
Journal of Computer and System Sciences 82 (2016) 174–190
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Power and performance management for parallel 
computations in clouds and data centers

Keqin Li ∗

Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 December 2014
Received in revised form 27 June 2015
Accepted 1 July 2015
Available online 21 July 2015

Keywords:
Cloud computing
Data center
Energy-efficient scheduling
Parallel task
Performance analysis
Precedence constraint
Simulation

We address scheduling independent and precedence constrained parallel tasks on multiple 
homogeneous processors in a data center with dynamically variable voltage and speed as 
combinatorial optimization problems. We consider the problem of minimizing schedule 
length with energy consumption constraint and the problem of minimizing energy 
consumption with schedule length constraint on multiple processors. Our approach is 
to use level-by-level scheduling algorithms to deal with precedence constraints. We use 
a simple system partitioning and processor allocation scheme, which always schedules 
as many parallel tasks as possible for simultaneous execution. We use two heuristic 
algorithms for scheduling independent parallel tasks in the same level, i.e., SIMPLE and 
GREEDY. We adopt a two-level energy/time/power allocation scheme, namely, optimal 
energy/time allocation among levels of tasks and equal power supply to tasks in the 
same level. Our approach results in significant performance improvement compared with 
previous algorithms in scheduling independent and precedence constrained parallel tasks.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Modern supercomputing centers and data centers consume astonishing amount of power and generate huge amount 
of pollution. For instances, the Tianhe-2 system in the National Super Computer Center in Guangzhou (China), the world’s 
fastest supercomputing system as of November 2014, has power consumption of 17,808 kW [27]. Assuming an electricity 
charge of 0.15 USD per kWh, the system has electricity cost of more than 23 million USD per year. It is well known that 
the extra costs of cooling and electrical losses are at about similar or even higher scale. The four Facebook’s data centers 
consumed about 678 million kWh of energy in 2012, costing more than 25 million USD per data center [25]. The mix of 
fuels consumed to generate the energy used by Facebook consisted of 34% coal, 22% nuclear, 19% renewable, 15% natural gas, 
and 10% “uncategorized”. It is also well known that among 100 units of source energy, only 33 units of electrical energy can 
be successfully generated and delivered to data centers. Therefore, energy consumption in data centers are actually tripled in 
terms of natural resources consumption. Furthermore, the amount of carbon emissions associated with Facebook’s Prineville, 
Oregon, data center in 2012 was 104,000 metric tons of greenhouse gases. Sustainable high-performance computing and 
cloud computing has been a grand challenge for human civilization and an extremely important research direction.

* Fax: +845 257 3996.
E-mail address: lik@newpaltz.edu.
http://dx.doi.org/10.1016/j.jcss.2015.07.001
0022-0000/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2015.07.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.jcss.2015.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2015.07.001&domain=pdf


K. Li / Journal of Computer and System Sciences 82 (2016) 174–190 175
Traditionally, parallel applications are run on high-performance computers (e.g., supercomputers and clusters), which 
are very expensive and not available to ordinary people. Cloud computing provides the tools and technologies such as 
computing resource sharing and virtualization to support data and computing intensive parallel applications with much 
more affordable prices compared to traditional parallel computing infrastructures [22]. Cloud computing is also the most 
effective approach to green computing due to resource virtualization, automation software, pay-per-use and self-service, and 
multitenancy [26]. While traditional parallel computing pursues the goal of high performance, cloud computing provides the 
opportunity to effective and efficient management of power and performance for parallel computations in green clouds and 
data centers simultaneously. Such balanced consideration of system performance and energy consumption for large-scale 
parallel applications is very important, since such applications typically consume significant computing resources, times, 
and energy. Furthermore, cloud computing has the capability to provide energy-efficient methods and algorithms to deal 
with the power-performance tradeoff at the data center level, when numerous users submit their service requests at the 
same time. Energy-efficient cloud computing [10] is the issue to be considered in this paper.

1.2. Related research

Increased energy consumption causes severe economic, ecological, and technical problems. Power conservation is critical 
in many computation and communication environments and has attracted extensive research activities. Reducing proces-
sor energy consumption has been an important and pressing research issue in recent years. There has been increasing 
interest and importance in developing high-performance and energy-efficient computing systems [17–19]. There exists an 
explosive body of literature on power-aware computing and communication. The reader is referred to [1,8,9,63–65,77] for 
comprehensive surveys.

Software techniques for power reduction are supported by a mechanism called dynamic voltage scaling [24]. Dynamic 
power management at the operating system level refers to supply voltage and clock frequency adjustment schemes imple-
mented while tasks are running. These energy conservation techniques explore the opportunities for tuning the energy-delay 
tradeoff [62]. In a pioneering paper [66], the authors first proposed the approach to energy saving by using fine grain con-
trol of CPU speed by an operating system scheduler. In a subsequent work [68], the authors analyzed offline and online 
algorithms for scheduling tasks with arrival times and deadlines on a uniprocessor computer with minimum energy con-
sumption. These research have been extended in [4–6,12,32,35,47–49,69] and inspired substantial further investigation, 
much of which focus on real-time applications. In [3,21,23,28,30,34,38,50,52,54,57,58,60,61,67,73–76] and many other re-
lated work, the authors addressed the problem of scheduling independent or precedence constrained tasks on uniprocessor 
or multiprocessor computers where the actual execution time of a task may be less than the estimated worst-case execution 
time. The main issue is energy reduction by slack time reclamation.

There are two considerations in dealing with the energy-delay tradeoff. On the one hand, in high-performance computing 
systems, power-aware design techniques and algorithms attempt to maximize performance under certain energy consump-
tion constraints. On the other hand, low-power and energy-efficient design techniques and algorithms aim to minimize 
energy consumption while still meeting certain performance goals. In [7], the author studied the problems of minimizing 
the expected execution time given a hard energy budget and minimizing the expected energy expenditure given a hard 
execution deadline for a single task with randomized execution requirement. In [11], the author considered scheduling jobs 
with equal requirements on multiprocessors. In [14], the authors investigated the relationship among parallelization, perfor-
mance, and energy consumption, and the problem of minimizing energy-delay product. In [20], the authors addressed joint 
minimization of carbon emission and maximization of profit. In [33,37], the authors attempted joint minimization of energy 
consumption and task execution time. In [46], the authors studied the problem of scheduling a bag-of-tasks application, 
i.e., a collection of independent stochastic tasks on a heterogeneous platform with deadline and energy consumption bud-
get constraints. In [59], the authors simultaneously addressed three constraints, i.e., energy, deadline, and reward, for both 
homogeneous and heterogeneous applications. In [71], the authors devised a novel reliability maximization with energy 
constraint algorithm, which can effectively balance the tradeoff between high reliability and energy consumption. In [78], 
the authors considered task scheduling on clusters with significant communication costs. System level power management 
has been investigated in [16,29,36,51,55]. Other studies were reported in [2,53,72].

In [40–45], we addressed energy and time constrained power allocation and task scheduling on multiprocessors with 
dynamically variable voltage and frequency and speed and power as combinatorial optimization problems. In [40,43], we 
studied the problems of scheduling independent sequential tasks. In [41,44], we studied the problems of scheduling inde-
pendent parallel tasks. In [42], we studied the problems of scheduling precedence constrained sequential tasks. In [45], we 
studied the problems of scheduling precedence constrained parallel tasks.

1.3. Our contributions

In this paper, we address scheduling independent and precedence constrained parallel tasks on multiple homogeneous 
processors in a data center with dynamically variable voltage and speed as combinatorial optimization problems. In par-
ticular, we consider the problem of minimizing schedule length with energy consumption constraint and the problem of 
minimizing energy consumption with schedule length constraint on multiple processors. The first problem has applications 



176 K. Li / Journal of Computer and System Sciences 82 (2016) 174–190
in a parallel computing environment where energy consumption is an important concern. The second problem has applica-
tions in a parallel computing environment where system performance is a major requirement. Notice that optimizing both 
energy consumption and system performance are conflicting objectives. Therefore, our scheduling problems are defined such 
that the power-performance tradeoff is dealt with by fixing one factor and minimizing the other.

Our scheduling problems contain four nontrivial subproblems, namely, precedence constraining, system partitioning, task 
scheduling, and power supplying. Each subproblem should be solved efficiently, so that heuristic algorithms with overall 
good performance can be developed. These subproblems and our strategies to solve them are described as follows.

• Precedence Constraining – Precedence constraints make design and analysis of heuristic algorithms very difficult. We 
propose to use level-by-level scheduling algorithms to deal with precedence constraints [45]. Since tasks in the same 
level are independent of each other, they can be scheduled by any of the efficient algorithms previously developed for 
scheduling independent tasks. Such decomposition of scheduling precedence constrained tasks into scheduling levels of 
independent tasks makes analysis of level-by-level scheduling algorithms much easier and clearer than analysis of other 
algorithms.

