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Abstract—In an environment with multiple heterogeneous multiservers across multiple clouds and data centers, optimal workload

management and server speed setting makes strong impact on the aggregated performance, cost, and profit of a cloud service

provider. Such a situation provides us a more challenging opportunity to address and discuss profit maximization of a service provider

in a wider scale and to generate more significant influence. In this paper, we investigate profit maximization by optimal workload

management and server speed setting for multiple heterogeneous multiservers in a federated cloud or a geo-distributed data center.

The heterogeneous multiservers have different sizes, speeds, power consumption models, workload, performance, costs, and profit. To

conduct rigorous study, each multiserver system is modeled by an M/M/m queueing system, such that the profit of a multiserver system

can be characterized analytically. We address two problems, i.e., workload management without server speed setting and workload

management with server speed setting. Both problems are formulated as multi-variable optimization problems. We develop numerical

algorithms to solve these problems. We also provide numerical data for the purpose of illustration. To the best of the author’s

knowledge, this is the first paper which analytically discusses profit maximization for multiple heterogeneous multiservers in a federated

cloud or a geo-distributed data center using queueing systems.

Index Terms—Cloud service provider, federated cloud, heterogeneous multiserver system, optimal server speed setting, optimal workload
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1 INTRODUCTION

1.1 Motivation

CLOUD computing has the capability and characteristic of
providing computing services through an on-demand,

pay-per-use, and pay-as-you-go billing method. Cloud com-
puting is a computing business model in which a cloud ser-
vice provider owns, rents, operates, maintains, upgrades, and
manages physical or virtual computing infrastructure and
resources, and provides and delivers various services and sol-
utions to consumers and customers, businesses and individu-
als. A user or subscriber accesses these resources and services
over the Internet on a measurable and metered basis. Cloud
services are becoming increasingly desirable for companies
and industries, because they offer great advantages in terms
of cost, performance, accessibility, scalability, elasticity, reli-
ability, and sustainability.

Significant research has been conducted for the technol-
ogy-related issues of cloud computing. However, it is equally
important to understand the economics- and business-related
issues of cloud computing. Resource utilization, performance
optimization, customer satisfaction, pricing strategies, market
competition, revenue maximization, server configuration,

cost reduction, and profit maximization for cloud service pro-
viders have been placed as urgent research agenda [6], [22]. It
has been a significant challenge for a cloud service provider
to make the most efficient use of available resources, deliver
the best quality of service to the users, provide the highest sat-
isfaction of customers, attract the most consumers, be the
most competitive in the market, generate the largest revenue,
spend the least cost of service, receive the lowest penalty for
low quality service, balance the above contradictory consider-
ations, and ultimately, earn the highest profit.

Cloud federation (also called federated cloud, cloud of
clouds, InterCloud, and geo-distributed data center)
requires one cloud service provider to lease/rent comput-
ing resources to/from another provider [2], [3]. These
resources become temporary or permanent extension of a
provider’s cloud computing environment, depending on
the specific federation agreement between providers. Cloud
federation offers two solid and substantial benefits to cloud
service providers. First, it allows providers to earn revenue
from idle or underutilized computing resources. Second, it
enables providers to expand their geographic footprints
and accommodate sudden spikes in demand without actu-
ally building new points-of-presence. Cloud service pro-
viders strive to make all aspects of cloud federation, from
resource insourcing/outsourcing to billing support systems
and customer support, all transparent to consumers. A
cloud service provider can also establish extensions of its
customer-facing service-level agreements into its partner
providers’ data centers when federating cloud services with
partners [1].
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A federated cloud is able to make use of computing infra-
structures across multiple geographically distributed clouds
and data centers. Such cloud federation integrates heteroge-
neous resources and computing power, and furthermore,
provides more powerful and flexible services to various ser-
vice requests from scientific, business, and industrial appli-
cation domains. In such an environment with multiple
heterogeneous multiservers across multiple clouds and
data centers, optimal workload management and server
speed setting makes strong impact on the aggregated per-
formance, cost, and profit of a cloud service provider. Such
a situation provides us a more challenging opportunity to
address and discuss profit maximization of a service pro-
vider in a wider scale and to generate more significant
influence.

1.2 Related Work

Profit maximization for cloud service providers has been a
very active and productive research area in the last few
years. Refs. [5], [6], [7], [16], [29] give some recent compre-
hensive surveys.

Profit maximization for federated clouds and geo-distrib-
uted data centers has been investigated extensively by a
number of researchers. In [9], the authors presented ways
for a provider to enhance its profit in cloud federation, e.g.,
renting (i.e., outsourcing) resources from other providers,
leasing (i.e., insourcing) free resources to other providers,
and shutting down unused resources to save power. In [14],
the authors developed a customer satisfaction-aware algo-
rithm based on ant-colony optimization for geo-distributed
data centers, by formulating profit maximization as an opti-
mization problem under customer satisfaction and data cen-
ter constraints, and maximizing net profit by dispatching
service requests to proper data centers and generating
appropriate amount of VMs to meet customer satisfaction.
In [21], the authors designed an energy-efficient, profit- and
cost-aware request dispatching and resource allocation
algorithm to maximize the net profit of a cloud service pro-
vider operating geographically distributed data centers in a
multi-electricity-market environment, by formulating the
net profit maximization issue as a constrained optimization
problem, using a unified task model capturing multiple
cloud layers (e.g., SaaS, PaaS, IaaS), judiciously distributing
service requests to data centers, powering on/off an appro-
priate number of servers, and allocating server resources to
dispatched requests. In [25], the authors described an algo-
rithm for VM provisioning in a federated cloud environ-
ment, attempting to improve a cloud provider’s profit. In
[26], the authors formulated a problem for cloud service
providers owning multiple geo-distributed clouds to decide
their computing resource prices as a game of resource pric-
ing. In [27], the authors established policies that help in the
decision-making process to enhance profit, utilization, and
QoS in a cloud federation environment. In [30], the authors
constructed a business-oriented federated cloud computing
model, where multiple independent infrastructure pro-
viders can cooperate seamlessly to provide scalable IT infra-
structures and QoS-assured hosting services for real-time
online interactive applications with a business layer that
can trigger on-demand resource provisioning across

multiple infrastructure providers and help to maximize cus-
tomer satisfaction, business benefits, and resources usage.

