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The main problem for an individual user peer in a peer-to-peer network with heteroge-
neous source peers is the peer selection problem, namely, switching among source peers
and finally settling on one, while keeping the total time of probing and downloading to
a minimum. There has been little investigation on selecting source peers with stochas-
tic service capacities. The main contribution of this paper is to address the problem
of reducing download times in peer-to-peer file sharing systems with stochastic service
capacities. A precise analysis of the expected download time is given when the service
capacity of a source peer is a random variable. A chunk-based switching and peer se-
lection algorithm using the method of probing high-capacity peers is proposed and the
expected download time of the algorithm is analyzed. Two subproblems of the optimal
choice of the threshold of high-capacity source peers and the optimal order of probing
are also solved. The performance of the algorithm is compared with the random chunk-
based switching method. It is shown that noticeable performance improvement can be
obtained.

Keywords: Download time; file sharing system; peer-to-peer network; peer selection;
stochastic service capacity.

1. Introduction

A peer-to-peer (P2P) network employs diverse connectivity among participating
peers and the combined resources of participants to provide various services [4]. A
P2P network provides services in a way different from that of centralized resources
where a small number of servers provide all services. A pure P2P network does not
have the notion of clients and servers, but only equal peers that simultaneously
function as both clients and servers to other peers. This model of network architec-
ture differs from the traditional client-server model where communication is among
many clients and a single central server.

A unique feature of P2P networks is that all peers contribute resources, includ-
ing storage space, computing power, and communication bandwidth. Therefore, as
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participating peers in a network increases, the total service capacity of the network
also increases. This is not the case in a client-server system with a small number of
servers, where adding more clients reduces the speed of data transfer for all clients
and degrades the overall system performance. In addition to the above advantage
of scalability, the distributed nature of a P2P network also increases the robustness
of the network and the capability of fault tolerance in case of peer failures by repli-
cating data over multiple peers. In a pure P2P network, peers find locations of data
without relying on a centralized index server, which means that there is no single
point of failure in the network.

File sharing using application layer protocols such as BitTorrent is the most
popular application of P2P networks, in addition to many other applications such
as telephony, multimedia (audio, video, radio) streaming, discussion forums, instant
messaging and online chat, and software publication and distribution. File sharing
means distributing and accessing digitally stored information such as computer pro-
grams, multimedia, documents, and electronic books. It can be implemented in var-
ious storage, transmission, and distribution models. Common file sharing methods
are manual sharing using removable memory, centralized file servers, WWW-based
hyperlinked documents, and distributed P2P networking. The increasing popularity
of the MP3 music format in the late 1990s led to Napster and other software designed
to aid in the sharing of electronic files. Current popular P2P networks/protocols
include Ares Galaxy, eDonkey, Gnutella, and Kazaa [2].

Performance measurement, modeling, analysis, and optimization of file sharing
in P2P networks has been a very active research area in the last few years. Research
has been conducted at three different levels, i.e., system level, peer group level,
and individual peer level. At the system level, research is focused on establishing
models of P2P networks such as queueing models [13,26] and fluid models [12], so
that overall system characterizations such as system throughput and average file
download time can be obtained. At the peer group level, research is focused on
distributing a file from a set of source peers to a set of user peers so that the overall
distribution time is minimized [15,17,21,22,25,27]. At the individual peer level,
research is focused on analyzing and minimizing the file download time of a single
peer [10,18,19].

It is clear that the vast majority of file downloads are performed by individual
users. Fine system level modeling and efficient group file distribution methods do not
help individual users to minimize their file download times. Therefore, P2P network
performance optimization from a single peer’s point of view becomes an interesting
and important issue. File download includes two parts, namely, file searching and
file transfer. Since file searching takes a very small portion of file download time, by
file download time, we mean file transfer time. In this paper, we only consider reduc-
tion of file transfer time. In a P2P network with heterogeneous source peers, after
searching and determining the source peers of a file of interest, the major problem
for an individual user peer is the peer selection problem, namely, switching among
source peers and finally settling on one, while keeping the total time of probing and
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downloading to a minimum [7]. The problem is called the server selection problem
in WWW client-server applications [9, 11]. The peer selection problem is also stud-
ied in the context of free-market economy with additional consideration of cost of
download [5, 6].

Virtually all existing studies assume that the communication capacity between
a pair of peers is a constant. Thus, the transfer time of a file of size S from a source
peer with service capacity C' is simply S/C. The assumption of constant service
capacity is certainly not realistic, since a source peer has variable workload and a
file transfer may encounter unpredictable network traffic and congestion and delay.
Therefore, the performance of a peer selection policy based on such an assumption
becomes vulnerable and unreliable. When the service capacity of a source peer is
a random variable, the expected download time is not simply the file size divided
by the expected service capacity. Unfortunately, there has been little investigation
on selecting source peers with stochastic service capacities. In [10], the problem of
minimizing file download time from source peers with time-varying service capacities
is considered. A random chunk-based switching method is proposed, aiming to hide
the heterogeneity of source peers and to achieve the harmonic mean of service
capacities.

