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1 PAPER OUTLINE
The paper is organized as follows. (All section num-
bers refer to the main paper.) In Section 2, we re-
view related research in energy-efficient heteroge-
neous computing. In Sections 3–5, we address energy-
efficient scheduling of independent tasks on multiple
heterogeneous computers. In Section 3.1, we define
the energy-constrained scheduling problem and de-
velop a method of optimal power allocation for a
given schedule, such that the total task execution
time is minimized. In Section 3.2, we define the
time-constrained scheduling problem and develop a
method of optimal power allocation for a given sched-
ule, such that the energy consumption is minimized.
The significance of Sections 3.1 and 3.2 is to reduce
our scheduling problems to the optimal workload par-
tition problems. In Section 4.1, we develop a method
to find an optimal partition of a given workload, such
that the total task execution time is minimized. In
Section 4.2, we develop a method to find an optimal
partition of a given workload, such that the total
energy consumption is minimized. The significance
of Sections 4.1 and 4.2 is two fold. First, the opti-
mal workload partition can be used to guide us in
finding an optimal schedule to solve a scheduling
problem. Second, we get lower bounds for the optimal
solutions, such that our solutions can be compared
with the optimal solutions. In Section 5.1, we describe
the MLS algorithm for scheduling independent tasks.
In Section 5.2, we give examples of our numerical
calculations. In Section 5.3, we present simulation
data to demonstrate the performance of our heuristic
algorithms.

In Section 6, we address energy-efficient scheduling
of precedence constrained tasks on multiple heteroge-
neous computers. In Section 6.1, we describe the LL-
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MLS algorithm for scheduling precedence constrained
tasks. In Section 6.2, we discuss optimal energy alloca-
tion to levels of a dag. In Section 6.3, we discuss opti-
mal time allocation to levels of a dag. The significance
of Sections 6.2 and 6.3 is to optimize the performance
of the level-by-level scheduling method. In Section
6.4, we present simulation data to demonstrate the
performance of our heuristic algorithms. In Section 7,
we conclude the paper.

2 HETEROGENEOUS CLOUD COMPUTING

Several authors have incorporated dynamic voltage
and frequency scaling into study. In [6], the authors
addressed optimal power allocation and load distri-
bution for multiple heterogeneous multicore server
processors across clouds and data centers as optimiza-
tion problems, i.e., power constrained performance
optimization and performance constrained power op-
timization. In [17], the author considered the problem
of optimal power allocation among multiple hetero-
geneous servers in a data center, i.e., minimizing the
average task response time of multiple heterogeneous
computer systems with energy constraint. In [21], the
author investigated the technique of using workload
dependent dynamic power management (i.e., variable
power and speed of processor cores according to the
current workload) to improve system performance
and to reduce energy consumption. In [31], the au-
thors optimized the performance and power con-
sumption tradeoff for multiple heterogeneous servers
with continuous and discrete speed scaling.

3 NUMERICAL ALGORITHMS

In this section, we give the pseudo-codes of all the
numerical algorithms developed in this paper. The
classic bisection method, or the binary search algo-
rithm ([5], §2.1, p. 21) is repeatedly used to solve
complicated equations. It is a common sense that all
meaningful large numbers in the everyday world are
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not that large. Consider astronomically large numbers.
The estimated number of atoms in the observable
universe is only 1080 < 2266. The age of the universe
is only 4.355 × 1026 nanoseconds. Since all variables
in our study denote real quantities, it is safe to claim
that the bisection method can be finished in O(102)
time. Hence, the bisection method is very efficient.
For instance, all the data in Tables 1–2 are produced
instantly, while all the data in Tables 5–6 are produced
in seconds.

In all our algorithms, the small constant ε used to
terminate the bisection method is set as 10−9.

Algorithm 4 employs the Gaussian elimination and
backward substitution algorithm for solving a linear
system of equations ([5], §6.2, p. 265).

Algorithm 7 refers to the following equation from
Section 6.3 of the paper:
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All algorithms are properly cited in the main paper.
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Fig. 2. An algorithm to find T .
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F. Solsona, “A green strategy for federated and het-
erogeneous clouds with communicating workloads,” The
Scientific World Journal, Published online 2014 Nov 11.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244950/

[25] J. Mei, K. Li, and K. Li, “Energy-aware task scheduling in
heterogeneous computing environments,” Cluster Computing,
vol. 17, no. 2, pp. 537-550, 2014.

[26] H. S. Narman, M. S. Hossain, and M. Atiquzzaman, “h-DDSS:
heterogeneous dynamic dedicated servers scheduling in cloud
computing,” IEEE International Conference on Communications,
pp. 3475-3480, 2014.

[27] V. Petrucci, E. V. Carrera, O. Loques, J. C. B. Leite, D.
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Algorithm 5: Find El(m,α1, α2, ..., αm, Rl, φ).

Input: m,α1, α2, ..., αm, Rl, and φ.
Output: El.

