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5 Abstract—Computation offloading from a user equipment (UE) to a mobile edge cloud (MEC) is an effective way to ease the

6 computational burden of mobile devices, to improve the performance of mobile applications, to reduce the energy consumption, and to

7 extend the battery lifetime of mobile user equipments. In this paper, we consider computation offloading strategy optimization with

8 multiple heterogeneous servers in mobile edge computing. Queueing models are established for a UE and multiple heterogeneous

9 servers from different MECs, and the average task response time of the UE and each MEC server and the average response time of all

10 offloadable and non-offloadable tasks generated on the UE are rigorously analyzed. Three multi-variable optimization problems are

11 formulated, i.e., minimization of average response time with average power consumption constraint, minimization of average power

12 consumption with average response time constraint, and minimization of cost-performance ratio, so that computation offloading

13 strategy optimization, power-performance tradeoff, as well as power-time product can all be studied in the context of load balancing. An

14 efficient numerical method (which consists of a series of fast numerical algorithms) is developed to solve the problems of minimization

15 of average response time with average power consumption constraint, minimization of average power consumption with average

16 response time constraint, and minimization of cost-performance ratio. Numerical examples and data are also demonstrated to show the

17 effectiveness of our method and to show the power-performance tradeoff, the power-time product, and the impact of various

18 parameters. To the best of the author’s knowledge, this is the first work in the literature that analytically addresses computation

19 offloading strategy optimization with multiple heterogeneous servers in mobile edge computing.

20 Index Terms—Average response time, computation offloading strategy, cost-performance ratio, mobile edge cloud, mobile edge computing,

21 power consumption, power-performance tradeoff, queueing model

Ç

22 1 INTRODUCTION

23 1.1 Motivation

24 A smart mobile device (e.g., smartphone, tablet, hand-
25 held computer, wearable device, and personal digital
26 assistant) has been developed into a formidable equipment
27 to provide much of the functionality of a laptop or a desktop
28 computer. Mobile users expect to run pervasive and power-
29 ful applications, such as speech recognition, natural lan-
30 guage processing, image processing, face detection and
31 recognition, interactive gaming, reality augmentation, intel-
32 ligent video acceleration, connected vehicles, and Internet of
33 Things gateway [11]. However, due to limited computing
34 capability, memory capacity, database storage, and due to
35 finite battery lifetime, it is very challenging for a mobile
36 device to support these novel but computation-intensive and
37 energy-hungry applications.

38As a newly emerged computing paradigm, mobile edge
39computing provides cloud computing capabilities and ser-
40vice environments at the edge of cellular networks and
41within the radio access networks in close proximity tomobile
42subscribers [2]. Mobile edge computing can increase perfor-
43mance compared to providing such services through cloud
44servers or through core network servers. An MEC platform
45has unique advantages and capabilities such as proximity to
46the users and network edge, location awareness and highly
47localized service, high bandwidth, ultra-low latency, and
48unparalleled quality of experience [21].
49Computation offloading from a user equipment (UE, also
50called mobile user, mobile subscriber, or mobile device) to a
51mobile edge cloud (MEC) is an effective way to address the
52above challenge. Traditionally, computation offloading refers
53to the transfer of certain computing tasks to an external plat-
54form, such as a cluster, a grid, or a cloud. Computation off-
55loading may be necessary due to hardware limitations of a
56computer systemhandling a particular task on its own. Com-
57putation offloading may also be employed to save energy
58consumption of a computer system. By utilizing MEC serv-
59ices, a mobile user equipment can benefit from an MEC’s
60powerful computing resources, expedite its task execution,
61and save its battery power. Therefore, anMEC has the poten-
62tial to ease the computational burden of mobile devices, to
63improve the performance of mobile applications, to reduce
64the energy consumption and to extend the battery lifetime of
65mobile user equipments [10], [13], [15], [23].
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66 However, computation offloading may not be beneficial
67 due to possible long transmission delay from a mobile device
68 to an MEC server and extra transmission energy for remote
69 task execution. An offloadable task is typically a task which
70 requires extensive computation time but much less data com-
71 munication time. A non-offloadable task is typically a task
72 which requires so much data communication time that off-
73 loading the task does not benefit at all. A computation offload-
74 ing strategy should not only make offloading decisions (i.e.,
75 whether or not, fully or partially), but also determine commu-
76 nication (i.e., radio transmission power and channel band-
77 width) and computing (i.e., CPU clock frequency and
78 execution speed) resources, so that the combined processing
79 time and energy consumption for both communication and
80 computation can be optimized. Computation offloading strat-
81 egy optimization with multiple heterogeneous MEC servers
82 is even more challenging due to the additional issue of load
83 balancing among the MEC servers, which also serve other
84 users and application areas.

85 1.2 Our Contributions

86 In this paper, we consider computation offloading strategy
87 optimization with multiple heterogeneous servers in mobile
88 edge computing. The main contributions of the paper are
89 summarized as follows. (1) We establish queueingmodels for
90 a UE and multiple heterogeneous servers from different
91 MECs, and rigorously analyze the average task response time
92 of the UE and each MEC server and the average response
93 time of all offloadable and non-offloadable tasks generated on
94 the UE. (2) We formulate three multi-variable optimization
95 problems, i.e., minimization of average response time with
96 average power consumption constraint, minimization of
97 average power consumption with average response time con-
98 straint, and minimization of cost-performance ratio, so that
99 computation offloading strategy optimization, power-perfor-

100 mance tradeoff, aswell as power-time product can all be stud-
101 ied in the context of load balancing. (3) We develop an
102 efficient numerical method (which consists of a series of fast
103 numerical algorithms) to solve the problems of minimization
104 of average response time with average power consumption
105 constraint, minimization of average power consumptionwith
106 average response time constraint, and minimization of cost-
107 performance ratio. We also demonstrate numerical examples
108 and data to show the effectiveness of ourmethod and to show
109 the power-performance tradeoff, the power-time product,
110 and the impact of various parameters. To the best of the
111 author’s knowledge, this is the first work in the literature that
112 analytically addresses computation offloading strategy opti-
113 mization with multiple heterogeneous servers in mobile edge
114 computing.
115 Compared with existing research, our investigation in
116 this paper has the following new and unique features.
117 First, we consider multiple MECs and multiple heteroge-
118 neous MEC servers. Most existing studies assume that there
119 is one MEC which has only one server. In [20], an MEC
120 server is equipped with a multicore high-speed CPU, so
121 that it can execute several applications in parallel; however,
122 the processing latency at the MEC server is assumed to be
123 negligible. In [6], a cloudlet is modeled as a set of homoge-
124 neous servers. In our study, there are multiple MECs or an
125 MEC is equipped with multiple heterogeneous servers, and

126the performance of both the UE and the heterogeneous
127MEC servers are critical and carefully evaluated.
128Second, eachMEC server has its own preloaded tasks and
129performance commitment. All existing researches assume
130that an MEC server only processes offloaded tasks but noth-
131ing else. In this paper, in addition to offloaded tasks from the
132UE, eachMEC server also has its own preloaded tasks, possi-
133bly from other UEs and application areas. Furthermore, each
134MEC server has its own commitment on performance guar-
135antee, which means that the amount of offloaded tasks from
136a UE to anMEC server is limited.
137Third, queueing models are established for both UE and
138MEC servers. In [22], an M/G/1 queueing model is estab-
139lished only for a mobile device. Although queueing models
140are established for both UE and MEC servers in [6], they are
141M/M/1 queueing systems. In our study, both UE and MEC
142serves are modeled as M/G/1 queueing systems, so that the
143average task response time of the UE and each MEC server
144can be obtained accurately and analytically and the average
145response time of all offloadable and non-offloadable tasks
146generated on the UE can be optimized.
147Fourth, in addition to offloading decision and power allo-
148cation within a UE, we consider load balancing among the
149heterogeneous MEC servers with preloaded tasks and per-
150formance commitment, instead of task/transmission sched-
151uling within a UE. Notice that since all servers in [6] are
152identical without preloaded tasks and performance com-
153mitment, there is no issue of load balancing, i.e., all homoge-
154neous servers simply receive the same amount of offloadable
155tasks. Although multiple heterogeneous servers from multi-
156ple MECs are considered in [25], there is no issue of load
157balancing, since eachmobile user has only one task.
158Fifth, we consider power constrained performance opti-
159mization and performance constrained power optimization.
160Most existing studies try to minimize a weighted sum of exe-
161cution time and energy consumption. The main concern of
162this method is that time (measured by seconds) and energy
163(measured by Joules) are very different in nature and it
164makes little sense to consider a weighted sum. Our approach
165in this paper is minimization of average response time with
166average power consumption constraint and minimization of
167average power consumption with average response time
168constraint, i.e., optimizing one metric while fixing the other.
169Furthermore, we also minimize the cost-performance ratio
170(i.e., the power-time product).