The main contribution of this paper is to address the problem of reducing down-
load times in peer-to-peer file sharing systems with stochastic service capacities. We
give a precise analysis of the expected download time when the service capacity of
a source peer is a random variable (Section 2). We propose a chunk-based switching
and peer selection algorithm using the method of probing high-capacity peers, and
analyze the expected download time of our algorithm (Section 3). We also solve
the two subproblems of the optimal choice of the threshold of high-capacity source
peers (Section 5) and the optimal order of probing (Section 6). We compare the
performance of our algorithm with the random chunk-based switching method of
[10] and get noticeable performance improvement (Sections 4 and 6).

We notice that the method of parallel downloading has been used in reducing
file download times [8,10, 14,16, 20, 23, 24]. However, this is beyond the scope of
this paper and we will propose and analyze and compare parallel file download
algorithms in P2P networks with random service capacities in a separate paper.

2. File Download Time

Throughout the paper, we use P|e] to denote the probability of an event e, fx () the
probability distribution function (pdf), Fx(x) the cumulative distribution function
(cdf), and E(X) the expectation, respectively, of a random variable X.

Assume that n peers 1,2,...,n have been identified as source peers of a file of
interest, such that any part of the file can be downloaded from any of these n source
peers. We further assume that the service capacity of source peer i is C;, a random
variable in [0, 00) with pdf fe,(c) and cdf Fg, (c). We use S to represent the size as
well as the name of a file. Let T;(S) be the download time of a file of size S from
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source peer i. It is clear that

Thus, we get the cdf of T;(5),
Fr,(s)(t) = P[T;(S) <]

and the pdf of T;(5),

Ifris)t) =

for all ¢ > 0. Consequently, the expectation of T;(S) is

E(T;(9)) = /OO tfr,(s)(t))dt

=[S (5)

= /OO cfe;(c c%) de (by letting ¢ = ?)
:/ —fc (c)de.
0

Let T'(S, ¢) = S/c be the download time of a file of size S from any source peer
¢ when C; = c. The last equation can also be obtained by randomizing ¢ in T3(S, ¢)
directly,

B(s) = [ 1s.05e0de= [ e @i

The above equation can also be written as

B =5 [ 1% sp). o

that is, E(T;(9)) is a linear function of S, where

)= [

is the expected download time of one unit of data from source peer i. Define a func-
tion g(x) = 1/x, which is a convex function. By the well known Jensen’s inequality
[3], we have
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for any fc,(c), and

for any S. The above inequality means that we cannot achieve the average service
capacity of a source peer if we download a file at random time, which is a surprising
claim. For instance, if C; has a uniform distribution in [c1, ¢2], by straightforward
calculation, we obtain E(T;(1)) = In(ca/c1)/(c2 — ¢1) and E(C;) = (e1 + ¢2)/2.
Thus,

In(ca/c1) - 2
co—c1 et en’

an inequality not obvious at all. (Proof: Let = ¢o/c; > 1. The above inequality
becomes Inz/(x — 1) > 2/(x+ 1), or, Inz > 2(x — 1)/(x + 1) =2(1 — 2/(x + 1)),
that is, Inz + 4/(x + 1) > 2. One can now show that the left hand side of the
last inequality achieves its minimum value 2 when x = 1.) Furthermore, for a
fixed mean E(C;), E(T;(1)) increases as the variance of the uniform distribution
increases, another claim which is not very obvious. (Proof: Let ¢y = p — V30 and
co = pu+ /30, where i = E(C;) = (1 + ¢2)/2 and o2 is the variance. By defining
r = (u+v30)/(n—/30), we get E(T;(1)) = y/(2u), where y = ((z+1)/(x—1)) Inz.
One can now show that y is an increasing function of x > 1, where z is an increasing
function of o > 0. )

In Figure 1, we demonstrate the relative difference between E(T;(1)) and
1/E(C;), that is,

<(E(Tz(]—)) - 1/E(C)))
1/E(Cy))

) % 100% = (E(T;(1)E(C;) — 1) x 100%

Y p+V3o) y
(=) ) o

for a uniform distribution of C; with mean E(C;) = p = 4,5,6,7 and variance
0? with o in the range (0,2]. It is observed that for a fixed mean u, the relative
difference between E(T;(1)) and 1/E(C;) is an increasing function of variance o2
and increases more than linearly when o increases. Furthermore, for a fixed variance
o2, the relative difference between E(T;(1)) and 1/E(C;) is a decreasing function
of mean . Therefore, the relative difference between E(T;(1)) and 1/E(C;) is an
increasing function of the coefficient of variation o/ p.

We say that the n source peers are homogeneous if their service capacities Cf,
Cy, ..., C,, are independent and identical random variables C' with the same pdf,

for(e) = fey(¢) = -+~ = fe,(¢) = fo(o),

and the same cdf,

FCl (C) = FCQ(C) == FCn(C) = Fc(c).
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Fig. 1. The relative difference versus variance.

Notice that this does not mean that the n source peers have the same service
capacity. In fact, during transferring the same file at the same time, the service
capacities of the n source peers can be entirely and radically different as governed
by fc(c).

For homogeneous source peers, we use E(T(S)) = SE(T(1)) to represent the
expected download time of a file of size S from any source peer, where

E(T(1)) = /OOo fCT@dc

is the expected download time of one unit of data from any source peer.

