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ABSTRACT
It is well and widely known that sample pooling could provide an effective
and efficientway for fast coronavirus testing amongmassive asymptomatic
individuals. The method of multi-level acceleration for asymptomatic
COVID-19 screening has been introduced, and for one and two levels, the
optimal group sizes have been obtained. However, there are still multi-
ple challenges. First, it is not clear how to find the optimal group sizes
for three or more levels. Second, there is lack of closed-form expressions
for the optimal group sizes for two or more levels. Third, it is not clear
how to determine the optimal number of levels. And last, it is not known
what the maximum achievable speedup is. The motivation of this paper
is to address all the above challenges. The optimization of a hierarchi-
cal pooling strategy includes its number of levels and the group size of
each level. In this paper, based on multi-variable optimization and Tay-
lor approximation, we are able to derive closed-form expressions for the
optimal number of levels d∗ = ln(1/ ln(1/q0))− 1, the optimal group sizes
m∗1 = ed

∗ = 1/(ep0),m∗2 = ed
∗−1 = 1/(e2p0),. . . ,m∗d∗ = e = 1/(ed

∗
p0), and

the maximum possible speedup of a hierarchical pooling strategy of
1/(ep0 ln(1/p0)), where p0 is the fraction of infected people. The above
speedup is nearly a linear function of the reciprocal of p0, in the sense that
it is asymptotically greater than any sub-linear function (1/p0)1−ε of the
reciprocal of p0 for any small ε > 0. Using the results in this paper, we can
quickly and easily predict the performance of an optimal hierarchical pool-
ing strategy. For instance, if the fraction of infected people is 0.0001, an
8-level hierarchical pooling strategy can achieve speedup of nearly
400.
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1. Introduction

1.1. Background

It is well and widely known that sample pooling could provide an effective and efficient way for fast
coronavirus testing among massive asymptomatic individuals [1,2]. Sample pooling strategies can
save substantial time and resources compared to individual testing during epidemic surveillance and
large-scale COVID-19 screening [3,4]. It was reported that up to 89% fewer tests would be required
for group size of 3–25 in a population of 150,000 with an infection prevalence of 1% [5]. It was also
found that by pooling 384 samples into 48 groups, both an 8-fold increase in testing efficiency and an
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8-fold reduction in test costs can be achieved [6]. The approach of sample pooling and group testing
has been introduced [7,8], adopted and applied [9–15], extensively studied [5,6,16–22], and reviewed
[23,24].

Themethod ofmulti-level acceleration for asymptomatic COVID-19 screening has been introduced
in [25]. For one and two levels, the optimal group sizes were obtained in [25]. However, there are still
multiple challenges. First, it is not clear how to find the optimal group sizes for three or more levels.
Second, there is lack of closed-form expressions for the optimal group sizes for two or more levels.
Third, it is not clear how to determine the optimal number of levels. And last, it is not known what the
maximum achievable speedup is. The motivation of this paper is to address all the above challenges.

1.2. Contributions

The optimization of a hierarchical pooling strategy includes its number of levels and the group size of
each level. In this paper, basedonmulti-variable optimization andTaylor approximation,weare able to
derive closed-form expressions for the optimal number of levels d∗ = ln(1/ ln(1/q0))− 1, the optimal
group sizesm∗1 = ed

∗ = 1/(ep0),m∗2 = ed
∗−1 = 1/(e2p0),. . . ,m∗d∗ = e = 1/(ed

∗
p0), and the maximum

possible speedup of a hierarchical pooling strategy of 1/(ep0 ln(1/p0)), where p0 is the fraction of
infected people. The above speedup is nearly a linear function of the reciprocal of p0, in the sense that
it is asymptotically greater than any sub-linear function (1/p0)1−ε of the reciprocal of p0 for any small
ε > 0.