1712 RELATED RESEARCH

172Computation offloading in mobile edge computing has been
173a hot research topic in recent years, and extensive investiga-
174tion has been conducted. The reader is referred to [3], [17],
175[27] for recent comprehensive surveys. These research can
176be grouped into several categories based on the number of
177mobile users and the number of tasks each user has.
178Single User with Single Task. There is one user with a single
179task. Wang et al. investigated partial computation offloading
180for a single application by jointly optimizing the computa-
181tional speed and transmit power of a smart mobile device
182and offloading ratio with two system design objectives, i.e.,
183energy consumption minimization and application execu-
184tion latencyminimization [26].
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185 Single User withMultiple Tasks. There is one user withmul-
186 tiple tasks. Mao et al. investigated a green MEC system with
187 a single energy harvesting device and developed an effective
188 computation offloading strategy, where the execution cost
189 includes both execution latency and task failure, by propos-
190 ing a dynamic computation offloading algorithm, which
191 jointly decides the offloading decision, the CPU frequencies
192 for mobile execution, and the transmit power for computa-
193 tion offloading [18]. Mao et al. jointly optimized task offload-
194 ing scheduling and transmit power allocation for an MEC
195 system with multiple independent tasks from a single-user
196 [19]. Shah-Mansouri et al. formulated a utility maximization
197 problem for a single mobile device, which takes energy con-
198 sumption, delay, and price of cloud service into account,
199 where a mobile device is characterized by twoM/G/1 queu-
200 ing systems, one for the local CPU and another for the wire-
201 less interface [22].
202 Multiple Users with Single Task. There are multiple users,
203 each has a single task. Cao and Cai investigated the problem
204 of multi-user computation offloading for cloudlet based
205 mobile cloud computing in a multi-channel wireless conten-
206 tion environment, by formulating themulti-user computation
207 offloading decision making problem as a non-cooperative
208 game, where each mobile device user has one computation
209 task with the same number of CPU cycles and attempts to
210 minimize a weighted sum of execution time and energy con-
211 sumption [5]. Chen formulated a decentralized computation
212 offloading decision making problem among mobile device
213 users as a decentralized computation offloading game, where
214 each mobile device user has a computationally intensive and
215 delay sensitive task andminimizes aweighted sumof compu-
216 tational time and energy consumption [8]. Chen et al. studied
217 the multi-user computation offloading problem for mobile-
218 edge cloud computing in a multi-channel wireless interfer-
219 ence environment, and showed that it is NP-hard to compute
220 a centralized optimal solution, and hence adopted a game the-
221 oretic approach to achieving efficient computation offloading
222 in a distributed manner [9]. Ma et al. researched computation
223 offloading strategies of multiple users via multiple wireless
224 access points by taking energy consumption and delay
225 (including computing and transmission delay) into account,
226 and presented a game-theoretic analysis of the computation
227 offloading problem while mimicking the selfish nature of the
228 individuals [16]. Tao et al. investigated the problem of energy
229 optimization for multiple users with performance guarantee
230 [24]. You et al. studied optimal resource allocation for amulti-
231 user mobile-edge computation offloading system, where each
232 user has one task, by minimizing the weighted sum of mobile
233 energy consumption under the constraint on computation
234 latency, under the assumption of negligible cloud compu-
235 ting and result downloading time [28]. Zhang et al. studied
236 energy-efficient computation offloading mechanisms for
237 MEC in 5G heterogeneous networks by formulating an opti-
238 mization problem to minimize the energy consumption of an
239 offloading system with multiple mobile devices, where each
240 device has a computation task to be completed within certain
241 delay constraint, and the energy cost of both task computing
242 and file transmission are taken into consideration [30].
243 Multiple Users with Multiple Tasks. There are multiple
244 users, each has multiple tasks. Cardellini et al. considered a
245 usage scenario wheremultiple non-cooperativemobile users

246share the limited computing resources of a close-by cloudlet
247and can selfishly decide to send their computations to any of
248the three tiers, i.e., a local tier of mobile nodes, a middle tier
249(cloudlets) of nearby computing nodes, and a remote tier of
250distant cloud servers [6]. Mao et al. investigated the tradeoff
251between two critical but conflicting objectives in multi-user
252MEC systems, namely, the power consumption of mobile
253devices and the execution delay of computation tasks, by
254considering a stochastic optimization problem, for which,
255the CPU frequency, the transmit power, as well as the band-
256width allocation should be determined for each device in
257each time slot [20].
258Multiple MECs. All the above studies are for a single MEC.
259There has been investigation concerning multiple MECs.
260Tran and Pompili studied the problem of joint task offloading
261and resource allocation in a multi-cell and multi-server MEC
262system in order to maximize users task offloading gains,
263which aremeasured by the reduction in task completion time
264and energy consumption, by considering task offloading
265decision, uplink transmission power of mobile users, and
266computing resource allocation in the MEC servers [25].
267Our investigation in this paper belongs to the category of a
268single user with multiple (actually, infinite) tasks in a multi-
269ple MECs environment, quite different from all the existing
270researches. It is clear that the benefits of consideringmultiple
271MECs are two-fold. First, multiple MECs enhance the proc-
272essing power of mobile edge computing. Second, multiple
273MECs increase the flexibility of a UE in choosing an appro-
274priate MEC. We are not interested in offloading one task or a
275group of tasks, but a stream of tasks. Our performance and
276cost metrics are the average response time of all tasks (off-
277loadable and non-offloadable) generated on the UE and the
278average power consumption of the UE for both computation
279and communication, as well as the cost-performance ratio,
280i.e., the product of the above two metrics, which has rarely
281been considered before.

2823 PRELIMINARIES

283In this section,wepresent the preliminaries, including a queue-
284ing model and two power consumption models. (For reader’s
285convenience, Section 1 of the supplementary file, which can be
286found on the Computer Society Digital Library at http://doi.
287ieeecomputersociety.org/10.1109/TSUSC.2019.2904680, gives
288a summary of notations and their definitions in the order
289introduced in the paper.)

2903.1 A Queueing Model

291To analytically study computation offloading strategy opti-
292mization in mobile edge computing, we need to establish
293mathematical models. Throughout the paper, we use x to
294represent the expectation of a random variable x.
295Assume that there is a mobile UE and nMECs, i.e., MEC1,
296MEC2, . . . , MECn (see Fig. 1, which contains nþ 1 M/G/1
297queueing systems). Let pi be the probability thatMECi is pre-
298ferred for offloading when a new offloadable task is gener-
299ated, because the UE is in the vicinity of MECi, or there is a
300communication channel or special processing capability
301available in MECi, for all 1 � i � n. Clearly, we have p1 þ
302p2 þ � � � þ pn ¼ 1. WhenMECi is preferred for offloading, the
303UE can offload its computations toMECi, not otherMECs.
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305 tem. Thus, the UE is actually a server. There is a Poisson
306 stream of computation tasks with arrival rate �� (measured
307 by the number of arrival tasks per unit of time, e.g., second),
308 i.e., the inter-arrival times are independent and identically
309 distributed (i.i.d.) exponential random variables with mean
310 1=��. Note that a Poisson stream can be divided into sub-
311 streams and multiple Poisson streams can be combined into
312 a single Poisson stream. The arrival rate �� is decomposed

313 into �� ¼ �̂0 þ _�. That is, there is a Poisson stream of non-
314 offloadable computation tasks with arrival rate �̂0, and there
315 is a Poisson stream of offloadable computation tasks with
316 arrival rate _�. The stream of offloadable computation tasks is
317 further divided into n substreams with arrival rates _�1; _�2;
318 . . . ; _�n respectively, where _�i ¼ pi _�, for all 1 � i � n. Hence,
319 we have _� ¼ _�1 þ _�2 þ � � � þ _�n. The ith substream is gener-
320 atedwhenMECi is preferred for offloading, where 1 � i � n.
321 The ith substream is further divided into two sub-
322 substreams, i.e., _�i ¼ ~�i þ €�i, such that the sub-substream
323 with arrival rate ~�i is offloaded to MECi and processed
324 remotely in MECi, while the sub-substream with arrival rate
325 €�i is processed locally in the UE, where 1 � i � n. The vector
326 ð ~�1; ~�2; . . . ; ~�nÞ, where ~�i � _�i, 1 � i � n, is actually a compu-
327 tation offloading strategy of the UE. Note that the offloading
328 strategy does not specify which specific tasks are offloaded
329 to MECi, but how a substream is divided into two sub-
330 substreams of offloaded and non-offloaded tasks.
331 Let �0 ¼ �̂0 þ ~�0 be the total arrival rate of computation
332 tasks that are processed locally in the UE, where ~�0 ¼ €�1 þ
333 €�2 þ � � � þ €�n is the total arrival rate of offloadable computa-
334 tion tasks that are processed locally in the UE. Let ~� ¼ ~�1 þ
335 ~�2 þ � � � þ ~�n be the total arrival rate of computation tasks that
336 are offloaded to the n MECs. Since ~�0 ¼ _�� ~� ¼ _�� ð~�1 þ
337 ~�2 þ � � � þ ~�nÞ, we get �0 ¼ ��� ð~�1 þ ~�2 þ � � � þ ~�nÞ ¼ �̂ þ
338 _�� ð~�1 þ ~�2þ � � � þ ~�nÞ ¼ �̂þ ð _�1 þ _�2 þ � � � þ _�nÞ � ð~�1 þ ~�2þ
339 � � � þ ~�nÞ.
340 Each MEC is also treated as an M/G/1 queueing system.
341 Thus, an MEC is actually a server. There is a Poisson stream
342 of computation tasks with arrival rate �̂i to MECi. This
343 stream of tasks is already there and has nothing to do with
344 the UE. As mentioned above, MECi also accepts the ith sub-
345 substream with arrival rate ~�i from the UE. Therefore, the
346 total arrival rate of computation tasks that are processed by
347 MECi is �i ¼ �̂i þ ~�i, where 1 � i � n.
348 Each M/G/1 queueing system maintains a queue with
349 infinite capacity for waiting tasks when the server is busy in
350 processing other tasks. The first-come-first-served (FCFS)
351 queueing discipline is adopted.