3. Chunk-Based Switching and Peer Selection

In a chunk-based switching algorithm, a file to be downloaded is divided into chunks
of size S*, where S* is a network-wide parameter agreed by and acceptable to all
source and user peers. Without loss of generality, it is assumed that S can be divided
by S* and m = S/S* is the number of chunks, such that the chunks are numbered
by 1,2, ...,m. Given a file of size S and n source peers, a download schedule specifies
a source peer for each chunk.

3.1. Algorithm RP and analysis
3.1.1. Algorithm

In the random chunk-based switching algorithm RIP (meaning: selecting a Random
Peer), a source peer i; € {1,2,..,n} is randomly and uniformly chosen from
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{1,2,...,n} for each chunk j, where 1 < j < m [10]. Algorithm RIP has no knowledge
of and does not probe the current service capacities of the source peers.

3.1.2. Analysis

Let Trp(S) denote the download time of algorithm RIP for a file of size S. Then,
we have

Trp(S) = zm: T, (S%).

The expected download time E(T;,(S*)) of a chunk j from source peer i; = i is
E(T;(S*)). Since i; = i with probability 1/n for all 1 <17 < n, by Eq. (1), we have

B(T,(8%) = 1 Y BI(S™) = = 3§ BI() = 23" BT()

for all 1 < 7 < m. Since there are m chunks, we obtain

m mS*
E(Tge(S ZE i, (87)) = ZE

where

is the expected download time of one unit of data when the n source peers are
chosen with equal probability. For homogeneous source peers, we have

E(Trp(5)) = SE(T(1)).

Assume that the file size S is a random variable with pdf fs(s) in [0, 00). Let
Trp denote the download time of algorithm RIP for a random file. Then, we have

E(Tre) = /OOO E(Trp(s))fs(s)ds

3.2. Algorithm HP and analysis
3.2.1. Algorithm

Our algorithm HP (meaning: selecting a High-capacity Peer) for chunk-based
switching and peer selection is given in Figure 2. A source peer 7 is called a high-
capacity source peer if C; > ¢*, and a source peer i is called a low-capacity source
peer if C; < ¢*, where ¢* is an appropriately chosen service capacity threshold. The
choice of ¢* has strong impact on the performance of algorithm HIP, and we will
address this important issue in a later section. Our algorithm consists of two stages.
In the first stage (lines (1)—(9)), the source peers are probed one at a time by down-
loading one chunk from each source (lines (3) and (7)). This probing procedure is
terminated under one of the following three conditions:
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(1) All the chunks have been downloaded (i.e., i = m + 1) when m < n (line (2)),
regardless whether a high-capacity source peer is found;

(2) A high-capacity source peer ¢ is identified (lines (4)—(5));

(3) All the n source peers have been probed (i.e., i = n + 1) when m > n and no
high-capacity source peer is found (line (2)).

The second stage of the algorithm (lines (10)—(20)) completes the downloading of
the remaining chunks. In the first case, there is no further work to be performed. In
the second case, all the remaining chunks are downloaded from the high-capacity
source peer ¢ found in the first stage (lines (12) and (16)). In the third case, all the
remaining chunks are downloaded from the source peer i such that C; is the highest
capacity among the n low-capacity source peers (lines (18)—(19)).

Notice that algorithm HIP does not guarantee reduction of download time. For
instance, if the threshold c¢* is too large, it will take long time to find a high-capacity
peer, and the total download time will be longer (see Section 5). Furthermore, the
order of probing also has strong impact on performance (see Section 6). If the above
two problems are not solved properly, the probing algorithm does not necessarily
reduce download time.

3.2.2. Analysis

Let pr,; denote the probability that source peer i is a low-capacity source peer, i.e.,

DL = / fc;(c)de = Fg,(c"),
0

and pg,; denote the probability that source peer 7 is a high-capacity source peer,
ie.,

o0
pai=1—pri=1-Fg,(c") = / fe.(c)de.

Let T7,;(S) be the download time of a file of size S from a low-capacity source peer
i. The expectation of Ty, ;(S) is
1

B(TLi() = - [ T(S.0)fe(lde =

1
PL.,i

/C §f0i(0)dc = SE(Tr,(1)),
0 C
where
) o 1 < fCi(c)
E(TLyz(l))p—m./O — dce.

Let Trr,:(S) be the download time of a file of size S from a high-capacity source
peer i. The expectation of Ty ;(.S) is

BT () = o [ TS 0fe0de = [ * 2 e, ()de = SE(Tus(),
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Algorithm HIP: Chunk-Based Switching and Peer Selection
Input: A file of size S with chunks 1,2, ...,m and n source peers 1,2, ...,n.
Output: A download schedule for the file.

i 1 (1)
while (: <m and i <n) do (2)
download chunk 4 from source peer i; // probe source peer 4 (3)
if (the service capacity of source peer i is at least ¢, i.e., C; > ¢*) (4)
exit the loop; // a high-capacity source peer is identified (5)
else (6)
i+ i+ 1; // probe the next source peer (7)
end if; (8)
end do; 9)
if (m <n) (10)
if (i <m) // a high-capacity source peer 7 is found (11)
download the chunks i + 1, i + 2, ..., m from source peer i; (12)
end if; (13)
else (14)
if (i <n) // a high-capacity source peer i is found (15)
download the chunks i + 1, i + 2, ..., m from source peer i; (16)
else // download from a low-capacity peer with the highest capacity — (17)
download the chunks n + 1, n + 2, ..., m from source peer i (18)
such that C; = max{C1, Cs,...,Cp}; (19)
end if; (20)

end if.