The paper is organized as follows. In Section 2, we describe the hierarchical pooling strategy and
analyze its performance. In Section 3,wederive closed-formexpressions for the optimal group sizes for
one and two levels. We confirm their accuracy by comparing them with know solutions. In Section 4,
we derive closed-form expressions for the optimal group sizes and the optimal number of levels. We
also demonstrate numerical data. We conclude the paper in Section 5.

2. Hierarchical pooling strategy

In this section, we describe the hierarchical pooling strategy and analyze its performance.

2.1. Description of the strategy

A hierarchical pooling strategy involves pooling samples from multiple people and works as follows.
A d-level hierarchical pooling strategy (HPSd) has d ≥ 1 levels. The size of a level-j group ismj , where
1 ≤ j ≤ d. For convenience, a population of size N can be treated as a level-0 group of size m0 = N.
A level-j group is divided into level-(j+ 1) groups of size mj+1, where 0 ≤ j ≤ d − 1. A level-d group
cannot be further divided. It is clear thatm0 > m1 > m2 > · · · > md > 1.

Algorithm 1: HPSd(j, S)
Input: A level j, 1 ≤ j ≤ d; a set S ofmj samples.
Output: A subset P ⊆ S of positive samples.
P← ∅; (1)
Perform a group test for S; (2)
if (the group test result of S is negative) (3)

return P; (4)
end if; (5)
if (j<d) (6)

n← �mj/mj+1	; (7)
Divide S into S1, S2, ..., Sn; (8)
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for k← 1 to n do (9)
Pk ← HPSd(j + 1, Sk); (10)
P← P ∪ Pk ; (11)

end for; (12)
else (13)

for (each sample s ∈ S) do (14)
Test s; (15)
if (the test result of s is positive) (16)

P← P ∪ {s}; (17)
end if; (18)

end for; (19)
end if; (20)
return P. (21)

Algorithm1gives a recursivedescriptionof theHPSd procedure.On level j, a group test is performed
for a level-jgroup (which is divided froma level-(j−1) group) of sizemj (line 2). If the test result of a level-
j group of mj samples is negative, we know that all the individual samples in the group are negative
(lines 3–5). If the test result of a level-j group ofmj samples is positive, where 1 ≤ j ≤ d − 1, then the
mj samples proceed to level j+ 1, i.e. they are divided into level-(j+ 1) groups of sizemj+1, which are
processed by using the same HPSd procedure (lines 7–12). One level d, the individual samples of a
level-d group are tested one by one without sample pooling (lines 14–19).

2.2. Analysis of the strategy

Let us define the following variables.

• p0: the probability that the test result of one individual is positive.
• q0: the probability that the test result of one individual is negative.
• pj : the probability that the test result of one level-j group is positive under the condition that the

test result of a level-(j−1) group is positive, where 1 ≤ j ≤ d.
• qj : the probability that the test result of one level-j group is negative under the condition that the

test result of a level-(j−1) group is positive, where 1 ≤ j ≤ d.
• Tj : the expected number of tests for one level-j group, where 1 ≤ j ≤ d.
• T ′j : the expected number of tests for one level-j group under the condition that the test result of the

level-j group is positive, where 1 ≤ j ≤ d.

The following theorem gives pj and qj for all 1 ≤ j ≤ d.

Theorem 2.1: For a d-level hierarchical pooling strategy, we have q1 = qm1
0 , p1 = 1− q1, and

qj =
q
mj
0 − q

mj−1
0

p1p2 · · · pj−1 ,

and pj = 1− qj, for all 2 ≤ j ≤ d.

Proof: The equations for q1 and p1 are straightforward. As for qj , where 2 ≤ j ≤ d, we have

qj =
q
mj
0 (1− q

mj−1−mj
0 )

p1p2 · · · pj−1 = q
mj
0 − q

mj−1
0

p1p2 · · · pj−1 ,
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where p1p2 · · · pj−1 is the probability that the test result of a level-(j−1) group is positive (i.e. the
condition), which implies that the test results of all corresponding level-1,. . . , level-(j−2) groups are
positive; q

mj
0 is the probability that all themj samples in a level-j group are negative (i.e. the test result

of one level-j group is negative); and (1− q
mj−1−mj
0 ) is the probability that at least one of the remaining

(mj−1 −mj) samples in the same level-(j−1) group is positive (to keep the condition). The equations
for pj , where 2 ≤ j ≤ d, are straightforward. �

The following theorem gives closed-from expressions of pj and qj for all 2 ≤ j ≤ d.

