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Abstract—Mobile edge computing with device-edge-cloud fusion provides a new type of heterogeneous computing environment. We

consider task scheduling with device-edge-cloud fusion (without energy concern) and energy-constrained task scheduling with device-

edge-cloud fusion as combinatorial optimization problems. The main contributions of the paper are summarized as follows. We design

three heuristic algorithms for task scheduling with device-edge-cloud fusion and prove an asymptotic performance bound. We design

one heuristic algorithm for energy-constrained task scheduling with device-edge-cloud fusion, which solves the two subproblems of

task scheduling and power allocation in an interleaved way. We derive lower bounds for the optimal solutions for both task scheduling

with device-edge-cloud fusion and energy-constrained task scheduling with device-edge-cloud fusion, so that the performance of our

heuristic algorithms can be compared with that of an optimal algorithm. We experimentally evaluate the performance of our heuristic

algorithms and find that the performance of our heuristic algorithms are very close to that of optimal algorithms. To the best of our

knowledge, this is the first paper which studies task scheduling with device-edge-cloud fusion and energy-constrained task scheduling

with device-edge-cloud fusion as combinatorial optimization problems and conducts analytical performance evaluation.

Index Terms—Absolute performance bound, asymptotic performance bound, device-edge-cloud fusion, energy-constrained task scheduling,

heuristic algorithm, mobile edge computing
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1 INTRODUCTION

1.1 Background and Motivation

MOBILE edge computing with device-edge-cloud (D-E-C)
fusion provides a new type of heterogeneous comput-

ing environment. Such device, edge, and cloud collaborative
processing is able to integrate various computing and com-
munication resources from mobile devices, edge servers,
and cloud servers for high-speed execution of real applica-
tions. Device-edge-cloud collaborative computing has been
an very active research area in recent years (see [9], [25] for
some comprehensive surveys). Various applications have
been supported by device-edge-cloud collaborative com-
puting, such as augmented reality [30], Big Data [1], [8], cog-
nitive service [5], deep learning [16], IoT [26], and video
query [28]. However, such an environment has heteroge-
neous computing capabilities as well as sophisticated wire-
less communication and wired (Internet) communication
costs, which makes efficient mobile edge computing with
D-E-C fusion very challenging.

There are twomain considerations inmobile edge comput-
ing, i.e., performance and power. Both considerations are
from amobile device’s point of view. For performance, we are

interested in finishing a set of tasks generated on a mobile
device as soon as possible, with the assistance of an edge
server and a cloud server. For power, we are only interested
in energy consumption for computation and communication
of themobile device, not the edge server and the cloud server.

There are two main considerations in task scheduling, i.e.,
execution time and energy consumption. Execution time
includes computation time and communication time. Typically,
an edge server has faster computation speed than a mobile
device, and a cloud server has even faster computation speed.
However, offloading a task from a mobile device to an edge
server incurs wireless communication time, and offloading a
task to a cloud server incurs both wireless communication time
and wired communication time. Such communication cost and
delay offset the gain from faster computing speeds, and make
execution timeminimization inmobile edge computingwith D-
E-C fusionmore challenging than in other systems and environ-
ments. A mobile device can minimize its energy consumption
for computation and communication by adjusting its computa-
tion speed and wireless communication speed. However,
energy consumption for computation and communication of an
edge server and a cloud server is not included into consider-
ation. The computation speeds of the servers and the Internet
communication speed are not controllable by amobile device.

There are two main challenges in studying heuristic algo-
rithms for energy-constrained task scheduling with device-
edge-cloud fusion. The first challenge is to design the strate-
gies in a heuristic algorithm. An effective heuristic algo-
rithm should be able to complete a set of tasks in the
shortest period of time within given energy budget. The
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second challenge is to analyze the performance of a heuris-
tic algorithm. An efficient heuristic algorithm should be
evaluated in such a way that its performance is compared
with that of an optimal algorithm.

The motivation of this paper is to study task scheduling
in mobile edge computing with device-edge-cloud fusion.
We consider task scheduling with device-edge-cloud fusion
(without energy concern) and energy-constrained task
scheduling with device-edge-cloud fusion as combinatorial
optimization problems. Both are NP-hard problems. We
have two main objectives, i.e., (1) to design efficient heuris-
tic algorithms with/without energy constraint; (2) and to
conduct analytical and experimental performance evalua-
tion. One strong and unique feature of our investigation is
to derive lower bounds for optimal solutions and to com-
pare heuristic solutions with optimal solutions.

1.2 Related Research

Task offloading and execution in mobile edge computing
with device-edge-cloud fusion has been considered by sev-
eral researchers. Ding et al. formulated a potential game in
which each user end selfishly minimizes its weighted sum of
energy consumption and time consumption for both hierar-
chical and horizontal end-edge-cloud computing [6]. Du
et al. minimized the total cost (computation cost + communi-
cation cost + transferring cost) of all tasks by making deci-
sions on task transferring among edge and cloud servers [7].
Fantacci and Picano minimized the mean overall response
time of edge computing servers and the number of unsatis-
fied application flows (whose deadlines are missed) [10].
Feng et al. minimized a weighted sum of total execution time
and total energy consumption of a smart device, an edge
server, and a cloud server by proper decision on local accu-
racy, subcarrier assignment, CPU frequency, and transmis-
sion power [11]. Guo et al. investigated energy-efficient and
delay-guaranteed workload allocation in an IoT-edge-cloud
computing system byminimizing energy consumptionwhile
provisioning delay guarantee for end users [13]. Hao et al.
proposed an intelligent task offloading scheme for a cloud-
edge collaborative system by considering coarse-grained
computing and fine-grained computing [14]. Huang et al.
minimized a weighted sum of energy consumption and exe-
cution time for each task, for which there is a task offloading
decision and a maximum tolerable delay [15]. Liu et al. mini-
mized the total computation cost and the total routing cost by
workflowassignment and traffic routing [21]. Peng et al. min-
imized the total processing time and the total energy con-
sumption, andmaximized the average resource utilization of
edge servers [23]. Ren et al. optimized a weighted average
service delay of all mobile devices, taking into account wire-
less transmission delay ofmobile devices, backhaul transmis-
sion delay of the edge server, computation delay of the edge
server, and computation delay of the cloud server [24]. Sun
et al. minimized the total weighted sum of normalized execu-
tion time (transmission time + computation time) and nor-
malized energy consumption of all mobile devices [27].

However, there are two main limitations in the current lit-
erature. First, task scheduling in a device, edge, and cloud col-
laborative computing environment has never been studied in
the context of combinatorial optimization. For instance, the

most important metrics in scheduling, i.e., the makespan or
the schedule length, has not been considered by any
researcher in mobile edge computing with device-edge-cloud
fusion. It should be emphasized that minimizing the sum of
individual execution times of all tasks is entirely different
from minimizing the overall execution time of all tasks (i.e.,
themakespan). Second,minimizing aweighted sumof execu-
tion time and energy consumption is entirely different from
minimizing the makespan with certain energy constraint.
Furthermore, since execution time and energy consumption
have totally different measures (the former is measured in
seconds, and the latter is measured in Joule), a weighted sum
of the two quantities has inherent technical flaw and makes
little sense.