In contrast to profit maximization for federated clouds,
several researchers have considered profit maximization for
competing cloud service providers in a competitive cloud
computing environment, typically by using a game theo-
retic approach. In [8], the authors conducted an in-depth
game theoretic study of a competition market with multiple
competing cloud providers, where each cloud provider is
modeled by an M/M/1 queue with fixed service charge.
Furthermore, the market share of each cloud provider is
proportional to its attraction, which is inversely propor-
tional to the service time and service price. (In our study,
we use M/M/m queueing systems, and service charge
depends on the amount of service and the quality of service.
Furthermore, the workload of each multiserver is deter-
mined by global optimization.) In [13], the authors pro-
posed a price bidding mechanism for multi-attribute cloud-
computing resource provision from the perspective of a
non-cooperative game, in which the information of each
player (one customer and multiple providers) is incomplete
to others and each player wishes to maximize his own bene-
fit. In [17], the author studied a competitive cloud comput-
ing market, in which each cloud service provider can adjust
its server size, server speed, and service charge function,
such that its profit is maximized. Whenever a cloud service
provider takes an action, the market is re-stabilized, such
that all competing cloud service providers have the same
expected customer satisfaction, where the satisfaction of a
customer includes two aspects, i.e., satisfaction on the price
of service and satisfaction on the quality of service. It was
shown that such a non-cooperative game has a Nash equi-
librium. In [20], the authors focused on request migration
strategies among multiple servers for load balancing and
considered the problem from a game theoretic perspective
and formulated it as a non-cooperative game among the
multiple servers. In [28], the authors formulated the compe-
tition among cloud providers as a non-cooperative stochas-
tic game, which is modeled as a Markov decision process
whose solution is a Markov perfect equilibrium, where the
providers propose the price policy simultaneously.

1.3 Our Contributions

In this paper, we investigate profit maximization by optimal
workloadmanagement and server speed setting for multiple
heterogeneous multiservers in a federated cloud or a geo-
distributed data center. The heterogeneous multiservers
have different sizes, speeds, power consumption models,
workload, performance, costs, and profit. To conduct rigor-
ous study, each multiserver system is modeled by an M/M/
m queueing system, such that the profit of a multiserver sys-
tem can be characterized analytically. We address two prob-
lems, i.e., workload management without server speed
setting and workload management with server speed set-
ting. Both problems are formulated as multi-variable optimi-
zation problems. We develop numerical algorithms to solve
these problems. We also provide numerical data for the pur-
pose of illustration. To the best of the author’s knowledge,
this is the first paper which analytically discusses profit max-
imization for multiple heterogeneous multiservers in a
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federated cloud or a geo-distributed data center using
queueing systems.

The remainder of the paper is summarized as follows. In
Section 2, we present the preliminaries, including models
and problems. In Section 3, we discuss workload manage-
ment without server speed setting. In Section 4, we discuss
workload management with server speed setting. In Sec-
tion 5, we discuss optimal multiserver selection. We con-
clude the paper in Section 6.

2 THE PRELIMINARIES

In this section, we present our models and problems.

2.1 Models

A cloud computing environment or a data center serves
users’ service requests by using multiple heterogeneous
multiserver systems. A federated cloud or a geo-distributed
data center can maintain a collection of n heterogeneous
multiserver systems S1; S2; . . . ; Sn, which are different in
size, speed, power consumption model, workload, perfor-
mance, cost, and profit. Our models include a multiserver
queueing model, two power consumption models, and a
profit model defined in [4], [17]. Due to space limitation and
to avoid duplication, detailed descriptions of these models
are omitted in this paper. Instead, we give highlights of
these models below. Table 1 gives a summary of all the
notations and their definitions used in these models. (Note:
�y represents the expectation of a random variable y.)

The Queueing Model. A multiserver system is abstracted
as an M/M/m queueing model, which is extensively used
in theory and practice [10], [15]. Each Si is characterized by
its server size mi (i.e., the number of servers), server speed
si (i.e., the task execution speed), and arrival rate �i (i.e., the
number of arrival tasks per second). Tasks are specified by
a random variable r, which is the task execution require-
ment. The server utilization of Si is ri ¼ �i=mimi, where
mi ¼ 1=�xi is the average service rate of Si, and xi ¼ r=si is
the random task execution time on Si. The waiting time Wi

is a random variable. The response time of Si is a random
variable Ti ¼Wi þ r=si.

The Power Consumption Models. Let �i and ai be some con-
stants that determine the dynamic power consumption of
Si, and P �i be the static power consumption of Si. In the idle-
speed model, we have Pi ¼ �i�r�is

ai�1
i þmiP

�
i . In the constant-

speed model, we have Pi ¼ mið�isaii þ P �i Þ. The difference
between the two models is that when a server Si is idle, it
runs at speed zero and does not consume dynamic power
�is

ai
i in the idle-speed model, while still runs at speed si and

consumes dynamic power in the constant-speed model.
We would like to mention that energy efficiency has been

an important component in the optimization of workload
forecasting, workflow management, task scheduling, load
balancing, resource allocation, and server configuration in
general distributed computing systems [11], [12], [18], [19],
[23], [24].

The Profit Model. The service charge function of Si specified
by s0, a, c, d for a service request with execution require-
ment r and response time Ti is

TABLE 1
Summary of Notations and Definitions

Notation Definition

Queueing Model
n the number of heterogeneous multiserver systems in a federated cloud
Si the ith multiserver system, represented by an M/M/m queueing model
mi the number of identical servers in Si (i.e., the size of Si)
�i the arrival rate of a Poisson stream of service requests to Si (measured by tasks/second)
� ¼ �1 þ �2 þ � � � þ �n

r task execution requirement (measured by the number of billion processor cycles)
si task execution speed of Si (measured by GHz = billion processor cycles per second)
xi ¼ r=si, task execution times on servers of Si (measured by seconds)
mi ¼ 1=�xi ¼ si=�r, the average service rate of Si (measured by tasks/second)
ri ¼ �i=mimi ¼ �i�xi=mi ¼ �i=mi � �r=si, the server utilization of Si

pi;k the probability that there are k service requests (in waiting or being processed) in Si

Pq;i the probability of queueing in Si

Wi the waiting time of Si (measured by seconds)
Ti the response time of Si (measured by seconds)
Power Consumption Models
Pi ¼ �i�r�is

ai�1
i þmiP

�
i for the idle-speed model, and ¼ mið�isaii þ P �i Þ for the constant-speed model