Theorem 2.2: For a d-level hierarchical pooling strategy, we have

pj =
1− q

mj
0

1− q
mj−1
0

,

and

qj =
q
mj
0 − q

mj−1
0

1− q
mj−1
0

,

for all 2 ≤ j ≤ d.

Proof: We can prove by induction on j ≥ 2. First, it is easy to verify that the claim is correct for p2 and
q2. Next, we assume that the claim holds for p2 and q2,. . . , pj−1 and qj−1. For qj , we notice that

p1p2 · · · pj−1 = (1− qm1
0 )

(
1− qm2

0

1− qm1
0

)
· · ·
(
1− q

mj−1
0

1− q
mj−2
0

)
= 1− q

mj−1
0 ,

by the induction hypothesis, which yields qj and pj . �

Let Tpooling(m1,m2, . . . ,md) be the expected number of tests of a d-level hierarchical pooling
strategy. The following theorem gives Tpooling(m1,m2, . . . ,md), and Tj and T ′j for all 1 ≤ j ≤ d.

Theorem 2.3: For a d-level hierarchical pooling strategy, we have

Tpooling(m1,m2, . . . ,md) =
(

N

m1

)
T1,

Tj = qj + (T ′j + 1)pj = 1+ pjT
′
j , 1 ≤ j ≤ d,

T ′j =
(

mj

mj+1

)
Tj+1, 1 ≤ j ≤ d − 1,

T ′d = md .

Proof: The equation for Tpooling(m1,m2, . . . ,md) is straightforward. For a level-j group of samples, if
the test result of the group is negative (which happens with probability qj), only one test is required;
if the test result of the group is positive (which happens with probability pj), T ′j + 1 tests are required,
one for group test, and T ′j for proceeding to level j+ 1. Hence, the expected number of tests for one
level-j group is Tj = qj + (T ′j + 1)pj = 1+ pjT ′j , for all 1 ≤ j ≤ d. The equation for T ′j is straightforward
for all 1 ≤ j ≤ d. �

The following theorem gives a closed-from expression of Tj for all 1 ≤ j ≤ d.
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Theorem 2.4: For a d-level hierarchical pooling strategy, we have

Tj = 1+mj

(
pj

mj+1
+ pjpj+1

mj+2
+ · · · + pjpj+1 · · · pd−1

md
+ pjpj+1 · · · pd

)
,

for all 1 ≤ j ≤ d.

Proof: We can prove by induction on j = d, d − 1, . . . , 1. First, it is easy to verify that Td = 1+ pdT ′d =
1+mdpd . Next, we assume that the claim holds for Tj+1. For Tj , we have

Tj = 1+ pjT
′
j

= 1+ pj

(
mj

mj+1

)
Tj+1

= 1+ pj

(
mj

mj+1

)(
1+mj+1

(
pj+1
mj+2

+ · · · + pj+1pj+2 · · · pd−1
md

+ pj+1pj+2 · · · pd
))

= 1+mj

(
pj

mj+1
+ pjpj+1

mj+2
+ · · · + pjpj+1 · · · pd−1

md
+ pjpj+1 · · · pd

)
.

This proves the theorem. �

Note that the number of tests without sample pooling is N. Therefore, the speedup of a d-level
hierarchical pooling strategy is

S(m1,m2, . . . ,md) =
N

Tpooling(m1,m2, . . . ,md)
= m1

T1
.

The biggest challenge is to findm1,m2, . . . ,md , such that S(m1,m2, . . . ,md) is maximized. In fact, the
number d of levels should also be optimized.

