
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. YY, MONTH 2016 1

Supplementary Material for
Energy-Efficient Task Scheduling on Multiple

Heterogeneous Computers: Algorithms,
Analysis, and Performance Evaluation

Keqin Li, Fellow, IEEE

F

1 PAPER OUTLINE
The paper is organized as follows. (All section num-
bers refer to the main paper.) In Section 2, we re-
view related research in energy-efficient heteroge-
neous computing. In Sections 3–5, we address energy-
efficient scheduling of independent tasks on multiple
heterogeneous computers. In Section 3.1, we define
the energy-constrained scheduling problem and de-
velop a method of optimal power allocation for a
given schedule, such that the total task execution
time is minimized. In Section 3.2, we define the
time-constrained scheduling problem and develop a
method of optimal power allocation for a given sched-
ule, such that the energy consumption is minimized.
The significance of Sections 3.1 and 3.2 is to reduce
our scheduling problems to the optimal workload par-
tition problems. In Section 4.1, we develop a method
to find an optimal partition of a given workload, such
that the total task execution time is minimized. In
Section 4.2, we develop a method to find an optimal
partition of a given workload, such that the total
energy consumption is minimized. The significance
of Sections 4.1 and 4.2 is two fold. First, the opti-
mal workload partition can be used to guide us in
finding an optimal schedule to solve a scheduling
problem. Second, we get lower bounds for the optimal
solutions, such that our solutions can be compared
with the optimal solutions. In Section 5.1, we describe
the MLS algorithm for scheduling independent tasks.
In Section 5.2, we give examples of our numerical
calculations. In Section 5.3, we present simulation
data to demonstrate the performance of our heuristic
algorithms.

In Section 6, we address energy-efficient scheduling
of precedence constrained tasks on multiple heteroge-
neous computers. In Section 6.1, we describe the LL-

• K. Li is with the Department of Computer Science, State University
of New York, New Paltz, New York 12561, USA.
E-mail: lik@newpaltz.edu

MLS algorithm for scheduling precedence constrained
tasks. In Section 6.2, we discuss optimal energy alloca-
tion to levels of a dag. In Section 6.3, we discuss opti-
mal time allocation to levels of a dag. The significance
of Sections 6.2 and 6.3 is to optimize the performance
of the level-by-level scheduling method. In Section
6.4, we present simulation data to demonstrate the
performance of our heuristic algorithms. In Section 7,
we conclude the paper.

2 HETEROGENEOUS CLOUD COMPUTING

Several authors have incorporated dynamic voltage
and frequency scaling into study. In [6], the authors
addressed optimal power allocation and load distri-
bution for multiple heterogeneous multicore server
processors across clouds and data centers as optimiza-
tion problems, i.e., power constrained performance
optimization and performance constrained power op-
timization. In [17], the author considered the problem
of optimal power allocation among multiple hetero-
geneous servers in a data center, i.e., minimizing the
average task response time of multiple heterogeneous
computer systems with energy constraint. In [21], the
author investigated the technique of using workload
dependent dynamic power management (i.e., variable
power and speed of processor cores according to the
current workload) to improve system performance
and to reduce energy consumption. In [31], the au-
thors optimized the performance and power con-
sumption tradeoff for multiple heterogeneous servers
with continuous and discrete speed scaling.

3 NUMERICAL ALGORITHMS

In this section, we give the pseudo-codes of all the
numerical algorithms developed in this paper. The
classic bisection method, or the binary search algo-
rithm ([5], §2.1, p. 21) is repeatedly used to solve
complicated equations. It is a common sense that all
meaningful large numbers in the everyday world are



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. YY, MONTH 2016 2

not that large. Consider astronomically large numbers.
The estimated number of atoms in the observable
universe is only 1080 < 2266. The age of the universe
is only 4.355 × 1026 nanoseconds. Since all variables
in our study denote real quantities, it is safe to claim
that the bisection method can be finished in O(102)
time. Hence, the bisection method is very efficient.
For instance, all the data in Tables 1–2 are produced
instantly, while all the data in Tables 5–6 are produced
in seconds.