Researchers have also investigated resource allocation,
scaling, sharing, and management [4], [17], [20], [31], as
well as pricing and profit related issues [2], [22], [29] in
mobile edge computing environments with device-edge-
cloud fusion.

1.3 New Contributions

The main contributions of the paper are summarized as
follows.

� We design three heuristic algorithms for task sched-
uling with device-edge-cloud fusion and prove an
asymptotic performance bound.

� We design one heuristic algorithm for energy-con-
strained task scheduling with device-edge-cloud
fusion, which solves the two subproblems of task
scheduling and power allocation in an interleaved
way.

� We derive lower bounds for the optimal solutions for
both task scheduling with device-edge-cloud fusion
and energy-constrained task scheduling with device-
edge-cloud fusion, so that the performance of our
heuristic algorithms can be compared with that of an
optimal algorithm.

� We experimentally evaluate the performance of our
heuristic algorithms and find that the performance
of our heuristic algorithms are very close to that of
optimal algorithms.

To the best of our knowledge, this is the first paper which
studies task scheduling with device-edge-cloud fusion and
energy-constrained task scheduling with device-edge-cloud
fusion as combinatorial optimization problems and con-
ducts analytical performance evaluation.

The rest of the paper is organized as follows. In Section 2,
we present our models and problems. In Section 3, we con-
sider the problem of task scheduling with device-edge-
cloud fusion. In Section 4, we consider the problem of
energy-constrained task scheduling with device-edge-cloud
fusion. We conclude the paper in Section 5.

2 MODELS AND PROBLEMS

In this section, we present our models and problems.

2.1 Models

In this section, we describe our task model, computation and
communication models, and power consumption models.
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Table 1 lists all the symbols and their definitions in the order
introduced in this paper.

We consider a fog computing environment with one
mobile device, one edge server, and one cloud server (see
Fig. 1). When a task is generated on the mobile device, the
mobile device can process the task locally on the device, or
offload the task to the edge server for remote processing.
The edge server can further send the task to the cloud server
for processing. The mobile device communicates with the
edge server via wireless communication and the edge server
communicates with the cloud server via the Internet.

Assume that there is a set S of n independent tasks S ¼
ft1; t2; . . .; tng. A task is specified as ti ¼ ðdi; riÞ, where di is the
amount of communication (measured by the number of mil-
lion (or mega) bits (MB)), and ri is the amount of computation

(measured by the number of billion instructions (BI) or giga
instructions (GI)).We define

D ¼
X
ti2S

di;

to be the total amount of communication, and

R ¼
X
ti2S

ri;

to be the total amount of computation.
A schedule is a partition of S into three disjoint subsets:

ðSd; Se; ScÞ, such that

S ¼ Sd [ Se [ Sc;

where Sd is the set of task processed on the mobile device,
Se is the set of task processed on the edge server, and Sc is
the set of task processed on the cloud server.

It is already known that for energy-constrained task
scheduling, the total execution time on a mobile device is
minimized when all tasks have the same computation speed
sd on the device, and the total execution time on an edge
server is minimized when all tasks have the same communi-
cation speed ~se between the mobile device and the edge
server [19]. Therefore, we assume that the mobile device
has computation speed sd for all tasks, the edge server has
computation speed se for all tasks, and the cloud server has
computation speed sc for all tasks. All computation speeds
are measured by billion instructions per second (BI/s). Fur-
thermore, the wireless communication speed between the
mobile device and the edge server is ~se for all tasks, and the
Internet communication speed between the edge server and
the cloud server is ~sc for all tasks. All communication
speeds are measured by million bits per second (Mbps).

TABLE 1
Notations and Definitions

Symbol Definition

S ¼ ft1; t2; . . .; tng, a set of independent tasks
n the number of tasks
ti ¼ ðdi; riÞ, a task
di the amount of communication of ti
ri the amount of computation of ti
D the total amount of communication
R the total amount of computation
ðSd; Se; ScÞ a schedule
Sd the set of task processed on the mobile device
Se the set of task processed on the edge server
Sc the set of task processed on the cloud server
sd the computation speed of the mobile device
se the computation speed of the the edge server
sc the computation speed of the the cloud server
~se the communication speed between the mobile

device and the edge server
~sc the communication speed between the edge

server and the cloud server
ti the execution time of task ti
Dd the total amount of communication of tasks in Sd

Rd the total amount of computation of tasks in Sd

Td the total execution time of tasks in Sd

De the total amount of communication of tasks in Se

Re the total amount of computation of tasks in Se

Te the total execution time of tasks in Se

Dc the total amount of communication of tasks in Sc

Rc the total amount of computation of tasks in Sc

Tc the total execution time of tasks in Sc

P the power consumption for computation
Pd the dynamic component of power consumption
Ps the static component of power consumption
�;a parameters of the power consumption model
Pt the transmission power
w the communication bandwidth
b communication channel property
T ¼ maxfTd; Te; Tcg, the total execution time (i.e.,

the schedule length)
E the total energy consumption
Ê energy constraint
gi ¼ di=ri, the communication-to-computation ratio
g 0 ¼ minfg1; g2; . . .; gng
g 00 ¼ maxfg1; g2; . . .; gng
T �ðSÞ the optimal schedule length
T ðSÞ the heuristic schedule length
t the maximum execution time of any task

anywhere

Fig. 1. Task scheduling with device-edge-cloud fusion.
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Let ti be the execution time (measured by seconds) of
task ti. There are three execution modes (see Fig. 2).

� Device computing – The first execution mode is to
process a task on the mobile device, which gives

ti ¼ ri
sd

:

Let us define

Dd ¼
X
ti2Sd

di;

to be the total amount of communication of tasks in
Sd, and

Rd ¼
X
ti2Sd

ri;

to be the total amount of computation of tasks in Sd.
The total execution time of tasks in Sd is

Td ¼
X
ti2Sd

ti ¼
X
ti2Sd

ri
sd
¼ Rd

sd
:

Note that Td has only one component, i.e., mobile
device computation time, which is controllable by
the mobile device by changing sd.

� Edge computing – The second execution mode is to
process a task on the edge server, which gives

ti ¼ di
~se
þ ri
se
:

Let us define

De ¼
X
ti2Se

di;

to be the total amount of communication of tasks in
Se, and

Re ¼
X
ti2Se

ri;

to be the total amount of computation of tasks in Se.
The total execution time of tasks in Se is

Te ¼
X
ti2Se

ti þDc

~se
¼

X
ti2Se

�
di
~se
þ ri
se

�
þDc

~se

¼ De þDc

~se
þRe

se
;

where we notice that the edge server is also responsi-
ble for wireless communication of tasks in Sc with
the definition of Dc to be given shortly. Note that Te

has two components, i.e., wireless communication
time (which is controllable by the mobile device by
changing ~se) and edge server computation time.