//Set E1 and E2 (1)
E0 ← 1; (2)
E1 ← E0; (3)
while (Find R′l,k’s(m,α1, ..., αm, Rl, E1, φ) < 0) (4)

E1 ← E1/2; (5)
end while; (6)
E2 ← E0; (7)
while (Find R′l,k’s(m,α1, ..., αm, Rl, E2, φ) > 0) (8)

E2 ← 2E2; (9)
end while; (10)
//Search El in [E1, E2] (11)
while (E2 −E1 > ε) //ε is a very small constant (12)
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else (16)

E2 ← El; (17)
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Fig. 5. An algorithm to find El.
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Algorithm 6: Min T (m,α1, ..., αm, R1, ..., Rv, E).

Input: m,α1, α2, ..., αm, R1, R2, ..., Rv , and E.
Output: E1, E2, ..., Ev , and T .

//Set φ1 and φ2 (1)
φ0 ← −1; (2)
φ1 ← φ0; (3)
do (4)

φ1 ← 2φ1; (5)
for (l← 1; l ≤ v; l++) do (6)

El ← Find El(m,α1, ..., αm, Rl, φ1); (7)
end do; (8)

while (E1 + E2 + · · ·+ Ev > E); (9)
φ2 ← φ0; (10)
do (11)

φ2 ← φ2/2; (12)
for (l← 1; l ≤ v; l++) do (13)

El ← Find El(m,α1, ..., αm, Rl, φ2); (14)
end do; (15)

while (E1 + E2 + · · ·+ Ev < E); (16)
//Search φ in [φ1, φ2] (17)
while (φ2 − φ1 > ε) //ε is a very small constant (18)

φ← (φ1 + φ2)/2; (19)
for (l← 1; l ≤ v; l++) do (20)

El ← Find El(m,α1, ..., αm, Rl, φ); (21)
end do; (22)
if (E1 + E2 + · · ·+ Ev < E) (23)

φ1 ← φ; (24)
else (25)

φ2 ← φ; (26)
end if; (27)

end while; (28)
//Calculate T (29)
for (l← 1; l ≤ v; l++) do (30)

Find T (m,α1, α2, ..., αm, Rl, El) to get Tl; (31)
T ← T + Tl; (32)

end do; (33)
return E1, E2, ..., Ev , and T . (34)

Fig. 6. An algorithm to find E1, E2, ..., Ev, and T .



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. YY, MONTH 2016 5

Algorithm 7: Find Tl(m,α1, α2, ..., αm, Rl, φ).

Input: m,α1, α2, ..., αm, Rl, and φ.
Output: Tl.

//Set T1 and T2 (1)
T0 ← 1; (2)
T1 ← T0; (3)
do (4)

T1 ← T1/2; (5)
Find E(m,α1, α2, ..., αm, Rl, T1) to get φl; (6)

while (the right-hand side of Eq. (1) > φ); (7)
T2 ← T0; (8)
do (9)

T2 ← 2T2; (10)
Find E(m,α1, α2, ..., αm, Rl, T2) to get φl; (11)

while (the right-hand side of Eq. (1) < φ); (12)
//Search T in [T1, T2] (13)
while (T2 − T1 > ε) //ε is a very small constant (14)

Tl ← (T1 + T2)/2; (15)
Find E(m,α1, α2, ..., αm, Rl, Tl); (16)
if (the right-hand side of Eq. (1) < φ); (17)

T1 ← Tl; (18)
else (19)

T2 ← Tl; (20)
end if; (21)

end while; (22)
return Tl. (23)

Fig. 7. An algorithm to find Tl.

Algorithm 8: Min E(m,α1, ..., αm, R1, ..., Rv, T ).

Input: m,α1, α2, ..., αm, R1, R2, ..., Rv , and E.
Output: T1, T2, ..., Tv , and E.

//Set φ1 and φ2 (1)
φ0 ← −1; (2)
φ1 ← φ0; (3)
do (4)

φ1 ← 2φ1; (5)
for (l← 1; l ≤ v; l++) do (6)

Tl ← Find Tl(m,α1, ..., αm, Rl, φ1); (7)
end do; (8)

while (T1 + T2 + · · ·+ Tv > T ); (9)
φ2 ← φ0; (10)
do (11)

φ2 ← φ2/2; (12)
for (l← 1; l ≤ v; l++) do (13)

Tl ← Find Tl(m,α1, ..., αm, Rl, φ2); (14)
end do; (15)

while (T1 + T2 + · · ·+ Tv < T ); (16)
//Search φ in [φ1, φ2] (17)
while (φ2 − φ1 > ε) //ε is a very small constant (18)

φ← (φ1 + φ2)/2; (19)
for (l← 1; l ≤ v; l++) do (20)

Tl ← Find Tl(m,α1, ..., αm, Rl, φ); (21)
end do; (22)
if (T1 + T2 + · · ·+ Tv < T ) (23)

φ1 ← φ; (24)
else (25)

φ2 ← φ; (26)
end if; (27)

end while; (28)
//Calculate E (29)
for (l← 1; l ≤ v; l++) do (30)

Find E(m,α1, α2, ..., αm, Rl, Tl) to get El; (31)
E ← E + El; (32)

end do; (33)
return T1, T2, ..., Tv , and E. (34)

Fig. 8. An algorithm to find T1, T2, ..., Tv, and E.