• System Partitioning – Since each parallel task requests for multiple processors which are simultaneously allocated, the 
available multiple processors in a data center should be partitioned into clusters of processors to be assigned to the 
tasks. We use a simple system partitioning and processor allocation scheme, which always schedules as many parallel 
tasks as possible for simultaneous execution.

• Task Scheduling – Parallel tasks are scheduled together with system partitioning and precedence constraining, and it is 
NP-hard even scheduling independent sequential tasks without system partitioning and precedence constraint. We use 
two heuristic algorithms for scheduling independent parallel tasks in the same level, i.e., SIMPLE and GREEDY developed 
in [39].

• Power Supplying – Tasks should be supplied with appropriate powers and execution speeds, such that the schedule 
length is minimized by consuming given amount of energy or the energy consumed is minimized without missing 
a given deadline. We adopt a two-level energy/time/power allocation scheme, namely, optimal energy/time allocation 
among levels of tasks (Theorems 5 and 6), and equal power supply to tasks in the same level (Theorems 3 and 4).

The above decomposition of our optimization problems into four subproblems makes design and analysis of heuristic al-
gorithms tractable. A unique feature of our work is to compare the performance of our algorithms with optimal solutions 
analytically and validate our results experimentally, not to compare the performance of heuristic algorithms among them-
selves only experimentally. Such an approach is consistent with traditional scheduling theory.

We notice that energy-efficient scheduling of parallel tasks with precedence constraints has rarely been discussed before 
analytically [45,56]; most previous studies were on scheduling sequential tasks which require one processor to execute, or 
independent tasks which have no precedence constraint. Our investigation in this paper continues to make initial attempt 
to energy-efficient scheduling of parallel tasks with precedence constraints on multiple processors in a data center with dy-
namic voltage and speed. The approach in this paper results in significant performance improvement as compared with the 
algorithms in [41] in scheduling independent parallel tasks and the algorithms in [45] in scheduling precedence constrained 
parallel tasks.

Recent researches have indicated that power consumption of many components in a system such as memories, disks, 
networks, and so on is also significant. However, in this paper, we primarily focus on processor energy consumption, which 
can be modeled accurately by available equations. Power and performance management for other components in clouds and 
data centers supporting parallel computations require additional modeling and deserve separate studies. Other important 
issues such as heterogeneous processors in a data center are also beyond the scope of this paper and deserve separate 
papers to study.

The rest of the paper is organized as follows. In Section 2, we provide background information, including the power 
and task models, definitions of our research problems, and lower bounds for optimal solutions. In Section 3, we present 
and analyze the class of equal-speed algorithms for scheduling independent parallel tasks. In Section 4, we discuss optimal 
energy/time allocation among levels of tasks and analyze the performance of our level-by-level scheduling algorithms. In 
Section 5, we demonstrate simulation data. We conclude the paper in Section 6.

2. Models and problems

In this section, we present background information, including the power and task models, definitions of our problems, 
and lower bounds for optimal solutions.

2.1. Power and task models

Power dissipation and circuit delay in digital CMOS circuits can be accurately modeled by simple equations, even for com-
plex microprocessor circuits. CMOS circuits have dynamic, static, and short-circuit power dissipation; however, the dominant 
component in a well designed circuit is dynamic power consumption p (i.e., the switching component of power), which is 
approximately p = aC V 2 f , where a is an activity factor, C is the loading capacitance, V is the supply voltage, and f is the 



K. Li / Journal of Computer and System Sciences 82 (2016) 174–190 177
clock frequency [13]. In the ideal case, the supply voltage and the clock frequency are related in such a way that V ∝ f φ for 
some constant φ > 0 [70]. The processor execution speed s is usually linearly proportional to the clock frequency, namely, 
s ∝ f . For ease of discussion, we will assume that V = bf φ and s = cf , where b and c are some constants. Hence, we know 
that power consumption is p = aC V 2 f = ab2C f 2φ+1 = (ab2C/c2φ+1)s2φ+1 = ξ sα , where ξ = ab2C/c2φ+1 and α = 2φ + 1. 
For instance, by setting b = 1.16, aC = 7.0, c = 1.0, φ = 0.5, α = 2φ + 1 = 2.0, and ξ = ab2C/cα = 9.4192, the value of p
calculated by the equation p = aC V 2 f = ξ sα is reasonably close to that in [31] for the Intel Pentium M processor.

Assume that we are given a parallel computation or application with a set of n precedence constrained parallel tasks. The 
precedence constraints can be specified as a partial order ≺ over the set of tasks {1, 2, . . . , n}, or a task graph G = (V , E), 
where V = {1, 2, . . . , n} is the set of tasks and E is a set of arcs representing the precedence constraints. The relationship 
i ≺ j, or an arc (i, j) from i to j, means that task i must be executed before task j, i.e., task j cannot be executed until task 
i is completed. A parallel task i, where 1 ≤ i ≤ n, is specified by πi and ri explained below. The integer πi is the number 
of processors requested by task i, i.e., the size of task i. It is possible that in executing task i, the πi processors may have 
different execution requirements (i.e., the numbers of CPU cycles or the numbers of instructions executed on the processors) 
due to imbalanced load distribution. Let ri represent the maximum execution requirement on the πi processors executing 
task i. The product wi = πiri is called the work of task i.

We are also given m homogeneous and identical processors in a data center. To execute a task i, any πi of the m
processors in the data center can be allocated to task i. Several tasks can be executed simultaneously in the data center, 
with the restriction that the total number of active processors (i.e., processors allocated to tasks being executed) at any 
moment cannot exceed m.

In a more general setting, we can consider scheduling u parallel applications represented by task graphs G1, G2, . . . , Gu

respectively, on m processors in a data center. Notice that multiple task graphs can be viewed as a single task graph with 
disconnected components. Therefore, our task model can accommodate multiple parallel applications.

We use pi to represent the power supplied to task i and si to represent the speed to execute task i. It is noticed that 
the constant ξ in pi = ξ sαi only linearly scales the value of pi . For ease of discussion, we will assume that pi is simply sαi , 
where si = p1/α

i is the execution speed of task i. The execution time of task i is ti = ri/si = ri/p1/α
i . Note that all the πi

processors allocated to task i have the same speed si for duration ti , although some of the πi processors may be idle for 
some time. The energy consumed to execute task i is ei = πi piti = πiri p1−1/α

i = πiri s
α−1
i = wi s

α−1
i , where wi = πiri is the 

amount of work to be performed for task i.
It is worth to mention that in a real processor, the supply voltage, clock frequency, and execution speed can only take a 

finite set of discrete values. However, for analytical tractability, these quantities have been treated as continuous variables, 
as done by most researchers in the literature, ever since the original research in [68]. We will adopt the same approach in 
this paper, i.e., the execution speed and power consumption of a processor can be continuously tuned.

2.2. Problem definitions

With the above models, our combinatorial optimization problems to be solved in this paper are formally defined as 
follows.

Given n parallel tasks with precedence constraints ≺, task sizes π1, π2, . . . , πn , and task execution requirements 
r1, r2, . . . , rn , the problem of minimizing schedule length with energy consumption constraint Ẽ on m identical processors in 
a data center is to find the power supplies p1, p2, . . . , pn (equivalently, the task execution speeds s1, s2, . . . , sn) and a non-
preemptive schedule of the n tasks on the m processors, such that the schedule length is minimized and that the total 
energy consumed does not exceed Ẽ . This problem aims at achieving energy-efficient processing of large-scale parallel 
applications with the best possible performance.

Given n parallel tasks with precedence constraints ≺, task sizes π1, π2, . . . , πn , and task execution requirements 
r1, r2, . . . , rn , the problem of minimizing energy consumption with schedule length constraint T̃ on m identical processors in 
a data center is to find the power supplies p1, p2, . . . , pn (equivalently, the task execution speeds s1, s2, . . . , sn) and a non-
preemptive schedule of the n tasks on the m processors, such that the total energy consumption is minimized and that 
the schedule length does not exceed T̃ . This problem aims at achieving high-performance processing of large-scale parallel 
applications with the lowest possible energy consumption.

The above two problems are NP-hard even when the tasks are independent (i.e., ≺= ∅) and sequential (i.e., πi = 1 for 
all 1 ≤ i ≤ n) [40]. Thus, we will seek fast heuristic algorithms with near-optimal performance.

2.3. Lower bounds

Let W = w1 + w2 +· · ·+ wn = π1r1 +π2r2 +· · ·+πnrn denote the total amount of work to be performed for the n parallel 
tasks. We define T ∗ to be the length of an optimal schedule, and E∗ to be the minimum amount of energy consumed by 
an optimal schedule.