Fig. 2. A chunk-based switching and peer selection algorithm.
where

E(Ty(1)) = 1% /OO fcq'T(c)dC-

For homogeneous source peers, the probability that a source peer is a low-
capacity source peer is

PL/OC fe(e)de = Fe(c),

and the probability that a source peer is a high-capacity source peer is
o0
pp=1—pL=1-Fo(c") = / fel(e)de.
o

Let T7,(S) be the download time of a file of size S from a low-capacity source peer.
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/C (S, ¢) fo(c)de = i/c gfc(c)dc:SE(TL(l)),
0 0

The expectation of T7(S) is
1
L pr

E(T.(9)) =

(TL(9)) 5

where
1 [ fe(e)
E(T (1) = — —dc.
m) = [ 1
Let Ty (S) be the download time of a file of size S from a high-capacity source peer.
The expectation of T7(S) is
1

B(Tu(5) = = /Oo (S, ¢) fo(c)de = z% /OO %fc(c)dc — SE(Tu(1),

where
1 > fol(e)
E(Ty(1)) = " /c — de.

In the following, we analyze E(Twp(S)), the expected download time of our
algorithm HIP for a file of size S.
First, we consider the case when m < n. If a high-capacity source peer i, where
1 <i <m, is found in line (4), which occurs with probability
PLaPL,2 " PL,i—1PH,i,
since the first ¢ — 1 probes encounter low-capacity source peers and the ith probe
encounters a high-capacity source peer, the expected download time is

E(T11(57) + E(T12(5%) + -+ + E(T1.i-1(57)) + (m — i+ 1) E(Tw,:(57)),
because the first ¢ — 1 chunks are downloaded from low-capacity source peers and
the last m —i4 1 chunks are downloaded from a high-capacity source peer. If a high-
capacity source peer is not found by the algorithm, which occurs with probability

PLiPL,2 " PL,m>
since all the m probes encounter low-capacity source peers, the expected download
time is
E(Tp1(57)) + E(T12(57)) + -+ + E(Tr,m(S57)),
because all the m chunks are downloaded from low-capacity source peers. Summa-

rizing the above discussion, we get the expected download time of our algorithm
HP for a file of size S for this case:

E(Twp(5))

i—1

= ZPL,1PL,2 “PLi—1PH,i Z E(Tp;(5%)) + (m—i+ 1)E(TH,:(S"))
i=1

j=1

+PL1PL2 " PL,m Z E(Ty, ;(S7))
=1
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= S* (Z PLAPL,2" " PLi—1PH,i (Z_: E(Tr ;(1)+(m—i+ 1)E(TH1(1))>

j=1

+pL,1pL,2 PLm Z E(TL,j(l))>

j=1

= SE(Twe(1)),
where

E(Twp(1))

= % (ZPL,MUL,Q “PLi-1PH.i (Z_: E(Ty (1)) + (m—i+ 1)E(TH,i(1))>

+pL,1pL,2"'pL,mZE(TL,j(l))> . (2)

For homogeneous source peers, the above equation can be simplified and a closed
form expression of E(Tup(1)) can be obtained as follows,

E(Twe(1))

% (Zpi[lpH((z’ — DE(TL(1)) + (m — i+ 1) E(Ty (1)) + pglmE(TL(l)O

" <pHE(TL(1>> > G- 1p

i=1

+puE(TH(1)) Z(m —i+1)pyt +meE(TL(1))>

i=1

L <pHE<TL<1>> (p Lo r :pi)(l - pLW)

BT () (- PO ) +p2LmE<TL<1>>>

- %((m —p' = (m—1)(1 — pp)pP* +mpy)E(TL(1))

+ (- PEIED) E(TH<1>>>

1—pL

- (pLu + (m — D) E(TL (1)) + (m - M) E(THu))) G

1
m 1—pr



1352 K. Li

Next, we consider the case when m > n. If a high-capacity source peer ¢, where
1 <i < n,is found in line (4), which occurs with probability

PrLaiPr,2 " PL,i—1PH,i,
the expected download time is
E(Tp.(57)) + E(Tp2(57)) + -+ + E(TLi-1(5")) + (m — i + 1) E(Th,:(57)).
If a high-capacity source peer is not found by the algorithm, which occurs with
probability
PLaPL,2 " "PLn,
the expected download time is
E(Tp.(57)) + E(Tp2(57)) + -+ E(Tpn(S7)) + (m — n) E(Ta (57)),

where Th(S) is the download time of a file of size S from the source peer that
has the maximum service capacity among the n low-capacity source peers (lines
(18)—(19)). Hence, we get the expected download time of our algorithm HIP for a
file of size .S,

E(Twp(9))
=S prapra pripi | 3 BTLi(S) + (m— i+ DE(Tua(S%)

+PLiPL2 " PLn Z E(Tr, ;(57)) + (m —n)E(Ty(S™))