�i;ai parameters of the power consumption models
P �i static power consumption of Si (measured by Watts)
Profit Model
Ci the expected charge to a service request processed on Si (measured by cent)
s0 a parameter indicating the expectation and satisfaction of a consumer
a the service charge per unit amount of service (measured by cent per billion processor cycles)
c the service level agreement
d the degree of penalty of breaking the service level agreement (measured by cent/second)
bi the cost of infrastructure facilities of one server per unit of time in Si (measured by cent/second)
g the cost of energy consumption per Watt and per unit of time (measured by cent/Watt/second)
Gi the expected net business gain in one unit of time of Si (measured by cent/second)
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Ciðr; TiÞ ¼

air; if 0 � Ti � ðci=s0;iÞr;
air� diðTi � ðci=s0;iÞrÞ;

if ðci=s0;iÞr < Ti � ðai=di þ ci=s0;iÞr;
0; if Ti > ðai=di þ ci=s0;iÞr;

8>>><
>>>:

which is a random variable (see [4], [17] for elaboration and
justification). It has been proven in [4] that the expected
charge to a service request processed on Si, i.e., Ci ¼
Ciðr; TiÞ, is

Ci ¼a�r
�
1� Pq;i � 1

ðmisi � �i�rÞðc=s0 � 1=siÞ þ 1

� 1

ðmisi � �i�rÞða=dþ c=s0 � 1=siÞ þ 1

�
;

where Pq;i ¼ pi;mi
=ð1� riÞ and pi;mi

¼ pi;0ðmiriÞmi=mi!. The
above closed-form expression makes it possible to take an
analytical approach to profit maximization.

The most important metric in this paper is the expected
net business gain (i.e., the profit) of a multiserver system Si in
one unit of time

Gi ¼ �iCi � ðbimi þ gPiÞ;

which is actually expressed as the revenue minus the cost
[4]. The above equation is

Gi ¼ �iCi � ðbimi þ gð�i�r�is
ai�1
i þmiP

�
i ÞÞ;

for the idle-speed model, and

Gi ¼ �iCi � ðbimi þ gmið�isaii þ P �i ÞÞ

for the constant-speed model.
The overall profit of a federated cloud or a geo-distrib-

uted data center with n heterogeneous multiserver systems
S1; S2; . . . ; Sn is G ¼ G1 þG2 þ � � � þGn, which is

G ¼
Xn
i¼1
ð�iCi � ðbimi þ gð�i�r�is

ai�1
i þmiP

�
i ÞÞÞ;

for the idle-speed model, and

G ¼
Xn
i¼1
ð�iCi � ðbimi þ gmið�isaii þ P �i ÞÞÞ;

for the constant-speed model. It is the quantity G that we
need to maximize.

2.2 Problems

The two multi-variable optimization problems to be solved
in this paper are formally defined as follows.

Problem 1 (Workload management without server speed set-
ting): Given certain workload specified by � and �r, n hetero-
geneous multiserver systems S1; S2; . . . ; Sn, where Si is
specified by mi, si, �i, ai, P

�
i , for all 1 � i � n, a service

charge function specified by s0, a, c, d, cost parameters bi

and g, find a workload distribution ð�1; �2; . . . ; �nÞ, such
that G is maximized, subject to the constraint that
�1 þ �2 þ � � � þ �n ¼ �.

Problem 2 (Workload management with server speed setting):
Given certain workload specified by � and �r, n heteroge-
neous multiserver systems S1; S2; . . . ; Sn, where Si is speci-
fied by mi, �i, ai, P �i , for all 1 � i � n, a service charge
function specified by s0, a, c, d, cost parameters bi and g,
find a workload distribution ð�1; �2; . . . ; �nÞ and a server
speed setting ðs1; s2; . . . ; snÞ, such that G is maximized, sub-
ject to the constraint that �1 þ �2 þ � � � þ �n ¼ �.

The two problems are solved in Sections 3 and 4
respectively.

3 WORKLOAD MANAGEMENT WITHOUT SERVER

SPEED SETTING

In this section, we address the problem of workload man-
agement without server speed setting.

3.1 Analysis

To solve this multi-variable optimization problem, we view
Gð�1; �2; . . . ; �nÞ as a function of �1; �2; . . . ; �n. We can maxi-
mize Gð�1; �2; . . . ; �nÞ subject to the constraint F ð�1; �2;
. . . ; �nÞ ¼ �1 þ �2 þ � � � þ �n ¼ � by using the following
Lagrange multiplier system (a standard method in multi-
variable calculus)

rGð�1; �2; . . . ; �nÞ ¼ frF ð�1; �2; . . . ; �nÞ;

that is

@Gð�1; �2; . . . ; �nÞ
@�i

¼ f
@F ð�1; �2; . . . ; �nÞ

@�i
¼ f;

for all 1 � i � n, where f is a Lagrange multiplier. It is clear
that for all 1 � i � n, we have

@G

@�i
¼ Ci þ �i

@Ci

@�i
� g�r�is

ai�1
i ;

for the idle-speed model, and

@G

@�i
¼ Ci þ �i

@Ci

@�i
;

for the constant-speed model. For convenience, we rewrite
Ci as

Ci ¼ a�r

�
1� Pq;i

D1D2

�
;

where D1 ¼ ðmisi � �i�rÞðc=s0 � 1=siÞ þ 1, and D2 ¼ ðmisi�
�i�rÞða=dþ c=s0 � 1=siÞ þ 1. Therefore, we obtain

@Ci

@�i
¼� a�r

�
1

D1D2
� @Pq;i

@�i
� Pq;i

D2
1D2
� @D1

@�i
� Pq;i

D1D
2
2

� @D2

@�i

�

¼� a�r

�
1

D1D2
� @Pq;i

@�i
þ �rðc=s0 � 1=siÞ Pq;i

D2
1D2

þ �rða=dþ c=s0 � 1=siÞ Pq;i

D1D
2
2

�
;

for all 1 � i � n. To further calculate @Ci=@�i, we need to
examine @Pq;i=@�i. Recall that ([15], p. 102)
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Pq;i ¼ m
mi
i

mi!
� pi;0 r

mi
i

1� ri
:

Hence, we get

@Pq;i

@�i
¼m

mi
i

mi!

�
r
mi
i

1� ri
� @pi;0
@�i

þ pi;0 � �r

misi
�mir

mi�1
i ð1� riÞ þ r

mi
i

ð1� riÞ2
�
;

where we notice that @ri=@�i ¼ �r=misi, for all 1 � i � n. To
further calculate @Pq;i=@�i, we need to examine @pi;0=@�i.
Recall that

pi;0 ¼
�Xmi�1

k¼0

mk
i

k!
rki þ

m
mi
i

mi!
� r

mi
i

1� ri

��1
:

Thus, we have

@pi;0
@�i
¼� p2i;0

�Xmi�1

k¼1

mk�1
i

ðk� 1Þ! r
k�1
i

þm
mi�1
i

mi!
�mir

mi�1
i ð1� riÞ þ r

mi
i

ð1� riÞ2
�

�r

si
;

for all 1 � i � n.