The following theorem gives a lower bound for the optimal schedule length T ∗ for the problem of minimizing schedule 
length with energy consumption constraint.



178 K. Li / Journal of Computer and System Sciences 82 (2016) 174–190
Theorem 1. For the problem of minimizing schedule length with energy consumption constraint in scheduling parallel tasks, we have 
the following lower bound,

T ∗ ≥
(

m

Ẽ

(
W

m

)α)1/(α−1)

for the optimal schedule length.

The following theorem gives a lower bound for the minimum energy consumption E∗ for the problem of minimizing 
energy consumption with schedule length constraint.

Theorem 2. For the problem of minimizing energy consumption with schedule length constraint in scheduling parallel tasks, we have 
the following lower bound,

E∗ ≥ m

(
W

m

)α 1

T̃ α−1

for the minimum energy consumption.

The above lower bound theorems were proved for independent parallel tasks [41], and therefore, are also applicable 
to precedence constrained parallel tasks. The significance of these lower bounds is that they can be used to evaluate the 
performance of heuristic algorithms when their solutions are compared with optimal solutions.

3. Equal-speed algorithms

We propose to use the class of equal-speed (ES) algorithms for scheduling independent parallel tasks. In ES algorithms, 
all the tasks are supplied with the same power p and executed with the same speed s.

3.1. Energy-constrained scheduling

To solve the problem of minimizing schedule length with energy consumption constraint Ẽ , we notice that

Ẽ = π1r1 p1−1/α + π2r2 p1−1/α + · · · + πnrn p1−1/α = W p1−1/α,

which gives

p =
(

Ẽ

W

)α/(α−1)

,

and

s = p1/α =
(

Ẽ

W

)1/(α−1)

,

and

ti = ri

s
= ri

(
W

Ẽ

)1/(α−1)

.

The n tasks with execution times t1, t2, . . . , tn are scheduled by using an algorithm A for scheduling independent parallel 
tasks. We use ES-A to represent an equal-speed algorithm which uses an algorithm A to schedule the n tasks. For instance, 
if we use SIMPLE and GREEDY in [39], we have two equal-speed algorithms, namely, ES-SIMPLE and ES-GREEDY.

Given a list of tasks 1, 2, . . . , n, algorithm SIMPLE schedules the tasks in the given order as follows. Initially, tasks 
1, 2, . . . , j are scheduled for execution, where π = π1 + π2 + · · · + π j ≤ m, but π1 + π2 + · · · + π j+1 > m. In other 
words, we schedule as many tasks as possible for simultaneous execution; however, tasks beyond j + 1 are not checked 
even though there may exist small tasks in j + 1, j + 2, . . . , n, which can be scheduled for execution. Upon the comple-
tion of a task i, tasks j + 1, j + 2, . . . , k are scheduled for execution, where π − πi + π j+1 + π j+2 + · · · + πk ≤ m, but 
π −πi +π j+1 +π j+2 + · · · +πk+1 > m. Again, we schedule as many tasks as possible for simultaneous execution; but tasks 
beyond k + 1 are not checked.

Algorithm GREEDY improves SIMPLE in the sense that initially and upon the completion of a task, each of the remaining 
tasks not scheduled yet is tested to see whether it can be scheduled for execution (i.e., whether there are enough processors 
for the task).

Notice that the subproblems of system partitioning and task scheduling may not be solved separately. In fact, in algo-
rithms SIMPLE and GREEDY, the two subproblems are solved simultaneously, i.e., system partitioning is performed together 



K. Li / Journal of Computer and System Sciences 82 (2016) 174–190 179
with task scheduling. Such a combined approach and the equal-speed method result in improved performance compared 
with our earlier algorithms in [45], where the subproblems of system partitioning and task scheduling are solved separately, 
and energy/time/power allocation is performed in a more sophisticated way.

We define the performance ratio as β = T /T ∗ for heuristic algorithms that solve the problem of minimizing schedule 
length with energy consumption constraint on multiple processors. The following theorem gives the performance ratio 
when the equal-speed algorithms are used to solve the problem of minimizing schedule length with energy consumption 
constraint.

Let A(r1, r2, . . . , rn) represent the length of the schedule produced by algorithm A for n tasks with execution times 
r1, r2, . . . , rn .

Theorem 3. By using equal-speed algorithm ES-A to solve the problem of minimizing schedule length with energy consumption con-
straint on multiple processors, the schedule length is

T = A(r1, r2, . . . , rn)

(
W

Ẽ

)1/(α−1)

.

The performance ratio is

β ≤ A(r1, r2, . . . , rn)

W /m
.

Proof. We notice that for all x ≥ 0, we have A(t1, t2, . . . , tn) = xA(r1, r2, . . . , rn), if ti = xri for all 1 ≤ i ≤ n. Hence, we get

T = A(t1, t2, . . . , tn) = A(r1, r2, . . . , rn)

(
W

Ẽ

)1/(α−1)

.

By Theorem 1, we obtain

β = T

T ∗ ≤ A(r1, r2, . . . , rn)

W /m
.

The theorem is proven. �
3.2. Time-constrained scheduling

To solve the problem of minimizing energy consumption with schedule length constraint T̃ , we first use algorithm A to 
schedule n tasks with execution times ti = ri W 1/(α−1) , assuming that only unit amount of energy is consumed, i.e., E = 1
and p = 1/W α/(α−1) . Let T ′ be the resulted schedule length. We know that the ti ’s and T ′ can be scaled down or up by a 
factor of 1/E1/(α−1) by consuming energy E . To satisfy the schedule length constraint T̃ , we need

T ′

E1/(α−1)
= T̃ ,

that is,

E =
(

T ′

T̃

)α−1

.

We define the performance ratio as β = E/E∗ for heuristic algorithms that solve the problem of minimizing energy 
consumption with schedule length constraint on multiple processors. The following theorem gives the performance ratio 
when the equal-speed algorithms are used to solve the problem of minimizing energy consumption with schedule length 
constraint.

Theorem 4. By using equal-speed algorithm ES-A to solve the problem of minimizing energy consumption with schedule length con-
straint on multiple processors, the energy consumed is

E =
(

A(r1, r2, . . . , rn)

T̃

)α−1

W .

The performance ratio is

β ≤
(

A(r1, r2, . . . , rn)

W /m

)α−1

.



180 K. Li / Journal of Computer and System Sciences 82 (2016) 174–190
Proof. We notice that T ′ = A(t1, t2, . . . , tn) = A(r1, r2, . . . , rn)W 1/(α−1) . Hence, we get

E =
(

T ′

T̃

)α−1

=
(

A(r1, r2, . . . , rn)W 1/(α−1)

T̃

)α−1

=
(

A(r1, r2, . . . , rn)

T̃

)α−1

W .

By Theorem 2, we obtain

β = E

E∗ ≤
(

A(r1, r2, . . . , rn)

W /m

)α−1

.

The theorem is proven. �
The above discussion also gives

p =
(

E

W

)α/(α−1)

=
(

T ′

T̃

)α 1

W α/(α−1)

=
(

A(r1, r2, . . . , rn)W 1/(α−1)

T̃

)α 1

W α/(α−1)

=
(

A(r1, r2, . . . , rn)

T̃

)α

.

The processor speed s and task execution times ti can be obtained easily.

4. Level-by-level scheduling algorithms

A set of n parallel tasks with precedence constraints can be represented by a partial order ≺ on the tasks, i.e., for two 
tasks i and j, if i ≺ j, then task j cannot start its execution until task i finishes. It is clear that the n tasks and the partial 
order ≺ can be represented by a directed task graph, in which, there are n vertices for the n tasks and (i, j) is an arc if and 
only if i ≺ j. Furthermore, such a task graph must be a directed acyclic graph (dag). An arc (i, j) is redundant if there exists 
k such that (i, k) and (k, j) are also arcs in the task graph. We assume that there is no redundant arc in the task graph.

A dag can be decomposed into levels, with v being the number of levels. Tasks with no predecessors (called initial tasks) 
constitute level 1. Generally, a task i is in level l if the number of nodes on the longest path from some initial task to task i
is l, where 1 ≤ l ≤ v . Note that all tasks in the same level are independent of each other, and hence, they can be scheduled 
by any of the algorithms (e.g., those from the last section) for scheduling independent tasks. Algorithm LL-ES-A, standing for 
level-by-level scheduling with algorithm ES-A, schedules the n tasks level by level in the order level 1, level 2, . . . , level v . 
Tasks in level l + 1 cannot start their execution until all tasks in level l are completed. For each level l, where 1 ≤ l ≤ v , we 
use algorithm ES-A to generate its schedule.