In all our algorithms, the small constant ε used to
terminate the bisection method is set as 10−9.

Algorithm 4 employs the Gaussian elimination and
backward substitution algorithm for solving a linear
system of equations ([5], §6.2, p. 265).

Algorithm 7 refers to the following equation from
Section 6.3 of the paper:

φ =
m∑
k=1

(
φl
αk

)αk/(αk−1)

−Rl
Tl

(
m∑
k=1

1
αk(αk − 1)

(
αk
φl

)(αk−2)/(αk−1)
)−1

m∑
k=1

(
1

αk − 1

(
φl
αk

)1/(αk−1)
)
. (1)

All algorithms are properly cited in the main paper.

REFERENCES

[1] http://developer.amd.com/resources/heterogeneous-
computing/what-is-heterogeneous-system-architecture-hsa/

[2] http://www.spec.org/power ssj2008/results/power ssj2008.html
[3] S. Albers, “Energy-efficient algorithms,” Communications of the

ACM, vol. 53, no. 5, pp. 86-96, 2010.
[4] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A

taxonomy and survey of energy-efficient data centers and
cloud computing systems,” Advances in Computers, vol. 82, pp.
47-111, 2011.

[5] R. L. Burden, J. D. Faires, and A. C. Reynolds, Numerical
Analysis, 2nd edition, Prindle, Weber & Schmidt, Boston, MA.,
1981.

[6] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation
and load distribution for multiple heterogeneous multicore
server processors across clouds and data centers,” IEEE Trans-
actions on Computers, vol. 63, no. 1, pp. 45-58, 2014.

[7] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-
power CMOS digital design,” IEEE Journal on Solid-State Cir-
cuits, vol. 27, no. 4, pp. 473-484, 1992.

[8] S. Crago, K. Dunn, P. Eads, L. Hochstein, D.-I. Kang, M. Kang,
D. Modium, K. Singh, J. Suh, J. P. Walters, “Heterogeneous
cloud computing,” IEEE International Conference on Cluster
Computing, pp. 378-385, 2011.

[9] S. P. Crago and J. P. Walters, “Heterogeneous cloud computing:
the way forward,” IEEE Computer, vol. 48, no. 1, pp. 59-61,
2015.

[10] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K.
S. McKinley, “Looking back and looking forward: power,
performance, and upheaval,” Communications of the ACM, vol.
55, no. 7, pp. 105-114, 2012.

[11] S. Garg, S. Sundaram, and H. D. Patel, “Robust heterogeneous
data center design: a principled approach,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 39, no. 3, pp. 28-30,
December 2011.

[12] R. L. Graham, “Bounds on multiprocessing timing anomalies,”
SIAM J. Appl. Math., vol. 2, pp. 416-429, 1969.

Algorithm 1: Find Rk’s(m,α1, α2, ..., αm, R,E, T ).

Input: m,α1, α2, ..., αm, R,E, and T .
Output: R1, R2, ..., Rm.

//Set W1 and W2 (1)
W0 ← 1; (2)
W1 ←W0; (3)
do (4)

W1 ←W1/2; (5)
for (k ← 1; k ≤ m; k++) do (6)

Rk ← T (E/αkW1)
1/(αk−1); (7)

end do; (8)
while (W1 ≥ R1/α1 +R2/α2 + · · ·+Rm/αm); (9)
W2 ←W0; (10)
do (11)

W2 ← 2W2; (12)
for (k ← 1; k ≤ m; k++) do (13)

Rk ← T (E/αkW2)
1/(αk−1); (14)

end do; (15)
while (W2 ≤ R1/α1 +R2/α2 + · · ·+Rm/αm); (16)
//Search W in [W1,W2] (17)
while (W2−W1 > ε) //ε is a very small constant (18)

W ← (W1 +W2)/2; (19)
for (k ← 1; k ≤ m; k++) do (20)

Rk ← T (E/αkW )1/(αk−1); (21)
end do; (22)
if (R1/α1 +R2/α2 + · · ·+Rm/αm > W ) (23)

W1 ←W ; (24)
else (25)

W2 ←W ; (26)
end if; (27)

end while; (28)
return R1, R2, ..., Rm. (29)

Fig. 1. An algorithm to find R1, R2, ..., Rm.