� Cloud computing – The third execution mode is to
process a task on the cloud server, which gives

ti ¼ di
~se
þ di

~sc
þ ri
sc
:

Let us define

Dc ¼
X
ti2Sc

di;

to be the total amount of communication of tasks in
Sc, and

Rc ¼
X
ti2Sc

ri;

to be the total amount of computation of tasks in Sc.
The total execution time of tasks in Sc is

Tc ¼
X
ti2Sc

ti þDe

~se
¼

X
ti2Sc

�
di
~se
þ di

~sc
þ ri
sc

�
þDe

~se

¼ De þDc

~se
þDc

~sc
þRc

sc
;

where we notice that the cloud server relies on the
edge server for wireless communication and must
wait for the wireless communication time of tasks in
Se. Note that Tc has three components, i.e., wireless
communication time (which is controllable by the
mobile device by changing ~se), Internet communica-
tion time, and cloud server computation time.

Fig. 2 illustrates the above three execution modes. Tasks in
Sd are executed locally on the mobile device. Tasks in Se [ Sc

are transmitted to the edge server via wireless communica-
tion. Tasks in Se are executed on the edge server. Tasks in Sc

are further transmitted to the cloud server via Internet com-
munication and executed on the cloud server [6], [24], [27].

The power consumption P (measured by Watts) for com-
putation of the mobile device is

P ¼ Pd þ Ps ¼ �sad þ Ps;

where Pd ¼ �sad is the dynamic component of power con-
sumption, Ps is the static component of power consumption,
and �;a are technology-dependent constants [18], [19].

Fig. 2. Illustration of Td; Te; Tc.
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The power consumption for communication and the
wireless communication speed is related as

~se ¼ w log 2ð1þ bPtÞ;
and

Pt ¼ 2~se=w � 1

b
;

where Pt is the transmission power (measured by Watts), w is
the communication bandwidth (measured by Mbps), and b is a
quantity determined by the communication channel [18], [19].

2.2 Problems

In this section, we define our combinatorial optimization
problems and prove their NP-hardness.

In mobile edge computing, both power and performance
are considered from the mobile device’s point of view. The
total execution time (i.e., the makespan, or the schedule
length, measured by seconds) is

T ¼ maxfTd; Te; Tcg:
The energy consumption for computation of the mobile
device (measured by Joule) is

PTd ¼ ð�sad þ PsÞRd

sd
¼

�
�sad þ Ps

sd

�
Rd:

The energy consumption for communication of the mobile
device (measured by Joule) is

Pt

�
De þDc

~se

�
¼ 2~se=w � 1

b
�De þDc

~se
¼

�
2~se=w � 1

b~se

�
ðDe þDcÞ:

The total energy consumption of the mobile device (mea-
sured by Joule) is

E ¼
�
�sad þ Ps

sd

�
Rd þ

�
2~se=w � 1

b~se

�
ðDe þDcÞ:

The controllable variables are sd and ~se.
In this paper, we address two combinatorial optimization

problems.
Problem 1. (Task Scheduling with Device-Edge-Cloud

Fusion) Given S, sd; se; sc; ~se; ~sc, find a schedule ðSd; Se; ScÞ,
such that T is minimized.

Problem 2. (Energy-Constrained Task Scheduling with
Device-Edge-Cloud Fusion) Given S, se; sc; ~sc, and energy con-
straint Ê, find a schedule ðSd; Se; ScÞ and speeds sd; ~se, such
that T is minimized and that E ¼ Ê.

Both problems are NP-hard even for very special cases.

Theorem 1. The problem of task scheduling with device-edge-
cloud fusion is NP-hard.

Proof. When sd ¼ se ¼ sc (i.e., homogeneous computing)
and ~se ¼ ~sc ¼ 1 (i.e., there is no communication time),
the problem becomes the classic multiprocessor scheduling
problem, which is NP-hard ([12], p. 65). tu

Theorem 2. The problem of energy-constrained task scheduling
with device-edge-cloud fusion is NP-hard.

Proof. When sc ¼ ~sc ¼ 0, the cloud server is excluded. If
only the mobile device and the edge server are involved,
the problem is known to be NP-hard [18]. tu

3 TASK SCHEDULING

In this section, we consider the problem of task scheduling
with device-edge-cloud fusion.

3.1 Algorithm

In this section, we develop a heuristic algorithm for task
scheduling with device-edge-cloud fusion.

Algorithm 1 presents our greedy algorithm to solve the
problem of task scheduling with device-edge-cloud fusion.

Algorithm 1. Task Scheduling With Device-Edge-Cloud
Fusion

Input: S ¼ ft1; t2; . . .; tng, sd; se; sc; ~se; ~sc.
Output: A schedule ðSd; Se; ScÞ, such that T is minimized.

Sd  ;, Se  ;, Sc  ;; (1)
Td  0, Te  0, Tc  0; (2)
for (i ¼ 1; i � n; i++) do (3)
add ti to Sd or Se or Sc,
where Td or Te or Tc is the smallest; (4)

update Td or Te or Tc; (5)
end do (6)

Initially, Sd;Se;Sc are set to be empty sets. For each task ti, it
is added to one of Sd;Se;Sc, whichever is the earliest available
(ties are broken arbitrarily). The time complexity of Algorithm 1
isOðnÞ, since only constant time is spend for each task.

(Note: If the n tasks are properly ordered, the algorithm
may achieve an optimal schedule with the minimum sched-
ule length.)

3.2 Analysis

In this section, we analyze our heuristic algorithm for task
scheduling with device-edge-cloud fusion.

3.2.1 Optimal Schedule

One difficulty in analyzing the problem is the independence
of the di’s and the ri’s.

Let gi ¼ di=ri, for all 1 � i � n. gi is the communication-to-
computation ratio (measured by MB/GI). gi is the amount of
communication to be conducted per unit of computation.
1=gi is the amount of computation to be performed per unit
of communication.

We consider a special case: gi ¼ g, di ¼ gri, for all 1 � i �
n. The amount of computation is uniformly and linearly
proportional to the amount of communication.

The following theorem gives a lower bound for the opti-
mal schedule length T �ðSÞ of S.
Theorem 3. If di ¼ gri, for all 1 � i � n, the optimal schedule

length T �ðSÞ has the following lower bound:
T �ðSÞ � BR;

where B ¼ B1=B2, and

B1 ¼ g2sesc þ gse~sc þ g~scsc þ g~sesc þ ~se~sc;
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and

B2 ¼ g2sdsesc þ gsdse~sc þ gsd~scsc

þ gðsd þ seÞ~sesc þ ðsd þ seÞ~se~sc þ ~se~scsc:

Proof. It is clear that the optimal schedule cannot be better
than the case when

Td ¼ Te ¼ Tc:

For otherwise, we can move some workload from a place
with longer execution time to another place with shorter
execution time. (Note that here we even ignore the n tasks,
and simply assume that the total amount of computation R
and the total amount of communicationD ¼ gR are contin-
uous variables which can be arbitrarily divided.)