= 5" (Z DPLAPL2 " PL,i—1PH,i (Z E(Tr ;(1))+ (m—i+ 1)E(TH1(1))>

J=1

FPLAPL2 DL (i E(Tp (1)) + (m — n)E(TM(l))>>
= SE(Twe(1)),

where

E(Twe(1))

= % (ZPL,MUL,Q ' PLi-1PH.i (Z_: E(Ty (1)) + (m—i+ 1)E(TH,i(1))>

j=1

+PLapL2- PLn (Z E(Ty ;(1)) + (m — n)E(TM(l))>> : (4)
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Notice that as m — oo, we have
E(Thp(1 ZPL 1pr2 - PLi—1PH,E (THi(1))

+pL,1pL,2 —pr B (T (1)). (5)

For homogeneous source peers, the above equation can be simplified and a closed
form expression of E(Tup(1)) can be obtained as follows,

E(Twe(1)) = % (ZPiL_lpH((i —DE(TL(1)) + (m —i+ 1)E(Tu(1)))

+pL(nE(TL(1)) + (m — ”)E(TM(l)))>

n

— ; (pHE (TL (1)) (= Dp} "+ puE(Tu(1)) > (m—i+ 1)py

i=1 i=1

+ppnE(TL(1)) + pr(m — n)E(TM(l))>

1—pL

_ % (pHE(TL(l)) <pL SRR pL)pz)

+puE(Tu(1))

1-pL 1—pL

(- 222l 1)

+ppnBE(TL(1)) + pr(m — n)E(TM(l))>

1

= ((pL —pf — (n=1)(1 = pL)pf + npp) E(TL(1))

# (m= P2 ) ()

1—pL
+pr(m — N)E(TM(U)>
L (m +(n— D) E(TL(1)

+ <m Cpelmpp ) (m —n+ 1)pg> E(Ty(1))

1—pL

+pﬁ(mn)E(TM(1))> : (6)
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To complete the analysis, we need to find E(Ta(5)). Let
C]\/[ = max{C{, Cé, ceey C;z}v

where C1,CY, ..., C!, are service capacities of n low-capacity source peers with pdf

fei(e) = fei (o),
PL,i
and cdf
1
Fei(e) = —Fe, (o),
PL,i

in [0, ¢*). The cdf of Cys is

FCM (C) = P[CIVI < C]

—HP[C"<C]

:HFC,{(C)
~ol

:gpL,z CL()

and the pdf of C}; is

fCM(C) = (le ) chl(c) H FCU (C>

for all 0 < ¢ < ¢*. Thus, we get the cdf of Ty (S) = S/C,

FTM(S)(t) = P[TM(S) < t]
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1Fcf (%) n
(L) (I (7))

and the pdf of Th(S),

Jru(s)(t) = tﬁg (f[l p;) (é Je. (%) }_[#FC"/ <§>)

S - S
7 (1= Frys) 1) Z %

for all ¢ > S/c*. Consequently, the expectation of Ty, (S) is either

[e )

B(Ty(S)) = / s (£,

S/c*

or, equivalently,

E(Tu(s) = | "1 Frys ) dt,

or, by randomizing ¢ in Ty (S) = /¢,

s

E(TM(S)) = /OC T(Sa C)fCM(C)dc: /Oc ngM(C)dc’

that is,

E(TM(S)) = /OOO (1 - FTM(S)(t)) dt
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Ll
c*

(0) (I )
+ /0 s (ﬁ p“> (Z fe.(o) [T Fe, (c)) de

:/Oc %fCM(C)dC
= SE(Tu(1)),

where we notice that

(ﬁph> (HFC ) = Foy, (¢) = 1,

and

Bty = [ Lrewtae= [ roy0y 200

For homogeneous source peers, we get the cdf of C'yy,
FC (C) "
FCM (C> = <—)
pPL

and the pdf of C}; is

n [ Fo(e net n n

feuld) = 2 (FD) T fo(e) = 2 (et feto)

pL pL Py,

for all 0 < ¢ < ¢*. The cdf of Ty (95) is,

1 S\\"
FTM(S)(t) =1- (p_LFC (?)) )

and the pdf of Ths(95) is,

S SN\t S
=25 (e (3)) 1 2).

for all t > S/c*. Consequently, the expectation of T/ (.5) is

B(T(S) = [ TSfeuede= [ 2t (Fele) ™ felepe

by randomizing ¢ in Th;(S) = S/c. We can also represent E(T(S)) as
E(Tu(5)) = SE(Tu(1)),
where
n

E(Ty(1) =— /Oc l(FC(C))"_1 fe(e)de.

Py, c
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4. Performance Comparison

In this section, we present a numerical example to compare the performance of
algorithms RIP and HIP. As in most P2P file sharing and exchange systems, the file
sizes S are in the range 10 ~ 1500 MB [1]. We set the chunk size S* = 10 MB. This
implies that the number m of chunks is in the range 1 ~ 150. The service capacity
of a source peer is in the range 50 ~ 1,000 kbps, i.e., 0.375 ~ 7.5 MB/min.