[13] R. Iyer, S. Srinivasan, O. Tickoo, Z. Fang, R. Illikkal, S. Zhang,
V. Chadha, P. M. Stillwell Jr., S. E. Lee, “CogniServe: hetero-
geneous server architecture for large-scale recognition,” IEEE
Micro, vol. 31, no. 3, pp. 20-31, May/June 2011.

[14] K. Li, “Performance analysis of power-aware task scheduling
algorithms on multiprocessor computers with dynamic volt-
age and speed,” IEEE Transactions on Parallel and Distributed
Systems, vol. 19, no. 11, pp. 1484-1497, 2008.

[15] K. Li, “Energy efficient scheduling of parallel tasks on mul-
tiprocessor computers,” Journal of Supercomputing, vol. 60, no.
2, pp. 223-247, 2012.

[16] K. Li, “Scheduling precedence constrained tasks with reduced
processor energy on multiprocessor computers,” IEEE Trans-
actions on Computers, vol. 61, no. 12, pp. 1668-1681, 2012.

[17] K. Li, “Optimal power allocation among multiple heteroge-
neous servers in a data center,” Sustainable Computing: Infor-
matics and Systems, vol. 2, no. 1 pp. 13-22, 2012.

[18] K. Li, “Energy-efficient and high-performance processing of
large-scale parallel applications in data centers,” Data Centers,
S. U. Khan and A. Y. Zomaya, eds., Chapter 1, pp. 1-33,
Springer, 2015.

[19] K. Li, “Power and performance management for parallel com-
putations in clouds and data centers,” Journal of Computer and
System Sciences, vol. 82, pp. 174-190, 2016.

[20] K. Li, “Energy and time constrained task scheduling on mul-
tiprocessor computers with discrete speed levels,” Journal of



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. YY, MONTH 2016 3

Algorithm 2: Find T (m,α1, α2, ..., αm, R,E).

Input: m,α1, α2, ..., αm, R, and E.
Output: R∗1, R∗2, ..., R∗m, and T .

//Set T1 and T2 (1)
T0 ← 1; (2)
T1 ← T0; (3)
do (4)

T1 ← T1/2; (5)
Find Rk’s(m,α1, α2, ..., αm, R,E, T1); (6)

while (R1 +R2 + · · ·+Rm ≥ R); (7)
T2 ← T0; (8)
do (9)

T2 ← 2T2; (10)
Find Rk’s(m,α1, α2, ..., αm, R,E, T2); (11)

while (R1 +R2 + · · ·+Rm ≤ R); (12)
//Search T in [T1, T2] (13)
while (T2 − T1 > ε) //ε is a very small constant (14)

T ← (T1 + T2)/2; (15)
Find Rk’s(m,α1, α2, ..., αm, R,E, T ); (16)
//The return values are R∗1, R∗2, ..., R∗m (17)
if (R∗1 +R∗2 + · · ·+R∗m < R) (18)

T1 ← T ; (19)
else (20)

T2 ← T ; (21)
end if; (22)

end while; (23)
return R∗1, R

∗
2, ..., R

∗
m, and T . (24)

Fig. 2. An algorithm to find T .

Parallel and Distributed Computing, vol. 95, pp. 15-28, 2016.
[21] K. Li, “Improving multicore server performance and reducing

energy consumption by workload dependent dynamic power
management,” IEEE Transactions on Cloud Computing, vol. 4,
no. 2, pp. 122-137, 2016.

[22] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task
scheduling on heterogeneous computing systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 25, no. 11, pp.
2867-2876, 2014.