Let us assume that the above condition is true. Since
Te ¼ Tc, where

Te ¼ De þDc

~se
þRe

se
¼ gðRe þRcÞ

~se
þRe

se
;

and

Tc ¼ De þDc

~se
þDc

~sc
þRc

sc
¼ gðRe þRcÞ

~se
þ gRc

~sc
þRc

sc
;

we have

Re

se
¼ gRc

~sc
þRc

sc
¼

�
g

~sc
þ 1

sc

�
Rc;

which implies that

Re ¼
�
gse
~sc
þ se

sc

�
Rc;

and

Te ¼ g

~se

�
gse
~sc
þ se

sc
þ 1

�
Rc þ

�
g

~sc
þ 1

sc

�
Rc:

Furthermore, since

Td ¼ Rd

sd
¼ Te ¼

�
g2se
~se~sc
þ gse

~sesc
þ g

~se
þ g

~sc
þ 1

sc

�
Rc;

we have

Rd ¼
�
g2sdse
~se~sc

þ gsdse
~sesc

þ gsd
~se
þ gsd

~sc
þ sd

sc

�
Rc:

Based on the condition

Rd þRe þRc ¼ R;

that is,

�
g2sdse
~se~sc

þ gsdse
~sesc

þ gsd
~se
þ gsd

~sc
þ sd

sc
þ gse

~sc
þ se

sc
þ 1

�
Rc ¼ R;

we get

Rc ¼ R

�
g2sdse
~se~sc

þ gsdse
~sesc

þ gsd
~se
þ gðsd þ seÞ

~sc
þ sd þ se

sc
þ 1

��1
;

and

Td ¼ Te ¼ Tc

¼
g2se
~se~sc
þ gse

~sesc
þ g

~se
þ g

~sc
þ 1

sc
g2sdse
~se~sc

þ gsdse
~sesc

þ gsd
~se
þ gðsd þ seÞ

~sc
þ sd þ se

sc
þ 1

R:

The proof can be completed by straightforward algebraic
manipulation. tu
We would like to mention that the lower bound in the

above theorem typically cannot be achieved by an optimal
schedule, due to the discrete nature of tasks, i.e., R and D
cannot be divided arbitrarily.

3.2.2 Heuristic Schedule

We consider a special case: gi ¼ g, di ¼ gri, for all 1 � i � n.
Recall that ti is the execution time of task ti. On the

mobile device, it is

ti ¼ ri
sd

:

On the edge server, it is

ti ¼ di
~se
þ ri
se
¼ gri

~se
þ ri
se
¼

�
g

~se
þ 1

se

�
ri ¼ ri

�se
;

where

�se ¼ ~sese
gse þ ~se

is the effective computation speed of the edge server. On the
cloud server, it is

ti ¼ di
~se
þ di

~sc
þ ri
sc
¼ gri

~se
þ gri

~sc
þ ri
sc
¼

�
g

~se
þ g

~sc
þ 1

sc

�
ri ¼ ri

�sc
;

where

�sc ¼ ~se~scsc
g~scsc þ g~sesc þ ~se~sc

¼ ~se~scsc
gð~se þ ~scÞsc þ ~se~sc

is the effective computation speed of the cloud server.
Therefore, we have

ti � ri
minfsd; �se; �scg :

Let t be the maximum execution time of any task anywhere,
which is

t ¼ r

minfsd; �se; �scg ;

where

r ¼ maxfr1; r2; . . .; rng:
We also notice that excluding the wireless communication
time, the cloud server takes

di
~sc
þ ri
sc
¼ gri

~sc
þ ri
sc
¼

�
g

~sc
þ 1

sc

�
ri ¼ ri

��sc
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time to process task ti, where

��sc ¼ ~scsc
gsc þ ~sc

:

The following theorem gives an upper bound for the
heuristic schedule length T ðSÞ of S.
Theorem 4. If di ¼ gri, for all 1 � i � n, the heuristic schedule

length T ðSÞ has the following upper bound:

T ðSÞ � BRþ t;

where

B ¼ ~se þ gðse þ ��scÞ
sd~se þ gsdðse þ ��scÞ þ ~seðse þ ��scÞ :

Proof. For convenience, let T ¼ T ðSÞ ¼ maxfTd; Te; Tcg be
the schedule length of our heuristic algorithm. Assume
that ti is the last task, such that after ti is added to Sd or Se

or Sc, T becomes T ðSÞ. It is clear that the mobile device,
the edge server, and the cloud server are all busy (i.e., not
available) up to time T � ti; otherwise, ti could be added
to another place and T can possibly be reduced. Since the
mobile device is busy during ½0; T � ti�, i.e., Td � T � ti,
we have

Rd ¼ sdTd � sdðT � tiÞ:
Let R0e and R0c be the workload on the edge server and the
cloud server before ti is added, and

T 0 ¼ D0e þD0c
~se

¼ gðR0e þR0cÞ
~se

;

be the wireless communication time. Since the edge
server and the cloud server are all busy in computation
during ½T;0 T � ti�, we have

R0e þR0c � ðse þ ��scÞðT � ti � T 0Þ;
that is,

R0e þR0c � ðse þ ��scÞðT � tiÞ � ðse þ ��scÞ gðR
0
e þR0cÞ
~se

;

or,

ðR0e þR0cÞ
�
1þ gðse þ ��scÞ

~se

�
� ðse þ ��scÞðT � tiÞ;

which gives

R0e þR0c �
~seðse þ ��scÞ

~se þ gðse þ ��scÞ ðT � tiÞ:

Consequently, we have

R ¼ Rd þRe þRc � Rd þR0e þR0c

�
�
sd þ ~seðse þ ��scÞ

~se þ gðse þ ��scÞ
�
ðT � tiÞ;

which implies that

T �
�

~se þ gðse þ ��scÞ
sd~se þ gsdðse þ ��scÞ þ ~seðse þ ��scÞ

�
Rþ ti:

The proof can be completed by noticing that ti � t. tu
It can be verified by straightforward algebraic manipula-

tion that B in Theorem 4 is identical to that in Theorem 3.

3.2.3 Asymptotic Performance Bound

We say that B is an absolute performance bound if

T ðSÞ
T �ðSÞ � B;

for all S. We say that B is an asymptotic performance bound if

lim
R=r!1

T ðSÞ
T �ðSÞ � B:

When S is a set of random tasks, if

EEEEEEE

�
T ðSÞ
T �ðSÞ

�
� B;

B is an average absolute performance bound, and if

lim
R=r!1

EEEEEEE

�
T ðSÞ
T �ðSÞ

�
� B;

B is an average asymptotic performance bound.
Let

g 0 ¼ minfg1; g2; . . .; gng;
and

g 00 ¼ maxfg1; g2; . . .; gng:
The interval ½g;0 g 00� indicates the level of communication
heterogeneity. The wider the interval, the much the commu-
nication heterogeneity.

The lower/upper bound BðgÞ in Theorems 3 and 4 is
treated as a function of g. The following theorem gives an
asymptotic performance bound for our heuristic algorithm
for task scheduling with device-edge-cloud fusion.

