)

2(xi λ̂i + (1 − λi xi))
+ bx̃2

j λ̂i

2(bx̃ j λ̂i − 1)
= 0,

which is

2(xi − x̃ j)(xi λ̂i + (1 − λi xi))(bx̃ j λ̂i − 1)

−x2
i (λ̂i − λi)(bx̃ j λ̂i − 1) + bx̃2

j λ̂i(xi λ̂i + (1 − λi xi)) = 0.

We view the above equation as a quadratic equation of λ̂i and obtain:

2(xi − x̃ j)(bxi x̃ j λ̂
2
i + (bx̃ j(1 − λi xi) − xi)λ̂i − (1 − λi xi))

−x2
i (bx̃ j λ̂

2
i − (bλi x̃ j + 1)λ̂i + λi) + bx̃2

j (xi λ̂
2
i + (1 − λi xi)λ̂i) = 0,

which is reorganized as:
22

K. Li Journal of Computer and System Sciences 140 (2024) 103492
(2bxi x̃ j(xi − x̃ j) − bx2
i x̃ j + bxi x̃2

j)λ̂
2
i

+(2(xi − x̃ j)(bx̃ j(1 − λi xi) − xi) + x2
i (bλi x̃ j + 1) + bx̃2

j (1 − λi xi))λ̂i

−(2(xi − x̃ j)(1 − λi xi) + λi x2
i) = 0,

and further rewritten as:

Aλ̂2
i + Bλ̂i + C = 0,

where

A = 2bxi x̃ j(xi − x̃ j) − bx2
i x̃ j + bxi x̃2

j ,

B = 2(xi − x̃ j)(bx̃ j(1 − λi xi) − xi) + x2
i (bλi x̃ j + 1) + bx̃2

j (1 − λi xi),

C = −(2(xi − x̃ j)(1 − λi xi) + λi x2
i),

which gives

λ̂i =
√

B2 − 4AC − B

2A
. (17)

Based on λ̂i , we can calculate Ti,b .
The above discussion can be summarized as follows.

Theorem 12. For homogeneous UEs which move into the MECs with equal probability, and whose mobility is modeled by
DTMC/CTMC/SMP with perfectly balanced location distributions, our performance predictions can be calculated using Eqs. (15), (16),
and (17).

In Fig. 4, we show Ti,b as a function of ρi for b = 1, 2, 3, 4, 5, 6, 7, with the following parameter setting: ri = 1.8 BI,
r2

i = 1.1ri
2 BI2, di = 2.6 MB, d2

i = 1.1di
2

MB2, si = 2.3 BI/second, xi = ri/si second, x2
i = r2

i /s2
i second2, for all 0 ≤ i ≤ m − 1;

s̃ j = 3.9 BI/second, for all 0 ≤ j ≤ n − 1; and ci, j = 14.0 MB/second, for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1. For a given ρi ,
our performance predictions T (t)

i , T ∗
i , T (∞)

i obtained from Eq. (16) are weighted average of the data in Fig. 4 according to
the weights from Eq. (15). When m = 7, we have

P[|I j| = 1] = 0.26214,

P[|I j| = 2] = 0.39322,

P[|I j| = 3] = 0.24576,

P[|I j| = 4] = 0.08192,

P[|I j| = 5] = 0.01536,

P[|I j| = 6] = 0.00154,

P[|I j| = 7] = 0.00006.

T (t)
i , T ∗

i , T (∞)
i are very close the curve for b = 2.

7. Mobility cost

In this section, we consider mobility cost and service delay for location change.
When UEi changes its location from MEC j′ to MEC j , UEi loses service from MEC j′ , and gains service from MEC j after

� amount of time (called the transition time), which is the time for UEi to register with MEC j , to establish communication
connection with MEC j , and to create a virtual machine in MEC j . During this period of time, UEi is in the transition state;
it can still perform its own local processing, but there is no remote service. It is interesting to include such penalty on
computing power due to location change into our mathematical models, and evaluate its impact on performance in our
analytical methods.
23

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Fig. 4. Ti,b , T (t)
i , T ∗

i , T (∞)
i as functions of ρi .

7.1. Discrete-time Markov chains

Consider UEi which is at MEC ji . We need to update Ti(J) in Eq. (11) to reflect mobility cost. It turns out that Ti(J) not
only depends on location distribution J , but also relies on time t . Thus, our notation is extended to T (t)

i (J), which is the
average response time of tasks generated on UEi under J at time t . It is clear that during time slot t , in the beginning �
amount of time, not all UEi ’s in I ji , but only those which remain at MEC ji from time t − 1 to t , share the service of MEC ji .
In the remaining 1 −� amount of time, all UEi ’s in I ji share the service of MEC ji . For this reason, we introduce the notation
Ti, ji (I), i.e., the average response time of tasks offloaded from UEi to MEC ji when only UEs in I share the service of MEC ji ,
which is

T̃ i, ji (I) = x̃i, ji + W̃ ji (I),

where

W̃ ji (I) = λ̃ ji x̃
2
ji

2(1 − ρ̃ ji)
,

with

λ̃ j =
∑
i∈I

λ̂i .

The following theorem gives T (t)
i (J).

Theorem 13. T (t)
i (J) is calculated as follows:

T (t)
i (J) = 1

π(t)(J)

∑
J ′

π(t−1)(J ′)p(J ′, J)

(
�((j′i = ji)T̃ i, ji (I j′i ∩ I ji) + (j′i �= ji)T ′

i) (18)

+(1 − �)

((
λi − λ̂i

λi

)
Ti + λ̂i

λi
T̃ i, ji (I ji)

))
,

for all t ≥ 1. (Recall that T ′
i is the average task response time of UEi without any offloading.)

(Note: A logical expression (i.e., j′i = ji , j′i �= ji) takes value 1 or 0, depending on whether it is true or false.)

Proof. Assume that at certain time t , the environment has location distribution J = (j0, ..., ji, ..., jm−1). The probability that
at time t − 1, the environment has location distribution J ′ = (j′ , ..., j′, ..., j′) is
0 i m−1

24

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Fig. 5. T (∞)
3 as a function of λ3 (DTMC).

π(t−1)(J ′)p(J ′, J)

π(t)(J)
.