It is clear that due to precedence constraints, a processor may be idle between execution of tasks. We assume that a 
processor consumes no dynamic power when it is idle. A processor still consumes some amount of power even when it is 
idle, which includes static power dissipation, short circuit power dissipation, and other leakage and wasted power. In [15], 
the authors considered static power consumption due to leakage current which is expected to increase significantly, and 
presented leakage-aware scheduling heuristics that determine the best trade-off between three techniques: dynamic voltage 
scaling, processor shutdown, and finding the optimal number of processors. However, we will mainly focus on dynamic 
power consumption.

4.1. Energy-constrained scheduling

To use a level-by-level scheduling algorithm to solve the problem of minimizing schedule length with energy consump-
tion constraint Ẽ , we need to allocate the available energy Ẽ to the v levels. We use E1, E2, . . . , E v to represent an energy 
allocation to the v levels, where level l consumes energy El , and E1 + E2 + · · · + E v = Ẽ . Let nl be the number of tasks in 
level l, and rl,1, rl,2, . . . , rl,nl be the execution requirements of the nl tasks in level l, and

Wl = πl,1rl,1 + πl,2rl,2 + · · · + πl,nl rl,nl

be the total amount of work of the nl tasks in level l, where 1 ≤ l ≤ v .
Theorem 5 provides optimal energy allocation to the v levels for minimizing schedule length with energy consumption 

constraint in scheduling precedence constrained tasks by using level-by-level scheduling algorithms LL-ES-A.



K. Li / Journal of Computer and System Sciences 82 (2016) 174–190 181
Theorem 5. For a given energy allocation E1, E2, . . . , E v to the v levels, the level-by-level scheduling algorithm LL-ES-A produces 
schedule length

T = A1

(
W1

E1

)1/(α−1)

+ A2

(
W2

E2

)1/(α−1)

+ · · · + Av

(
W v

E v

)1/(α−1)

,

where Al = A(rl,1, rl,2, . . . , rl,nl ) is the length of the schedule produced by algorithm A for nl tasks with execution times 
rl,1, rl,2, . . . , rl,nl . The energy allocation E1, E2, . . . , E v which minimizes T is

El =
(

A1−1/α
l W 1/α

l

A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v

)
Ẽ,

for all 1 ≤ l ≤ v, and the minimized schedule length is

T = (A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )α/(α−1)

Ẽ1/(α−1)
,

by using the above energy allocation.

Proof. From Theorem 3, we know that the schedule length for the nl tasks in level l is

Tl = A(rl,1, rl,2, . . . , rl,nl )

(
Wl

El

)1/(α−1)

= Al

(
Wl

El

)1/(α−1)

,

by using algorithm ES-A. Since the level-by-level scheduling algorithm produces schedule length T = T1 + T2 + · · · + T v , we 
have

T = A1

(
W1

E1

)1/(α−1)

+ A2

(
W2

E2

)1/(α−1)

+ · · · + Av

(
W v

E v

)1/(α−1)

.

To minimize T , we use the Lagrange multiplier system

∇T (E1, E2, . . . , E v) = λ∇ F (E1, E2, . . . , E v),

where λ is the Lagrange multiplier, and F is the constraint E1 + E2 + · · · + E v − Ẽ = 0. Since

∂T

∂ El
= λ

∂ F

∂ El
,

that is,

Al W
1/(α−1)

l

(
− 1

α − 1

)
1

E1/(α−1)+1
l

= λ,

1 ≤ l ≤ v , we get

El = A1−1/α
l W 1/α

l

(
1

λ(1 − α)

)(α−1)/α

,

which implies that

Ẽ = (A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )

(
1

λ(1 − α)

)(α−1)/α

,

and

El =
(

A1−1/α
l W 1/α

l

A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v

)
Ẽ,

for all 1 ≤ l ≤ v . By using the above energy allocation, we have



182 K. Li / Journal of Computer and System Sciences 82 (2016) 174–190
T =
v∑

l=1

Al

(
Wl

El

)1/(α−1)

=
v∑

l=1

Al W
1/(α−1)

l((
A1−1/α

l W 1/α
l

A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v

)
Ẽ

)1/(α−1)

=
v∑

l=1

A1−1/α
l W 1/α

l (A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )1/(α−1)

Ẽ1/(α−1)

= (A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )α/(α−1)

Ẽ1/(α−1)
.

The theorem is proven. �
Theorem 5 gives the power supply to the tasks in level l as

(
El

Wl

)α/(α−1)

=
((

A1−1/α
l W 1/α

l

A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v

)
Ẽ

Wl

)α/(α−1)

,

for all 1 ≤ l ≤ v .

4.2. Time-constrained scheduling

To use a level-by-level scheduling algorithm to solve the problem of minimizing energy consumption with schedule 
length constraint T̃ , we need to allocate the time T̃ to the v levels. We use T1, T2, . . . , T v to represent a time allocation to 
the v levels, where tasks in level l are executed within deadline Tl , and T1 + T2 + · · · + T v = T̃ .

Theorem 6 provides optimal time allocation to the v levels for minimizing energy consumption with schedule length 
constraint in scheduling precedence constrained tasks by using level-by-level scheduling algorithms LL-ES-A.

Theorem 6. For a given time allocation T1, T2, . . . , T v to the v levels, the level-by-level scheduling algorithm LL-ES-A consumes 
energy

E =
(

A1

T1

)α−1

W1 +
(

A2

T2

)α−1

W2 + · · · +
(

Av

T v

)α−1

W v ,

where Al = A(rl,1, rl,2, . . . , rl,nl ) is the length of the schedule produced by algorithm A for nl tasks with execution times 
rl,1, rl,2, . . . , rl,nl . The time allocation T1, T2, . . . , T v which minimizes E is

Tl =
(

A1−1/α
l W 1/α

l

A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v

)
T̃ ,

for all 1 ≤ l ≤ v, and the minimized energy consumption is

E = (A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )α

T̃ α−1
,

by using the above time allocation.

Proof. From Theorem 4, we know that the energy consumed by the nl tasks in level l is

El =
(

A(rl,1, rl,2, . . . , rl,nl )

Tl

)α−1

Wl =
(

Al

Tl

)α−1

Wl,

by using algorithm ES-A. Since the level-by-level scheduling algorithm consumes energy E = E1 + E2 + · · · + E v , we have

E =
(

A1

T1

)α−1

W1 +
(

A2

T2

)α−1

W2 + · · · +
(

Av

T v

)α−1

W v .

To minimize E , we use the Lagrange multiplier system

∇E(T1, T2, . . . , T v) = λ∇ F (T1, T2, . . . , T v),



K. Li / Journal of Computer and System Sciences 82 (2016) 174–190 183
where λ is the Lagrange multiplier, and F is the constraint T1 + T2 + · · · + T v − T̃ = 0. Since

∂ E

∂Tl
= λ

∂ F

∂Tl
,

that is,

Aα−1
l Wl

(
1 − α

T α
l

)
= λ,

1 ≤ l ≤ v , we get

Tl = A1−1/α
l W 1/α

l

(
1 − α

λ

)1/α

,

which implies that

T̃ = (A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )

(
1 − α

λ

)1/α

,

and

Tl =
(

A1−1/α
l W 1/α

l

A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v

)
T̃ ,

for all 1 ≤ l ≤ v . By using the above time allocation, we have

E =
v∑

l=1

(
Al

Tl

)α−1

Wl

=
v∑

l=1

Aα−1
l Wl((

A1−1/α
l W 1/α

l

A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v

)
T̃

)α−1

=
v∑

l=1

A1−1/α
l W 1/α

l (A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )α−1

T̃ α−1

= (A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )α

T̃ α−1
.

The theorem is proven. �
Theorem 6 gives the power supply to the tasks in level l as

(
Al

Tl

)α

=
(

Al(A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )

A1−1/α
l W 1/α

l T̃

)α

,

for all 1 ≤ l ≤ v .

5. Simulation results

Extensive simulations have been conducted to demonstrate the performance of equal-speed and level-by-level algorithms 
in scheduling independent and precedence constrained parallel tasks.

We define the normalized schedule length (NSL) as

NSL = T(
m

E

(
W

m

)α)1/(α−1)
.

According to Theorem 5, we have

NSL = (A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )α/(α−1)

W α/(α−1)
,

m



184 K. Li / Journal of Computer and System Sciences 82 (2016) 174–190
which, surprisingly, is independent of Ẽ . NSL is an upper bound for the performance ratio β = T /T ∗ for the problem of 
minimizing schedule length with energy consumption constraint on multiple processors. When the πi ’s and the ri ’s are 
random variables, T , T ∗ , β , and NSL all become random variables. It is clear that for the problem of minimizing schedule 
length with energy consumption constraint, we have β̄ ≤ NSL, i.e., the expected performance ratio is no greater than the 
expected normalized schedule length. (We use x̄ to represent the expectation of a random variable x.)