Theorem 5. Our heuristic algorithm for task scheduling with
device-edge-cloud fusion has the following asymptotic perfor-
mance bound:

lim
R=r!1

T ðSÞ
T �ðSÞ �

Bðg 00Þ
Bðg 0Þ :

Proof. Consider S0 ¼ ft01; t02; . . .; t0ng, where t0i ¼ ðd0i; riÞ, with
d0i ¼ g 0ri, for all 1 � i � n. It is clear that a schedule for S
is also applicable to S0, with part of the communication
time of ti (i.e., ðti � t0iÞ=~se and ðti � t0iÞ=~sc) to be wasted.
Furthermore, S0 may have a shorter schedule. Therefore,
the optimal schedule length of S0 is no longer than the
optimal schedule length of S, i.e.,

T �ðS0Þ � T �ðSÞ:
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By Theorem 3, the optimal schedule length of S0 has
lower bound Bðg 0ÞR, i.e.,

T �ðS0Þ � Bðg 0ÞR:
Hence, we get

T �ðSÞ � Bðg 0ÞR:

Consider S00 ¼ ft001 ; t002 ; . . .; t00ng, where t00i ¼ ðd00i ; riÞ, with
d00i ¼ g 00ri, for all 1 � i � n. It is clear that a schedule for
S00 is also applicable to S, with part of the communication
time of ti (i.e., ðt00i � tiÞ=~se and ðt00i � tiÞ=~sc) to be wasted.
Furthermore, S may have a shorter schedule. Therefore,
the heuristic schedule length of S is no longer than the
heuristic schedule length of S00, i.e.,

T ðSÞ � T ðS00Þ:
By Theorem 4, the heuristic schedule length of S00 has
upper bound Bðg 00ÞRþ t, i.e.,

T ðS00Þ � Bðg 00ÞRþ t:

Hence, we get

T ðSÞ � Bðg 00ÞRþ t:

Therefore, we have

T ðSÞ
T �ðSÞ �

Bðg 00ÞRþ t

Bðg 0ÞR ¼ Bðg 00Þ
Bðg 0Þ þ

t

Bðg 0ÞR ;

and

lim
R=r!1

T ðSÞ
T �ðSÞ �

Bðg 00Þ
Bðg 0Þ :

The proof is completed. tu

3.3 Performance Data

In this section, we present numerical data and simulation
results.

3.3.1 Numerical Data

The lower/upper bound BðgÞ in Theorems 3 and 4 can be
treated as a function of g. Fig. 3 shows BðgÞ for 0 � g � 20,
with the following parameters: sd ¼ 1.5 BI/second, se ¼ 2.5
BI/second, sc ¼ 3.5 BI/second, ~se ¼ 40 Mbps, ~sc ¼ 90 Mbps.
It is clear that BðgÞ is an increasing function of g. For g 2
½0;1Þ, we have

BðgÞ 2
�

1

sd þ se þ sc
;
1

sd

�
:

When g ¼ 0, we have

BðgÞ ¼ 1

sd þ se þ sc
¼ 0:13333. . .:

When g !1, we have

BðgÞ ! 1

sd
¼ 0:66666. . .:

Fig. 4 shows the asymptotic performance bound Bðg 00Þ=
Bðg 0Þ, for g 0 ¼ 0; 1; . . .; 5, and g 0 � g 00 � 20. It is clear that
Bðg 00Þ=Bðg 0Þ is an increasing function of g 00. However, it is a
decreasing function of g 0. Actually, slight increment of g 0

significantly reduces the asymptotic performance bound,
thus strengthening its tightness.

3.3.2 Simulation Results

In this section, we demonstrate simulation results.
Our experiments also cover two other heuristic algo-

rithms, which are more difficult to analyze, but whose per-
formance can be easily evaluated experimentally.

Algorithm 2. It is clear that if ti is the last task scheduled
for execution, then ti should be added to Sd or Se or Sc, such

Fig. 3. BðgÞ as an increasing function of g. Fig. 4. Bðg 00Þ=Bðg 0Þ versus g 00.

LI: DESIGN AND ANALYSIS OF HEURISTIC ALGORITHMS FOR ENERGY-CONSTRAINED TASK SCHEDULING WITH... 215



that the total execution time T is the minimum. Otherwise,
ti can be moved to another place, and the total execution
time T can be reduced. This observation provides the basis
of another heuristic algorithm, in which, line (4) in Algo-
rithm 1 is changed to:

add ti to Sd or Se or Sc, such that
the new Td or Te or Tc (after ti is added) is the minimum;

Notice that in Algorithm 1, line (4) is actually:
add ti to Sd or Se or Sc, such that
Td or Te or Tc (before ti is added) is the minimum;
Algorithm 3. The set of tasks are sorted into a list L ¼

ðt1; t2; . . .; tnÞ, where

d1=r1 � d2=r2 � � � � � dn=rn:

Tasks in the left end are communication-intensive, which
are suitable for local execution. Tasks in the right end are
computation-intensive, which are suitable for remote execu-
tion. Hence, when scheduling the next task, the mobile
device picks the next task from the left end, the edge server
and the cloud server pick the next task from the right end.

The time complexity of Algorithm 2 is OðnÞ.
The time complexity of Algorithm 3 is OðnlognÞ (mainly

for sorting in line (3)).

Algorithm 2. Task Scheduling With Device-Edge-Cloud
Fusion

Input: S ¼ ft1; t2; . . .; tng, sd; se; sc; ~se; ~sc.
Output: A schedule ðSd; Se; ScÞ, such that T is minimized.

Sd  ;, Se  ;, Sc  ;; (1)
Td  0, Te  0, Tc  0; (2)
for (i ¼ 1; i � n; i++) do (3)
T 0d  Td þ ri=sd, T

0
e  Te þ di=~se þ ri=se,

T 0c  Tc þ di=~se þ di=~sc þ ri=sc; (4)
add ti to Sd or Se or Sc,
where T 0d or T

0
e or T

0
c is the smallest; (5)

update Td or Te or Tc; (6)
end do (7)

Algorithm 3. Task Scheduling With Device-Edge-Cloud
Fusion

Input: S ¼ ft1; t2; . . .; tng, sd; se; sc; ~se; ~sc.
Output: A schedule ðSd; Se; ScÞ, such that T is minimized.

Sd  ;, Se  ;, Sc  ;; (1)
Td  0, Te  0, Tc  0; (2)
make a list of tasks L ¼ ðt1; t2; . . .; tnÞ,

such that d1=r1 � d2=r2 � � � � � dn=rn; (3)
j 1, k n; (4)
for (i ¼ 1; i � n; i++) do (5)
T 0d  Td þ rj=sd, T

0
e  Te þ dk=~se þ rk=se,

T 0c  Tc þ dk=~se þ dk=~sc þ rk=sc; (6)
add tj to Sd, or add tk to Se or Sc,
where T 0d or T

0
e or T

0
c is the smallest; (7)

update Td or Te or Tc; (8)
j jþ 1 or k k� 1; (9)

end do (10)

The parameters are set as follows. The computation
speeds are sd ¼ 1.5 BI/second, se ¼ 2.5 BI/second, and sc ¼
3.5 BI/second. The communication speeds are ~se ¼ 40Mbps
and ~sc ¼ 90 Mbps. The computation power consumption

model has � ¼ 0:1, a ¼ 2:0, and Ps ¼ 50 mW, which give
computation power P ¼ �sad þ Ps ¼ 275mW. The communi-
cation power consumption model has w ¼ 30Mbps and b ¼
2:0 W�1, which give transmission power Pt ¼ ð2~se=w �
1Þ=b ¼ 760 mW. (These parameters are consistent with
those reported in [3].)