3.2 Algorithms

An effective and efficient method is required to find
�1; �2; . . . ; �n and f, which satisfy the equation @Gð�1; �2;
. . . ; �nÞ=@�i ¼ f, for all 1 � i � n, and F ð�1; �2; . . . ; �nÞ ¼ �.

Consider n ¼ 7 heterogeneous multiserver systems
S1; S2; . . . ; Sn, where the parameters of Si are mi ¼ 3þ i,
si ¼ 1:1þ 0:1i GHz, �i ¼ 3:2þ 0:2i, ai ¼ 3:4� 0:1i, and P �i ¼
4:5þ 0:5iWatts, for all 1 � i � n. Throughout this paper, we
use the following parameter setting: �r ¼ 1:0 billion proces-
sor cycles, s0 ¼ 1:0 GHz, a ¼ 10:0 cents per billion processor
cycles, c ¼ 3:0, d ¼ 1:0 cent per second, bi ¼ 1:5 cents per
second, g ¼ 0:075 cents per Watt and per second.

In Figs. 1 and 2, we show the profit Gi versus the task
arrival rate �i, for all 1 � i � n, and the idle-speed model

and the constant-speed model respectively. It is observed
that as �i increases, Gi increases almost linearly. The reason
is that the revenue increases linearly with �i. However, as
�i approaches its maximum value, i.e., misi=�r, Gi drops
very quickly. The reason is that the M/M/m queueing sys-
tem for Si becomes saturated, and the task response time Ti

increases rapidly. This results in free service to virtually all
service requests with little revenue and no profit.

In Figs. 3 and 4, we show the value of @G=@�i versus the
task arrival rate �i, for all 1 � i � n, and the idle-speed
model and the constant-speed model respectively. It is
observed that @G=@�i is a decreasing function of �i. This is a
key fact which results in an efficient method to find
�1; �2; . . . ; �n and f. The method is essentially the binary
search method for both �1; �2; . . . ; �n and f.

A complete description of the method to find �i is given
in Algorithm 2. For a given f, we can find �i such that
@G=@�i ¼ f, for all 1 � i � n, by using binary search (lines
2–9) of �i in the range ½0;misi=�rÞ (line 1). (Note: jIj is the
length of an interval I. mid(I) is the middle point of I.)

Fig. 1. Profit Gi versus task arrival rate �i (idle-speed model). Fig. 2. Profit Gi versus task arrival rate �i (constant-speed model).

Fig. 3. @G=@�i versus task arrival rate �i (idle-speed model).
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Algorithm 1. Optimal Workload Management Without
Server Speed Setting

Input: Workload specified by � and �r, n heterogeneous multi-
server systems S1; S2; . . . ; Sn, where Si is specified by mi, si,
�i, ai, P

�
i , for all 1 � i � n, a service charge function specified

by s0, a, c, d, cost parameters b and g.
Output: A workload distribution ð�1; �2; . . . ; �nÞ, such that G
is maximized, subject to the constraint that �1 þ �2 þ � � �
þ�n ¼ �.

if (the power consumptionmodel is idle-speedmodel) then (1)
Calculate b1; b2; . . . ; bn and ��1; �

�
2; . . . ; �

�
n; (2)

Determine j such that ��j < � � ��jþ1, where 1 � j � n; (3)
Initialize the search interval of f to be If ¼ ½bjþ1; bj�; (4)

else //the power consumption model is constant-speed
model (5)
j n; (6)
Initialize the search interval of f to be If ¼ ð�1; a�r�; (7)

end if; (8)
while ( jIfj 	 �) do (9)

f mid(If); (10)
for i 1 to j do //only S1; S2; . . . ; Sj are

involved (11)
Obtain �i by using Algorithm Find_�i; (12)

end do; (13)
if (�1 þ �2 þ � � � þ �j < �) then (14)

Continue the search in the left half of If; (15)
else (16)

Continue the search in the right half of If; (17)
end if (18)

end do; (19)
//final calculation (20)
f mid(If); (21)
for i 1 to j do (22)

Obtain �i by using algorithm Find_�i; (23)
end do; (24)
for i jþ 1 to n do (25)

�i  0; (26)
end do; (27)
return �1; �2; . . . ; �n. (28)

Our method to solve the problem of workload manage-
ment without server speed setting (i.e., a method to find f

as well as all the �i’s) is given in Algorithm 1. For a given f,
once all the �1; �2; . . . ; �n are available (lines 10–13), we
check �1 þ �2 þ � � � þ �n, which is a decreasing function of
f. (Due to analytical sophistication, we do not prove this
claim here. Instead, we have verified this fact by numerical
calculation.) Hence, based on the relation between �1 þ �2 þ
� � � þ �n and �, we can adjust the search interval of f (lines
14–18). A binary search is completed when the search inter-
val is sufficiently small (line 9), so that sufficiently accurate
results can be obtained. All our binary searches are com-
pleted when the length of a search interval is less than
� ¼ 10�12).

It remains to decide the initial search interval of f (lines
1–8). The situation is fairly simple for the constant-speed
model. For all 1 � i � n, f is in the range of ð�1; a�r� (line 7,
also see Fig. 4), where @G=@�i ¼ a�r when �i ¼ 0, and @G=@�i

approaches �1 when �i approaches misi=�r. All the n het-
erogeneous multiserver systems are involved in workload
management (line 6).

Algorithm 2. Find_�i

Input:mi, si, �i, ai, f.
Output: �i such that @G=@�i ¼ f,

Initialize the search interval of �i to be I� ¼ ½0;misi=�r�; (1)
while (jI�j 	 �) do (2)
�i  mid(I�); (3)
if (@G=@�i < f) then (4)
Continue the search in the left half of I�; (5)

else (6)
Continue the search in the right half of I�; (7)

end if (8)
end do; (9)
returnmid(I�). (10)

The situation for the idle-speedmodel ismore complicated.
Let bi ¼ Ci � g�r�is

ai�1
i , for all 1 � i � n, which is actually the

maximum value of @G=@�i when �i ¼ 0. Due to heterogeneity
of the multiserver systems, each Si may have its own bi. For
instance, the 7 heterogeneous multiserver systems have b1 ¼
9:6121560, b2 ¼ 9:5191173, b3 ¼ 9:4222849, b4 ¼ 9:3250000,
b5 ¼ 9:2306242, b6 ¼ 9:1423265, b7 ¼ 9:0629077. In general, we
can assume that the indices of the n systems are arranged in
such a way b1 > b2 > b3 > � � � > bn (see Fig. 3). For conve-
nience, we also define bnþ1 ¼ �1. We understand that to
solve our optimization problem, it is essentially to find a hori-
zontal line in Fig. 3 (which represents f), such that the line
intersects with the n curves and the n intersections give the
values of the �i’s. The line should be appropriately chosen by
moving up and down to represent increment/decrement of f,
such that n intersections result in �1 þ �2 þ � � � þ �n ¼ �.
However, the different bi’s imply that when � is too small,
which requires f to be big enough, it is impossible to have
@G=@�i ¼ f, for all 1 � i � n and some f.