3. Closed-form expressions

In this section, we derive closed-form expressions for the optimal group sizes when d = 1 and d = 2.
The key method to derive closed-form expressions is to use the following approximation. For the

function f (x) = ln x, we use the Taylor approximation f (x) = f (1)+ f ′(1)(x − 1) at 1, that is, ln x =
x − 1, or x = ln x + 1, for x ≈ 1. Letting x = qk0, we get

qk0 = k ln q0 + 1 = 1− k ln(1/q0).

The above equation is repeatedly used in this paper.

3.1. One-level acceleration

The following theorem gives closed-form expressions of the optimal group size and the maximum
speedup when d = 1.

Theorem 3.1: When d = 1, the optimal group size is

m∗1 =
√

1
ln(1/q0)

.

The speedup achieved is

m∗1
2
= 1

2

√
1

ln(1/q0)
.
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Table 1. Optimal group size for one-level pooling
strategy.

p0 m∗1 from [25] m∗1 (closed-form)

10−1 4 3
10−2 11 10
10−3 32 32
10−4 101 100
10−5 317 316
10−6 1001 1000
10−7 3163 3162

Proof: For a one-level pooling strategy with group sizem1, we have

T1 = 1+m1p1 = 1+m1(1− qm1
0 ),

and

S(m1) = m1

T1
= 1

1+ 1/m1 − qm1
0

.

To find the optimal value ofm1, we need to minimize

F(m1) = 1
m1
− qm1

0 =
1
m1
− 1+m1 ln(1/q0).

Note that

∂F(m1)

∂m1
= −1

m2
1

+ ln(1/q0) = 0,

which gives the optimal group sizem∗1 as

m∗1 =
√

1
ln(1/q0)

.

Furthermore, we have the optimal speedup

S(m∗1) =
1

1+ 1/m∗1 − q
m∗1
0

= 1
1/m∗1 +m∗1 ln(1/q0)

= 1
2

√
1

ln(1/q0)
= m∗1

2
.

This proves the theorem. �

Table 1 shows the accuracy of the above closed-form expression of m∗1 (actually �m∗1	) compared
with the real optimal value of m1 obtained in [25]. It is easily seen that our closed-form expression is
very accurate.

3.2. Two-Level acceleration

The following theorem gives closed-form expressions of the optimal group sizes and the maximum
speedup when d = 2.
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Theorem 3.2: When d = 2, the optimal group sizes are

m∗1 =
(

1
ln(1/q0)

)2/3

,

and

m∗2 =
(

1
ln(1/q0)

)1/3

.

The speedup achieved is

m∗1
3
= 1

3

(
1

ln(1/q0)

)2/3

.

Proof: Let us consider a two-level pooling strategy with group sizes m1 and m2. For a given m1, we
have

T ′1 =
(
m1

m2

)
T2

=
(
m1

m2

)
(1+ p2T

′
2)

=
(
m1

m2

)
(1+m2p2)

=
(
m1

m2

)(
1+m2

(
1− qm2

0

1− qm1
0

))

= m1

(
1
m2
+ 1− qm2

0

1− qm1
0

)
.

To minimize T ′1, we need to minimize

F(m2) = 1
m2
+ 1− qm2

0

1− qm1
0
= 1

m2
+ m2

m1
.

Note that

∂F(m2)

∂m2
= −1

m2
2

+ 1
m1
= 0,

which givesm2 = √m1.
To find the optimal value ofm1, we notice that

T ′1 = m1

(
1√
m1
+ 1− q

√
m1

0

1− qm1
0

)
= m1

(
1√
m1
+
√
m1

m1

)
= 2
√
m1,

and

T1 = 1+ p1T
′
1 = 2

√
m1(1− qm1

0 )+ 1.