[23] S. U. R. Malik, K. Bilal, S. U. Khan, B. Veeravalli, K. Li,
and A. Y. Zomaya, “Modeling and analysis of the thermal
properties exhibited by cyber physical data centers,” IEEE
Systems Journal, in press, 2016.

[24] J. Mateo, J. Vilaplana, L. M. Plá, J. L. Lérida, and
F. Solsona, “A green strategy for federated and het-
erogeneous clouds with communicating workloads,” The
Scientific World Journal, Published online 2014 Nov 11.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244950/

[25] J. Mei, K. Li, and K. Li, “Energy-aware task scheduling in
heterogeneous computing environments,” Cluster Computing,
vol. 17, no. 2, pp. 537-550, 2014.

[26] H. S. Narman, M. S. Hossain, and M. Atiquzzaman, “h-DDSS:
heterogeneous dynamic dedicated servers scheduling in cloud
computing,” IEEE International Conference on Communications,
pp. 3475-3480, 2014.

[27] V. Petrucci, E. V. Carrera, O. Loques, J. C. B. Leite, D.
Mossé, “Optimized management of power and performance
for virtualized heterogeneous server clusters,” 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing,
pp. 23-32, 2011.

[28] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale:

Algorithm 3: Find E(m,α1, α2, ..., αm, R, T ).

Input: m,α1, α2, ..., αm, R, and T .
Output: R∗1, R∗2, ..., R∗m, φ, and E.

//Set φ1 and φ2 (1)
φ0 ← 1; (2)
φ1 ← φ0; (3)
do (4)

φ1 ← φ1/2; (5)
while (

∑m
k=1 (φ1/αk)

1/(αk−1) ≥ R/T ); (6)
φ2 ← φ0; (7)
do (8)

φ2 ← 2φ2; (9)
while (

∑m
k=1 (φ2/αk)

1/(αk−1) ≤ R/T ); (10)
//Search φ in [φ1, φ2] (11)
while (φ2 − φ1 > ε) //ε is a very small constant (12)

φ← (φ1 + φ2)/2; (13)
if (
∑m
k=1 (φ/αk)

1/(αk−1)
< R/T ) (14)

φ1 ← φ; (15)
else (16)

φ2 ← φ; (17)
end if; (18)

end while; (19)
for (k ← 1; k ≤ m; k++) do (20)

R∗k ← (φ/αk)
1/(αk−1)

T ; (21)
end do; (22)
E ← T

∑m
k=1 (φ/αk)

αk/(αk−1); (23)
return R∗1, R

∗
2, ..., R

∗
m, φ, and E. (24)

Fig. 3. An algorithm to find E.

Algorithm 4: Find R′l,k’s(m,α1, ..., αm, Rl, El, φ).

Input: m,α1, α2, ..., αm, Rl, El, and φ.
Output: R′l,1 +R′l,2 + · · ·+R′l,m.

Find T (m,α1, α2, ..., αm, Rl, El); (1)
//The results are Rl,1, Rl,2, ..., Rl,m and Tl (2)
Solve the system of linear equations in Section 6.2; (3)
//The results are R′l,1, R

′
l,2, ..., R

′
l,m (4)

return R′l,1 +R′l,2 + · · ·+R′l,m. (5)

Fig. 4. An algorithm to find R′l,1 +R′l,2 + · · ·+R′l,m.

Google trace analysis,” Proceedings of the 3rd ACM Symposium
on Cloud Computing, Article No. 7, 2012.

[29] D. Sun, G. Zhang, S. Yang, W. Zheng, S. U. Khan, and K. Li,
“Re-Stream: Real-time and energy-efficient resource schedul-
ing in big data stream computing environments,” Information
Sciences, vol. 319, pp. 92-112, 2015.

[30] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An
energy-efficient task scheduling algorithm in DVFS-enabled
cloud environment,” Journal of Grid Computing, vol. 14, no. 1,
pp. 55-74, 2016.