Let us consider a P2P file sharing system with n = 10 source peers. Assume that
C; has a uniform distribution in [¢; 1, ¢; 2], where ¢; 1 = 3.7—0.17 and ¢; o = 440.24,
forall 1 <i<mn,ie.,

1
fo,(c) = ———
( ) Ci,2 — Ci,17
and
Fe,(c) = ﬂv
Ci,2 — Ci1

) )

for all ¢;1 < ¢ < ¢;,2. By straightforward calculation, we obtain

c* — Ci,1
PLi = )
Ci2 —Ci1
ES
o Ci2 —C
PHi = )
Ci2 —Ci

B(T, (1) = =),
ln(ci72/c )

Cio —C*

E(Tyi(1) =

mmmhé e Z “de (by Ea. (7)

=1 i
< 1 - o, \C
=I5 ) (e ) o 4
c1 1 PL,i i1 i—1 Fe, (C)
where ¢; = max{ci1,¢21,...,cn1}, since we must have Cp > max{cy 1,

C2.15 ey le}.

In Figure 3, we demonstrate the expected download time E(Tup(S)) of algo-
rithm HIP for a file of size S = mS™*, where 0 < m < 100. The service capacity
threshold is set as ¢* = 3.7,3.9,4.1, which are chosen to illustrate our key observa-
tions. We also show the expected download time E(Tgrp(S)) of algorithm RIP. As
we have known already in Eq. (5), as m increases, E(Typ(S)) approaches a linear
function with slope

ZPL,lpL,Q o prim1pH i E(Tr (1) +prapra- - ponE(Tar (1)),
i=1
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Fig. 3. The expected download time versus file size.

which is determined by two factors, namely, the service capacity threshold and the
order of source peers. It is clear that the pr;’s, the py;’s, and the E(Ty (1))’s
depend on ¢*, and the above slope further depends on the order of probing. For a
poorly chosen ¢* and a poorly chosen order of probing, algorithm HIP can perform
worse than algorithm RIP. For instance, when ¢* = 3.7 and the source peers are
arranged in the decreasing order of the E(Ty;(1))’s as we have done in Figure 3,
that is,

E(Ty1(1)) > E(Tup2(1)) > -+ > E(Tun(1)),

we have E(Twp(S)) > E(Trp(S)). However, if we set ¢* = 3.9 or 4.1 as we have
done in Figure 3, we get E(Tup(S)) < E(Trp(S)). As shown later, the performance
of algorithm HIP can be significantly improved if the source peers are arranged in
the increasing order of the E(Tg ;(1))’s.

5. Optimal Threshold of Service Capacity

When ¢* — 0, we have pr; — 0 and py,; — 1, for all 1 < ¢ < n. This essentially
means that algorithm HIP simply downloads a file from the first source peer without
much consideration. This extreme case certainly does not work well. When ¢* — oo,
we have pr; — 1 and pg; — 0, for all 1 < ¢ < n. This essentially means that
algorithm HIP probes all n source peers and chooses the one with the largest service
capacity. This extreme case works great if m is large, such that the time for probing
in the first stage is negligible. However, it may not work well for small to moderate
sized files.

The selection of the service capacity threshold ¢* has strong impact on the
performance of algorithm HIP. If ¢* is too small, a high-capacity source peer may be



Probing High-Capacity Peers to Reduce Download Times in P2P File Sharing Systems 1359

identified too quickly; however, the service capacity of the so called “high-capacity”
source peer may not be high. If ¢* is too large, the time required to find a high-
capacity source peer may be too long, and by the time a high-capacity source peer
is identified, a file may be almost downloaded. Thus, there is an optimal choice of ¢*
which minimizes E(Twp(S)) (actually, E(Tup(1))). Notice that the optimal value
of ¢* is independent of S.

Consider the case when source peers are homogeneous. Assume that C has a
uniform distribution in [c1, ¢2], i.e.,

1
c) = ,
fe(©) C2 —C1
and
CcC—C1
Fo(e) = :
C2 —C1
for all ¢; < ¢ < ¢q. By straightforward calculation, we obtain
-
L = )
Cy — C1
cg —C*
PH = """
Coy — C1

B(1,(1)) = /D),

BTy (1) = 22

*

B(Tu() - = | "L (o) fole)de (by Ba. (8))

pr, c

<02—cl>n/c*1<c—cl >n1 1
= - dc
cC" — C1 c1 C Co — C1 Cy — Cq1
c* _ n—1
_ n / (c—c1) de
(c* —ci)™ Jo, c
/ 1 «— (n— 1) i1
= —Z —c1) i=1lde
(c*=c)n J., ¢ —
n c* 1 n—1
— - n 1 n—j—1 d
@ —ar / | +Z< ) ) ‘
¥ n—1 ¥
n ne1 [© de n—1 n—j—1 /C i—1
=— | (— — - d7d
n—1 ; 1
n n—1 c* n—1 n—j—1 (c*)j B C{
= —c In{— )+ . —c J ;
(¢ —c1)m <( 1) <01> < j )( ) j



1360 K. Li

Therefore, by Eq. (6), we obtain a closed form expression of E(Tnp(1)),

B(Tup(1) = - <pL<1 + (n = D) B(T(1))

pr(l—pi™") 0
+ (m - ﬁ —(m—n+ 1)pL> E(Tu(1))