The speedup can be treated as a function ofm1:

S(m1) = m1

T1
= m1

2
√
m1(1− qm1

0 )+ 1
= 1

2
√
m1 ln(1/q0)+ 1/m1

.
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Table 2. Optimal group sizes for two-level pooling strategy.

p0 (m∗1 ,m
∗
2 ) from [25] (m∗1 ,m

∗
2 ) (closed-form)

10−1 (8, 2) (4, 2)
10−2 (25, 5) (21, 5)
10−3 (106, 10) (100, 10)
10−4 (476, 22) (464, 22)
10−5 (2179, 46) (2154, 46)
10−6 (10051, 100) (10000, 100)
10−7 (46525, 215) (46416, 215)

We need to minimize

F(m1) = 2
√
m1 ln(1/q0)+ 1

m1
.

Note that

∂F(m1)

∂m1
= ln(1/q0)√

m1
− 1

m2
1

= 0,

which gives

m∗1 =
(

1
ln(1/q0)

)2/3

,

and

m∗2 =
(

1
ln(1/q0)

)1/3

.

Furthermore, we have

S(m∗1,m
∗
2) =

1

2
√
m∗1 ln(1/q0)+ 1/m∗1

= 1
3

(
1

ln(1/q0)

)2/3

= m∗1
3

.

This proves the theorem. �

Table 2 shows the accuracy of the above closed-form expressions ofm∗1 andm∗2 (actually �m∗1	 and
�m∗2	) compared with the real optimal values ofm1 andm2 obtained in [25]. It is easily seen that our
closed-form expressions are very accurate, especially when p0 is small.

4. Multi-level acceleration

In this section, we derive closed-form expressions for the optimal group sizes and the optimal number
of levels for a hierarchical pooling strategy.

Themain result of this section is the following theorem, which gives closed-form expressions of the
optimal number of levels, the optimal group sizes, and the maximum speedup for all d ≥ 1.

Theorem 4.1: For all d ≥ 1, the optimal number of levels is

d∗ = ln
(

1
ln(1/q0)

)
− 1.

The optimal group sizes are

m∗j =
(

1
ln(1/q0)

)(d∗+1−j)/(d∗+1)
= ed

∗+1−j = 1
ejp0

,
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for all 1 ≤ j ≤ d∗. The speedup achieved is

m∗1
d∗ + 1

= 1
d∗ + 1

(
1

ln(1/q0)

)d∗/(d∗+1)
,

which is actually

1
ln(1/ ln(1/q0))

(
1

ln(1/q0)

)(ln(1/ ln(1/q0))−1)/ ln(1/ ln(1/q0))

,

or equivalently,

1
ln(1/ ln(1/(1− p0)))

(
1

ln(1/(1− p0))

)(ln(1/ ln(1/(1−p0)))−1)/ ln(1/ ln(1/(1−p0)))
= 1

ep0 ln(1/p0)
.

The rest of the section is devoted to proving the above theorem.

4.1. Optimal group sizes

Now, let us consider a d-level hierarchical pooling strategy with group sizes m1,m2, . . . ,md . By
Theorem 2.4, we know that

Tpooling(m1,m2, . . . ,md) = N

(
1
m1
+ p1

m2
+ p1p2

m3
+ · · · + p1p2 · · · pd−1

md
+ p1p2 · · · pd

)
,

which is actually

Tpooling(m1,m2, . . . ,md) = N

(
1
m1
+ 1− qm1

0

m2
+ 1− qm2

0

m3
+ · · · + 1− q

md−1
0

md
+ (1− qmd

0 )

)
,

and approximately,

Tpooling(m1,m2, . . . ,md) = N

(
1
m1
+ ln(1/q0)

(
m1

m2
+ m2

m3
+ · · · + md−1

md
+md

))
.

The above approximation makes it possible to derive the optimal group sizes in closed-form.
To minimize Tpooling(m1,m2, . . . ,md), we need to minimize

F(m1,m2, . . . ,md) =
1
m1
+ ln(1/q0)

(
m1

m2
+ m2

m3
+ · · · + md−1

md
+md

)
.