For each n ¼ 10; 20; . . .; 100, we generate N ¼ 500 sets of
independent and identically distributed random tasks. For
each random task ti ¼ ðdi; riÞ, ri is uniformly distributed in
the range [1.0,4.0] GI, and di ¼ giri, where gi is uniformly
distributed in the range ½g;0 g 00�, with g 0 ¼ 1:0 MB/GI and
g 00 ¼ 5:0MB/GI.

In Table 2, we show our simulation results on execution
time.

For each set S of tasks, we apply each of the three heuris-
tic algorithms and record the ratio T ðSÞ=ðBRÞ, where BR is
the lower bound for T �ðSÞ in Theorem 3. The data in the
table are average absolute performance bounds for the N
sets of random tasks. (Note: Since T ðSÞ=T �ðSÞ � T ðSÞ=
ðBRÞ, we have EEEEEEE½T ðSÞ=T �ðSÞ� � EEEEEEE½T ðSÞ=ðBRÞ�. Thus, EEEEEEE½T
ðSÞ=ðBRÞ� is an average absolute performance bound.) The
maximum 99% confidence interval is 	0.61179%.

As a reference, the asymptotic performance bound in
Theorem 5 (which is also an average asymptotic perfor-
mance bound) is Bðg 00Þ=Bðg 0Þ ¼ 1:39779.

We have the following observations.

� The average absolute performance bounds are very
close to one. This means that all our heuristic algo-
rithms perform very well for task scheduling with
device-edge-cloud fusion with performance very
close to that of the optimal algorithm.

� The average absolute performance bounds of all algo-
rithms decrease as n increases. This means that all our
heuristic algorithms perform better for more tasks.

� The average absolute performance bounds are all
less than the asymptotic performance bound, simply
because the asymptotic performance bound is based
on an over-estimation of T ðSÞ and an under-estima-
tion of T �ðSÞ, and is not tight.

� Algorithm 2 consistently (statistically) produces
shorter schedules than Algorithm 1. This means
that slight foreseeing of the future can improve
performance.

� Algorithm 3 consistently (statistically) produces
shorter schedules than Algorithm 2. This means that

TABLE 2
Simulation Results for Task Scheduling With D-E-C Fusion
(Average Absolute Performance Bounds for Execution Time)

n Algorithm 1 Algorithm 2 Algorithm 3

10 1.35430 1.32393 1.28648
20 1.28627 1.26547 1.22129
30 1.26054 1.24640 1.20399
40 1.24864 1.23433 1.19126
50 1.24284 1.23058 1.18487
60 1.23759 1.22519 1.18064
70 1.23307 1.22197 1.17715
80 1.22886 1.21915 1.17487
90 1.22795 1.21886 1.17300
100 1.22679 1.21741 1.17123
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it is effective to assign communication-intensive
tasks to the mobile device to eliminate long commu-
nication times, and to assign computation-intensive
to tasks to the edge server and the cloud server to
reduce communication times.

In Table 3, we further show our simulation results on
energy consumption, although it is not a main concern in this
section. The method to generate Table 3 is identical to that of
Table 2. For each set of tasks, we apply each of the three heu-
ristic algorithms and record its energy consumption. The
data in the table are average energy consumption for the N
sets of random tasks. The maximum 99% confidence interval
is	1.17464%.We have the following observations.

� Algorithm 2 consistently (statistically) consumes less
energy than Algorithm 1. Therefore, Algorithm 2 is
superior to Algorithm 1 in terms of both execution
time and energy consumption.

� Algorithm 3 consistently (statistically) consumes less
energy than Algorithm 2. Therefore, Algorithm 3 is
superior to Algorithm 2 in terms of both execution
time and energy consumption.

To summarize, Algorithm 3 is the best heuristic algo-
rithm developed in this paper for task scheduling with
device-edge-cloud fusion in terms of both execution time
and energy consumption.

We would like to emphasize that our heuristic algo-
rithms perform better for tasks with less communication
heterogeneity. In Table 4, we re-do Table 2 with g 0 ¼ 2:0
MB/GI and g 00 ¼ 4:0MB/GI. The maximum 99% confidence
interval is 	0.57785%. It is clear that the performance of all
algorithms are improved.

4 ENERGY-CONSTRAINED TASK SCHEDULING

In this section, we consider the problem of energy-con-
strained task scheduling with device-edge-cloud fusion.

4.1 Algorithm

In this section, we develop a heuristic algorithm for energy-
constrained task scheduling with device-edge-cloud fusion.

The challenges of the problem include two aspects, namely,
task scheduling (i.e., to determine a schedule ðSd; Se; ScÞ) and
power allocation (i.e., to determine speeds sd and ~se).

The following theorem gives the optimal T and the opti-
mal speed setting if the schedule is known.

Theorem 6. For a given schedule ðSd; Se; ScÞ, the optimal T sat-
isfies

�
Ra

d

T a�1 þ PsT þ 2ððDeþDcÞ=wÞ=ðT�T 00Þ � 1

b
ðT � T 00Þ ¼ Ê; (1)

where

T 00 ¼ max
Re

se
;
Dc

~sc
þRc

sc

� �
:

Proof. For a given schedule ðSd; Se; ScÞ, sd and ~se are deter-
mined in such a way that

Td ¼ maxfTe; Tcg ¼ T;

and that E ¼ Ê (see Fig. 5).
From

Rd

sd
¼ T;

we get

sd ¼ Rd

T
:

From

De þDc

~se
¼ T � T;00

TABLE 3
Simulation Results for Task Scheduling With D-E-C Fusion

(Energy Consumption in Joule)

n Algorithm 1 Algorithm 2 Algorithm 3

10 2.34518 2.20987 2.05744
20 4.62112 4.46392 4.12028
30 6.92316 6.75506 6.21306
40 9.19916 8.99602 8.26242
50 11.48448 11.24304 10.32024
60 13.76803 13.50717 12.40014
70 16.06110 15.76958 14.43439
80 18.36395 18.04269 16.52746
90 20.70127 20.37276 18.66144
100 22.98020 22.62647 20.71192

TABLE 4
Simulation Results for Task Scheduling With D-E-C Fusion
(Average Absolute Performance Bounds for Execution Time,

g 0 ¼ 2:0, g 00 ¼ 4:0)

n Algorithm 1 Algorithm 2 Algorithm 3

10 1.22693 1.20120 1.18213
20 1.15612 1.14488 1.12515
30 1.13397 1.12757 1.10550
40 1.12600 1.11845 1.09673
50 1.11811 1.11312 1.09032
60 1.11425 1.10917 1.08771
70 1.11131 1.10659 1.08405
80 1.10935 1.10440 1.08280
90 1.10642 1.10224 1.08021
100 1.10464 1.10134 1.07940

Fig. 5. Td ¼ maxfTe; Tcg ¼ T with proper adjustment of sd and ~se.
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we get

~se ¼ De þDc

T � T 00
:

Therefore, we have

E ¼ �
Ra

d

T a�1 þ PsT þ 2ððDeþDcÞ=wÞ=ðT�T 00Þ � 1

b
ðT � T 00Þ ¼ Ê:

The theorem is proved. tu
Notice that the above theorem also gives the optimal val-

ues of the speeds sd and ~se.
Since the left-hand side of Eq. (1) is a decreasing function

of T (i.e., longer time, less energy, which is less obvious ana-
lytically, but can be easily observed numerically), Eq. (1) can
be solved using the bisection search method in Oðlog ðD=�ÞÞ
time, where D is the size of the initial search interval and � is
the accuracy requirement.