352The execution requirements (measured by the number of
353processor cycles or the number of billion instructions (BI) to be
354executed) of the non-offloadable computation tasks generated
355on theUE are i.i.d. randomvariables r0 with an arbitrary proba-
356bility distribution. We assume that its mean r0 and second
357moment r20 are available. The execution requirements of the off-
358loadable computation tasks generated on the UE are i.i.d. ran-
359dom variables r with an arbitrary probability distribution. We
360assume that its mean r and second moment r2 are available.
361The execution requirements of the tasks already received and
362processedonMECi andnot offloaded from theUEare i.i.d. ran-
363dom variables ri with an arbitrary probability distribution. We
364assume that its mean ri and second moment r2i are available,
365where 1 � i � n.
366The amount of data (measured by the number of million
367bits (MB)) to be communicated between the UE and the
368MECs for offloadable tasks are i.i.d. random variables dwith
369an arbitrary probability distribution. We assume that its
370mean d and secondmoment d2 are available.
371The UE has execution speed s0 (measured by GHz or the
372number of billion instructions that can be executed in one
373second). MECi has execution speed si, where 1 � i � n. The
374communication speed (measured by the number of million
375bits that can be communicated in one second) between the
376UE and MECi is ci, where 1 � i � n.
377Wewould like to mention that the above queueing models
378can also be applicable to the situation when there is one MEC
379with multiple heterogeneous MEC servers S1; S2; . . . ; Sn,
380where eachSi corresponds toMECi, for all 1 � i � n. The con-
381dition ~�i � _�i can be translated into an equivalent condition
382ri � r�i , which states that the utilization of Si cannot exceed
383certain bound r�i , since Si has performance commitment for
384its users, where 1 � i � n.
385To summarize, the heterogeneous servers are different in
386vicinity (pi), execution speed (si), communication speed (ci),
387amount (�̂i) and characteristics (ri; r2i ) of preloaded tasks.

3883.2 Power Consumption Models

389To analytically study energy consumption in mobile edge
390computing, we need to establish server speed and power
391consumption models.
392Power dissipation and circuit delay in digital CMOS cir-
393cuits can be accurately modeled by simple equations, even
394for complex microprocessor circuits. CMOS circuits have
395dynamic, static, and short-circuit power dissipation; how-
396ever, the dominant component in a well designed circuit is
397dynamic power consumption Pd (i.e., the switching compo-
398nent of power) of the UE, which is approximately Pd ¼
399aCV 2f , where a is an activity factor, C is the loading capaci-
400tance, V is the supply voltage, and f is the clock frequency
401[7]. In the ideal case, the supply voltage and the clock fre-
402quency are related in such a way that V / ff for some con-
403stant f > 0 [29]. The execution speed s0 of the server in the
404UE is usually linearly proportional to the clock frequency,
405namely, s0 / f . For ease of discussion, we will assume that
406V ¼ bff and s0 ¼ cf , where b and c are some constants.
407Hence, we know that the dynamic power consumption of
408the UE is Pd ¼ aCV 2f ¼ ab2Cf2fþ1 ¼ ðab2C=c2fþ1Þs2fþ10 ¼
409�sa0 , where � ¼ ab2C=c2fþ1 and a ¼ 2fþ 1. For instance, by
410setting b ¼ 1:16, aC ¼ 7:0, c ¼ 1:0, f ¼ 0:5, a ¼ 2fþ 1 ¼ 2:0,
411and � ¼ ab2C=ca ¼ 9:4192, the value of Pd calculated by the

Fig. 1. Computation task offloading from a UE to nMECs.
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412 equation Pd ¼ aCV 2f ¼ �sa0 is reasonably close to that in [12]
413 for the Intel PentiumMprocessor.
414 The server in the UE still consumes some amount of
415 power Ps even when it is idle, which includes static power
416 dissipation, short circuit power dissipation, and other leak-
417 age and wasted power [1].
418 We will consider two types of server speed and power
419 consumption models. In the idle-speed model, the server in the
420 UE runs at zero speed when there is no task to perform.
421 Thus, the dynamic power consumption needs to take server
422 utilization into consideration. The average power consump-
423 tion for computation is P ¼ r0Pd þ Ps ¼ r0�s

a
0 þ Ps, where

424 r0 is the utilization of the server in the UE, which will be
425 available shortly. In the constant-speed model, the server in the
426 UE still runs at speed s0 even if there is no task to perform.
427 Hence, the power consumption for computation is P ¼ Pdþ
428 Ps ¼ �sa0 þ Ps, which is independent of server utilization.
429 In addition to the above power consumption of the
430 server, the UE also has a data transmission unit which also
431 consumes power. Let Pi be the transmission power of the
432 UE for MECi, where 1 � i � n. The data transmission rate ci
433 from the UE to the MECi is ci ¼W log 2ð1þ biPiÞ, where W
434 is the channel bandwidth and bi is a combined quantity
435 which summarizes various factors such as the channel gain
436 between the UE and MECi, the interference on the commu-
437 nication channel caused by other devices’ data transmission
438 to the same MEC, and the background noise power. Since
439 the average communication time for one offloaded task on

440 MECi is d=ci, the average energy consumption to complete
441 data transmission for one offloaded task on MECi is
442 Piðd=ciÞ. Thus, the average energy consumption to complete
443 data transmission for one offloaded task on all MECs is

J ¼
Xn
i¼1

~�i

~�
Pi

d

ci
¼

Xn
i¼1

~�i

~�
Pi

d

W log 2ð1þ biPiÞ

¼ d

W ~�

Xn
i¼1

~�i
Pi

log 2ð1þ biPiÞ :

445445

446 For ease of discussion, we assume that Pi is adjusted in such a
447 way that Pi=log 2ð1þ biPiÞ is a constant g for all 1 � i � n.
448 Therefore, the average energy consumption to complete data

449 transmission for one task is also a constant J ¼ gðd=W Þ (mea-
sured by Joule). Since there are ~� tasks offloaded per second,

the average energy consumption per second (i.e., the average

power consumption) for data communication is ~�J , which

should be taken into account. Thus, the average power consump-
tion of the UE (measured by Watt) for both computation and

450 communication is P ¼ r0�s
a
0 þ Ps þ ~�J for the idle-speed

451 model, and P ¼ �sa0 þ Ps þ ~�J for the constant-speed model.
452 Notice that P is themain costmetric inmobile edge computing.

453 4 PROBLEM DEFINITIONS

454 Before we define our optimization problems, we derive
455 the average response time of all tasks (offloadable and non-
456 offloadable) generated on the UE. This is the main perfor-
457 mance metric in mobile edge computing.