We define the normalized energy consumption (NEC) as

NEC = E

m

(
W

m

)α 1

T α−1

.

According to Theorem 6, we have

NEC = (A1−1/α
1 W 1/α

1 + A1−1/α
2 W 1/α

2 + · · · + A1−1/α
v W 1/α

v )α

W α

mα−1

,

which, surprisingly, is independent of T̃ . NEC is an upper bound for the performance ratio β = E/E∗ for the problem of 
minimizing energy consumption with schedule length constraint on multiple processors. For the problem of minimizing 
energy consumption with schedule length constraint, we have β̄ ≤ NEC.

Notice that for a given task graph and a given algorithm ES-A, the expected normalized schedule length NSL and the 
expected normalized energy consumption NEC are determined by m, α, and the probability distributions of the πi ’s and 
the ri ’s. In our simulations, the number of processors is set as m = 128; and the parameter α is set as 3. The particular 
choices of these values do not affect our general observations and conclusions. For convenience, the ri ’s are treated as 
independent and identically distributed (i.i.d.) continuous random variables uniformly distributed in [0, 1). The πi ’s are i.i.d. 
discrete random variables. We consider three types of probability distributions of task sizes with about the same expected 
task size π̄ . Let ab be the probability that πi = b, where b ≥ 1.

• Uniform distributions in the range [1..u], i.e., ab = 1/u for all 1 ≤ b ≤ u, where u is chosen such that (u + 1)/2 = π̄ , i.e., 
u = 2π̄ − 1.

• Binomial distributions in the range [1..m], i.e.,

ab =

(
m

b

)
pb(1 − p)m−b

1 − (1 − p)m
,

for all 1 ≤ b ≤ m, where p is chosen such that mp = π̄ , i.e., p = π̄/m. However, the actual expectation of task sizes is

π̄

1 − (1 − p)m
= π̄

1 − (1 − π̄/m)m
,

which is slightly greater than π̄ , especially when π̄ is small.
• Geometric distributions in the range [1..m], i.e.,

ab = q(1 − q)b−1

1 − (1 − q)m
,

for all 1 ≤ b ≤ m, where q is chosen such that 1/q = π̄ , i.e., q = 1/π̄ . However, the actual expectation of task sizes is

1/q − (1/q + m)(1 − q)m

1 − (1 − q)m
= π̄ − (π̄ + m)(1 − 1/π̄)m

1 − (1 − 1/π̄)m
,

which is less than π̄ , especially when π̄ is large.

The following task graphs are considered in our experiments.

• Independent Tasks. The task graph IT(n) for n independent tasks has l = 1 level.
• Tree-Structured Computations. Many computations are tree-structured, including backtracking search, branch-and-bound 

computations, game-tree evaluation, functional and logical programming, and various numeric computations. For sim-
plicity, we consider CT(b, h), i.e., complete b-ary trees of height h (see Fig. 1 where b = 2 and h = 4). It is easy to see 
that there are v = h + 1 levels numbered as 0, 1, 2, . . . , h, and nl = bl for 0 ≤ l ≤ h, and n = (bh+1 − 1)/(b − 1).

• Partitioning Algorithms. A partitioning algorithm PA(b, h) represents a divide-and-conquer computation with branching 
factor b and height (i.e., depth of recursion) h (see Fig. 2 where b = 2 and h = 3). The dag of PA(b, h) has v = 2h + 1
levels numbered as 0, 1, 2, . . . , 2h. A partitioning algorithm proceeds in three stages. In levels 0, 1, . . . , h − 1, each task 



K. Li / Journal of Computer and System Sciences 82 (2016) 174–190 185
Fig. 1. CT(b,h): a complete binary tree with b = 2 and h = 4.

Fig. 2. PA(b,h): a partitioning algorithm with b = 2 and h = 3.

Fig. 3. LA(v): a linear algebra task graph with v = 5.

is divided into b subtasks. Then, in level h, subproblems of small sizes are solved directly. Finally, in levels h + 1,

h + 2, . . . , 2h, solutions to subproblems are combined to form the solution to the original problem. Clearly, 
nl = n2h−l = bl , for all 0 ≤ l ≤ h − 1, nh = bh , and n = (bh+1 + bh − 2)/(b − 1).

• Linear Algebra Task Graphs. A linear algebra task graph LA(v) with v levels (see Fig. 3 where v = 5) has nl = v − l + 1 for 
l = 1, 2, . . . , v , and n = v(v + 1)/2.



186 K. Li / Journal of Computer and System Sciences 82 (2016) 174–190
Fig. 4. DD(d): a diamond dag with d = 4.

Table 0
(a) Simulation data for expected NSL on IT(1000). (b) Simulation data for expected NEC on IT(1000).

π̄ Uniform Binomial Geometric

SIMPLE GREEDY SIMPLE GREEDY SIMPLE GREEDY

(a)
10 1.0612151 1.0168790 1.0521286 1.0147309 1.0901721 1.0247102
20 1.1187971 1.0195745 1.0900334 1.0138343 1.1921851 1.0496759
30 1.1919770 1.0481047 1.1273770 1.0228665 1.2686441 1.0693486
40 1.2973743 1.0540485 1.1523803 1.0535529 1.3106863 1.0852705
50 1.3918785 1.1663052 1.2755402 1.2112754 1.3369496 1.0999473
60 1.3959948 1.1661416 1.1951052 1.0683883 1.3518497 1.1019147

(99% confidence interval ±0.493%)

(b)
10 1.1267452 1.0346511 1.1072562 1.0293253 1.1875484 1.0500715
20 1.2502904 1.0399032 1.1869774 1.0281415 1.4180250 1.0988909
30 1.4183074 1.0977834 1.2696579 1.0456720 1.6103616 1.1468834
40 1.6825777 1.1088284 1.3274379 1.1088664 1.7270726 1.1730450
50 1.9342936 1.3561545 1.6278985 1.4653180 1.7873708 1.2040632
60 1.9524615 1.3730117 1.4263815 1.1400377 1.8270598 1.2284763

(99% confidence interval ±0.928%)

• Diamond Dags. A diamond dag DD(d) (see Fig. 4 where d = 4) contains v = 2d − 1 levels numbered as 1, 2, . . . , 2d − 1. 
It is clear that nl = n2d−l = l, for all 1 ≤ l ≤ d − 1, nd = d, and n = d2.

Since each task graph has at least one parameter, we are actually dealing with classes of task graphs.
Our simulation data are shown in Tables 0–4. For each task graph in {IT(1000), CT(2, 12), PA(2, 12), LA(2000), DD(2000)}, 

and each algorithm LL-ES-A with A ∈ {SIMPLE, GREEDY}, and each π̄ in the range 10, 20, . . . , 60, and each probability 
distribution of task sizes, we generate rep sets of tasks, produce their schedules by using algorithm LL-ES-A, calculate their 
NSL (or NEC), report the average of NSL (or NEC) which is the experimental value of NSL (or NEC). The number rep is large 
enough to ensure high quality experimental data. The 99% confidence interval of all the data in the same table is also given.

We have the following observations from our simulations.

• For algorithm LL-ES-SIMPLE, NSL is less than 1.40 and NEC is less than 1.96. Therefore, algorithm LL-ES-SIMPLE produces 
solutions reasonably close to optimum. The performance of algorithm LL-ES-SIMPLE is close to the performance of the 
algorithms in [41,45] with slight improvement in some cases and slight degradation in other cases.

• For algorithm LL-ES-GREEDY, NSL is less than 1.17 and NEC is less than 1.38. Therefore, algorithm LL-ES-GREEDY pro-
duces solutions very close to optimum. The performance of algorithm LL-ES-GREEDY is significantly better than the 
performance of the algorithms in [41,45] in all cases.

• The performance of algorithms LL-ES-SIMPLE and LL-ES-GREEDY in scheduling precedence constrained parallel tasks is 
very close to their performance in scheduling independent parallel tasks.



K. Li / Journal of Computer and System Sciences 82 (2016) 174–190 187
Table 1
(a) Simulation data for expected NSL on CT(2, 12). (b) Simulation data for expected NEC on CT(2, 12).