Let T ðSd; Se; ScÞ obtained by Theorem 6 be a function of
the schedule ðSd; Se; ScÞ.

Theorem 6 provides the basis of our greedy algorithm. A
unique feature of the algorithm is that the two subproblems
(task scheduling and power allocation) are solved in an
interleaved way. The determination of the speeds depends
on the schedule, which in turn, depends on the optimal
speed setting.

Algorithm 4. Energy-Constrained Task Scheduling With
Device-Edge-Cloud Fusion

Input: S ¼ ft1; t2; . . .; tng, se; sc; ~sc, and Ê.
Output: A schedule ðSd; Se; ScÞ and speeds sd; ~se, such that T
is minimized and that E ¼ Ê.

Sd  ;, Se  ;, Sc  ;; (1)
make a list of tasks L ¼ ðt1; t2; . . .; tnÞ,
such that d1=r1 � d2=r2 � � � � � dn=rn; (2)

for (i ¼ 1; i � n; i++) do (3)
calculate T ðSd [ ftig; Se; ScÞ, T ðSd; Se [ ftig; ScÞ,
T ðSd; Se; Sc [ ftigÞ by solving Eq. (1); (4)

add ti to Sd or Se or Sc, such that T is the minimum; (5)
end do; (6)
calculate T; sd; ~se. (7)

Algorithm 4 presents our greedy algorithm to solve the
problem of energy-constrained task scheduling with
device-edge-cloud fusion.

Initially, Sd; Se; Sc are set to be empty sets. The set of tasks
are ordered into a list L ¼ ðt1; t2; . . .; tnÞ, such that d1=r1 �
d2=r2 � � � � � dn=rn. For each task ti, T ðSd [ ftig; Se; ScÞ,
T ðSd; Se [ ftig; ScÞ, and T ðSd; Se; Sc [ ftigÞ are calculated,
and ti is added to one of Sd; Se; Sc, such that T (obtained
from Theorem 6) is the minimum.

The time complexity of Algorithm 4 is Oðnlognþ nlog
ðD=�ÞÞ.

4.2 Analysis

Let Bðsd; ~se; gÞ denote the lower/upper bound in Theo-
rems 3 and 4, which is treated as a function of sd; ~se; g.

The following theorem gives a lower bound for the opti-
mal schedule length T �.

Theorem 7. The optimal schedule length T � has the following
lower bound

T � � B�R;

where B� is the minimum value of Bðsd; ~se; g 0Þ subject to the
constraint

F ðsd; ~seÞ ¼ ð�sad þ PsÞBðsd; ~se; g 0Þ

þ g 0
�
2~se=w � 1

b~se

�
ð1� sdBðsd; ~se; g 0ÞÞ ¼ Ê

R
: (2)

Proof.We have already known from the proof of Theorem 5
that for given sd and ~se, the optimal schedule length T �ðSÞ
has the following lower bound:

T �ðSÞ � T �ðS0Þ � Bðsd; ~se; g 0ÞR:
As a matter of fact, the above inequality is still valid for
energy-constrained task scheduling with device-edge-
cloud fusion. The reason is that any solution for S (i.e., a
schedule ðSd; Se; ScÞ plus speeds sd; ~se) is also applicable
to S0. Actually, the total energy consumption of S0 may
be less than Ê, since some communication time is not uti-
lized. Therefore, with the same energy constraint Ê,
T �ðS0Þ could be shorter than T �ðSÞ.

When sd and ~se are variables, we need to find sd and ~se
which minimize Bðsd; ~se; g 0Þ, subject to the constraint

Eðsd; ~seÞ ¼
�
�sad þ Ps

sd

�
Rd þ

�
2~se=w � 1

b~se

�
ðDe þDcÞ ¼ Ê:

From the proof of Theorem 3, we know that

Rd ¼ sdBðsd; ~se; g 0ÞR;
and

De þDc ¼ g 0ðRr þRcÞ ¼ g 0ðR�RdÞ
¼ g 0ð1� sdBðsd; ~se; g 0ÞÞR:

Therefore, we get

Eðsd; ~seÞ ¼ð�sad þ PsÞBðsd; ~se; g 0ÞR

þ
�
2~se=w � 1

b~se

�
g 0ð1� sdBðsd; ~se; g 0ÞÞR ¼ Ê;

which is equivalent to the constraint in the theorem. This
proves the theorem. tu
No analytical form of B� is available. However, B� can be

obtained numerically. To this end, we need

@Bðsd; ~se; g 0Þ
@sd

¼ f
@F ðsd; ~seÞ

@sd
; (3)

and

@Bðsd; ~se; g 0Þ
@~se

¼ f
@F ðsd; ~seÞ

@~se
; (4)

where f is a Lagrange multiplier.
In the following, we calculate the four derivatives. First,

we notice that

@Bðsd; ~se; g 0Þ
@sd

¼ �B2ðsd; ~se; g 0Þ:
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Second, we have

@F ðsd; ~seÞ
@sd

¼ �asa�1d Bðsd; ~se; g 0Þ � ð�sad þ PsÞB2ðsd; ~se; g 0Þ

þ g 0
�
2~se=w � 1

b~se

�
sdB

2ðsd; ~se; g 0Þ:

Third, for convenience, we rewrite Bðsd; ~se; g 0Þ as

Bðsd; ~se; g 0Þ ¼ Q1~se þQ2

Q3~se þQ4
;

where

Q1 ¼ g 0sc þ ~sc;

Q2 ¼ g 02sesc þ g 0se~sc þ g 0~scsc;
Q3 ¼ g 0ðsd þ seÞsc þ ðsd þ seÞ~sc þ ~scsc;

Q4 ¼ g 02sdsesc þ g 0sdse~sc þ g 0sd~scsc:

Then, we have

@Bðsd; ~se; g 0Þ
@~se

¼ Q1

Q3~se þQ4
�Q3ðQ1~se þQ2Þ
ðQ3~se þQ4Þ2

:

Finally, we have

@F ðsd; ~seÞ
@~se

¼ ð�sad þ PsÞ @Bðsd; ~se; g
0Þ

@~se

þ g 0

b

�
2~se=w ln 2

w~se
� 2~se=w � 1

~s2e

�
ð1� sdBðsd; ~se; g 0ÞÞ

� g 0
�
2~se=w � 1

b~se

�
sd

@Bðsd; ~se; g 0Þ
@~se

:

We now have a non-linear system of three equations
(i.e., Eqs. (2), (3), (4)) with three unknowns (i.e., sd, ~se, and
f). We develop the following unique method to solve the
equations. Let

f1 ¼
@Bðsd; ~se; g 0Þ

@sd

,
@F ðsd; ~seÞ

@sd
;

and

f2 ¼
@Bðsd; ~se; g 0Þ

@~se

,
@F ðsd; ~seÞ

@~se
:

Given sd, we can calculate ~se using the condition F ðsd; ~seÞ ¼
Ê=R. For given sd and ~se, we can calculate f1 and f2. It is
observed that f1 � f2 is an increasing function of sd. Thus,
we can find sd using bisection search, such that f1 � f2 ¼ 0.