458 Theorem 1. The average response time of all tasks generated on
459 the UE is

T ¼ �0

��

�
�̂0

�0
� r0
s0
þ

~�0

�0
� r
s0

þ �̂0ðr20=s20Þ þ ~�0ðr2=s20Þ
2ð1� ð�̂0ðr0=s0Þ þ ~�0ðr=s0ÞÞÞ

�

þ
Xn
i¼1

~�i

��

��
r

si
þ d

ci

�

þ �̂iðr2i =s2i Þ þ ~�iðr2=s2i þ 2rd=ðsiciÞ þ d2=c2i Þ
2ð1� ð�̂iðri=siÞ þ ~�iðr=si þ d=ciÞÞÞ

�
: 461461

462

463Proof. Based on the queueing model for the UE in Section
4643.1, we know that the execution times of non-offloadable
465tasks on the UE are i.i.d. random variables with mean
466r0=s0 and second moment r20=s

2
0, and that the execution

467times of offloadable tasks on the UE are i.i.d. random var-
468iables with mean r=s0 and second moment r2=s20. There-
469fore, the execution times of all tasks on the UE are i.i.d.
470random variables x0 with mean

x0 ¼ �̂0

�0
� r0
s0
þ

~�0

�0
� r
s0

;

472472

473and second moment

x2
0 ¼

�̂0

�0
� r

2
0

s20
þ

~�0

�0
� r

2

s20
;

475475

476where we notice that �̂0=�0 is the percentage of non-
477offloadable tasks on the UE, while ~�0=�0 is the percentage
478of offloadable tasks on the UE. The utilization of the
479server in the UE is

r0 ¼ �0x0 ¼ �̂0
r0
s0
þ ~�0

r

s0
:

481481

482The average waiting time of the tasks on the UE is ([14],
483p. 190)

W0 ¼ �0x2
0

2ð1� r0Þ
;

485485

486where

�0x
2
0 ¼ �̂0

r20
s20
þ ~�0

r2

s20
:

488488

489The average response time of the tasks on the UE is

T0 ¼ x0 þW0 ¼ x0 þ �0x2
0

2ð1� r0Þ

¼ �̂0

�0
� r0
s0
þ

~�0

�0
� r
s0

þ �̂0ðr20=s20Þ þ ~�0ðr2=s20Þ
2ð1� ð�̂0ðr0=s0Þ þ ~�0ðr=s0ÞÞÞ

:
491491

492

493Furthermore, based on the queueing model for the
494MECs in Section 3.1, we know that the execution times of
495the tasks already processed on MECi and not offloaded
496from the UE are i.i.d. random variables with mean ri=si
497and second moment r2i =s

2
i . The execution times of the

498tasks offloaded from the UE are i.i.d. random variables
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499 r=si þ d=ci, where r=si is the computation time and d=ci is
500 the communication time. These random variables have
501 mean r=si þ d=ci and second moment r2=s2i þ 2rd=ðsiciÞþ
502 d2=c2i . Therefore, the execution times of all tasks on MECi

503 are i.i.d. random variables xi with mean

xi ¼ �̂i

�i
� ri
si
þ

~�i

�i

�
r

si
þ d

ci

�
;

505505

506 and second moment

x2
i ¼

�̂i

�i
� r

2
i

s2i
þ

~�i

�i

�
r2

s2i
þ 2rd

sici
þ d2

c2i

�
;

508508

509 where we notice that �̂i=�i is the percentage of tasks
510 already processed on MECi and not offloaded from the
511 UE, while ~�i=�i is the percentage of tasks offloaded from
512 the UE. The utilization of the server in MECi is

ri ¼ �ixi ¼ �̂i
ri
si
þ ~�i

�
r

si
þ d

ci

�
:

514514

515 The average waiting time of the tasks on MECi is

Wi ¼ �ix
2
i

2ð1� riÞ
;

517517

518 where

�ix2
i ¼ �̂i

r2i
s2i
þ ~�i

�
r2

s2i
þ 2rd

sici
þ d2

c2i

�
:

520520

521 The average response time of offloaded tasks on MECi is

Ti ¼
�
r

si
þ d

ci

�
þWi ¼

�
r

si
þ d

ci

�
þ �ix

2
i

2ð1� riÞ

¼
�
r

si
þ d

ci

�

þ �̂iðr2i =s2i Þ þ ~�iðr2=s2i þ 2rd=ðsiciÞ þ d2=c2i Þ
2ð1� ð�̂iðri=siÞ þ ~�iðr=si þ d=ciÞÞÞ

;

523523

524 for all 1 � i � n.
525 The average response time of all offloadable and non-
526 offloadable tasks generated on the UE is

T ¼ �0

��
T0 þ

~�1

��
T1 þ

~�2

��
T2 þ � � � þ

~�n

��
Tn:

528528

529 The theorem is proved by substituting all the Ti’s into the
530 last equation, where 0 � i � n. tu
531 In addition to the cost metric P and the performance met-
532 ric T in mobile edge computing, we can also define the cost-
533 performance ratio (i.e., the power-time product) R ¼ PT .
534 Now, we are ready to formally describe our optimiza-
535 tion problems to be solved in this paper, which are multi-
536 variable optimization problems.
537 Minimization of Average Response Time with Average Power
538 Consumption Constraint. Given a UE specified by the param-

539 eters p1; p2; . . . ; pn; �̂0; _�; r0; r20; r; r
2; d; d2; �;a; Ps; J , and n

540 MECs specified by the parameters �̂i; ri; r2i ; si; ci, where
541 1 � i � n, and power constraint P �, find a computation

542offloading strategy ð~�1; ~�2; . . . ; ~�nÞ, such that T is mini-
543mized, subject to the conditions that P � P �, ~�i � _�i, for all
5441 � i � n, and ri < 1, for all 0 � i � n.
545Minimization of Average Power Consumption with Average
546Response Time Constraint. Given a UE specified by the param-

547eters p1; p2; . . . ; pn; �̂0; _�; r0; r20; r; r
2; d; d2; �;a; Ps; J , and n

548MECs specified by the parameters �̂i; ri; r
2
i ; si; ci, where

5491 � i � n, and performance constraint T �, find a computa-
550tion offloading strategy ð~�1; ~�2; . . . ; ~�nÞ, such that P is mini-
551mized, subject to the conditions that T � T �, ~�i � _�i, for all
5521 � i � n, and ri < 1, for all 0 � i � n.
553Minimization of Cost-Performance Ratio. Given a UE specified

554by the parameters p1; p2; . . . ; pn; �̂0; _�; r0; r20; r; r
2; d; d2, �;a;

555Ps; J , and n MECs specified by the parameters �̂i; ri; r2i ; si; ci,

556where 1 � i � n, find a computation offloading strategy
557ð~�1; ~�2; . . . ; ~�nÞ, such that R is minimized, subject to the condi-
558tions that ~�i � _�i, for all 1 � i � n, and ri < 1, for all
5590 � i � n.
560Notice that a computation offloading strategy ð~�1; ~�2; . . . ;
561~�nÞ is also a load distribution of offloadable tasks on the mul-
562tiple heterogeneous MEC servers. Our optimization prob-
563lems are actually load balancing problems, such that
564desired objectives are optimized.
565We would like to emphasize that once an optimization
566problem is solved, i.e., an optimal computation offloading
567strategy ð~�1; ~�2; . . . ; ~�nÞ is found, it can be easily implemented
568in a real mobile edge computing environment. When a new
569offloadable task which belongs to _�i is generated, it is
570offloaded toMECi with probability ~�i= _�i.

5715 THE APPROACH

572In this section, we give an outline of our method to solve the
573three optimization problems.
574Wewould like tomention that the above optimization prob-
575lems include a subproblem, i.e., the determination of s0, the
576execution speed of the UE, which depends on the power con-
577straint P � or the performance constraint T �, and the computa-
578tion offloading strategy ð ~�1; ~�2; . . . ; ~�nÞ, among other factors.
579However, if we simply view s0 as a function of ~�1; ~�2; . . . ; ~�n,
580then the problems will be more sophisticated and challenging
581to solve. We devise a unique method in the following discus-
582sion, and based on that, we develop a sequence of efficient
583numerical algorithms to solve the three optimization problems.
584Let us rewrite T in Theorem 1 as a function of ~�1; ~�2; . . . ; ~�n

T ð~�1; ~�2; . . . ; ~�nÞ

¼
��� ð~�1 þ ~�2 þ � � � þ ~�nÞ

��

�
�̂0

��� ð~�1 þ ~�2 þ � � � þ ~�nÞ
� r0
s0

þ
_�� ð ~�1 þ ~�2 þ � � � þ ~�nÞ
��� ð ~�1 þ ~�2 þ � � � þ ~�nÞ

� r
s0

þ �̂0ðr20=s20Þ þ ð _�� ð~�1 þ ~�2 þ � � � þ ~�nÞÞðr2=s20Þ
2ð1� ð�̂0ðr0=s0Þ þ ð _�� ð~�1 þ ~�2 þ � � � þ ~�nÞÞðr=s0ÞÞÞ

�

þ
Xn
i¼1

~�i

��

��
r

si
þ d

ci

�

þ �̂iðr2i =s2i Þ þ ~�iðr2=s2i þ 2rd=ðsiciÞ þ d2=c2i Þ
2ð1� ð�̂iðri=siÞ þ ~�iðr=si þ d=ciÞÞÞ

�
: 586586

587
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588 For the idle-speed model, we represent the UE power
589 consumption P as a function of ~�1; ~�2; . . . ; ~�n

P ð~�1; ~�2; . . . ; ~�nÞ ¼�
�̂0

r0
s0
þ ð _�� ð~�1 þ ~�2 þ � � � þ ~�nÞÞ r

s0

�
�sa0 þ Ps þ ~�J:

591591

592 For a fixed ~� ¼ ~�1 þ ~�2 þ � � � þ ~�n, we know that the condi-
593 tion P ð ~�1; ~�2; . . . ; ~�nÞ ¼ P � implies that

�
�̂0

r0
s0
þ ð _�� ~�Þ r

s0

�
�sa0 þ Ps þ ~�J ¼ P �;

595595

596 which yields

s0 ¼
�

P � � Ps � ~�J

�ð�̂0r0 þ ð _�� ~�ÞrÞ

�1=ða�1Þ
:

598598

599 For the constant-speed model, we also represent the UE
600 power consumption P as a function of ~�1; ~�2; . . . ; ~�n

P ð~�1; ~�2; . . . ; ~�nÞ ¼ �sa0 þ Ps þ ~�J:
602602

603 For a fixed ~�, we know that the condition P ð~�1; ~�2; . . . ; ~�nÞ ¼
604 P � implies that

�sa0 þ Ps þ ~�J ¼ P �;
606606

607 which yields

s0 ¼
�
P � � Ps � ~�J

�

�1=a

:

609609

610 Hence, for a given ~�, s0 becomes available.
611 Furthermore, we have

T ð ~�1; ~�2; . . . ; ~�nÞ ¼
��� ~�
��

T0

þ
Xn
i¼1

~�i

��

��
r

si
þ d

ci

�

þ �̂iðr2i =s2i Þ þ ~�iðr2=s2i þ 2rd=ðsiciÞ þ d2=c2i Þ
2ð1� ð�̂iðri=siÞ þ ~�iðr=si þ d=ciÞÞÞ

�
;

(1)

613613

614 where

T0 ¼ �̂0

��� ~�
� r0
s0
þ

_�� ~�
��� ~�

� r
s0
þ �̂0ðr20=s20Þ þ ð _�� ~�Þðr2=s20Þ
2ð1� ð�̂0ðr0=s0Þ þ ð _�� ~�Þðr=s0ÞÞÞ

;

616616

617 which is entirely known for a fixed ~�. Therefore, for both
618 power consumption models, we essentially need to find ð ~�1;
619 ~�2; . . . ; ~�nÞ, which minimize T ð~�1; ~�2; . . . ; ~�nÞ in Eq. (1),
620 under the constraint that

~�1 þ ~�2 þ � � � þ ~�n ¼ ~�;
622622

623 for a given ~�. Then we decide the value of ~�, such that T ð ~�1;
624 ~�2; . . . ; ~�nÞ is optimized.
625 All our main algorithms in this paper (i.e., Algorithms 5,
626 6, 7) are based on several basic algorithms (i.e., Algorithm 1
627 for finding ~�i, Algorithm 2 for finding f, and Algorithms 3

628 and 4 for finding ~�).

6296 MINIMIZATION OF AVERAGE RESPONSE TIME

630WITH AVERAGE POWER CONSUMPTION

631CONSTRAINT

632In this section, we solve the problem of minimization of
633average response time with average power consumption
634constraint.

6356.1 A Numerical Method

636Our optimization problem to minimize the average response
637time with average power consumption constraint can be
638solved by using the method of Lagrange multiplier, namely,

639rT ð~�1; ~�2; . . . ; ~�nÞ ¼ frF ð~�1; ~�2; . . . ; ~�nÞ, where F ð ~�1; ~�2; . . . ;

640~�nÞ ¼ ~�1 þ ~�2 þ � � � þ ~�n ¼ ~�, that is, @T=@~�i ¼ f@F=@ ~�i ¼ f,

641for all 1 � i � n, where f is a Lagrange multiplier. Notice

642that

@T

@ ~�i

¼ 1
��

��
r

si
þ d

ci

�

þ �̂iðr2i =s2i Þ þ ~�iðr2=s2i þ 2rd=ðsiciÞ þ d2=c2i Þ
2ð1� ð�̂iðri=siÞ þ ~�iðr=si þ d=ciÞÞÞ

�

þ
~�i

��

�
r2=s2i þ 2rd=ðsiciÞ þ d2=c2i

2ð1� ð�̂iðri=siÞ þ ~�iðr=si þ d=ciÞÞÞ

þ ðr=si þ d=ciÞð�̂iðr2i =s2i Þ þ ~�iðr2=s2i þ 2rd=ðsiciÞ þ d2=c2i ÞÞ
2ð1� ð�̂iðri=siÞ þ ~�iðr=si þ d=ciÞÞÞ2

�
;

644644

645for all 1 � i � n.
646In the following, we develop a numerical method (which
647consists of a series of numerical algorithms) to solve the
648problem of minimization of average response time with
649average power consumption constraint.

650Algorithm 1. Find ~�i

651Input: ��; r; r2; d; d2, and �̂i; ri; r2i ; si; ci, and f.

652Output: ~�i such that @T=@~�i ¼ f.
6531: Initialize the search interval of ~�i as ð0; ~��i Þ;
6542: while (the length of the search interval is � �) do
6553: ~�i  the middle point of the search interval;
6564: Calculate @T=@~�i;
6575: if (@T=@~�i < f) then
6586: Change the search interval to the right half;
6597: else
6608: Change the search interval to the left half;
6619: end if
66210: end do;
66311: ~�i  the middle point of the search interval;
66412: Calculate @T=@~�i;
66513: return ~�i.

666First, for a given f, our numerical algorithm to find ~�i

667such that @T=@~�i ¼ f is given in Algorithm 1. The algorithm
668uses the classical bisection method based on the observation
669that @T=@~�i is an increasing function of ~�i. As shown in the

670proof of Theorem 2, ~�i is in the range ð0; ~��i Þ, where

~��i ¼
�
1� �̂i

ri
si

��
r

si
þ d

ci

��1
:

672672
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673 (The standard bisection method is described in [4], p. 22).
674 The algorithm terminates when the search interval is shorter
675 than �. We set � ¼ 10�10 in this paper. Let I denote the maxi-
676 mum length of all initial search intervals in this paper.
677 Then, the time complexity of Algorithm 1 is Oðlog ðI=�ÞÞ.

678 Algorithm 2. Find f and ~�1; ~�2; . . . ; ~�n

679 Input: ��; r; r2; d; d2, and �̂i; ri; r2i ; si; ci, for all 1 � i � n, and ~�.

680 Output: f and ~�1; ~�2; . . . ; ~�n, such that @T=@~�i ¼ f, for all
681 1 � i � n, and ~�1 þ ~�2 þ � � � þ ~�n ¼ ~�.
682 1: Initialize the search interval of f as (0, ub), where ub is suffi-
683 ciently large;
684 2: while (the length of the search interval is � �) do
685 3: f the middle point of the search interval;
686 4: for i 1 to n do
687 5: Find ~�i so that @T=@~�i ¼ f using Algorithm 1;
688 6: end do;
689 7: if (~�1 þ ~�2 þ � � � þ ~�n < ~�) then
690 8: Change the search interval to the right half;
691 9: else
692 10: Change the search interval to the left half;
693 11: end if
694 12: end do;
695 13: f the middle point of the search interval;
696 14: for i 1 to n do
697 15: Find ~�i such that @T=@~�i ¼ f using Algorithm 1;
698 16: end do;
699 17: return f and ~�1; ~�2; . . . ; ~�n.

700 Second, for a given ~�, our numerical algorithm to find f

701 and ~�1; ~�2; . . . ; ~�n, such that @T=@~�i ¼ f, for all 1 � i � n, and

702 ~�1 þ ~�2 þ � � � þ ~�n ¼ ~�, is given in Algorithm 2. Again, the
703 algorithm uses the classical bisection method based on the
704 observation that ~�i is an increasing function f, and thus
705 ~�1 þ ~�2 þ � � � þ ~�n is also an increasing function f. Due to the
706 nested loops and the calling of Algorithm 1, the time com-
707 plexity of Algorithm 2 isOðnðlog ðI=�ÞÞ2Þ.

708 Algorithm 3. Find ~�

709 Input: p1; p2; . . . ; pn; �̂0; _�; r0; r20; r; r
2; d; d2; �;a; Ps; J , and �̂i; ri;

710 r2i ; si; ci, where 1 � i � n, and power constraint P �.
711 Output: ~� such that T is minimized.
712 1: Initialize the search interval of ~� by using Theorem 2;
713 2: while (the length of the search interval is � �) do
714 3: ~� the middle point of the search interval;
715 4: Call Algorithm 2 to get ~�1; ~�2; . . . ; ~�n;
716 5: Calculate s0;
717 6: Calculate @T=@~�;
718 7: if (@T=@~� < 0) then
719 8: Change the search interval to the right half;
720 9: else
721 10: Change the search interval to the left half;
722 11: end if
723 12: end do;
724 13: ~� the middle point of the search interval;
725 14: return ~�.

726 Third, we view T ð~�Þ as a function of ~�. Our numerical
727 algorithm to find ~� such that @T=@~� ¼ 0 (i.e., T is minimized)
728 is given in Algorithm 3. Again, the algorithm uses the classi-
729 cal bisection method based on the observation that T is a

730convex function, and @T=@ ~� is an increasing function ~�. Since
731there is no analytical form of @T=@ ~�, the value of @T=@~� is
732obtained by calculating

@T

@~�
¼ T ð~�þ DÞ � T ð~�Þ

D
;

734734

735for sufficiently small D. We set D ¼ 10�7 in this paper. Due
736to the nested loops and the calling of Algorithm 2, the time
737complexity of Algorithm 3 is Oðnðlog ðI=�ÞÞ3Þ.
738The determination of the search interval of ~� is critical to
739satisfy the many constraints in our optimization problem.
740The following theorem gives the initial search interval of ~�
741in Algorithm 3.