[31] Y. Tian, C. Lin, and K. Li, “Managing performance and power
consumption tradeoff for multiple heterogeneous servers in
cloud computing,” Cluster Computing, vol. 17, no. 3, pp. 943-
955, 2014.

[32] G. L. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A.



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. YY, MONTH 2016 4

Algorithm 5: Find El(m,α1, α2, ..., αm, Rl, φ).

Input: m,α1, α2, ..., αm, Rl, and φ.
Output: El.

//Set E1 and E2 (1)
E0 ← 1; (2)
E1 ← E0; (3)
while (Find R′l,k’s(m,α1, ..., αm, Rl, E1, φ) < 0) (4)

E1 ← E1/2; (5)
end while; (6)
E2 ← E0; (7)
while (Find R′l,k’s(m,α1, ..., αm, Rl, E2, φ) > 0) (8)

E2 ← 2E2; (9)
end while; (10)
//Search El in [E1, E2] (11)
while (E2 −E1 > ε) //ε is a very small constant (12)

El ← (E1 + E2)/2; (13)
if (Find R′l,k’s(m,α1, ..., αm, Rl, El, φ) > 0) (14)

E1 ← El; (15)
else (16)

E2 ← El; (17)
end if; (18)

end while; (19)
return El. (20)

Fig. 5. An algorithm to find El.

Madani, J. Li, L. Zhang, L. Wang, N. Ghani, J. Kolodziej, H.
Li, A. Y. Zomaya, C.-Z. Xu, P. Balaji, A. Vishnu, F. Pinel, J. E.
Pecero, D. Kliazovich, and P. Bouvry, “An overview of energy
efficiency techniques in cluster computing systems,” Cluster
Computing, vol. 16, no. 1, pp. 3-15, 2013.

[33] L. Van Doorn, “Heterogeneous server architectures will domi-
nate the future data center,” Open Server Summit, Santa Clara,
California, November 13, 2014. https://vimeo.com/119496605

[34] W. Wang, B. Liang, and B. Li, “Multi-Resource fair allocation
in heterogeneous cloud computing systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 10, pp. 2822-
2835, 2015.

[35] Y. Wang, K. Li, H. Chen, L. He, and K. Li, “Energy-aware
data allocation and task scheduling on heterogeneous multi-
processor systems with time constraints,” IEEE Transactions on
Emerging Topics in Computing, vol. 2, no. 2, pp. 134-148, 2014.

[36] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical
and practical limits of dynamic voltage scaling,” Proceedings of
the 41st Design Automation Conference, pp. 868-873, 2004.

[37] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li, “Maximizing
reliability with energy conservation for parallel task schedul-
ing in a heterogeneous cluster,” Information Sciences, vol. 319,
pp. 113-131, 2015.

[38] L. M. Zhang, K. Li, D. C.-T. Lo, and Y. Zhang, “Energy-efficient
task scheduling algorithms on heterogeneous computers with
continuous and discrete speeds,” Sustainable Computing: Infor-
matics and Systems, vol. 3, no. 2, pp. 109-118, 2013.

[39] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M.
Prieto, “Survey of energy-cognizant scheduling techniques,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24,
no. 7, pp. 1447-1464, 2013.

Algorithm 6: Min T (m,α1, ..., αm, R1, ..., Rv, E).

Input: m,α1, α2, ..., αm, R1, R2, ..., Rv , and E.
Output: E1, E2, ..., Ev , and T .