4.3 Performance Data

In this section, we present numerical data and simulation
results.

4.3.1 Numerical Data

We set R ¼ 125 GI, which is equivalent to n ¼ 50 tasks.
For Ê ¼ 10; 15; 20 Joule, Figs. 6, 7, and 8 show sd, ~se, and

B�R, where sd and ~se are the speeds which give B�, i.e., the
minimum value of Bðsd; ~se; g 0Þ.

We have the following observations.

� For given energy constraint Ê, as g 0 increases, both sd
and ~se decrease to accommodate more communica-
tion within the same energy budget. For given g 0, as
Ê increases, both sd and ~se increase, which reduce
the execution time.

� For given energy constraint Ê, as g 0 increases, the
lower bound B�R increases due to longer communi-
cation time. For given g 0, as Ê increases, the lower
bound B�R decreases due to increased computation
and communication speeds.

4.3.2 Simulation Results

We would like to mention that any algorithm A for task
scheduling with device-edge-cloud fusion can be easily

Fig. 6. sd versus g
0. Fig. 7. ~se versus g

0.
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adapted for energy-constrained task scheduling with
device-edge-cloud fusion. The adapted algorithm A0 has
two stages. In the first stage, we run algorithm A to deter-
mine a schedule ðSd; Se; ScÞ with some reasonable setting of
sd and ~se. In the second stage, we apply Theorem 6 to deter-
mine speeds sd and ~se. For Algorithms 1 and 2, the time
complexity of the adapted algorithm is Oðnþ log ðD=�ÞÞ. For
Algorithm 3, the time complexity of the adapted algorithm
is Oðnlognþ log ðD=�ÞÞ.

In Table 5, we show our simulation results to compare
the performance of Algorithms 1’–3’ and 4. We use the
same parameter setting as that in Section 3.3.2.

For each n ¼ 10; 20; . . .; 100, we generate N ¼ 20000 sets
of random tasks. The energy constraint is Ê ¼ 0:2n Joule.
For each set S of tasks, we apply each of the four heuristic
algorithms (the speed setting for Algorithms 1–3 is: sd ¼ 1.5
BI/second, ~se ¼ 40 Mbps), record its execution time T ðSÞ,
calculate the lower bound B�R for the optimal solution
T �ðSÞ using Theorem 7, and obtain the ratio T ðSÞ=ðB�RÞ.
The data in the table are average absolute performance

bounds for the N sets of random tasks. The maximum 99%
confidence interval is 	0.56688%.

We have the following observations.

� The average absolute performance bounds are rea-
sonably close to one. This means that all our heuristic
algorithms perform well for energy-constrained task
scheduling with device-edge-cloud fusion with per-
formance close to that of the optimal algorithm.

� The average absolute performance bounds of all algo-
rithms decrease as n increases. This means that all our
heuristic algorithms perform better for more tasks.

� The average absolute performance bounds of Algo-
rithms 1’–3’ are higher than those in Table 2. This
means that there is room for improving the perfor-
mance of Algorithms 1’–3’, and tightening our lower
bound.

� Algorithm 4 performs noticeably better than Algo-
rithms 1’–3’, due to its interleaved strategy to deter-
mine a schedule and the computation/communication
speeds.

� Algorithm 3’ is inferior to Algorithm 2’. This means
that better performance for fixed speeds does not
guarantee superiority when the speeds are variable.

In Table 6, we re-do Table 5 for tasks with with less com-
munication heterogeneity with g 0 ¼ 2:0MB/GI and g 00 ¼ 4:0
MB/GI. The maximum 99% confidence interval is
	0.49142%. It is clear that the performance of all algorithms
are noticeably improved.

5 CONCLUSION

We have studied the NP-hard problems of task scheduling
with device-edge-cloud fusion (without energy concern)
and energy-constrained task scheduling with device-edge-
cloud fusion as combinatorial optimization problems. We
have developed heuristic algorithms for both problems.
One strong and unique feature of our investigation is to
derive lower bounds for optimal solutions and to compare
heuristic solutions with optimal solutions. We found that
the performance of our heuristic algorithms are very close
to that of optimal algorithms.

There are several interesting and important directions for
future work. First, we can consider multiple edge servers
and multiple cloud servers in a mobile edge computing

Fig. 8. B�R versus g 0.

TABLE 5
Simulation Results for Energy-Constrained Task Scheduling

With D-E-C Fusion (Average Absolute Performance Bounds for
Execution Time)

n Algorithm 10 Algorithm 20 Algorithm 30 Algorithm 4

10 1.93314 1.69734 1.75338 1.43470
20 1.74684 1.61419 1.66368 1.39702
30 1.68515 1.58381 1.62414 1.37909
40 1.65535 1.57095 1.60309 1.37039
50 1.63721 1.56460 1.59067 1.36558
60 1.62707 1.56020 1.58193 1.36206
70 1.62174 1.55928 1.57938 1.36007
80 1.61602 1.55672 1.57417 1.35823
90 1.61219 1.55434 1.57074 1.35681
100 1.60864 1.55308 1.56820 1.35572

TABLE 6
Simulation Results for Energy-Constrained Task Scheduling

With D-E-C Fusion (Average Absolute Performance Bounds for
Execution Time, g 0 ¼ 2:0, g 00 ¼ 4:0)

n Algorithm 10 Algorithm 20 Algorithm 30 Algorithm 4

10 1.61547 1.43474 1.48531 1.24878
20 1.46256 1.37350 1.41289 1.21926
30 1.41618 1.35814 1.38592 1.20642
40 1.39652 1.35156 1.37396 1.20067
50 1.38599 1.34765 1.36722 1.19684
60 1.37866 1.34582 1.36044 1.19456
70 1.37354 1.34428 1.35681 1.19265
80 1.37127 1.34423 1.35547 1.19166
90 1.36826 1.34379 1.35364 1.19078
100 1.36659 1.34366 1.35290 1.19009
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environment. Second, we can research precedence con-
strained tasks, which makes task scheduling more compli-
cated and challenging. Third, we can study multiple mobile
devices, which compete for computation and communica-
tion resources. Fourth, we can design algorithms that allow
overlapping of computation and communication (e.g., after
an edge server receives a task, it starts to execute the task,
and at the same time, receives the next task).
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