π̄ Uniform Binomial Geometric

SIMPLE GREEDY SIMPLE GREEDY SIMPLE GREEDY

(a)
10 1.0668090 1.0201838 1.0577947 1.0193555 1.0957142 1.0270283
20 1.1205977 1.0185733 1.0923741 1.0146307 1.1927025 1.0432034
30 1.1929372 1.0419474 1.1290641 1.0198055 1.2706385 1.0606376
40 1.2985809 1.0457828 1.1529326 1.0507253 1.3130905 1.0748126
50 1.3928274 1.1545554 1.2761905 1.2081274 1.3369573 1.0851453
60 1.3956523 1.1603921 1.1958390 1.0688474 1.3506594 1.0923258

(99% confidence interval ±0.460%)

(b)
10 1.1383245 1.0416396 1.1179429 1.0386127 1.2023180 1.0533462
20 1.2550407 1.0377974 1.1935845 1.0293171 1.4196389 1.0859413
30 1.4229124 1.0822442 1.2732534 1.0408577 1.6095455 1.1248934
40 1.6878521 1.0892896 1.3312011 1.1039101 1.7231850 1.1525326
50 1.9349816 1.3261586 1.6285768 1.4606897 1.7855972 1.1821897
60 1.9481303 1.3432642 1.4307396 1.1421105 1.8318362 1.2003030

(99% confidence interval ±0.952%)

Table 2
(a) Simulation data for expected NSL on PA(2, 12). (b) Simulation data for expected NEC on PA(2, 12).

π̄ Uniform Binomial Geometric

SIMPLE GREEDY SIMPLE GREEDY SIMPLE GREEDY

(a)
10 1.0716128 1.0254429 1.0622476 1.0245758 1.1004858 1.0315472
20 1.1229537 1.0215426 1.0942444 1.0174901 1.1952533 1.0452092
30 1.1939384 1.0449567 1.1296327 1.0231406 1.2704328 1.0670118
40 1.2999920 1.0501849 1.1536161 1.0530590 1.3143386 1.0790531
50 1.3918059 1.1569191 1.2763570 1.2101363 1.3392503 1.0901296
60 1.3965619 1.1621468 1.1951861 1.0694355 1.3530281 1.0988777

(99% confidence interval ±0.321%)

(b)
10 1.1475745 1.0515120 1.1284554 1.0480413 1.2115691 1.0635553
20 1.2609131 1.0450170 1.1973206 1.0350568 1.4274128 1.0942839
30 1.4258802 1.0952942 1.2762781 1.0466918 1.6142826 1.1335437
40 1.6869286 1.1017721 1.3321073 1.1089859 1.7277448 1.1639895
50 1.9360513 1.3409519 1.6291149 1.4642838 1.7905343 1.1878522
60 1.9464194 1.3545830 1.4295539 1.1433611 1.8290595 1.2083101

(99% confidence interval ±0.682%)

Table 3
(a) Simulation data for expected NSL on LA(2000). (b) Simulation data for expected NEC on LA(2000).

π̄ Uniform Binomial Geometric

SIMPLE GREEDY SIMPLE GREEDY SIMPLE GREEDY

(a)
10 1.0612303 1.0159743 1.0519685 1.0140395 1.0906802 1.0238608
20 1.1182512 1.0186872 1.0898940 1.0134069 1.1897128 1.0457268
30 1.1918755 1.0455220 1.1271037 1.0215933 1.2678591 1.0666341
40 1.2978150 1.0485586 1.1524009 1.0525059 1.3123196 1.0822635
50 1.3908910 1.1609637 1.2757914 1.2101833 1.3372127 1.0938019
60 1.3948910 1.1666006 1.1947793 1.0682570 1.3517422 1.1020769

(99% confidence interval ±0.114%)

(b)
10 1.1260191 1.0324173 1.1066705 1.0285355 1.1895891 1.0477615
20 1.2503948 1.0377225 1.1876557 1.0270245 1.4163021 1.0933717
30 1.4202830 1.0936211 1.2704740 1.0435191 1.6088775 1.1375873
40 1.6849283 1.1002442 1.3284721 1.1075646 1.7226676 1.1700267
50 1.9350065 1.3458443 1.6276293 1.4645802 1.7878103 1.1961308
60 1.9450557 1.3607152 1.4284098 1.1410491 1.8270078 1.2144811

(99% confidence interval ±0.322%)



188 K. Li / Journal of Computer and System Sciences 82 (2016) 174–190
Table 4
(a) Simulation data for expected NSL on DD(2000). (b) Simulation data for expected NEC on DD(2000).

π̄ Uniform Binomial Geometric

SIMPLE GREEDY SIMPLE GREEDY SIMPLE GREEDY

(a)
10 1.0610775 1.0160462 1.0519582 1.0141385 1.0907664 1.0238278
20 1.1183243 1.0187398 1.0898882 1.0134304 1.1900367 1.0455208
30 1.1917453 1.0455270 1.1270523 1.0215835 1.2681809 1.0666328
40 1.2976583 1.0484570 1.1524144 1.0524424 1.3125313 1.0824322
50 1.3910242 1.1609358 1.2756748 1.2100847 1.3372368 1.0937529
60 1.3949963 1.1665262 1.1948174 1.0683092 1.3516736 1.1024780

(99% confidence interval ±0.096%)

(b)
10 1.1258153 1.0326963 1.1065136 1.0283041 1.1896335 1.0478935
20 1.2504657 1.0378320 1.1878762 1.0269091 1.4165509 1.0932355
30 1.4205594 1.0937435 1.2702350 1.0433919 1.6083204 1.1378991
40 1.6844089 1.1012971 1.3284540 1.1076607 1.7221262 1.1701462
50 1.9349758 1.3470838 1.6275125 1.4641654 1.7877041 1.1957474
60 1.9459369 1.3592738 1.4282224 1.1412452 1.8273985 1.2153072

(99% confidence interval ±0.178%)

6. Concluding remarks

We have addressed scheduling independent and precedence constrained parallel tasks on multiple homogeneous proces-
sors in a data center with dynamically variable voltage and speed as combinatorial optimization problems. We considered 
the problem of minimizing schedule length with energy consumption constraint and the problem of minimizing energy 
consumption with schedule length constraint on multiple processors. We noticed that energy-efficient scheduling of parallel 
tasks with precedence constraints has rarely been discussed before. Our investigation in this paper continues to make initial 
attempt to energy-efficient scheduling of parallel tasks with precedence constraints on multiple processors in a data center 
with dynamic voltage and speed. The approach in this paper results in significant performance improvement as compared 
with previous algorithms in scheduling independent parallel tasks and precedence constrained parallel tasks.

As mentioned in [42], there are three types of power-aware task scheduling algorithms, depending on the order of 
power supplying and task scheduling, i.e., pre-power-determination algorithms – power supplies are determined before task 
scheduling; post-power-determination algorithms – task scheduling is performed before power supplying; hybrid algorithms
– task scheduling and power supplying are interleaved. It should be mentioned that the approach in [41,45] belongs to 
the category of post-power-determination algorithms, while the method in this paper belongs to the category of hybrid 
algorithms, which has been proven to exhibit significantly better performance than the post-power-determination algorithms 
in scheduling independent parallel tasks [41] and precedence constrained parallel tasks [45]. As a further research direction, 
it is worth to consider pre-power-determination algorithms for precedence constrained parallel tasks. Some studies have 
been conducted for independent parallel tasks [44].

Furthermore, our investigation can be extended to energy and time constrained scheduling of precedence constrained 
parallel tasks on multiple manycore processors in a cloud computing environment, multiple multiprocessor systems for 
parallel computing, and multiple clusters in a distributed grid computing environment, with the application of the above 
mentioned algorithmic techniques.

Acknowledgments

The author would like to thank the two anonymous reviewers for their suggestions to improve the manuscript.

References

[1] S. Albers, Energy-efficient algorithms, Commun. ACM 53 (5) (2010) 86–96.
[2] J. Augustine, S. Irani, C. Swamy, Optimal power-down strategies, SIAM J. Comput. 37 (5) (2008) 1499–1516.
[3] H. Aydin, R. Melhem, D. Mossé, P. Mejía-Alvarez, Power-aware scheduling for periodic real-time tasks, IEEE Trans. Comput. 53 (5) (2004) 584–600.
[4] E. Bampis, C. Dürr, F. Kacem, I. Milis, Speed scaling with power down scheduling for agreeable deadlines, Sustain. Comput. Inform. Syst. 2 (4) (2012) 

184–189.
[5] N. Bansal, T. Kimbrel, K. Pruhs, Speed scaling to manage energy and temperature, J. ACM 54 (1) (2007), Article No. 3.
[6] P. Baptiste, M. Chrobak, C. Dürr, Polynomial-time algorithms for minimum energy scheduling, ACM Trans. Algorithms 8 (3) (2012), Article No. 26.
[7] J.A. Barnett, Dynamic task-level voltage scheduling optimizations, IEEE Trans. Comput. 54 (5) (2005) 508–520.
[8] A. Beloglazov, R. Buyya, Y.C. Lee, A. Zomaya, A taxonomy and survey of energy-efficient data centers and cloud computing systems, Adv. Comput. 82 

(2011) 47–111.
[9] L. Benini, A. Bogliolo, G. De Micheli, A survey of design techniques for system-level dynamic power management, IEEE Trans. Very Large Scale Integr. 