+pL(m — N)E(TM(l))>

— i(c* —a (1+ (n—1) <C* Cl)n) In(c*/c1)
m\ co —c1 Cco — C1 c*—

(et d)). "

Jj=1

Let us consider a P2P file sharing system with n = 10 source peers. The uniform
distribution is in the range [c1,ce] with ¢ = 0.375 and ¢y = 7.5. In Figure 4, we
demonstrate the expected download time E(Twp(S)) of algorithm HIP as a function
of ¢* for a file of size S = mS™, where m = 20, 40, 60, 80, 100. It is observed that the
service capacity threshold has strong impact on the expected download time. There
is a noticeable range of the expected download time as ¢* varies. As ¢* increases,
E(Tup(S)) decreases significantly; however, beyond certain point, E(Tup(S)) starts
to increase, i.e., the performance of algorithm HIP gets worse. There is clearly an
optimal choice of ¢* that optimizes the performance of algorithm HIP.

In Figures 5 and 6, we demonstrate the expected download time E(Tup(S))
of algorithm HIP for a file of size S = 10S* and S = 100S™* respectively. The
number of source peers is n = 2,3,4,5,6,10. It is observed that even n = 2 source
peers significantly reduce E(Typ(5)), as compared with E(Tup(S)) = 42 and 420
respectively when there is n = 1 source peer. It is also observed (and intuitively
acceptable) that with a reasonable choice of ¢*, more source peers further improve
the performance of algorithm HIP, since the chance to probe a high-capacity source
peer increases with n, that is, the probability that all source peers are low-capacity
source peers vanishes as n gets large. Again, for a fixed n, there is an optimal
choice of ¢* that minimizes E(Tup(S)). It is a little surprising at the first glance
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that when ¢* exceeds certain limit, more source peers degrade the performance of
algorithm HIP. For instance, for m = 10 in Figure 5, for ¢* close to ca, E(Tup(S))
increases in the order of n = 3,4,2,5,6, 10, that is, the performance of algorithm
HP is worse when n = 4 than n = 3. When n = 5,6, 10, the performance is even
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worse than when n = 2. In fact, this is not difficult to explain. When m = 10, i.e.,
there are not many chunks, the time spent for probing source peers is a significant
part of the overall download time. When ¢* is very large, the chance to encounter a
high-capacity source peers decreases, since all source peers are low-capacity source
peers. Hence, algorithm HIP essentially becomes algorithm RIP. It would be better
to stop probing earlier and to choose a source peer with the largest capacity to finish
the download. (Notice that the curves collapse when ¢* is very small (actually, at
¢* = ¢; = 0.375). The reason is that when ¢* is too small, the probing process
will terminate very soon, since virtually all source peers are high-capacity peers.
In other words, when ¢* is too small, the time to identify a high-capacity peer is
almost independent of n.)

We observe from Figures 5 and 6 that the optimal choice of the service capacity
threshold increases as m and n increase. For a fixed m, the optimal choice of the
service capacity threshold is relatively stable and increases with n very slowly.
Therefore, it is very informative to find the optimal choice of the service capacity
threshold when n = 2. Our main result of this section is the following theorem.

Theorem 1. An optimal choice of the service capacity threshold is the unique so-

lution c* of the following equation,

2

cF—c c* c—c 1
of ma V(g iy (Cma) )L
(co —c1)? c1 ca—c1 c*

*
m—1 1n(c_2)_ (m—1) - m 1 2(m—2) ! —0,
co —Cq c* *
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for n = 2 homogeneous source peers whose service capacity has a uniform distribu-
tion in the interval [cq, ca].

Proof. Based on our previous discussion, when n = 2, by Eq. (9), we have

B(Tur (1)) - %(1 (” <_>> a(5)

(e (222) (@)

(e (=) e (@)
y(c)

m(cs —c1)

o= (10 (522) (%)
omn(5za) o )m()
+M(C*clclln<6*>>,

where




1364 K. Li

Table 1. Optimal service ca-
pacity threshold (n = 2).

*

m c
10 4.4290461
20 4.8968135
30 5.1645373
40 5.3493051
50 5.4887148
60 5.5996561
70 5.6911521
80 5.7685772
90 5.8353829
100 5.8939128
110 5.9458274
120 5.9923445
130 6.0343820
140 6.0726481
150 6.1076999

To minimize E(Tnp(1l)), it is equivalent to minimize y(c*). Notice that
2
ay(c*):2 c*—c In z g c*—c 1
Oc* (ca —c1)? c1 o —C1 c*
-1 *— 1
+<m >1n(c—i>—<(m—1)<c Cl>+m>—*
ca— 1 ¢ ca— c
4 2Am=2) (1 ﬂ)
Cco — C1 c*

Thus, we only need to find ¢* for the equation dy(c*)/9c* = 0. Since the partial
derivative dy(c*)/dc* is an increasing function in the interval [c1,¢3], there is a

unique solution ¢* for the equation. (|

Although there is no closed-form solution, the equation dy(c*)/dc¢* = 0 can be
solved numerically. In Table 1, we display the optimal choice of the service capacity
threshold for n = 2 homogeneous source peers whose service capacity has a uniform
distribution in [c1, ¢o] with ¢; = 0.375 and ¢ = 7.5.