742Theorem 2. ~� is in the range

~� 2
�
~��;min

�
P � � Ps

J
;

Xn
i¼1

min

�
_�i;

�
1� �̂i

ri
si

��
r

si
þ d

ci

��1���
;

744744

745where ~�� is the solution to the equation

�̂0r0 þ ð _�� ~�Þr ¼
�
P � � Ps � ~�J

�

�1=a

;

747747

748in the range ~�� 2 ð0; _�Þ.
749Proof. There are several conditions which ~�must satisfy.
750First, recall that

s0 ¼
�

P � � Ps � ~�J

�ð�̂0r0 þ ð _�� ~�ÞrÞ

�1=ða�1Þ
;

752752

753for the idle-speed model, and

s0 ¼
�
P � � Ps � ~�J

�

�1=a

;

755755

756for the constant-speed model. Since s0 > 0, we get

~� <
P � � Ps

J
:

758758

759The above condition essentially states that ~� cannot be
760too large; otherwise, the UE will not be able to finish data
761transmissions for offloaded tasks.
762Second, the condition r0 < 1 requires that

�̂0
r0
s0
þ ð _�� ~�Þ r

s0
< 1;

764764

765that is

�̂0r0 þ ð _�� ~�Þr < s0:
767767

768For the idle-speed model, we have

�̂0r0 þ ð _�� ~�Þr <

�
P � � Ps � ~�J

�ð�̂0r0 þ ð _�� ~�ÞrÞ

�1=ða�1Þ
;

770770
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771 that is

�̂0r0 þ ð _�� ~�Þr <

�
P � � Ps � ~�J

�

�1=a

:

773773

774 For the constant-speed model, we get the same inequal-
775 ity. If ~�� is the solution to the equation

�̂0r0 þ ð _�� ~�Þr ¼
�
P � � Ps � ~�J

�

�1=a

;

777777

778 in the range ~�� 2 ð0; _�Þ, then we have ~� > ~��.
779 Third, the condition ri < 1 implies that

�̂i
ri
si
þ ~�i

�
r

si
þ d

ci

�
< 1;

781781

782 which yields

~�i <

�
1� �̂i

ri
si

��
r

si
þ d

ci

��1
;

784784

785 which, together with the condition ~�i � _�i, gives

~�i < min

�
_�i;

�
1� �̂i

ri
si

��
r

si
þ d

ci

��1�
;

787787

788 for all 1 � i � n. Consequently, we have

~� <
Xn
i¼1

min

�
_�i;

�
1� �̂i

ri
si

��
r

si
þ d

ci

��1�
:

790790

791

792 To summarize the above discussion, we know that ~� is
793 in the range given in the theorem. tu
794 It is clear that ~�� does not accommodate a closed-form
795 expression. However, it can be easily obtained numerically,
796 as shown in Algorithm 4, where we observe that

fð~�Þ ¼ ð�̂0r0 þ ð _�� ~�ÞrÞ
��

P � � Ps � ~�J

�

�1=a

;

798798

799 is a decreasing function of ~�. It is clear that the time com-
800 plexity of Algorithm 4 is Oðlog ðI=�ÞÞ.

801 Algorithm 4. Find ~��

802 Input: �̂0; _�; r0; r; P
�; Ps; J; �;a.

803 Output: ~�� such that fð ~��Þ ¼ 1.
804 1: Initialize the search interval of ~�� as ð0; _�Þ;
805 2: while (the length of the search interval is � �) do
806 3: ~��  the middle point of the search interval;
807 4: Calculate fð ~��Þ;
808 5: if (fð ~��Þ > 1) then
809 6: Change the search interval to the right half;
810 7: else
811 8: Change the search interval to the left half;
812 9: end if
813 10: end do;
814 11: ~��  the middle point of the search interval;
815 12: return ~��.

816Notice that line (6) of Algorithm 3 uses a numerical
817method to calculate @T=@~�. The following theorem gives the
818accuracy of this method.

819Theorem 3. The ~� found by Algorithm 3 deviates less than 2D
820from the real value of ~�.

821Proof. Let ~�m be the value set in line (3) and ~�r be the real
822value of ~�. The correctness of the Algorithm 3 depends on
823the decision in line (7). We say that Algorithm 3 makes a
824correct decision if the outcome of line (7) is consistent
825with the real sign of @T=@ ~�m. If every time line (7) makes
826a correct decision on whether @T=@~�m > 0, then the
827~� found by Algorithm 3 is exactly the real value ~�r. How-
828ever, Algorithm 3 may make an incorrect decision due to
829the calculation of @T=@~�m ¼ ðT ð~�m þ DÞ � T ð ~�mÞÞ=D. This
830may happen when ~�m < ~�r. Clearly, @T=@~�m < 0, and

831the search interval is changed to the right half. However, if

832~�r < ~�m þ D and T ð~�m þ DÞ > T ð ~�mÞ, then @T=@~�m > 0

833by using the numerical method, and the search interval is

834changed to the left half. This means that Algorithm 3 will

835never find ~�r, i.e., the real value of ~�. Algorithm 3 contin-

836ues the search andmakes correct decisions until the search

837interval is less than 2D. In this case, the middle point ~�m of

838the search interval in line (3) can again be too close to ~�r, so

839that Algorithm 3 makes an incorrect decision. However,

840since the search interval is small enough, the ~� found by

841Algorithm 3 deviates less than 2D from the real value of ~�.
842The theorem is proven. tu
843Finally, we are ready to present our main algorithm for
844minimization of average response time with average power
845consumption constraint, which is described in Algorithm 5.
846The overall time complexity of Algorithm 5 is Oðnðlog
847ðI=�ÞÞ3Þ. Algorithm 5 is able to produce management deci-
848sions, i.e., an optimal computation offloading strategy ð~�1; ~�2;
849. . . ; ~�nÞ, with time complexity independent of the types of
850tasks.
851We would like to mention that due to the efficiency of the
852bisection method, all our algorithms are extremely fast. The
853reason is that for all real search intervals, the value of
854log ðI=�Þ is just a small constant.
855We also emphasize that Algorithm 5 will be employed to
856solve the other two optimization problems in Sections 7 and
8578. In other words, the three optimization problems in this
858paper are very closely related.

859Algorithm 5. Minimize Average Response Time with
860Average Power Consumption Constraint

861Input: p1; p2; . . . ; pn; �̂0; _�; r0; r20; r; r
2; d; d2; �;a; Ps; J , and

862�̂i; ri; r2i ; si; ci, where 1 � i � n, and power constraint P �.
863Output: ð~�1; ~�2; . . . ; ~�nÞ and the minimized T .
8641: Call Algorithm 4 to get ~��;
8652: Call Algorithm 3 to get ~�;
8663: Call Algorithm 2 to get ~�1; ~�2; . . . ; ~�n;
8674: Calculate T ;
8685: return ð ~�1; ~�2; . . . ; ~�nÞ and T .

8696.2 Numerical Examples and Data

870In this section, we demonstrate numerical examples and
871data.
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872 Let us consider a UE with �̂0 ¼ 1:0 tasks/second, _� ¼ 4:5
873 tasks/second, �� ¼ �̂0 þ _� ¼ 5:5 tasks/second, r0 ¼ 0:5 BI,
874 r20 ¼ 0:4 BI2, r ¼ 1:5 BI, r2 ¼ 3:0 BI2, d ¼ 1:0 MB, d2 ¼ 1:5
875 MB2, � ¼ 1:5, a ¼ 3:0, Ps ¼ 2:0 Watts, J ¼ 0:1 Joules, and
876 P � ¼ 5:0Watts.
877 There are n ¼ 7 MECs with p1 ¼ 1:0=n� 0:06, p2 ¼
878 1:0=n� 0:04, p3 ¼ 1:0=n� 0:02, p4 ¼ 1:0=n, p5 ¼ 1:0=nþ
879 0:02, p6 ¼ 1:0=nþ 0:04, p7 ¼ 1:0=nþ 0:06. The n MECs are
880 set as _�i ¼ pi _� tasks/second, �̂i ¼ 1:50� 0:05ði� 1Þ tasks/
881 second, ri ¼ 1:0þ 0:05ði� 1Þ BI, r2i ¼ ð1:35þ 0:05ði� 1ÞÞri2
882 BI2, si ¼ 2:5þ 0:1ði� 1Þ GHz, ci ¼ 10:0þ 0:5ði� 1ÞMB/sec-
883 ond, for all 1 � i � n.
884 In Table 1, we show numerical data for minimizing aver-
885 age response time with average power consumption con-
886 straint for the idle-speed model. First, we show pi and _�i for