//Set φ1 and φ2 (1)
φ0 ← −1; (2)
φ1 ← φ0; (3)
do (4)

φ1 ← 2φ1; (5)
for (l← 1; l ≤ v; l++) do (6)

El ← Find El(m,α1, ..., αm, Rl, φ1); (7)
end do; (8)

while (E1 + E2 + · · ·+ Ev > E); (9)
φ2 ← φ0; (10)
do (11)

φ2 ← φ2/2; (12)
for (l← 1; l ≤ v; l++) do (13)

El ← Find El(m,α1, ..., αm, Rl, φ2); (14)
end do; (15)

while (E1 + E2 + · · ·+ Ev < E); (16)
//Search φ in [φ1, φ2] (17)
while (φ2 − φ1 > ε) //ε is a very small constant (18)

φ← (φ1 + φ2)/2; (19)
for (l← 1; l ≤ v; l++) do (20)

El ← Find El(m,α1, ..., αm, Rl, φ); (21)
end do; (22)
if (E1 + E2 + · · ·+ Ev < E) (23)

φ1 ← φ; (24)
else (25)

φ2 ← φ; (26)
end if; (27)

end while; (28)
//Calculate T (29)
for (l← 1; l ≤ v; l++) do (30)

Find T (m,α1, α2, ..., αm, Rl, El) to get Tl; (31)
T ← T + Tl; (32)

end do; (33)
return E1, E2, ..., Ev , and T . (34)

Fig. 6. An algorithm to find E1, E2, ..., Ev, and T .



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. YY, MONTH 2016 5

Algorithm 7: Find Tl(m,α1, α2, ..., αm, Rl, φ).

Input: m,α1, α2, ..., αm, Rl, and φ.
Output: Tl.

//Set T1 and T2 (1)
T0 ← 1; (2)
T1 ← T0; (3)
do (4)

T1 ← T1/2; (5)
Find E(m,α1, α2, ..., αm, Rl, T1) to get φl; (6)

while (the right-hand side of Eq. (1) > φ); (7)
T2 ← T0; (8)
do (9)

T2 ← 2T2; (10)
Find E(m,α1, α2, ..., αm, Rl, T2) to get φl; (11)

while (the right-hand side of Eq. (1) < φ); (12)
//Search T in [T1, T2] (13)
while (T2 − T1 > ε) //ε is a very small constant (14)

Tl ← (T1 + T2)/2; (15)
Find E(m,α1, α2, ..., αm, Rl, Tl); (16)
if (the right-hand side of Eq. (1) < φ); (17)

T1 ← Tl; (18)
else (19)

T2 ← Tl; (20)
end if; (21)

end while; (22)
return Tl. (23)

Fig. 7. An algorithm to find Tl.

Algorithm 8: Min E(m,α1, ..., αm, R1, ..., Rv, T ).

Input: m,α1, α2, ..., αm, R1, R2, ..., Rv , and E.
Output: T1, T2, ..., Tv , and E.

//Set φ1 and φ2 (1)
φ0 ← −1; (2)
φ1 ← φ0; (3)
do (4)

φ1 ← 2φ1; (5)
for (l← 1; l ≤ v; l++) do (6)

Tl ← Find Tl(m,α1, ..., αm, Rl, φ1); (7)
end do; (8)

while (T1 + T2 + · · ·+ Tv > T ); (9)
φ2 ← φ0; (10)
do (11)

φ2 ← φ2/2; (12)
for (l← 1; l ≤ v; l++) do (13)

Tl ← Find Tl(m,α1, ..., αm, Rl, φ2); (14)
end do; (15)

while (T1 + T2 + · · ·+ Tv < T ); (16)
//Search φ in [φ1, φ2] (17)
while (φ2 − φ1 > ε) //ε is a very small constant (18)

φ← (φ1 + φ2)/2; (19)
for (l← 1; l ≤ v; l++) do (20)

Tl ← Find Tl(m,α1, ..., αm, Rl, φ); (21)
end do; (22)
if (T1 + T2 + · · ·+ Tv < T ) (23)

φ1 ← φ; (24)
else (25)

φ2 ← φ; (26)
end if; (27)

end while; (28)
//Calculate E (29)
for (l← 1; l ≤ v; l++) do (30)

Find E(m,α1, α2, ..., αm, Rl, Tl) to get El; (31)
E ← E + El; (32)

end do; (33)
return T1, T2, ..., Tv , and E. (34)

Fig. 8. An algorithm to find T1, T2, ..., Tv, and E.