For DTMC, � is actually the percentage of time during which a UE loses remote service due to movement. If j′i = ji , I j′i − I ji

is the set of UEs which leave MEC ji ; I j′i ∩ I ji is the set of UEs which remain in MEC ji ; I ji − I j′i is the set of UEs which newly
move to MEC ji . During the beginning � amount of time, if j′i = ji , UEi does not change its location, i.e., i ∈ I j′i ∩ I ji . Thus,
its average response time is T̃ i, ji (I j′i ∩ I ji), where only UEs in I j′i ∩ I ji are served by MEC ji . If j′i �= ji , UEi changes its location
from MEC j′i to MEC ji and has no MEC ji service. Thus, its average response time is T ′

i , i.e., the average response time of UEi

without any offloading. During the remaining 1 − � amount of time, all UEs in I ji are served by MEC ji . Thus, UEi ’s average
response time is the same as that in Eq. (11). Summarizing all the above arguments, we can obtain the theorem. �

For all t ≥ 1, the instantaneous average response time T (t)
i of tasks generated on UEi at time t is

T (t)
i =

N−1∑
J=0

π(t)(J)T (t)
i (J).

Let us consider a mobile edge computing environment in its stationary state π .

Theorem 14. T (∞)
i (J) is calculated as follows:

T (∞)
i (J) = 1

π(J)

∑
J ′

π(J ′)p(J ′, J)

(
�((j′i = ji)T̃ i, ji (I j′i ∩ I ji) + (j′i �= ji)T ′

i) (19)

+(1 − �)

((
λi − λ̂i

λi

)
Ti + λ̂i

λi
T̃ i, ji (I ji)

))
,

as t → ∞.

Proof. We only need to notice that as t → ∞, π(t)(J) → π(∞)(J) = π(J) and π(t−1)(J ′) → π(∞)(J ′) = π(J ′). �
The stationary average response time T (∞)

i of tasks generated on UEi is

T (∞)
i =

N−1∑
J=0

π(J)T (∞)
i (J).

In Fig. 5, we show T (∞)
3 as a function of λ3, for � = 0.05, 0.10, 0.15, 0.20, using the same parameter setting in Sec-

tion 5.1. The value of λ3 is close to making UE3 saturated, so that the impact of � can be manifested more clearly. It is
25

K. Li Journal of Computer and System Sciences 140 (2024) 103492
easily observed that � has strong influence on UEi ’s performance, especially when λi is large and ρi is high. The reason is
that during the beginning � amount of time, UEi may lose service and rely on its own computing power, which has long
T ′

i and results in significant increase of T (∞)
i (J) and T (∞)

i .

7.2. Continuous-time Markov chains

We assume that the transition time � is an exponential random variable with parameter q� .
Let the set of possible states of UEi be

Ni = { ji | 0 ≤ ji ≤ n − 1} ∪ { j̄i | 0 ≤ ji ≤ n − 1},
for all 0 ≤ i ≤ m − 1, where both ji and j̄i mean that UEi is at MEC j . Furthermore, ji means that UEi is not in the transition
state and has service from MEC j , while j̄i means that UEi is in the transition state without service from MEC j . Then, the
Cartesian product

N = N0 × N1 × · · · × Nm−1

gives the set of joint states of the m UEs. It is clear that |Ni | = 2n and |N | = (2n)m . For convenience, J ∈N is treated as an
m-digit radix-2n integer in the range 0, 1, ..., (2n)m − 1, where j̄ = j + n, for all 0 ≤ j ≤ n − 1.

The joint transition rate matrix of the joint CTMC

Q = [q(J ′, J)]
can be described as follows. Let J ′ = (j0, ..., j′i, ..., jm−1) and J = (j0, ..., ji, ..., jm−1). Since at any instant time, only one UE
can move,

J ′ = (j0, ..., j′i, ..., jm−1)⏐⏐⏐⏐�UEi

J = (j0, ..., j̄i, ..., jm−1)

we have

q(J ′, J) = qi(j′i, ji),

for all 0 ≤ i ≤ m − 1 and 0 ≤ j0, ..., j′i �= ji, ..., jm−1 ≤ n − 1. We also have

J ′ = (j0, ..., j̄i, ..., jm−1)⏐⏐⏐⏐�UEi

J = (j0, ..., ji, ..., jm−1)

that is,

q(J ′, J) = q�,

for all 0 ≤ i ≤ m − 1 and 0 ≤ jr ≤ n − 1. Furthermore, we have

q(J , J) = −
∑
J ′ �= J

q(J , J ′),

for all 0 ≤ J ≤ (2n)m − 1.
The above joint CTMC is actually decomposable. Let the movement of UEi be governed by an n ×n transition rate matrix

Q i = [qi(j′, j)].
The above matrix can be extended to a 2n × 2n transition rate matrix

Ri = [ri(j′, j)],
where
26

K. Li Journal of Computer and System Sciences 140 (2024) 103492
�	
�
0

�	
�
1 �	
�

2

�
�

�
�

���

�
�
�

�
����

�
�

�
�

���

	
	

	
	

	
		

��

�	
�
0

�	
�
0̄

�	
�
1̄

�	
�
1

�	
�
2̄

�	
�
2

�
�

�
�

�
���

�
�

�
�

�
���

�
�
�
�
�
�
�
�
�

���������������

�
�

�
�

�
�

�
�

��

���������������

�

� �

Fig. 6. Illustration of Q i and Ri (n = 3).

ri(j′, j̄) = qi(j′, j),

ri(j, j) = qi(j, j) = −
∑
j′ �= j

qi(j, j′),

ri(j̄, j) = q�,

ri(j̄, j̄) = −q�,

for all 0 ≤ j′ �= j ≤ n − 1 and 0 ≤ j ≤ n − 1. As an example, when n = 3, if

Q i =
⎡
⎣ qi(0,0) qi(0,1) qi(0,2)

qi(1,0) qi(1,1) qi(1,2)

qi(2,0) qi(2,1) qi(2,2)

⎤
⎦ ,

then Ri looks like

Ri =

⎡
⎢⎢⎢⎢⎢⎣

qi(0,0) 0 0 0 qi(0,1) qi(0,2)

0 qi(1,1) 0 qi(1,0) 0 qi(1,2)

0 0 qi(2,2) qi(2,0) qi(2,1) 0
q� 0 0 −q� 0 0
0 q� 0 0 −q� 0
0 0 q� 0 0 −q�

⎤
⎥⎥⎥⎥⎥⎦

.

Fig. 6 illustrates Q i and Ri when n = 3. For clarity, we do not show self-loops.
With Ri , we can get π(t)

i , π(t)(J), πi , π(J), by using Theorems 5 and 6.
Actually, there is close connection between the stationary probability vectors of Q i and Ri . Let

πi = [πi(0),πi(1), ...,πi(n − 1),πi(n),πi(n + 1), ...,πi(2n − 1)]
be the stationary probability vector of Ri . It can be verified that

[πi(0),πi(1), ...,πi(n − 1)]Q i = 0.

This implies that if

π ′
i = [π ′

i (0),π ′
i (1), ...,π ′

i (n − 1)]
is the stationary probability vector of Q i , then there is a constant α < 1, such that

[πi(0),πi(1), ...,πi(n − 1)] = α[π ′
i (0),π ′

i (1), ...,π ′
i (n − 1)].