(VLSI) Syst. 8 (3) (2000) 299–316.
[10] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M.Q. Dang, K. Pentikousis, Energy-efficient cloud computing, Comput. J. 53 (7) (2010) 

1045–1051.

http://refhub.elsevier.com/S0022-0000(15)00074-4/bib416C62657273s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib414953s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib414D4D4Ds1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib42444B4Ds1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib42444B4Ds1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib424B50s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib424344s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4261726E657474s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib42424C5As1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib42424C5As1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib424244s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib424244s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib424747474450s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib424747474450s1


K. Li / Journal of Computer and System Sciences 82 (2016) 174–190 189
[11] D.P. Bunde, Power-aware scheduling for makespan and flow, in: Proceedings of the 18th ACM Symposium on Parallelism in Algorithms and Architec-
tures, 2006, pp. 190–196.

[12] H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, P.W.H. Wong, Energy efficient online deadline scheduling, in: Proceedings of the 18th ACM–SIAM 
Symposium on Discrete Algorithms, 2007, pp. 795–804.

[13] A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design, IEEE J. Solid-State Circuits 27 (4) (1992) 473–484.
[14] S. Cho, R.G. Melhem, On the interplay of parallelization, program performance, and energy consumption, IEEE Trans. Parallel Distrib. Syst. 21 (3) (2010) 

342–353.
[15] P. de Langen, B. Juurlink, Leakage-aware multiprocessor scheduling, J. Signal Process. Syst. 57 (1) (2009) 73–88.
[16] V. Devadas, H. Aydin, On the interplay of voltage/frequency scaling and device power management for frame-based real-time embedded applications, 

IEEE Trans. Comput. 61 (1) (2012) 31–44.
[17] D. Donofrio, L. Oliker, J. Shalf, M.F. Wehner, C. Rowen, J. Krueger, S. Kamil, M. Mohiyuddin, Energy-efficient computing for extreme-scale science, 

Computer 42 (11) (2009) 62–71.
[18] W.-c. Feng, K.W. Cameron, The green500 list: encouraging sustainable supercomputing, Computer 40 (12) (2007) 50–55.
[19] V.W. Freeh, D.K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B.L. Rountree, M.E. Femal, Analyzing the energy-time trade-off in high-performance com-

puting applications, IEEE Trans. Parallel Distrib. Syst. 18 (6) (2007) 835–848.
[20] S.K. Garg, C.S. Yeo, A. Anandasivam, R. Buyya, Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers, J. Par-

allel Distrib. Comput. 71 (6) (2011) 732–749.
[21] M.E.T. Gerards, Algorithmic power management – energy minimization under real-time constraints, Ph.D. thesis, University of Twente, Netherlands, 

2014.
[22] M. Hamdaqa, L. Tahvildari, Cloud Computing Uncovered: A Research Landscape, Adv. Comput., vol. 86, Elsevier Inc., 2012, pp. 41–84.
[23] J.-J. Han, X. Wu, D. Zhu, H. Jin, L.T. Yang, J.-L. Gaudiot, Synchronization-aware energy management for VFI-based multicore real-time systems, IEEE 

Trans. Comput. 61 (12) (2012) 1682–1696.
[24] http://en.wikipedia.org/wiki/Dynamic_voltage_scaling.
[25] http://www.datacenterdynamics.com/focus/archive/2013/06/facebook-data-centers-energy-use-2012.
[26] http://www.greenbiz.com/blog/2011/07/27/4-reasons-why-cloud-computing-also-green-solution.
[27] http://www.top500.org/.
[28] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M.B. Srivastava, Power optimization of variable-voltage core-based systems, IEEE Trans. Comput.-Aided Des. 

Integr. Circuits Syst. 18 (12) (1999) 1702–1714.
[29] F. Hu, J.J. Evans, Power and environment aware control of Beowulf clusters, Clust. Comput. 12 (3) (2009) 299–308.
[30] C. Im, S. Ha, H. Kim, Dynamic voltage scheduling with buffers in low-power multimedia applications, ACM Trans. Embed. Comput. Syst. 3 (4) (2004) 

686–705.
[31] Intel, Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor – White Paper, March 2004.
[32] S. Irani, S. Shukla, R. Gupta, Algorithms for power savings, ACM Trans. Algorithms 3 (4) (2007), Article No. 41.
[33] S.U. Khan, I. Ahmad, A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids, 

IEEE Trans. Parallel Distrib. Syst. 20 (3) (2009) 346–360.
[34] C.M. Krishna, Y.-H. Lee, Voltage-clock-scaling adaptive scheduling techniques for low power in hard real-time systems, IEEE Trans. Comput. 52 (12) 

(2003) 1586–1593.
[35] W.-C. Kwon, T. Kim, Optimal voltage allocation techniques for dynamically variable voltage processors, ACM Trans. Embed. Comput. Syst. 4 (1) (2005) 

211–230.
[36] W.-K. Lee, S.-W. Lee, W.-O. Siew, Hybrid model for dynamic power management, IEEE Trans. Consum. Electron. 55 (2) (2009) 656–664.
[37] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing systems under different operating conditions, IEEE Trans. Parallel Distrib. 

Syst. 22 (8) (2011) 1374–1381.
[38] Y.-H. Lee, C.M. Krishna, Voltage-clock scaling for low energy consumption in fixed-priority real-time systems, Real-Time Syst. 24 (3) (2003) 303–317.
[39] K. Li, An average-case analysis of online non-clairvoyant scheduling of independent parallel tasks, J. Parallel Distrib. Comput. 66 (5) (2006) 617–625.
[40] K. Li, Performance analysis of power-aware task scheduling algorithms on multiprocessor computers with dynamic voltage and speed, IEEE Trans. 

Parallel Distrib. Syst. 19 (11) (2008) 1484–1497.
[41] K. Li, Energy efficient scheduling of parallel tasks on multiprocessor computers, J. Supercomput. 60 (2) (2012) 223–247.
[42] K. Li, Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers, IEEE Trans. Comput. 61 (12) (2012) 

1668–1681.
[43] K. Li, Power allocation and task scheduling on multiprocessor computers with energy and time constraints, in: A.Y. Zomaya, Y.C. Lee (Eds.), Energy-

Efficient Distributed Computing Systems, John Wiley & Sons, 2012, pp. 1–37, Chapter 1.
[44] K. Li, Algorithms and analysis of energy-efficient scheduling of parallel tasks, in: I. Ahmad, S. Ranka (Eds.), Handbook of Energy-Aware and Green 

Computing, vol. 1, CRC Press/Taylor & Francis Group, 2012, pp. 331–360, Chapter 15.
[45] K. Li, Energy-efficient and high-performance processing of large-scale parallel applications in data centers, in: S.U. Khan, A.Y. Zomaya (Eds.), Data 

Centers, Springer, 2015, pp. 1–33, Chapter 1.
[46] K. Li, X. Tang, K. Li, Energy-efficient stochastic task scheduling on heterogeneous computing systems, IEEE Trans. Parallel Distrib. Syst. 25 (11) (2014) 

2867–2876.
[47] M. Li, B.J. Liu, F.F. Yao, Min-energy voltage allocation for tree-structured tasks, J. Comb. Optim. 11 (2006) 305–319.
[48] M. Li, A.C. Yao, F.F. Yao, Discrete and continuous min-energy schedules for variable voltage processors, Proc. Natl. Acad. Sci. USA 103 (11) (2006) 

3983–3987.
[49] M. Li, F.F. Yao, An efficient algorithm for computing optimal discrete voltage schedules, SIAM J. Comput. 35 (3) (2006) 658–671.
[50] J.R. Lorch, A.J. Smith, PACE: a new approach to dynamic voltage scaling, IEEE Trans. Comput. 53 (7) (2004) 856–869.
[51] G. Lovász, F. Niedermeier, H. de Meer, Performance tradeoffs of energy-aware virtual machine consolidation, Clust. Comput. 16 (3) (2013) 481–496.
[52] R.N. Mahapatra, W. Zhao, An energy-efficient slack distribution technique for multimode distributed real-time embedded systems, IEEE Trans. Parallel 

Distrib. Syst. 16 (7) (2005) 650–662.
[53] J. Mei, K. Li, K. Li, Energy-aware task scheduling in heterogeneous computing environments, Clust. Comput. 17 (2) (2014) 537–550.
[54] B.C. Mochocki, X.S. Hu, G. Quan, A unified approach to variable voltage scheduling for nonideal DVS processors, IEEE Trans. Comput.-Aided Des. Integr. 