To deal with the complication, for all 1 � i � n, we define

��i ¼
Xi�1
j¼1

�0j;

Fig. 4. @G=@�i versus task arrival rate �i (constant-speed model).
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where �0j is chosen such that @G=@�0j ¼ bi, for all 1 � j �
i� 1. Clearly, ��1 ¼ 0. Furthermore, let

��nþ1 ¼
Xn
i¼1

misi
�r

;

which is the maximum workload that the n multiserver
systems can handle collectively. For the 7 heterogeneous
multiserver systems, we have ��1 ¼ 0, ��2 ¼ 2:6730206,
��3 ¼ 7:0736576, ��4 ¼ 13:3203419, ��5 ¼ 21:5594176, ��6 ¼
31:9362715, ��7 ¼ 44:5859437, ��8 ¼ 76:3000000. One impor-
tant observation is that Si can be involved in workload
management only when � > ��i , which makes @G=@�0i ¼
f possible, where f < bi. Therefore, when ��j < � � ��jþ1,
where 1 � j � n, only S1; S2; . . . ; Sj are involved in work-
load management (lines 11–13, 22–24), and �jþ1 ¼ � � � ¼
�n ¼ 0 (lines 25–27). When ��j < � � ��jþ1, where 1 � j �
n, the initial search interval of f is ½bjþ1; bj� (line 4).

3.3 Numerical Data

In Tables 2 and 3, we display the optimal workload distribu-
tion ð�1; �2; . . . ; �nÞ obtained by our algorithm for the two
power consumption models. It can be observed from Table 2

(and the discussion in Section 3.2) that for the idle-speed
model, when � is low, only small multiservers are involved
in workload management, and large multiservers do not
participate due to insufficient workload and revenue. As �
increases, more and more multiservers join in workload
management. For both power consumption models, if
S1; S2; . . . ; Sj are involved in workload management, we
will have �1 < �2 < � � � < �j, except when Sj just starts to
join in and � is still not sufficiently large. This is intuitively
reasonable and acceptable, since the Si’s have increasing
sizes, i.e.,m1 < m2 < � � � < mn.

In Figs. 5 and 6, we show the maximized profit G for the
two power consumption models. It is observed that G looks
similar to the Gi’s in Fig. 1. As � increases, G increases
almost linearly. However, as � approaches its maximum
value, i.e., ��nþ1, G drops very quickly.

4 WORKLOAD MANAGEMENT WITH SERVER

SPEED SETTING

In this section, we address the problem of workload man-
agement with server speed setting.

TABLE 2
Numerical Data for Optimal Workload Management Without Server Speed Setting (Idle-Speed Model)

� �1 �2 �3 �4 �5 �6 �7

5.0 2.6935022 2.3064978 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
10.0 3.0110558 4.0751213 2.9138228 0.0000000 0.0000000 0.0000000 0.0000000
15.0 3.1940697 4.4586719 5.6676608 1.6795976 0.0000000 0.0000000 0.0000000
20.0 3.2323399 4.5270485 5.8271255 6.4134861 0.0000000 0.0000000 0.0000000
25.0 3.3175774 4.6697662 6.1115813 7.4612515 3.4398236 0.0000000 0.0000000
30.0 3.3416159 4.7080080 6.1798369 7.6228718 8.1476675 0.0000000 0.0000000
35.0 3.4050821 4.8054681 6.3428038 7.9518918 9.4310652 3.0636890 0.0000000
40.0 3.4076601 4.8093293 6.3489799 7.9631843 9.4595398 8.0113066 0.0000000
45.0 3.4690324 4.8992641 6.4878269 8.2007322 9.9668894 11.5621986 0.4140563
50.0 3.4690485 4.8992872 6.4878614 8.2007879 9.9669928 11.5624668 5.4135554
55.0 3.4718213 4.9032662 6.4938020 8.2103479 9.9846777 11.6077112 10.3283737
60.0 3.5245382 4.9776779 6.6021837 8.3778591 10.2720006 12.2180736 14.0276670
65.0 3.7457208 5.2696487 6.9902555 8.9036633 11.0073747 13.3002796 15.7830575
70.0 4.1635581 5.7692792 7.5799074 9.5940383 11.8109374 14.2302790 16.8520005
75.0 4.6900796 6.3626601 8.2368169 10.3122046 12.5885971 15.0658360 17.7438057

TABLE 3
Numerical Data for Optimal Workload Management Without Server Speed Setting (Constant-Speed Model)

� �1 �2 �3 �4 �5 �6 �7

5.0 0.0348715 0.1160103 0.2709638 0.5156470 0.8612196 1.3157801 1.8855077
10.0 0.1336940 0.3436525 0.6786734 1.1485882 1.7594818 2.5156175 3.4202926
15.0 0.2809787 0.6298071 1.1382753 1.8106511 2.6494901 3.6567332 4.8340645
20.0 0.4663449 0.9553130 1.6287556 2.4869625 3.5301726 4.7588412 6.1736102
25.0 0.6838608 1.3113762 2.1417865 3.1726024 4.4024510 5.8307095 7.4572136
30.0 0.9309428 1.6943478 2.6741696 3.8659229 5.2670054 6.8758989 8.6917127
35.0 1.2076023 2.1035869 3.2251922 4.5664695 6.1238285 7.8949723 9.8783484
40.0 1.5157650 2.5401236 3.7951580 5.2739298 6.9721242 8.8868505 11.0160489
45.0 1.8584714 3.0055238 4.3843268 5.9875223 7.8104591 9.8499623 12.1037342
50.0 2.2388711 3.5008631 4.9922024 6.7058082 8.6371858 10.7832604 13.1418091
55.0 2.6590734 4.0259488 5.6172698 7.4269211 9.4510288 11.6869545 14.1328037
60.0 3.1191050 4.5789772 6.2571855 8.1490439 10.2515902 12.5628150 15.0812832
65.0 3.6162890 5.1566480 6.9092108 8.8708501 11.0395845 13.4140700 15.9933476
70.0 4.1448226 5.7543081 7.5705077 9.5917371 11.8169178 14.2453130 16.8763937
75.0 4.6898507 6.3624797 8.2367065 10.3121811 12.5886723 15.0660167 17.7440930
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4.1 Analysis