It can be verified that

−(πi(0)qi(0,0) + πi(1)qi(1,1) + · · · + πi(n − 1)qi(n − 1,n − 1))

= (πi(n) + πi(n + 1) + · · · + πi(2n − 1))q�,
27

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Fig. 7. T (∞)
3 as a function of λ3 (CTMC).

that is,

−α(π ′
i (0)qi(0,0) + π ′

i (1)qi(1,1) + · · · + π ′
i (n − 1)qi(n − 1,n − 1))

= (1 − (πi(0) + πi(1) + · · · + πi(n − 1)))q�

= (1 − α(π ′
i (0) + π ′

i (1) + · · · + π ′
i (n − 1)))q�

= (1 − α)q�.

The last equation yields

α = q�

q� − (π ′
i (0)qi(0,0) + π ′

i (1)qi(1,1) + · · · + π ′
i (n − 1)qi(n − 1,n − 1))

.

If q� is reduced, α is also reduced, while

πi(n) + πi(n + 1) + · · · + πi(2n − 1) = 1 − α

is increased, which means that the probability for UEi to be in the transition state is increased.
To evaluate our performance predictions (i.e., T (t)

i and T (∞)
i), we need Ti(J), which is given by the following theorem.

Notice that Ti(J) is independent of t .

Theorem 15. The average response time Ti(J) of tasks generated on UEi under J = (j0, ..., ji, ..., jm−1) is

T i(J) = (UEi is in transition state, i.e., ji ≥ n)T ′
i (20)

+(UEi is not in transition state, i.e., ji < n)

((
λi − λ̂i

λi

)
Ti + λ̂i

λi
T̃ i, ji

)
,

with I ji updated as follows:

I ji = {i′ | UEi′ is at MEC ji and UEi′ is not in transition state, i.e., ji′ < n}.

Proof. Straightforward. �
In Fig. 7, we show T (∞)

3 as a function of λ3, using the same parameter setting in Section 5.1, where q� is chosen such
that the mean transition time � = 1/q� is 15, 30, 45, 60 seconds. The curves exhibit similar behavior as those in Fig. 5.

As mentioned earlier, for CTMC, the mean holding time is between 333 seconds and 714 seconds. Therefore, in terms of
percentage, the mean transition time in Fig. 7 is shorter than that of DTMC in Fig. 5. However, T (∞)

3 is longer than that in
Fig. 5. This means that randomized transition time has stronger impact on performance than constant transition time due
to increased uncertainty.
28

K. Li Journal of Computer and System Sciences 140 (2024) 103492
8. MEC speed setting

In this section, we discuss speed setting for MECs with power consumption constraint.

8.1. MEC-centric performance measures

In this section, we define performance measures for MECs.
Let T̃ j(I j) be the average response time of MEC j serving UEs in I j , which can be calculated by using Theorem 1. The

instantaneous average response time T̃ (t)
j of MEC j at time t is

T̃ (t)
j =

N−1∑
J=0

π(t)(J)T̃ j(I j(J)), (21)

where, for a location distribution J = (j0, ..., ji, ..., jm−1),

I j(J) = {i | ji = j}
is the set of UEs at MEC j . (Recall that N = nm is the number of location distributions.) The stationary average response time

T̃ (∞)
j of MEC j is

T̃ (∞)
j =

N−1∑
J=0

π(J)T̃ j(I j(J)). (22)

T̃ (∞)
j is our ultimate performance prediction for MEC j in a fog computing environment with mobile users.

Both Eqs. (21) and (22) involve N = nm terms. In fact, both summations can be simplified as follows. Consider I j ⊆
{0, 1, ..., m − 1}. It is clear that I j occurs with probability

P (t)
j (I j) =

∏
i∈I j

π
(t)
i (j)

∏
i /∈I j

(1 − π
(t)
i (j))

at time t , and with probability

P j(I j) =
∏
i∈I j

πi(j)
∏
i /∈I j

(1 − πi(j))

in a stationary mobile edge computing environment. Therefore, T̃ (t)
j can be calculated by

T̃ (t)
j =

∑
I j �=∅

P (t)
j (I j)T̃ j(I j), (23)

and T̃ (∞)
j can be calculated by

T̃ (∞)
j =

∑
I j �=∅

P j(I j)T̃ j(I j), (24)

for all 0 ≤ j ≤ n − 1. Both Eqs. (23) and (24) involve M = 2m terms.

8.2. Random location distribution model

In this section, we introduce the random location distribution model.
Notice that the evaluation of T̃ (∞)

j relies on πi(j), i.e., the probability that UEi is in the service area of MEC j .
Our random location distribution model includes the following parameters. Let a geographic area be

 = [−∞,+∞] × [−∞,+∞].
For UEi , we specify a function

f i(x, y) : → [0,1],
which gives the probability density function of the location of UEi . For MEC j , we specify its service area j ⊆ . Then, it is
clear that
29

K. Li Journal of Computer and System Sciences 140 (2024) 103492
πi(j) =
¨

 j

f i(x, y)dxdy,

for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.
If a UE is not in the service area of any MEC, which happens with probability

1 −
n−1∑
j=0

πi(j),

the UE has no mobile edge computing service.
For MEC j , it is possible that there is no any UE in its service area, which happens with probability

P (t)
j (∅) =

m−1∏
i=0

(1 − π
(t)
i (j))

at time t , and

P j(∅) =
m−1∏
i=0

(1 − πi(j))

in a stationary state. Therefore, the probability that there is at least one UE at MEC j (i.e., MEC j is busy) is

B(t)
j = 1 − P (t)

j (∅) = 1 −
m−1∏
i=0

(1 − π
(t)
i (j))

at time t , and

B j = 1 − P j(∅) = 1 −
m−1∏
i=0

(1 − πi(j))

in a stationary state.
Since there is chance for MEC j to be idle, the average response times given in Eqs. (23) and (24) should be modified as:

T̃ (t)
j = 1

B j

∑
I j �=∅

P (t)
j (I j)T̃ j(I j), (25)

and

T̃ (∞)
j = 1

B j

∑
I j �=∅

P j(I j)T̃ j(I j), (26)

for all 0 ≤ j ≤ n − 1. That is to say, we need to predict the average response time under the condition that MEC j is working.

8.3. Power constrained speed setting

In this section, we define our power constrained speed setting problem.
To discuss power constrained speed setting, we need power consumption models. We consider two types of server speed

and power consumption models.