Circuits Syst. 23 (9) (2004) 1370–1377.
[55] V.A. Patil, V. Chaudhary, Rack aware scheduling in HPC data centers: an energy conservation strategy, Clust. Comput. 16 (3) (2013) 559–573.
[56] K. Pruhs, R. van Stee, P. Uthaisombut, Speed scaling of tasks with precedence constraints, in: T. Erlebach, G. Persinao (Eds.), Approximation and Online 

Algorithms, in: Lecture Notes in Computer Science, vol. 3879, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 307–319.
[57] G. Quan, X.S. Hu, Energy efficient DVS schedule for fixed-priority real-time systems, ACM Trans. Embed. Comput. Syst. 6 (4) (2007), Article No. 29.
[58] N.B. Rizvandi, J. Taheri, A.Y. Zomaya, Some observations on optimal frequency selection in DVFS-based energy consumption minimization, J. Parallel 

Distrib. Comput. 71 (8) (2011) 1154–1164.

http://refhub.elsevier.com/S0022-0000(15)00074-4/bib42756E6465s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib42756E6465s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib43434C4C4D57s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib43434C4C4D57s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib435342s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib434Ds1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib434Ds1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib444As1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4441s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4441s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib446F6E6F6672696Fs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib446F6E6F6672696Fs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4643s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4672656568s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4672656568s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib47594142s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib47594142s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib47657261726473s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib47657261726473s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4854s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib48575A4A5947s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib48575A4A5947s1
http://en.wikipedia.org/wiki/Dynamic_voltage_scaling
http://www.datacenterdynamics.com/focus/archive/2013/06/facebook-data-centers-energy-use-2012
http://www.greenbiz.com/blog/2011/07/27/4-reasons-why-cloud-computing-also-green-solution
http://www.top500.org/
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib484B515053s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib484B515053s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4845s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib49484Bs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib49484Bs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib495347s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4B41s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4B41s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4B4Cs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4B4Cs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4B4Bs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4B4Bs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C4C53s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C5As1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C5As1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C4Bs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib616E616C7973697331s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib73696E646570656E64656E74s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib73696E646570656E64656E74s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib70696E646570656E64656E74s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib73707265636564656E6365s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib73707265636564656E6365s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4541444353s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4541444353s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4845414743s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4845414743s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib70707265636564656E6365s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib70707265636564656E6365s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C544Cs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C544Cs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C4C59s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C5959s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C5959s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C59s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C53s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4C4E4Ds1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4D5As1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4D5As1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4D4C4Cs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4D4851s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib4D4851s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5043s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib505655s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib505655s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5148s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib52545As1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib52545As1


190 K. Li / Journal of Computer and System Sciences 82 (2016) 174–190
[59] C. Rusu, R. Melhem, D. Mossé, Maximizing rewards for real-time applications with energy constraints, ACM Trans. Embed. Comput. Syst. 2 (4) (2003) 
537–559.

[60] D. Shin, J. Kim, Power-aware scheduling of conditional task graphs in real-time multiprocessor systems, in: Proceedings of the International Symposium 
on Low Power Electronics and Design, 2003, pp. 408–413.

[61] D. Shin, J. Kim, S. Lee, Intra-task voltage scheduling for low-energy hard real-time applications, IEEE Des. Test Comput. 18 (2) (2001) 20–30.
[62] M.R. Stan, K. Skadron, Guest editors’ introduction: power-aware computing, IEEE Comput. 36 (12) (2003) 35–38.
[63] O.S. Unsal, I. Koren, System-level power-aware design techniques in real-time systems, Proc. IEEE 91 (7) (2003) 1055–1069.
[64] G.L. Valentini, W. Lassonde, S.U. Khan, N. Min-Allah, S.A. Madani, J. Li, L. Zhang, L. Wang, N. Ghani, J. Kolodziej, H. Li, A.Y. Zomaya, C.-Z. Xu, P. Balaji, A. 

Vishnu, F. Pinel, J.E. Pecero, D. Kliazovich, P. Bouvry, An overview of energy efficiency techniques in cluster computing systems, Clust. Comput. 16 (1) 
(2013) 3–15.

[65] V. Venkatachalam, M. Franz, Power reduction techniques for microprocessor systems, ACM Comput. Surv. 37 (3) (2005) 195–237.
[66] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced CPU energy, in: Proceedings of the 1st USENIX Symposium on Operating Systems 

Design and Implementation, 1994, pp. 13–23.
[67] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, R. Lauwereins, Energy-aware runtime scheduling for embedded-multiprocessor SOCs, 

IEEE Des. Test Comput. 18 (5) (2001) 46–58.
[68] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced CPU energy, in: Proceedings of the 36th IEEE Symposium on Foundations of Computer 

Science, 1995, pp. 374–382.
[69] H.-S. Yun, J. Kim, On energy-optimal voltage scheduling for fixed-priority hard real-time systems, ACM Trans. Embed. Comput. Syst. 2 (3) (2003) 

393–430.
[70] B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, Theoretical and practical limits of dynamic voltage scaling, in: Proceedings of the 41st Design Automation 

Conference, 2004, pp. 868–873.
[71] L. Zhang, K. Li, Y. Xu, F. Zhang, K. Li, Maximizing reliability with energy conservation for parallel task scheduling in a heterogeneous cluster, Inf. Sci. 

319 (2015) 113–131, http://dx.doi.org/10.1016/j.ins.2015.02.023.
[72] L.M. Zhang, K. Li, D.C.-T. Lo, Y. Zhang, Energy-efficient task scheduling algorithms on heterogeneous computers with continuous and discrete speeds, 

Sustain. Comput. Inform. Syst. 3 (2) (2013) 109–118.
[73] X. Zhong, C.-Z. Xu, Energy-aware modeling and scheduling for dynamic voltage scaling with statistical real-time guarantee, IEEE Trans. Comput. 56 (3) 

(2007) 358–372.
[74] D. Zhu, R. Melhem, B.R. Childers, Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems, IEEE 

Trans. Parallel Distrib. Syst. 14 (7) (2003) 686–700.
[75] D. Zhu, D. Mossé, R. Melhem, Power-aware scheduling for AND/OR graphs in real-time systems, IEEE Trans. Parallel Distrib. Syst. 15 (9) (2004) 849–864.
[76] J. Zhuo, C. Chakrabarti, Energy-efficient dynamic task scheduling algorithms for DVS systems, ACM Trans. Embed. Comput. Syst. 7 (2) (2008), Article 

No. 17.
[77] S. Zhuravlev, J.C. Saez, S. Blagodurov, A. Fedorova, M. Prieto, Survey of energy-cognizant scheduling techniques, IEEE Trans. Parallel Distrib. Syst. 24 (7) 

(2013) 1447–1464.
[78] Z. Zong, A. Manzanares, X. Ruan, X. Qin, EAD and PEBD: two energy-aware duplication scheduling algorithms for parallel tasks on homogeneous 

clusters, IEEE Trans. Comput. 60 (3) (2011) 360–374.

http://refhub.elsevier.com/S0022-0000(15)00074-4/bib524D4Ds1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib524D4Ds1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib534Bs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib534Bs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib534B4Cs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5353s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib554Bs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib56616C656E74696E69s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib56616C656E74696E69s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib56616C656E74696E69s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5646s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib57574453s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib57574453s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib59s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib59s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib594453s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib594453s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib594Bs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib594Bs1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A425346s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A425346s1
http://dx.doi.org/10.1016/j.ins.2015.02.023
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A4C4C5As1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A4C4C5As1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A58s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A58s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A4D43s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A4D43s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A4D4Ds1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A43s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A43s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A53424650s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A53424650s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A4D5251s1
http://refhub.elsevier.com/S0022-0000(15)00074-4/bib5A4D5251s1

	Power and performance management for parallel computations in clouds and data centers
	1 Introduction
	1.1 Motivation
	1.2 Related research
	1.3 Our contributions

	2 Models and problems
	2.1 Power and task models
	2.2 Problem deﬁnitions
	2.3 Lower bounds

	3 Equal-speed algorithms
	3.1 Energy-constrained scheduling
	3.2 Time-constrained scheduling

	4 Level-by-level scheduling algorithms
	4.1 Energy-constrained scheduling
	4.2 Time-constrained scheduling

	5 Simulation results
	6 Concluding remarks
	Acknowledgments
	References