To solve this multi-variable optimization problem, we view
Gð�1; �2; . . . ; �n; s1; s2; . . . ; snÞ as a function of �1; �2; . . . ; �n

and s1; s2; . . . ; sn. We can maximize Gð�1; �2; . . . ; �n; s1;
s2; . . . ; snÞ subject to the constraint F ð�1; �2; . . . ; �nÞ ¼
�1 þ �2 þ � � � þ �n ¼ � by using the following Lagrange mul-
tiplier system:

rGð�1; �2; . . . ; �n; s1; s2; . . . ; snÞ ¼ frF ð�1; �2; . . . ; �nÞ;
that is

@Gð�1; �2; . . . ; �n; s1; s2; . . . ; snÞ
@�i

¼ f
@F ð�1; �2; . . . ; �nÞ

@�i
¼ f;

for all 1 � i � n, where f is a Lagrange multiplier, and

@Gð�1; �2; . . . ; �n; s1; s2; . . . ; snÞ
@si

¼ 0;

for all 1 � i � n. It is easily notice that @Gð�1; �2; . . . ;
�n; s1; s2; . . . ; snÞ=@�i is essentially the same as @Gð�1;
�2; . . . ; �nÞ=@�i obtained in the last section. It is clear that for
all 1 � i � n, we have

@G

@si
¼ �i

@Ci

@si
� g�i�r�iðai � 1Þsai�2i ;

for the idle-speed model, and

@G

@si
¼ �i

@Ci

@si
� gmi�iais

ai�1
i ;

for the constant-speed model. Furthermore, we have

@Ci

@si
¼� a�r

�
1

D1D2
� @Pq;i

@si
� Pq;i

D2
1D2
� @D1

@si
� Pq;i

D1D2
2

� @D2

@si

�

¼� a�r

�
1

D1D2
� @Pq;i

@si
� ðmic=s0 � �i�r=s

2
i Þ

Pq;i

D2
1D2

� ðmiða=dþ c=s0Þ � �i�r=s
2
i Þ

Pq;i

D1D
2
2

�
;

for all 1 � i � n. To further calculate @Ci=@si, we need to
examine @Pq;i=@si, which is

@Pq;i

@si
¼m

mi
i

mi!

�
r
mi
i

1� ri
� @pi;0
@si

� pi;0 � ri
si
�mir

mi�1
i ð1� riÞ þ r

mi
i

ð1� riÞ2
�
;

where we notice that @ri=@si ¼ ��i�r=mis
2
i ¼ �ri=si, for all

1 � i � n. To further calculate @Pq;i=@si, we need to examine
@pi;0=@si, which is

@pi;0
@si
¼p2i;0

�Xmi�1

k¼1

mk
i

ðk� 1Þ! r
k�1
i

þm
mi
i

mi!
�mir

mi�1
i ð1� riÞ þ r

mi
i

ð1� riÞ2
�
ri
si
;

for all 1 � i � n.

4.2 Algorithms

An effective and efficient method is required to find �1; �2;
. . . ; �n, s1; s2; . . . ; sn, and fwhich satisfy the equations

@Gð�1; �2; . . . ; �n; s1; s2; . . . ; snÞ=@�i ¼ f;

and

@Gð�1; �2; . . . ; �n; s1; s2; . . . ; snÞ=@si ¼ 0;

for all 1 � i � n, and F ð�1; �2; . . . ; �nÞ ¼ �. It is clear that
solving the system of ð2nþ 1Þ nonlinear equations directly
is very complicated.

In Figs. 7 and 8, using S4 as an example, we show the
profit Gi versus server speed si, for �i ¼ 8; 0; 9:0; . . . ; 14:0,
and the idle-speed model and the constant-speed model
respectively. It is observed that as si increases from �i�r=mi,
Gi increases rapidly. This is because slight increment of si
significantly increases the processing power of Si and
reduces the task response time, which results in increased
revenue and profit. However, as si further increases, the
increased speed and power do not bring more revenue, but
increased cost of energy consumption, which results in
reduced profit. Therefore, there is an optimal choice of si.

Fig. 5. Profit G versus task arrival rate � (idle-speed model). Fig. 6. Profit G versus task arrival rate � (constant-speed model).
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In Figs. 9 and 10, using S4 as an example, we show the
value of @G=@si versus server speed si, for �i ¼
8; 0; 9:0; . . . ; 14:0, and the idle-speed model and the constant-
speed model respectively. It is observed that @G=@si is a
decreasing function of si. Hence, the optimal value of si can
be found by using the binary search method. A complete
description of themethod to find si is given in Algorithm 4.

Algorithm 3. Optimal Workload Management With
Server Speed Setting

Input: Workload specified by � and �r, n heterogeneous multi-
server systems S1; S2; . . . ; Sn, where Si is specified by mi, �i,
ai, P

�
i , for all 1 � i � n, a service charge function specified by

s0, a, c, d, cost parameters b and g.
Output: A workload distribution ð�1; �2; . . . ; �nÞ and a server
speed setting ðs1; s2; . . . ; snÞ, such that G is maximized, sub-
ject to the constraint that �1 þ �2 þ � � � þ �n ¼ �.

Initialize s1; s2; . . . ; sn with reasonable values; (1)
do (2)
Find �1; �2; . . . ; �n using Algorithm 1 based on s1; s2;

. . . ; sn; (3)
for i 1 to n do (4)
Find s0i such that @G=@s0i ¼ 0 using Algorithm Find_si; (5)

end do; (6)
error maxfjs01 � s1j; js02 � s2j; . . . ; js0n � snjg; (7)
for i 1 to n do (8)
si  s0i; (9)

end do; (10)
while (error > �); (11)
return �1; �2; . . . ; �n and s1; s2; . . . ; sn. (12)

Our method to solve the problem of workload manage-
ment with server speed setting is described in Algorithm 3.
The method is essentially an iterative method, in which, an
optimal workload distribution ð�1; �2; . . . ; �nÞ and an optimal
server speed setting ðs1; s2; . . . ; snÞ are obtained separately,
but in an interleavedmanner. First of all, there is a reasonable
initial server speed setting ðs1; s2; . . . ; snÞ (line 1). Then, there
are iterations (lines 2–11). In each repetition, we first calculate

an optimal workload distribution ð�1; �2; . . . ; �nÞ by using
Algorithm 1 for the current server speed setting ðs1; s2;
. . . ; snÞ (line 3). Based on the current workload distribution
ð�1; �2; . . . ; �nÞ, we further calculate an optimal server speed
setting ðs01; s02; . . . ; s0nÞ, by using Algorithm Find_si (lines 4–6),
which is presented in Algorithm 4. The two server speed set-
tings ðs1; s2; . . . ; snÞ and ðs01; s02; . . . ; s0nÞ are compared (line 7)
to decidewhether enough accuracy has been reached (line 11)
andwhether the iteration should be repeated (lines 8–10).