• In the idle-speed model, the power consumption (measured by Watts) of MEC j is

P j = β j(B jξ j s̃
α j

j + P∗
j),

for all 0 ≤ j ≤ n − 1.
• In the constant-speed model, the power consumption of MEC j is

P j = β j(ξ j s̃
α j

j + P∗
j),

for all 0 ≤ j ≤ n − 1.
30

K. Li Journal of Computer and System Sciences 140 (2024) 103492
In both models, ξ j and α j are technology-dependent constants that determine the dynamic component of power consump-
tion, P∗

j is the static component of power consumption, and β j is the power usage effectiveness (PUE).
Our power constrained speed setting problem is to find MEC computing speeds s̃0, s̃1, ..., s̃n−1, such that the maximum

stationary average response time

T̃ (∞)
max = max

0≤ j≤n−1
{T̃ (∞)

j }

is minimized and that

P0 + P1 + · · · + Pn−1 = P ,

where P is a given power constraint.

8.4. The algorithm

In this section, we develop an algorithm to solve the power constrained speed setting problem.
Note that T̃ (∞)

max is minimized if and only if

T̃ (∞)
0 = T̃ (∞)

1 = · · · = T̃ (∞)
n−1 = T .

The value of T can be found by bisection search in an interval [0, T ′], based on the fact that P0 + P1 + · · · + Pn−1 is a
decreasing function of T . For a given T , we can find s̃0, s̃1, ..., s̃n−1. The value of s̃ j can also be found by bisection search
in an interval [0, ̃s′

j], based on the fact that T̃ (∞)
j is a decreasing function of s̃ j . If T̃ (∞)

j > T ; we increase s̃ j ; otherwise, we
decrease s̃ j . Using s̃0, s̃1, ..., s̃n−1, we can calculate P0, P1, ..., Pn−1. If P0 + P1 + · · · + Pn−1 > P , we increase T ; otherwise,
we decrease T .

The value of T ′ can be determined as follows. Initially, T ′ is set at any reasonable value. Then, T ′ is doubled until
P0 + P1 + · · · + Pn−1 < P . The value of s̃′

j can be determined as follows. Initially, s̃′
j is set at any reasonable value. Then, s̃′

j

is doubled until T̃ (∞)
j < T .

8.5. Numerical data

In this section, we demonstrate numerical data.
We consider two types of location distributions for the UEs.

• Normal distribution – The x- and y-coordinates of UEi are independent random variables with normal distributions
N(μx,i, σ 2

x,i) and N(μy,i, σ 2
y,i) respectively. Hence, the probability density function of the location of UEi is

f i(x, y) = 1√
2πσx,i

e−((x−μx,i)/σx,i)
2/2 × 1√

2πσy,i
e−((y−μy,i)/σy,i)

2/2,

which is actually

f i(x, y) = 1

2πσx,iσy,i
e−(((x−μx,i)/σx,i)

2+((y−μy,i)/σy,i)
2)/2,

for all 0 ≤ i ≤ m − 1. The probability that UEi is in the service area of MEC j is

πi(j) = 1

2πσx,iσy,i

¨

 j

e−(((x−μx,i)/σx,i)
2+((y−μy,i)/σy,i)

2)/2dxdy,

for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.
• Uniform distribution – The location of UEi is uniformly distributed in a rectangle Ri centered at (μx,i, μy,i) with size

2σx,i × 2σy,i :

Ri = {(x, y) | |x − μx,i| ≤ σx,i and |y − μy,i| ≤ σy,i}.
Hence, the probability density function of the location of UEi is

f i(x, y) = 1

4σx,iσy,i
, (x, y) ∈ Ri,

for all 0 ≤ i ≤ m − 1. The probability that UEi is in the service area of MEC j is
31

K. Li Journal of Computer and System Sciences 140 (2024) 103492
MEC0

MEC1 MEC2

MEC3 MEC4

�� � �
� � � � x

�

y

Fig. 8. The service areas of five MECs and the centers of seven UEs’ location distributions.

πi(j) = 1

4σx,iσy,i

¨

Ri∩ j

dxdy,

for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.

We consider m = 7 UEs and n = 5 MECs with the same parameter setting as Section 5.1.
As shown in Fig. 8, the service area of MEC j is a circle centered at (x j, y j) with radius γ j :

 j = {(x, y) | (x − x j)
2 + (y − y j)

2 ≤ γ 2
j },

for all 0 ≤ j ≤ n − 1. The centers are (x0, y0) = (0, 0), (x1, y1) = (−2, −2), (x2, y2) = (2, −2), (x3, y3) = (−2, 2), (x4, y4) =
(2, 2). The radius is γ j = 1.4, for all 0 ≤ j ≤ n − 1.

UE0 has a normal location distribution with μx,i = μy,i = 0, and σx,i = σy,i = 1.5. UE1, ..., UE6 have uniform loca-
tion distributions in squares of size 6.8 × 6.8 (i.e., the dashed square in Fig. 8 slightly shifted). For clarity, we only show
the centers of the six UEs’ location distributions in Fig. 8, which are (μx,1, μy,1) = (−0.5, −0.5), (μx,2, μy,2) = (0, −0.5),
(μx,3, μy,3) = (0.5, −0.5), (μx,4, μy,4) = (−0.5, 0.5), (μx,5, μy,5) = (0, 0.5), (μx,6, μy,6) = (0.5, 0.5).

The parameters of the power consumption models are: ξ j = 10, α j = 2, P∗
j = 5, β j = 2, for all 0 ≤ j ≤ n − 1.

In Table 6, we show the probabilities πi(j), for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1. It seems that there is good chance
for a UE to lose service. The probabilities that the MECs are busy are:

B0 = 0.72552,

B1 = 0.57417,

B2 = 0.57417,

B3 = 0.57417,

B4 = 0.57417.

It seems that there is good chance for an MEC to be idle.
In Tables 7 and 8, we show MEC speed setting for both power consumption models. It is clear that for the same power

constraint P , the idle-speed model yields higher computation speed than the constant-speed model due to higher power
efficiency. We also observe that since MEC0 is likely to serve more UEs (not because it is busier than other MECs), its speed
is faster than other MECs.

In Fig. 9, we display the maximum stationary average response time T̃ (∞)
max as a function of the power constraint P . It is

clear that for the same power constraint P , the idle-speed model yields lower response time than the constant-speed model
32

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Table 6
Location distributions of the UEs.

πi(0) πi(1) πi(2) πi(3) πi(4)
∑

πi(j)

UE0 0.35307 0.08394 0.08394 0.08394 0.08394 0.68883
UE1 0.13315 0.13315 0.11705 0.11705 0.10129 0.60170
UE2 0.13315 0.13315 0.13315 0.11705 0.11705 0.63356
UE3 0.13315 0.11705 0.13315 0.10129 0.11705 0.60170
UE4 0.13315 0.11705 0.10129 0.13315 0.11705 0.60170
UE5 0.13315 0.11705 0.11705 0.13315 0.13315 0.63356
UE6 0.13315 0.10129 0.11705 0.11705 0.13315 0.60170

Table 7
MEC speed setting (idle-speed model).