The optimal choice of the service capacity threshold approaches c; as m and n
get large. Notice that for large n, by Eq. (6), we have

- () + (- 22) B

(et (o) et
(h;ic*/;l) N (c1 + mes —(0(2714-63))20*) ln(CQ/c*)) .

E(THP(].)) ~

1
m

1
m
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To minimize E(Typ (1)), we need to have OE(Twp(1))/0c* = 0. By straightforward
algebraic manipulation, we know that we need to find ¢* which satisfies the following
equation,

3

(27" (9o 4 (m — 1)ea — (m + 1)e") In 2
(ca —c1)c* c*
= (¢1 +mea — (m+ 1)c") (Z—i — 1) .

The above equation has one solution ¢* = cs.

6. Optimal Order of Probing

The order of n heterogeneous source peers in algorithm HIP has strong impact on
the performance of the algorithm, since the order of the source peers is the order
of probing in algorithm HIP, and the order determines how easily and quickly a
high-capacity source peer can be identified. Given n source peers characterized by
feu (o), fes(e), ..., fe,(c), and a file of size S, the problem of finding an optimal
order of the n source peers such that the expected download time E(Twp(S)) is
minimized is a well defined optimization problem.

The main result of this section is the following theorem, which gives an optimal
order when m is sufficiently large.

Theorem 2. When m is sufficiently large, an optimal order (j1,j2, ..., jn) of the n
source peers that minimizes the expected download time E(Twp(S)) satisfies

E(Ty;, (1)) < E(Th,;,(1) < - < E(Th,,(1)).

In other words, source peers should be probed in an increasing order of their expected
download times when they are high-capacity source peers.

Proof. We notice that minimizing E(Tpp(S)) is equivalent to minimizing
E(Tuep(1)). As mentioned in Section 3, when m is sufficiently large, by Eq. (5),
E(Tue(1)) is actually
n
E(Tup(1)) = ZPL,IPL,Q o pri—1PaE(Tri(1) + prapre - oo E(Thv (1))
i=1
=pu 1 E(Tu1(1)) +prapr2E(TH2(1))

+ ZPL,HUL,z ~pri—1PH i E(TH,i(1) + prapre - prnE(Tu(1)).
i=3

First, we show that E(Typ(1)) is minimized if and only if E(Tx 1(1)) < E(Th2(1)).
Let us exchange the order of the first two source peers and get

E/(THp(l)) = pH,gE(THQ(l)) +pL,2pH,1E(TH,1(1))

+ ZPL,2PL,1 o pri—1PHE(Th,i(1) + propr - pronE(Tu(1)).
=3
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It is observed that except the first two terms in the right hand side of the above
equation, all other terms remain the same. Hence, we get

E(Tup(1)) — E'(Tup(1)) = prapm2(E(Tu, (1)) — E(Tu2(1))),

and E(Tup(1) < E'(Tup(1)) if and only if E(Ty1(1)) < E(Th2(1)). Next, we
prove by induction on n > 2 that E(Twyp(1l)) is minimized if and only if the n
source peers are arranged in an order (j1, j2, ..., jn) such that

E(Th,;, (1) < E(Th 3,(1)) < -+ < E(Th 5,(1)).

Notice that the base case when n = 2 has already been shown above. When n > 2,
we have

E(Twp(1)) = pua E(Tu (1) + pLaE(Tue(1)),

where E(Typ(1)) is the expected download time of one unit of data from source
peers 2,3, ...,n. By the induction hypothesis, E(Tpp(1)) is minimized if and only if

E(Tup(1)) < E(Tps(1) < < E(Tun(1)).
Thus, E(Tup(1)) is minimized if and only if
E(Ty(1)) < E(Tp(1)) < < E(Tun(1)).

The theorem is proved. O

In Figure 7, we demonstrate the expected download time E(Twp(S)) of algo-
rithm HIP using exactly the same data in Figure 3. The only difference is that the
source peers are arranged in the increasing order of the E(Tg ;(1))’s, that is,

E(Tya(1)) < E(Tu (1) < -+ < E(Tun(1)).

We observe that such an optimal order of probing yields noticeable performance
improvement.

7. Conclusions

We have addressed the problem of reducing download times in peer-to-peer file
sharing systems with stochastic service capacities. We gave a precise analysis of the
expected download time when the service capacity of a source peer is a random
variable. We proposed a chunk-based switching and peer selection algorithm and
analyzed the expected download time of the algorithm. We have solved the two
subproblems of the optimal choice of the threshold of high-capacity source peers and
the optimal order of probing. We compared the performance of our algorithm with
the random chunk-based switching method and obtained noticeable performance
improvement.
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Fig. 7. The expected download time versus file size.

We would like to mention that the basis for probing is the assumption that
the service capacity of a source peer does no change after probing at least for
a reasonable amount of time (e.g., within the time of downloading a file). If the
service capacity of a source peer changes after probing, then the technique of probing
might need to be enhanced, so that it is useful and helpful in reducing the download
time. It is therefore an interesting and challenging problem to propose and analyze
new probing algorithms to include temporal fluctuation of source peer capacities
into consideration. It is conceivable that such investigation needs significantly new
insights which are well beyond the scope of this paper. In this sense, our effort in
this paper is only an initial attempt towards this direction.
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