This requires

∂F(m1,m2, . . . ,md)

∂m1
= − 1

m2
1

+ ln(1/q0)
m2

= 0,

∂F(m1,m2, . . . ,md)

∂m2
= ln(1/q0)

(
−m1

m2
2

+ 1
m3

)
= 0,

∂F(m1,m2, . . . ,md)

∂m3
= ln(1/q0)

(
−m2

m2
3

+ 1
m4

)
= 0,

...

∂F(m1,m2, . . . ,md)

∂md−1
= ln(1/q0)

(
−md−2
m2

d−1
+ 1

md

)
= 0,
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∂F(m1,m2, . . . ,md)

∂md
= ln(1/q0)

(
−md−1

m2
d

+ 1

)
= 0.

Solving the above equations, we get

m∗d = (m∗d−1)
1/2 =

(
1

ln(1/q0)

)1/(d+1)
,

m∗d−1 = (m∗d−2)
2/3 =

(
1

ln(1/q0)

)2/(d+1)
,

m∗d−2 = (m∗d−3)
3/4 =

(
1

ln(1/q0)

)3/(d+1)
,

...

m∗2 = (m∗1)
(d−1)/d =

(
1

ln(1/q0)

)(d−1)/(d+1)
,

m∗1 =
(

1
ln(1/q0)

)d/(d+1)
,

which give

Tpooling(m
∗
1,m
∗
2, . . . ,m

∗
d) = N

(
(ln(1/q0))d/(d+1) + ln(1/q0)d

(
1

ln(1/q0)

)1/(d+1))
= N

(
d + 1
m∗1

)
,

and the speedup is

S(m∗1,m
∗
2, . . . ,m

∗
d) =

N

Tpooling(m∗1,m
∗
2, . . . ,m

∗
d)
= m∗1

d + 1
= 1

d + 1

(
1

ln(1/q0)

)d/(d+1)
.

4.2. Optimal number of levels

To find the optimal number of levels, we view the speedup as a function of d:

S(d) = 1
d + 1

(
1

ln(1/q0)

)d/(d+1)
.

To maximize S(d), we need ∂S(d)/∂d = 0, where

∂S(d)

∂d
= 1

(d + 1)2

(
1

ln(1/q0)

)d/(d+1) ( 1
d + 1

ln
(

1
ln(1/q0)

)
− 1

)
,

which gives the optimal number of levels d∗ as

d∗ = ln
(

1
ln(1/q0)

)
− 1.
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Algorithm 2: HPS Optimization
Input: p0.
Output: d∗,m∗1,m

∗
2, ...,m

∗
d .

Calculate d∗ = �ln(1/ ln(1/(1− p0)))− 1	; (1)
for j← 1 to d∗ do (2)

Calculatem∗j = �(1/ ln(1/(1− p0)))(d
∗+1−j)/(d∗+1)	; (3)

end for; (4)
return d∗,m∗1,m

∗
2, ...,m

∗
d . (5)

Algorithm 2 gives our method to find the optimal hierarchical pooling strategy with the optimal
number of levels and the optimal group sizes.

4.3. Themaximum speedup

The maximum achievable speedup of a hierarchical pooling strategy is a function of q0:

S(q0) = 1
ln(1/ ln(1/q0))

(
1

ln(1/q0)

)(ln(1/ ln(1/q0))−1)/ ln(1/ ln(1/q0))

,

or equivalently, a function of p0:

S(p0) = 1
ln(1/ ln(1/(1− p0)))

(
1

ln(1/(1− p0))

)(ln(1/ ln(1/(1−p0)))−1)/ ln(1/ ln(1/(1−p0)))
.

To simplify the above expression, let

x = 1
ln(1/q0)

= 1
ln(1/(1− p0))

.

Then, we get d∗ = ln x − 1, and

S(p0) = x1−1/ ln x

ln x
= x

(ln x)x1/ ln x
.