MEC0 MEC1 MEC2 MEC3 MEC4

P = 100 0.92857 0.90098 0.90207 0.90451 0.90606
P = 200 1.62689 1.55995 1.55796 1.55867 1.55811
P = 300 2.11577 2.01355 2.00757 2.00542 2.00191
P = 400 2.51802 2.38212 2.37179 2.36635 2.35955
P = 500 2.86938 2.70070 2.68581 2.67682 2.66657
P = 600 3.18620 2.98533 2.96574 2.95304 2.93922
P = 700 3.47761 3.24494 3.22056 3.20404 3.18657

Table 8
MEC speed setting (constant-speed model).

MEC0 MEC1 MEC2 MEC3 MEC4

P = 100 0.71968 0.70128 0.70266 0.70505 0.70671
P = 200 1.25930 1.21472 1.21475 1.21673 1.21760
P = 300 1.63601 1.56848 1.56642 1.56709 1.56649
P = 400 1.94535 1.85614 1.85171 1.85071 1.84836
P = 500 2.21509 2.10495 2.09798 2.09510 2.09084
P = 600 2.45798 2.32738 2.31775 2.31285 2.30660
P = 700 2.68110 2.53038 2.51801 2.51100 2.50267

Fig. 9. T̃ (∞)
max as a function of P .

due to higher MEC computation speed. It is easily observed that increasing P can noticeably reduce the average response
time. However, to certain extent, the average response time cannot be reduced anymore, no matter how much power is
provided and how fast the MECs are, since based on Theorem 1, we know that Ti = T̃ j = T . Thus, T cannot be lower than
Tlb = maxi∈I {xi}.
j

33

K. Li Journal of Computer and System Sciences 140 (2024) 103492
9. Extensions

In this section, we mention extensibility of our models and methods to more sophisticated mobile edge computing
environment.

Multiserver MECs. When MECs are multiserver systems, the M/G/m queueing system model can be employed. An accu-
rate analytical expression of the average response time for an M/G/m queueing system is available. Hence, Theorem 1 can
be easily extended to accommodate multiserver MECs.

No MEC service. When a UE is not in the service area of any MEC, there is no MEC service for the UE. The Markov chains
can be extended by adding a dummy MECn , with computation speed s̃n = 0. When a UE is not at any MEC, it is at MECn

and cannot offload any task to MECn .
Overlapping service areas. When a UE is somewhere with services available from multiple MECs, it is the UE’s decision

to choose one of the MECs to access mobile edge computing service. In other words, each UE actually decides the servers
and defines the service areas by itself, and all such decisions and definitions are reflected in the Markov chains.

Arbitrary computation offloading. Any computation offloading scheme can be considered. For instance, the UEs at the
same MEC can play a non-cooperative game to reach a Nash equilibrium. No matter which computation offloading strategy
is adopted, each UEi knows its Ti(J) for each J , and this is exactly what we need for performance prediction.

Correlated mobility. UEs may have correlated mobility. For instance, two UEs may tend to stay together or to depart
from each other. Such dependent mobilities are actually represented in the joint random walks P, Q , P′ . Of course, these
Markov chains are no longer decomposable. For the random location distribution model, a bivariate normal distribution can
effectively describe covariance and correlation among the coordinates.

Temporal-dependent mobility. DTMC can handle time-dependent transition probability matrices, and CTMC can handle
time-dependent transition rate matrices.

UE groups. A UE group (UEG) is a collection of UEs, which walk together. Assume that there are m UEGs: UEG0, UEG1, ...,
UEGm−1. The mobility of UEGi is specified by a single Markov chain or a single random location distribution. Let I ′j denote
the set of indices of UEGs at MEC j . Then, the set of indices of UEs at MEC j is simply

I j =
⋃
i∈I ′j

UEGi,

where UEGi also represents a set of indices of UEs in UEGi .
Speed setting. The MEC speed setting problem can be defined based on other criterion, e.g., speed setting with perfor-

mance constraint, speed setting with optimal power-time product, speed setting with lowest cost-performance ratio, and so
on.

10. Related work

In this section, we comment on some related work.
Research involving UE mobility in mobile edge computing can be classified into several categories, including mobility

awareness, mobility management, mobility prediction, and mobility modeling.
Mobility awareness. Many computation offloading and task scheduling algorithms have included user mobility into con-

sideration [35]. Ding et al. designed energy consumption minimization algorithms for UEs with known mobility, predictable
mobility, and random mobility [6]. Liu et al. considered computation offloading for a mobile UE with precedence con-
strained tasks, where the speed of the UE is known [21]. Ma et al. focused on providing virtualized network function
services to mobile users, by taking into account user mobility and service delay requirements [22]. Wang et al. investigated
fast heuristic task scheduling with joint consideration of task properties, user mobility, and network constraints, where the
movement paths are available in advance [32]. Zhan et al. studied offloading decision and resource allocation to achieve
optimal system-wide user utility, with consideration of mobility in the process of task offloading [36].

Mobility management. The main method for mobility management is service migration. When a UE moves sufficiently
away from a serving MEC, the service is migrated to another MEC [23]. Ksentini et al. employed a Markov decision process
to study a service migration procedure and formulated a decision policy to a make service migration decision when a UE is
far away from an MEC [12]. Ouyang et al. addressed the trade-off between service quality and migration cost by studying
the service performance optimization problem under long-term cost budget constraint with unpredictable user mobility
[25]. Yang et al. proposed a dynamic and live service migration technique based on an online user movement prediction
method that does not rely on prior knowledge such as user trajectories [34].

Mobility prediction. Attempts have been made to adopt predicted mobility into mobile edge computing. Maleki et al.
designed novel offloading approaches that consider expected future user locations predicted by a machine learning method
[24]. Plachy et al. developed a path selection algorithm for best data delivery between a mobile UE and the MECs based
on estimated transmission delay and energy consumption using a Markov decision process [27]. Plachy et al. proposed an
algorithm for dynamic virtual machine placement and communication path selection based on predicted and expected user
movement [28]. Wang et al. devised an online approximation algorithm for dynamic service placement, whose performance
is compared with an offline algorithm that knows the optimal placement with look-ahead time-window [31]. Wu et al.
34

K. Li Journal of Computer and System Sciences 140 (2024) 103492
constructed a factor graph learning model integrating social behavior, network status, and location correlation for location
prediction [33].

Mobility modeling. It is well known that trajectories of bank notes are scale-free random walks known as Lévy flights
and that human traveling behavior can be described mathematically on many spatiotemporal scales by a two-parameter
continuous-time random walk model to a surprising accuracy [3]. Random walks and semi-Markov processes have been
successfully applied to mobility modeling and analysis for mobile terminals in cellular wireless communication networks
[13]. Various mobility models have been proposed for mobile ad hoc networks (MANETs), including random waypoint model,
random walk model, random direction model, and so on [1,4,29]. Unfortunately, little mobility modeling research has been
conducted for mobile edge computing. The work in this paper makes significant progress towards this direction.