4.3 Numerical Data

In Tables 4 and 5, we display the optimal workload distribu-
tion ð�1; �2; . . . ; �nÞ and an optimal server speed setting
ðs1; s2; . . . ; snÞ obtained by our algorithm for the two power
consumption models. It can be observed that �1 < �2 <
� � � < �n, which is essentially due to the sizes of the Si’s.
When � is small, we have s1 > s2 > � � � > sn. When � is
large, we have s1 < s2 < � � � < sn. This is essentially due
to the parameter setting of the Si’s. Intuitively and infor-
mally, when �i is low, a large Si tends to choose slower si to
reduce the cost of energy consumption, since there is no
enough revenue. When �i is high, a large Si tends to choose
faster si to increase the revenue, since there is enough
workload.

Algorithm 4. Find_si

Input:mi, �i, �i, ai, f.
Output: si such that @G=@si ¼ 0.

Initialize the search interval of si to be Is ¼ ½�i�r=mi; ub�,
where ub is reasonably large; (1)
while (jIsj 	 �) do (2)
si  mid(Is); (3)
if (@G=@si < 0) then (4)
Continue the search in the left half of Is; (5)

else (6)
Continue the search in the right half of Is; (7)

end if (8)
end do; (9)
returnmid(Is). (10)

Fig. 7. Profit Gi versus server speed si (idle-speed model). Fig. 8. Profit Gi versus server speed si (constant-speed model).
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In Figs. 11 and 12, we show the maximized profit G for
the two power consumption models. It is observed that as �
increases, G increases almost linearly in the range 0 � � �
80. There are two significant differences between Figs. 11–
12 and 5–6. First, when � is small, the si’s can be set at low
levels, thus reducing the cost of energy consumption and
increasing the profit. Second, when � is large, the si’s can be
set at high levels, thus preventing system saturation and

avoiding decreased revenue and profit. Of course, when �
is sufficiently large (around 170 for the idle-speed model
and 160 for the constant-speed model), the increased si’s
eventually raise the cost of energy consumption, do not
increase the revenue, and reduce the profit. To summarize,
the profit earned from optimal workload management with
server speed setting is noticeably higher than that from opti-
mal workload management without server speed setting.

Fig. 9. @G=@si versus server speed si (idle-speed model). Fig. 10. @G=@si versus server speed si (constant-speed model).

TABLE 4
Numerical Data for Optimal Workload Management With Server Speed Setting (Idle-Speed Model)

� �1; s1 �2; s2 �3; s3 �4; s4 �5; s5 �6; s6 �7; s7

10.0 0.7674925 1.0275285 1.2683179 1.4842801 1.6717334 1.8282215 1.9524261
0.5183247 0.4950887 0.4726212 0.4506799 0.4291499 0.4080280 0.3874424

15.0 1.1650594 1.5349823 1.8834126 2.2047114 2.4947088 2.7499231 2.9672023
0.6273584 0.6038234 0.5810681 0.5587254 0.5365487 0.5143612 0.4920336

20.0 1.5578455 2.0333584 2.4879744 2.9165365 3.3151307 3.6803330 4.0088215
0.7253249 0.7026750 0.6809353 0.6596947 0.6386709 0.6176481 0.5964463

25.0 1.9451101 2.5240111 3.0846344 3.6226228 4.1347648 4.6183000 5.0705567
0.8173251 0.7962568 0.7762892 0.7570029 0.7381160 0.7194165 0.7007295

30.0 2.3263370 3.0074395 3.6744713 4.3241349 4.9542927 5.5633529 6.1499717
0.9056718 0.8866926 0.8690540 0.8523532 0.8363331 0.8208142 0.8056617

35.0 2.7013739 3.4840361 4.2581527 5.0217236 5.7740266 6.5151063 7.2455808
0.9915613 0.9750771 0.9602211 0.9466266 0.9340821 0.9224649 0.9117119

40.0 3.0703065 3.9541882 4.8361827 5.7158145 6.5941023 7.4731756 8.3562303
1.0756634 1.0620152 1.0503295 1.0402927 1.0317576 1.0246818 1.0191044

45.0 3.4333578 4.4182862 5.4089832 6.4067179 7.4145638 8.4371715 9.4809195
1.1583772 1.1478593 1.1396842 1.1336062 1.1295606 1.1276080 1.1279196

50.0 3.7908203 4.8767144 5.9769246 7.0946781 8.2354077 9.4067106 10.6187441
1.2399536 1.2328248 1.2284635 1.2267063 1.2275880 1.2312946 1.2381598

55.0 4.1430138 5.3298407 6.5403378 7.7798974 9.0566070 10.3814257 11.7688776
1.3205588 1.3170492 1.3167752 1.3196686 1.3258804 1.3357444 1.3497865

60.0 4.4902603 5.7780106 7.0995206 8.4625488 9.8781236 11.3609721 12.9305640
1.4003079 1.4006243 1.4046862 1.4125331 1.4244482 1.4409348 1.4627414

65.0 4.8328706 6.2215437 7.6547418 9.1427834 10.6999161 12.3450309 14.1031135
1.4792848 1.4836145 1.4922398 1.5053197 1.5232855 1.5468314 1.5769588

70.0 5.1711374 6.6607335 8.2062439 9.8207349 11.5219430 13.3333100 15.2858973
1.5575530 1.5660667 1.5794647 1.5980369 1.6223782 1.6533949 1.6923709

75.0 5.5053319 7.0958478 8.7542462 10.4965231 12.3441653 14.3255425 16.4783432
1.6351626 1.6480167 1.6663810 1.6906873 1.7217087 1.7605849 1.8089120

80.0 5.8357038 7.5271304 9.2989473 11.1702556 13.1665466 15.3214861 17.6799302
1.7121544 1.7294932 1.7530035 1.7832697 1.8212582 1.8683622 1.9265198
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5 OPTIMAL MULTISERVER SELECTION

Notice that in our problem of workload management with
server speed setting, we essentially assume that all the n
multiserver systems are involved in service. In other words,
there is minimum cost of bimi þ gmiP

�
i for Si, even though

its workload is �i ¼ 0 and its speed is si ¼ 0. Is it possible to
exclude some multiservers from consideration, i.e., only a

subset of fS1; S2; . . . ; Sng are considered for optimal work-
load management with server speed setting, such that
higher G can be obtained? Notice that “exclusion of Si”
means not only �i ¼ 0, but also zero cost of Si. Because of
the cost reduction and the possibility to achieve the same
revenue by using fewer multiserver systems, it is possible
that G can be increased.