887 all 1 � i � n. Second, we show �̂i, ri, r2i , si, for all 0 � i � n.
888 Third, we show r=si (i.e., the average computation time of
889 an offloadable task on the UE or an MECi), ri=si (i.e., the
890 average computation time of a non-offloadable task on the
891 UE or a preloaded task on MECi), and �̂iðri=siÞ (i.e., the uti-
892 lization due to non-offloadable tasks on the UE or preloaded
893 tasks on MECi), for all 0 � i � n. Fourth, we show ~��i in
894 Algorithm 1 and obtained in the proof of Theorem 2, and ci,

895d=ci, for all 1 � i � n. Finally, we display the output of our
896algorithms, including ~�i (i.e., the optimal computation off-
897loading strategy), �i (i.e., the actual workload on each
898server), ri (i.e., the utilization of each server), and Ti (i.e.,
899the average response time of each server), for all 0 � i � n.
900The search interval of ~� found by Algorithm 4 is
901ð4:0328485; 4:4729836Þ, and the optimal choice of ~� found by
902Algorithm 3 is ~� ¼ 4:1456417 tasks/second. The minimized
903average response time of all offloadable and non-offload-
904able tasks generated on the UE obtained by Algorithm 5 is
905T ¼ 4:4539410 seconds.
906In Table 2, we show numerical data for minimizing aver-
907age response time with average power consumption con-
908straint for the constant-speed model. All the data are
909displayed in the sameway as that of Table 1. The search inter-
910val of ~� found by Algorithm 4 is ð4:0328485; 4:4729836Þ, and
911the optimal choice of ~� found byAlgorithm 3 is ~� ¼ 4:1651254
912tasks/second. The minimized average response time of all
913offloadable and non-offloadable tasks generated on the UE
914obtained byAlgorithm 5 is T ¼ 4:7963025 seconds.
915From both Tables 1 and 2, we make the following observa-
916tions. (1) MEC1, MEC2, MEC3 receive all the offloadable tasks
917designated to them, i.e., �̂i ¼ _�i, for all 1 � i � 3, due to their

TABLE 1
Numerical Data for Minimizing Average Response Time with Average Power Consumption Constraint (Idle-Speed Model)

0 1 2 3 4 5 6 7

pi — 0.0828571 0.1028571 0.1228571 0.1428571 0.1628571 0.1828571 0.2028571
_�i — 0.3728571 0.4628571 0.5528571 0.6428571 0.7328571 0.8228571 0.9128571
�̂i 1.0000000 1.5000000 1.4500000 1.4000000 1.3500000 1.3000000 1.2500000 1.2000000
ri 0.5000000 1.0000000 1.0500000 1.1000000 1.1500000 1.2000000 1.2500000 1.3000000

r2i 0.4000000 1.3500000 1.5435000 1.7545000 1.9837500 2.2320000 2.5000000 2.7885000
si 1.2926435 2.5000000 2.6000000 2.7000000 2.8000000 2.9000000 3.0000000 3.1000000
r=si 1.1604128 0.6000000 0.5769231 0.5555556 0.5357143 0.5172414 0.5000000 0.4838710
ri=si 0.3868043 0.4000000 0.4038462 0.4074074 0.4107143 0.4137931 0.4166667 0.4193548
�̂iðri=siÞ 0.3868043 0.6000000 0.5855769 0.5703704 0.5544643 0.5379310 0.5208333 0.5032258
~��i — 0.3728571 0.4628571 0.5528571 0.6428571 0.7328571 0.8228571 0.8858407
ci — 10.0000000 10.5000000 11.0000000 11.5000000 12.0000000 12.5000000 13.0000000
d=ci — 0.1000000 0.0952381 0.0909091 0.0869565 0.0833333 0.0800000 0.0769231
~�i 0.3543583 0.3728571 0.4628571 0.5528571 0.6145553 0.6625006 0.7132343 0.7667800
�i 1.3543583 1.8728571 1.9128571 1.9528571 1.9645553 1.9625006 1.9632343 1.9667800
ri 0.7980062 0.8237143 0.8526099 0.8775132 0.8836903 0.8806038 0.8774505 0.8742484
Ti 2.7566227 2.6903135 3.5453376 4.9879970 5.7203121 5.6276726 5.5339270 5.4392547

TABLE 2
Numerical Data for Minimizing Average Response Time with Average Power Consumption Constraint (Constant-Speed Model)

0 1 2 3 4 5 6 7

pi — 0.0828571 0.1028571 0.1228571 0.1428571 0.1628571 0.1828571 0.2028571
_�i — 0.3728571 0.4628571 0.5528571 0.6428571 0.7328571 0.8228571 0.9128571
�̂i 1.0000000 1.5000000 1.4500000 1.4000000 1.3500000 1.3000000 1.2500000 1.2000000
ri 0.5000000 1.0000000 1.0500000 1.1000000 1.1500000 1.2000000 1.2500000 1.3000000

r2i 0.4000000 1.3500000 1.5435000 1.7545000 1.9837500 2.2320000 2.5000000 2.7885000
si 1.1986849 2.5000000 2.6000000 2.7000000 2.8000000 2.9000000 3.0000000 3.1000000
r=si 1.2513714 0.6000000 0.5769231 0.5555556 0.5357143 0.5172414 0.5000000 0.4838710
ri=si 0.4171238 0.4000000 0.4038462 0.4074074 0.4107143 0.4137931 0.4166667 0.4193548
�̂iðri=siÞ 0.4171238 0.6000000 0.5855769 0.5703704 0.5544643 0.5379310 0.5208333 0.5032258
~��i — 0.3728571 0.4628571 0.5528571 0.6428571 0.7328571 0.8228571 0.8858407
ci — 10.0000000 10.5000000 11.0000000 11.5000000 12.0000000 12.5000000 13.0000000

d=ci — 0.1000000 0.0952381 0.0909091 0.0869565 0.0833333 0.0800000 0.0769231
~�i 0.3348746 0.3728571 0.4628571 0.5528571 0.6190294 0.6672357 0.7182359 0.7720529
�i 1.3348746 1.8728571 1.9128571 1.9528571 1.9690294 1.9672357 1.9682359 1.9720529
ri 0.8361763 0.8237143 0.8526099 0.8775132 0.8860872 0.8830529 0.8799513 0.8767998
Ti 3.6100259 2.6903135 3.5453376 4.9879970 5.9748127 5.8782116 5.7804314 5.6816622
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918 relatively low _�i. (2) MEC4, MEC5, MEC6, MEC7 do not
919 receive all the offloadable tasks designated to them, and the
920 remaining offloadable tasks are processed by the UE itself,
921 i.e., �̂i < _�i, for all 4 � i � 7, due to their relatively high _�i.
922 (3) Given the same power constraint P �, compared with the
923 idle-speed model, the constant-speed model results in
924 reduced s0 and ~�0, increased ~�, increased Ti for all i ¼
925 0; 4; 5; 6; 7, and increased T .

926 6.3 Power-Performance Tradeoff

927 In this section, we show the power-performance tradeoff and
928 the impact of various parameters for the idle-speedmodel.
929 In Fig. 2, we examine the impact of the speed of data
930 communication on the average response time of all offload-
931 able and non-offloadable tasks generated on the UE for the
932 idle-speed model. We show T as a function of P � for ci ¼
933 cþ 0:5ði� 1Þ MB/second, where c ¼ 10:0; 15:0; 20:0; 25:0;
934 30:0MD/second.
935 In Fig. 3, we examine the impact of the amount of data
936 communication on the average response time of all offload-
937 able and non-offloadable tasks generated on the UE for the
938 idle-speed model. We show T as a function of P � for d ¼
939 0:6; 0:7; 0:8; 0:9; 1:0MD.

940In Fig. 4, we examine the impact of the energy consump-
941tion of data communication on the average response time of
942all offloadable and non-offloadable tasks generated on the
943UE for the idle-speed model. We show T as a function of P �

944for J ¼ 0:02; 0:04; 0:06; 0:08; 0:10 Joules.
945We have the following observations. (1) These figures all
946demonstrate the power-performance tradeoff, i.e., more
947(less, respectively) average power consumption results in
948shorter (longer, respectively) average response time. (2)
949These figures also demonstrate the impact of various
950parameters. Figs. 2 and 3 show that for the same power con-
951straint, increasing the speed of data communication or
952decreasing the amount of data communication results in
953noticeable decrement in the average response time. The rea-
954son is that the processing times of offloaded tasks on all the
955MECs are reduced. (3) However, Fig. 4 shows that decreas-
956ing the energy consumption of data communication only
957increases the speed of the UE and slightly decreases the
958average response time.
959(Due to space limitation, our numerical data to show the
960power-performance tradeoff and the impact of various
961parameters for the constant-speed model are moved to
962Section 2.1 of the supplementary file, available online.)

9637 MINIMIZATION OF AVERAGE POWER

964CONSUMPTION WITH AVERAGE RESPONSE

965TIME CONSTRAINT

966In this section, we solve the problem of minimization of
967average power consumption with average response time
968constraint.