11. Concluding remarks

11.1. Summary

We have pointed out multiple challenges in modeling and analyzing the performance of UEs in a mobile edge computing
environment with multiple heterogeneous MECs. We have proposed to combine mathematically rigorous queueing systems,
algorithmically available computation offloading strategies, and analytically tractable Markov chains to simultaneously tackle
dynamicity, interaction, mobility, randomness, and cost of UEs. We are able to calculate the joint probability distribution of
the locations of UEs at any time. We can evaluate and predict the performance of a UE (i.e., the average response time of
tasks generated on the UE) at any time, when the UE dynamically and stochastically generates tasks, competitively shares
MEC resources with other UEs, and randomly walks among the MECs. We have also considered closed-form performance
predictions for homogeneous UEs and MECs and examined the impact of mobility cost on performance. Furthermore, we
addressed power constrained MEC speed setting.

11.2. A note on applications

We believe that the CTMC model is the most applicable to a wide range of scenarios and situations. The DTMC model is
limited due to synchronized movement of the UEs. Our SMP model is limited due to i.i.d. random holding times at different
MECs.

Our research in this paper is applicable in sophisticated real-world systems in the sense that we have considered task
heterogeneity (tasks on different UEs have different arrival rates, computation requirements, and communication require-
ments), UE heterogeneity (different UEs have different computation speeds, communication speeds, computation offloading
strategies, and mobilities), and MEC heterogeneity (different MECs have different computation speeds).

We have made efforts to accommodate UE mobilities which are non-Markovian processes, e.g., semi-Markov processes.

11.3. Future research

We would like to mention several directions for further investigation.

• Smart UEs – When UEi detects that the current MEC j is overcrowded with many UEs, i.e., |I j | is large, UEi changes its
location more quickly. This means that UEs are no longer independent in their movement; instead, the movement of a
UE depends on the movement of other UEs. Fortunately, such smart UEs can be modeled using our Markov chains with
proper modification. For DTMC, the transition probability from J to J ′ is not simply a product of UEs individual tran-
sition probabilities. For CTMC, the transition rate from J to J ′ should be adapted and adjusted. For SMP, the transition
probabilities of the embedded DTMC should be remedied and revised. The main challenge is how to deal with the large
matrix size and to reduce the computational cost.

• Mobility cost – It seems quite challenging to extend our discussion and result in Section 7 to more sophisticated context,
including the SMP mobility model and non-exponential randomized mobility cost, transition time, service delay, and
location change penalty (i.e., � is an arbitrary random variable).

• General SMP – We can extend our SMP in Section 3.3.3 to more general SMP, where each UE can have different random
holding times with different probability distributions at different MECs. This is certainly a sophisticated and difficult
mathematical problem.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.
35

K. Li Journal of Computer and System Sciences 140 (2024) 103492
Acknowledgments

The author would like to thank the anonymous referees for their critical review and useful suggestions on improving the
paper.

Appendix A. Proofs

Proof of Theorem 1. Since

Ti = xi + (λi − λ̂i)x2
i

2(1 − (λi − λ̂i)xi)
= T ,

we have

(λi − λ̂i)x2
i = 2(T − xi)(1 − (λi − λ̂i)xi),

that is,

(λi − λ̂i)x2
i = 2(T − xi) − 2(T − xi)(λi − λ̂i)xi,

and

(λi − λ̂i)(x2
i + 2xi(T − xi)) = 2(T − xi),

which implies that

λ̂i = λi − 2(T − xi)

x2
i + 2xi(T − xi)

,

for all i ∈ I j .
Furthermore, since

T̃ j = 1∑
i∈I j

λ̂i

∑
i∈I j

λ̂i

(
ri

s̃ j
+ di

ci, j

)
+

∑
i∈I j

λ̂i

(
r2

i

s̃2
j

+ 2
ridi

s̃ jci, j
+ d2

i

c2
i, j

)

2

(
1 −

∑
i∈I j

λ̂i

(
ri

s̃ j
+ di

ci, j

)) = T ,

we need to find T such that

f (T) = 0,

where

f (T) = T − 1∑
i∈I j

(
λi − 2(T − xi)

x2
i + 2xi(T − xi)

) ∑
i∈I j

(
λi − 2(T − xi)

x2
i + 2xi(T − xi)

)(
ri

s̃ j
+ di

ci, j

)

+

∑
i∈I j

(
λi − 2(T − xi)

x2
i + 2xi(T − xi)

)(
r2

i

s̃2
j

+ 2
ridi

s̃ jci, j
+ d2

i

c2
i, j

)

2

(
1 −

∑
i∈I j

(
λi − 2(T − xi)

x2
i + 2xi(T − xi)

)(
ri

s̃ j
+ di

ci, j

)) .

This proves the theorem. �
Proof of Theorem 10. A perfectly balanced initial location distribution is

π
(0)
i =

(
1

n
,

1

n
, ...,

1

n

)
.

Essentially, we need to show that for all DTMC/CTMC/SMP, we always have
36

K. Li Journal of Computer and System Sciences 140 (2024) 103492
π
(t)
i = π

(0)
i ,

for all t ≥ 0.
For DTMC, we have

Pi = [pi(j, j′)],
where pi(j, j′) = 1/n, for all 0 ≤ j, j′ ≤ n − 1. For a perfectly balanced initial location distribution:

π
(0)
i =

(
1

n
,

1

n
, ...,

1

n

)
,

we get

π
(0)
i = π

(0)
i Pi,

which implies that

π
(t)
i = π

(0)
i Pt

i = π
(0)
i ,

for all t ≥ 0.
For CTMC, we have

Q i = qi(P′
i − I),

with

P′
i = [p′

i(j, j′)],
where p′

i(j, j′) = 1/(n − 1), for all 0 ≤ j �= j′ ≤ n − 1. Again, since

π
(0)
i = π

(0)
i P′

i

and

π
(k)
i = π

(0)
i (P′

i)
k = π

(0)
i ,

for all k ≥ 0, a perfectly balanced location distribution is maintained after each location change and at any time. Mathemat-
ically, we have

exp(Q it) = exp((P′
i − I)qit)

= exp(P′
iqt)exp(−Iqit)

= exp(P′
iqt)Ie−qit

= e−qit exp(P′
iqt),

where we notice that

exp(M1 + M2) = exp(M1)exp(M2),

if M1 and M2 commute. Furthermore, for all t ≥ 0,

π
(t)
i = π

(0)
i exp(Q it)

= e−qitπ
(0)
i exp(P′

iqt)

= e−qitπ
(0)
i

∞∑
k=0

(P′
iqt)k

k!