TABLE 5
Numerical Data for Optimal Workload Management With Server Speed Setting (Constant-Speed Model)

� �1; s1 �2; s2 �3; s3 �4; s4 �5; s5 �6; s6 �7; s7

10.0 0.6780067 0.9627875 1.2316513 1.4780667 1.6985100 1.8917753 2.0592024
0.4273204 0.4271278 0.4201445 0.4094959 0.3967579 0.3829323 0.3688379

15.0 1.0784340 1.4739675 1.8506227 2.2018754 2.5230946 2.8106152 3.0613907
0.5393895 0.5366076 0.5279219 0.5158239 0.5014856 0.4855286 0.4683240

20.0 1.4722907 1.9721592 2.4540958 2.9123284 3.3426120 3.7413512 4.1051627
0.6404900 0.6368432 0.6281662 0.6165528 0.6029764 0.5879264 0.5716535

25.0 1.8609901 2.4626720 3.0495005 3.6167084 4.1609392 4.6794551 5.1697347
0.7357905 0.7323131 0.7245882 0.7144363 0.7027124 0.6898499 0.6760715

30.0 2.2438101 2.9461993 3.6383527 4.3167163 4.9791771 5.6243727 6.2513718
0.8273529 0.8248035 0.8187223 0.8107406 0.8016468 0.7918620 0.7816288

35.0 2.6204136 3.4230370 4.2212893 5.0130365 5.7977308 6.5758399 7.3486529
0.9162525 0.9152277 0.9113470 0.9061150 0.9002920 0.8943219 0.8885046

40.0 2.9908146 3.8935013 4.7987501 5.7060558 6.6167456 7.5335505 8.4605821
1.0031198 1.0041068 1.0028953 1.0009102 0.9989167 0.9974115 0.9967865

45.0 3.3552222 4.3579465 5.3711100 6.3960445 7.4362533 8.4971536 9.5862700
1.0883534 1.0917605 1.0936225 1.0953224 1.0976584 1.1012077 1.1064872

50.0 3.7139376 4.8167401 5.9387081 7.0832152 8.2562345 9.4662831 10.7248814
1.1722204 1.1783966 1.1836869 1.1894638 1.1965831 1.2057292 1.2175760

55.0 4.0672951 5.2702427 6.5018548 7.7677463 9.0766472 10.4405793 11.8756345
1.2549087 1.2641569 1.2731910 1.2833995 1.2957183 1.3109641 1.3299997

60.0 4.4156312 5.7187963 7.0608332 8.4497929 9.8974414 11.4197013 13.0378038
1.3365566 1.3491431 1.3622043 1.3771675 1.3950701 1.4168849 1.4436953

65.0 4.7592688 6.1627185 7.6159010 9.1294924 10.7185656 12.4033320 14.2107216
1.4172692 1.4334307 1.4507756 1.4707904 1.4946334 1.5234573 1.5585968

70.0 5.0985100 6.6023014 8.1672925 9.8069679 11.5399709 13.3911807 15.3937766
1.4971296 1.5170781 1.5389406 1.5642810 1.5943973 1.6306444 1.6746393

75.0 5.4336338 7.0378114 8.7152202 10.4823303 12.3616118 14.3829817 16.5864108
1.5762048 1.6001319 1.6267267 1.6576471 1.6943481 1.7384096 1.7917607

80.0 5.7648954 7.4694913 9.2598772 11.1556805 13.1834471 15.3784937 17.7881148
1.6545504 1.6826306 1.7141556 1.7508929 1.7944714 1.8467176 1.9099030

Fig. 11. Profit G versus task arrival rate � (optimal speed setting,
idle-speed model).

Fig. 12. Profit G versus task arrival rate � (optimal speed setting,
constant-speed model).
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In Tables 6 and 7, for � ¼ 45, we consider servers
S1; S2; . . . ; Sj, where j ¼ 4; 5; 6; 7. For each j, we find the the
optimal workload distribution ð�1; �2; . . . ; �jÞ and the opti-
mal server speed setting ðs1; s2; . . . ; sjÞ, as well as the profit
G. It is noticed that by using j ¼ 6 multiserver systems, we
can achieve higher G than using j ¼ 7 multiserver systems.
Furthermore, G is even higher when j ¼ 5. However, G is
less by using j ¼ 4 multiserver systems than using j ¼ 5
multiserver systems. Thus, there is an optimal number of
multiserver systems. Even though the optimal number of
multiserver systems is known, there is still a problem of
choosing the right multiserver systems. Due to the involve-
ment of discrete and combinatorial optimization (i.e., the
selection of an optimal subset of the Si’s), such a problem of
optimal multiserver selection plus their optimal workload
management and server speed setting is extremely chal-
lenging, and deserves further investigation. It is very likely
that the problem is NP-hard and requires heuristic algo-
rithms to solve.

6 CONCLUDING REMARKS

We have investigated profit maximization by optimal work-
load management and server speed setting for multiple het-
erogeneous multiservers in a federated cloud or a geo-
distributed data center. The heterogeneous multiservers dif-
fer in size, speed, power consumptionmodel, workload, per-
formance, cost, and profit. Each multiserver system is
treated as an M/M/m queueing system, such that the profit
of amultiserver system can be characterized analytically.We
have addressed two problems, i.e., workload management
without server speed setting and workload management
with server speed setting. Both problems are formulated as
multi-variable optimization problems. We have developed

numerical algorithms to solve these problems. We have also
provided numerical data for the purpose of illustration.

In addition to the optimal multiserver selection problem
mentioned in Section 5, we point out two more topics for
future research. One possible direction is to consider more
sophisticated queueing models, e.g., M/G/m. Another pos-
sible direction is to consider competitive cloud service pro-
viders [17], each is equipped with a federated cloud.
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