Notice that x1/ ln x = e. Hence, we get

S(p0) = x

e ln x
.

Since

1
1− p0

= 1+ p0 + p20 + · · · = 1+ p0 + o(p0),

and

ln(1+ y) = y − y2

2
+ y3

3
− · · · ,

we have (by setting y = p0 + o(p0))

ln
(

1
1− p0

)
= (p0 + o(p0))− 1

2
(p0 + o(p0))

2 + 1
3
(p0 + o(p0))

3 − · · · = p0 + o(p0),
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Figure 1. Speedup vs. number of levels (p0 = 0.001).

Table 3. Optimal number of levels, optimal group sizes, and maximum speedup.

p0 �d∗	 (�m∗1	, �m∗2	, . . . , �m∗d	) Speedup

10−1 1 (3) 1.55
10−2 4 (37, 13, 5, 2) 7.96
10−3 6 (368, 135, 50, 18, 7, 2) 53.23
10−4 8 (3679, 1353, 498, 183, 67, 25, 9, 3) 399.40
10−5 11 (36788, 13533, 4979, 1832, 674, 248, 91, 34, 12, 5, 2) 3195.35
10−6 13 (367879, 135335, 49787, 18316, 6738, 2479, 912, 335, 123, 45, 17, 6, 2) 26627.99
10−7 15 (3678794, 1353353, 497871, 183156, 67379, 24788, 9119, 3355, 1234, 454, 167, 61, 23, 8, 3) 228240.01

and x = 1/p0. Therefore, we obtain

S(p0) = 1
ep0 ln(1/p0)

.

By using the above technique, we can have m∗d∗ = e = 1/(ed
∗
p0), m∗d∗−1 = e2 = 1/(ed

∗−1p0),
m∗d∗−2 = e3 = 1/(ed

∗−2p0),. . . ,m∗1 = ed
∗ = 1/(ep0).

We have proved Theorem 4.1.

4.4. Numerical data

We now demonstrate some numerical data.
In Figure 1, for p0 = 0.001], we show the speedup S(d) as a function of number of levels d. It can be

observed that as d increases, S(d) also increases. However, to certain point, S(d) decreases as d further
increases. It is clear that there is an optimal value of d∗ = 6, such that S(d) is maximized.

In Table 3, for p0 = 10−1, 10−2, 10−3, . . . , 10−7, we demonstrate the optimal number of levels �d∗	,
the corresponding optimal group sizes �m∗1	, �m∗2	, . . . , �m∗d	, and themaximumspeedup achievedby
the �d∗	-level hierarchical pooling strategy.

In Figure 2, for q0 = 0.900, 0.905, 0.910, . . . , 0.995, we show the maximum achievable speedup
S(q0) of a hierarchical pooling strategy as a function of q0. It is observed that as q0 increases, S(q0)
increases very rapidly.
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Figure 2. Speedup vs. (1 – the fraction of infected people).

Figure 3. Speedup vs. the reciprocal of the fraction of infected people.

In Figure 3, we show the maximum achievable speedup S(1/p0) of a hierarchical pooling strategy
as a function of the reciprocal of the fraction of infected people 1/p0:

S(1/p0) = 1/p0
e ln(1/p0)

.

It can be seen that S(1/p0) is nearly a linear function of 1/p0. Actually, although S(1/p0) is not really a
linear function of 1/p0, it grows faster than any sub-linear function (1/p0)1−ε for any small ε > 0.
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5. Concluding remarks

We have successfully derived closed-form expressions for the optimal number of levels and the
optimal group sizes of a hierarchical pooling strategy. These expressions enable us to achieve the
maximum possible speedup (whose closed-form expression is also available) of a hierarchical pooling
strategy. Using the results in this paper, we can quickly and easily predict the performance of an opti-
mal hierarchical pooling strategy. For instance, if the fraction of infected people is 0.0001, an 8-level
hierarchical pooling strategy can achieve speedup of nearly 400.
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