= e−qit
∞∑

k=0

π
(0)
i (P′

i)
k(qt)k

k!

= e−qit
∞∑ π

(0)
i (qt)k

k!

k=0

37

K. Li Journal of Computer and System Sciences 140 (2024) 103492
= e−qitπ
(0)
i

∞∑
k=0

(qt)k

k!
= e−qitπ

(0)
i eqit

= π
(0)
i .

For SMP, we have the same P′
i as that of CTMC. Once again, a perfectly balanced location distribution is maintained after

each location change and at any time. Mathematically, we notice that for all t ≥ 0,

π
(t)
i = π

(0)
i

(∞∑
k=0

P[Xi(t) = k](P′
i)

k
)

=
∞∑

k=0

P[Xi(t) = k]π(0)
i (P′

i)
k

=
∞∑

k=0

P[Xi(t) = k]π(0)
i

= π
(0)
i

∞∑
k=0

P[Xi(t) = k]

= π
(0)
i .

The theorem is proved. �
References

[1] F. Bai, A. Helmy, A survey of mobility models in wireless ad hoc networks, in: Wireless Ad Hoc and Sensor Networks, Kluwer Academic Publishers,
2004, pp. 1–29, Chapter 1.

[2] A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science, Cambridge University Press, United Kingdom, 2020.
[3] D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel, Nature 439 (26 January 2006) 462–465.
[4] T. Camp, J. Boleng, V. Davies, A survey of mobility models for ad hoc network research, Wirel. Commun. Mob. Comput. 2 (5) (2002) 483–502.
[5] Y. Ding, K. Li, C. Liu, K. Li, A potential game theoretic approach to computation offloading strategy optimization in end-edge-cloud computing, IEEE

Trans. Parallel Distrib. Syst. 33 (6) (2022) 1503–1519.
[6] Y. Ding, K. Li, C. Liu, Z. Tang, K. Li, Short- and long-term cost and performance optimization for mobile user equipments, J. Parallel Distrib. Comput.

150 (2021) 69–84.
[7] Y. Ding, K. Li, C. Liu, Z. Tang, K. Li, Budget-constrained service allocation optimization for mobile edge computing, IEEE Trans. Serv. Comput. (2022), in

press.
[8] Z. He, K. Li, K. Li, Cost-efficient server configuration and placement for mobile edge computing, IEEE Trans. Parallel Distrib. Syst. 33 (9) (2022)

2198–2212.
[9] Z. He, K. Li, K. Li, W. Zhou, J. Liu, Server configuration optimization in mobile edge computing: a cost-performance tradeoff perspective, Softw. Pract.

Exp. 51 (9) (2021) 1847–1981.
[10] J. Hu, K. Li, C. Liu, A.T. Chronopoulos, K. Li, Game-based task offloading of multi-MD with QoS in MEC systems of limited computation capacity, ACM

Trans. Embed. Comput. Syst. 19 (4) (2020) 29.
[11] L. Kleinrock, Queueing Systems, Volume 1: Theory, John Wiley and Sons, New York, 1975.
[12] A. Ksentini, T. Taleb, M. Chen, A Markov decision process-based service migration procedure for follow me cloud, in: IEEE International Conference on

Communications, Sydney, NSW, Australia, 10-14 June 2014.
[13] K. Li, Analysis of distance-based location management in wireless communication networks, IEEE Trans. Parallel Distrib. Syst. 24 (2) (2013) 225–238.
[14] K. Li, A game theoretic approach to computation offloading strategy optimization for non-cooperative users in mobile edge computing, IEEE Trans.

Sustain. Comp. (September 2018), https://doi .org /10 .1109 /TSUSC .2018 .2868655.
[15] K. Li, Computation offloading strategy optimization with multiple heterogeneous servers in mobile edge computing, IEEE Trans. Sustain. Comp. (March

2019), https://doi .org /10 .1109 /TSUSC .2019 .2904680.
[16] K. Li, How to stabilize a competitive mobile edge computing environment: a game theoretic approach, IEEE Access 7 (1) (2019) 69960–69985.
[17] K. Li, Heuristic computation offloading algorithms for mobile users in fog computing, ACM Trans. Embed. Comput. Syst. 20 (2) (2021) 11, 28 pp.
[18] K. Li, Distributed and individualized computation offloading optimization in a fog computing environment, J. Parallel Distrib. Comput. 159 (2022)

24–34.
[19] K. Li, Non-clairvoyant and randomized online task offloading in mobile edge computing, Int. J. Parallel Emerg. Distrib. Syst. 37 (4) (2022) 413–424.
[20] C. Liu, K. Li, J. Liang, K. Li, COOPER-MATCH: job offloading with a cooperative game for guaranteeing strict deadlines in MEC, IEEE Trans. Mob. Comput.

(June 2019), https://doi .org /10 .1109 /TMC .2019 .2921713.
[21] Y. Liu, C. Liu, J. Liu, Y. Hu, K. Li, K. Li, Mobility-aware and code-oriented partitioning computation offloading in multi-access edge computing, J. Grid

Comput. 20 (2) (2022) 11.
[22] Y.Ma.W. Liang, J. Li, X. Jia, S. Guo, Mobility-aware and delay-sensitive service provisioning in mobile edge-cloud networks, IEEE Trans. Mob. Comput.

21 (1) (2022) 196–210.
[23] M. Mehrabi, H. Salah, F.H.P. Fitzek, A survey on mobility management for MEC-enabled systems, in: IEEE 2nd 5G World Forum, Dresden, Germany, 30

Sept.–2 Oct. 2019.
[24] E.F. Maleki, L. Mashayekhy, S.M. Nabavinejad, Mobility-aware computation offloading in edge computing using machine learning, IEEE Trans. Mob.

Comput. (1 June 2021), https://doi .org /10 .1109 /TMC .2021.3085527.
38

http://refhub.elsevier.com/S0022-0000(23)00097-1/bib1BAA5A77AEFF33338948C1E0C4466462s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib1BAA5A77AEFF33338948C1E0C4466462s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibA8FA1762B90CA0F3E54CF9F161403520s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibA9D413914CCFE62D484B1ECBCCA5F190s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib1F66E3428984AD4AFC38EBDDAF041F1Es1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibC37C46BBB7B139E3FC18CF43C4C331E4s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibC37C46BBB7B139E3FC18CF43C4C331E4s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibD03C616E99EA30C3C23A5B38B4D8E5FEs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibD03C616E99EA30C3C23A5B38B4D8E5FEs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibA5CA669BA40F03CD0E1313091C6FE2A6s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibA5CA669BA40F03CD0E1313091C6FE2A6s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib6468524407994949F9FF3ABD7FC4C82As1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib6468524407994949F9FF3ABD7FC4C82As1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib2EACC96FE23B87A72BAD8747A8063A76s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib2EACC96FE23B87A72BAD8747A8063A76s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib750500CFC6F7535914F670C3B9C5E1CFs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib750500CFC6F7535914F670C3B9C5E1CFs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibB9B04ABCAE5BC357FCF85E066184C1C6s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibD0603BDFDE731ADAAFD692647E4B016Bs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibD0603BDFDE731ADAAFD692647E4B016Bs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib4526B34A06CA5D869B669C7A8F12BC7As1
https://doi.org/10.1109/TSUSC.2018.2868655
https://doi.org/10.1109/TSUSC.2019.2904680
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibF2FEB978EF237FCDB33C8869A68443F9s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib4163CF922DB5CAC4B933C8E333BA09EFs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib6C791A93BB0AAE45B0FA9302018B0344s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib6C791A93BB0AAE45B0FA9302018B0344s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib7DDF32E17A6AC5CE04A8ECBF782CA509s1
https://doi.org/10.1109/TMC.2019.2921713
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibE31B409130F7AAE847110F5C926784E7s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibE31B409130F7AAE847110F5C926784E7s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibA732164392FBC156CF10FC93A277F35Cs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibA732164392FBC156CF10FC93A277F35Cs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib4AD5A86F50B778A2050C51335E97D234s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib4AD5A86F50B778A2050C51335E97D234s1
https://doi.org/10.1109/TMC.2021.3085527

K. Li Journal of Computer and System Sciences 140 (2024) 103492
[25] T. Ouyang, Z. Zhou, X. Chen, Follow me at the edge: mobility-aware dynamic service placement for mobile edge computing, IEEE J. Sel. Areas Commun.
36 (10) (2018) 2333–2345.

[26] H. Pishro-Nik, Introduction to Probability, Statistics, and Random Processes, Kappa Research LLC, 2014, Available at https://www.probabilitycourse .com.
[27] J. Plachy, Z. Becvar, P. Mach, Path selection enabling user mobility and efficient distribution of data for computation at the edge of mobile network,

Comput. Netw. 108 (2016) 357–370.
[28] J. Plachy, Z. Becvar, E.C. Strinati, Dynamic resource allocation exploiting mobility prediction in mobile edge computing, in: IEEE 27th Annual Interna-

tional Symposium on Personal, Indoor, and Mobile Radio Communications, Valencia, Spain, 4-8 Sept. 2016.
[29] A.G. Ribeiro, R. Sofia, A survey on mobility models for wireless networks, SITI Technical Report SITI-TR-11-01, Universidade Lusófona, February 2011.
[30] S.M. Ross, Introduction to Probability Models, 12th ed., Elsevier Inc., 2019.
[31] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, K.K. Leung, Dynamic service placement for mobile micro-clouds with predicted future costs, IEEE Trans.

Parallel Distrib. Syst. 28 (4) (2017) 1002–1016.
[32] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni, R. Wang, User mobility aware task assignment for mobile edge computing, Future Gener. Comput. Syst. 85

(2018) 1–8.
[33] Q. Wu, X. Chen, Z. Zhou, L. Chen, Mobile social data learning for user-centric location prediction with application in mobile edge service migration,

IEEE Int. Things J. 6 (5) (2019) 7737–7747.
[34] R. Yang, H. He, W. Zhang, Multitier service migration framework based on mobility prediction in mobile edge computing, Wirel. Commun. Mob.

Comput. 2021 (2021) 6638730.
[35] S.K.U. Zaman, A.I. Jehangiri, T. Maqsood, Z. Ahmad, A.I. Umar, J. Shuja, E. Alanazi, W. Alasmary, Mobility-aware computational offloading in mobile edge

networks: a survey, Clust. Comput. 24 (2021) 2735–2756.
[36] W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu, H. Duan, Mobility-aware multi-user offloading optimization for mobile edge computing, IEEE Trans. Veh.

Technol. 69 (3) (2020) 3341–3356.
39

http://refhub.elsevier.com/S0022-0000(23)00097-1/bib80A5D4CAF4A1F670FA642202F10E4B85s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib80A5D4CAF4A1F670FA642202F10E4B85s1
https://www.probabilitycourse.com
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibD1845321382A8311CB823791BBF94FB2s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibD1845321382A8311CB823791BBF94FB2s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib66E9D91F0FA2B8BF79E42FAE019EA4D8s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib66E9D91F0FA2B8BF79E42FAE019EA4D8s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib8CEE5050EEB7C783E8BFAA73003CED3As1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib7FD9A94F143D2BD19E98B3844A45D3ACs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibF8DF4E8452A236B35939E244D59FA2DDs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibF8DF4E8452A236B35939E244D59FA2DDs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib4EDE6D6081CBF75DDEEE2DCD5E9618A9s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib4EDE6D6081CBF75DDEEE2DCD5E9618A9s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib7645D9C141A5BE2F4EAC9BEB94E90EBCs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib7645D9C141A5BE2F4EAC9BEB94E90EBCs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibCF1821AAC6ECD187D5F042805CF878C9s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bibCF1821AAC6ECD187D5F042805CF878C9s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib0A419224A277964CA330E959BA250659s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib0A419224A277964CA330E959BA250659s1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib087F803260724001DDE788FE546732BEs1
http://refhub.elsevier.com/S0022-0000(23)00097-1/bib087F803260724001DDE788FE546732BEs1

	Performance modeling and analysis for randomly walking mobile users with Markov chains
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Mathematical models
	2.1 Queueing systems
	2.2 Resource sharing
	2.3 Random walks
	2.3.1 Discrete-time Markov chains
	2.3.2 Continuous-time Markov chains
	2.3.3 Semi-Markov processes

	3 Analytical methods
	3.1 Average response time
	3.2 Computation offloading
	3.3 Mobility analysis
	3.3.1 Discrete-time Markov chains
	3.3.2 Continuous-time Markov chains
	3.3.3 Semi-Markov processes

	4 Performance predictions
	4.1 UE-centric performance measures
	4.2 The algorithm

	5 Numerical data and examples
	5.1 Parameter setting
	5.2 Numerical data

	6 Homogeneous UEs and MECs
	7 Mobility cost
	7.1 Discrete-time Markov chains
	7.2 Continuous-time Markov chains

	8 MEC speed setting
	8.1 MEC-centric performance measures
	8.2 Random location distribution model
	8.3 Power constrained speed setting
	8.4 The algorithm
	8.5 Numerical data

	9 Extensions
	10 Related work
	11 Concluding remarks
	11.1 Summary
	11.2 A note on applications
	11.3 Future research

	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Proofs
	References