9697.1 A Numerical Algorithm

970Our optimization problem to minimize average power
971consumption with average response time constraint can
972be solved by using the algorithms in Section 6.1. Our
973numerical method is given in Algorithm 6. The algorithm
974uses the classical bisection method based on the observa-
975tion that T obtained by Algorithm 5 is a decreasing func-
976tion of P �. The overall time complexity of Algorithm 6 is
977Oðnðlog ðI=�ÞÞ4Þ.

Fig. 2. The average response time T versus the average power
consumption P � (varying ci, idle-speed model).

Fig. 3. The average response time T versus the average power con-
sumption P � (varying d, idle-speed model).

Fig. 4. The average response time T versus the average power
consumption P � (varying J, idle-speed model).
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978 Algorithm 6. Minimize Average Power Consumption
979 with Average Response Time Constraint

980 Input: p1; p2; . . . ; pn; �̂0; _�; r0; r20; r; r
2; d; d2; �;a; Ps; J , and �̂i; ri;

981 r2i ; si; ci, where 1 � i � n, and performance constraint T �.
982 Output: ð ~�1; ~�2; . . . ; ~�nÞ and the minimized P .
983 1: Initialize the search interval of P as (lb, ub);
984 2: while (the length of the search interval is � �) do
985 3: P �  the middle point of the search interval;
986 4: Get T by using Algorithm 5;
987 5: if (T > T �) then
988 6: Change the search interval to the right half;
989 7: else
990 8: Change the search interval to the left half;
991 9: end if
992 10: end do;
993 11: P  the middle point of the search interval;
994 12: return ð~�1; ~�2; . . . ; ~�nÞ and P .

995 To find the lb in the algorithm,we notice that since s0 > 0,
996 we need P � > Ps þ ~�J . Because ~� > ~��, where ~�� is defined
997 in the proof of Theorem 2 and can be found by using
998 Algorithm 4, we set lb ¼ Ps þ ~��J .

9997.2 Numerical Examples and Data

1000In this section,wedemonstrate numerical examples anddata.
1001We use the same UE and MEC parameter setting in
1002Section 6.2. Let T � ¼ 4:0 seconds.
1003In Tables 3 and 4, we show numerical data for minimizing
1004average power consumption with average response time
1005constraint for the idle-speed model and the constant-speed
1006model respectively. For the idle-speed model, we get P ¼
10075:9001117 Watts and ~� ¼ 4:0831363 tasks/second. For the
1008constant-speed model, we get P ¼ 6:7750964 Watts and
1009~� ¼ 4:0580587 tasks/second. As expected, to achieve the
1010same performance goal T �, the constant-speed model con-
1011sumesmore power than the idle-speedmodel.
1012From both Tables 3 and 4, wemake the following observa-
1013tions. (1) Lower indexed MECs receive all the offloadable
1014tasks designated to them, due to their relatively low _�i. (2)
1015Higher indexedMECs do not receive all the offloadable tasks
1016designated to them, and the remaining offloadable tasks are
1017processed by the UE itself, due to their relatively high _�i. (3)
1018Given the same performance constraint T �, compared with
1019the idle-speed model, the constant-speed model results in
1020reduced s0, increased ~�0 and increased T0, reduced ~�,
1021reduced Ti for all i ¼ 3; 4; 5; 6; 7, and increased P .

TABLE 3
Numerical Data for Minimizing Average Power Consumption with Average Response Time Constraint (Idle-Speed Model)

0 1 2 3 4 5 6 7

pi — 0.0828571 0.1028571 0.1228571 0.1428571 0.1628571 0.1828571 0.2028571
_�i — 0.3728571 0.4628571 0.5528571 0.6428571 0.7328571 0.8228571 0.9128571
�̂i 1.0000000 1.5000000 1.4500000 1.4000000 1.3500000 1.3000000 1.2500000 1.2000000
ri 0.5000000 1.0000000 1.0500000 1.1000000 1.1500000 1.2000000 1.2500000 1.3000000

r2i 0.4000000 1.3500000 1.5435000 1.7545000 1.9837500 2.2320000 2.5000000 2.7885000
si 1.4382873 2.5000000 2.6000000 2.7000000 2.8000000 2.9000000 3.0000000 3.1000000
r=si 1.0429071 0.6000000 0.5769231 0.5555556 0.5357143 0.5172414 0.5000000 0.4838710
ri=si 0.3476357 0.4000000 0.4038462 0.4074074 0.4107143 0.4137931 0.4166667 0.4193548
�̂iðri=siÞ 0.3476357 0.6000000 0.5855769 0.5703704 0.5544643 0.5379310 0.5208333 0.5032258
~��i — 0.3728571 0.4628571 0.5528571 0.6428571 0.7328571 0.8228571 0.8858407
ci — 10.0000000 10.5000000 11.0000000 11.5000000 12.0000000 12.5000000 13.0000000

d=ci — 0.1000000 0.0952381 0.0909091 0.0869565 0.0833333 0.0800000 0.0769231
~�i 0.4168637 0.3728571 0.4628571 0.5528571 0.6002005 0.6473098 0.6971892 0.7498654
�i 1.4168637 1.8728571 1.9128571 1.9528571 1.9502005 1.9473098 1.9471892 1.9498654
ri 0.7823858 0.8237143 0.8526099 0.8775132 0.8760003 0.8727464 0.8694279 0.8660639
Ti 2.3854845 2.6903135 3.5453376 4.9879970 5.0370935 4.9551026 4.8722000 4.7885371

TABLE 4
Numerical Data for Minimizing Average Power Consumption with Average Response Time Constraint (Constant-Speed Model)

0 1 2 3 4 5 6 7

pi — 0.0828571 0.1028571 0.1228571 0.1428571 0.1628571 0.1828571 0.2028571
_�i — 0.3728571 0.4628571 0.5528571 0.6428571 0.7328571 0.8228571 0.9128571
�̂i 1.0000000 1.5000000 1.4500000 1.4000000 1.3500000 1.3000000 1.2500000 1.2000000
ri 0.5000000 1.0000000 1.0500000 1.1000000 1.1500000 1.2000000 1.2500000 1.3000000

r2i 0.4000000 1.3500000 1.5435000 1.7545000 1.9837500 2.2320000 2.5000000 2.7885000
si 1.4281480 2.5000000 2.6000000 2.7000000 2.8000000 2.9000000 3.0000000 3.1000000
r=si 1.0503113 0.6000000 0.5769231 0.5555556 0.5357143 0.5172414 0.5000000 0.4838710
ri=si 0.3501038 0.4000000 0.4038462 0.4074074 0.4107143 0.4137931 0.4166667 0.4193548
�̂iðri=siÞ 0.3501038 0.6000000 0.5855769 0.5703704 0.5544643 0.5379310 0.5208333 0.5032258
~��i — 0.3728571 0.4628571 0.5528571 0.6428571 0.7328571 0.8228571 0.8858407
ci — 10.0000000 10.5000000 11.0000000 11.5000000 12.0000000 12.5000000 13.0000000

d=ci — 0.1000000 0.0952381 0.0909091 0.0869565 0.0833333 0.0800000 0.0769231
~�i 0.4419413 0.3728571 0.4628571 0.5508388 0.5949043 0.6417054 0.6912701 0.7436259
�i 1.4419412 1.8728571 1.9128571 1.9508388 1.9449043 1.9417054 1.9412701 1.9436259
ri 0.8142796 0.8237143 0.8526099 0.8763919 0.8731630 0.8698476 0.8664684 0.8630448
Ti 2.8427462 2.6903135 3.5453376 4.9037552 4.8260847 4.7473874 4.6678381 4.5875794
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1022 7.3 Power-Performance Tradeoff

1023 In this section, we show the power-performance tradeoff and
1024 the impact of various parameters for the idle-speedmodel.
1025 In Fig. 5, we examine the impact of the speed of data
1026 communication on the average power consumption of all
1027 offloadable and non-offloadable tasks generated on the UE
1028 for the idle-speed model. We show P as a function of T � for
1029 ci ¼ cþ 0:5ði� 1Þ MB/second, where c ¼ 6:0; 7:0; 8:0; 9:0;
1030 10:0MD/second.
1031 In Fig. 6, we examine the impact of the amount of data
1032 communication on the average power consumption of all
1033 offloadable and non-offloadable tasks generated on the UE
1034 for the idle-speed model. We show P as a function of T � for
1035 d ¼ 1:0; 1:1; 1:2; 1:3; 1:4MD.
1036 In Fig. 7, we examine the impact of the energy consump-
1037 tion of data communication on the average power consump-
1038 tion of all offloadable and non-offloadable tasks generated
1039 on the UE for the idle-speedmodel. We show P as a function
1040 of T � for J ¼ 0:10; 0:12; 0:14; 0:16; 0:18 Joules.
1041 We have the following observations. (1) These figures all
1042 demonstrate the power-performance tradeoff, i.e., longer
1043 (shorter, respectively) average response time results in less
1044 (more, respectively) average power consumption. (2) These
1045 figures also demonstrate the impact of various parameters.

1046Figs. 5 and 6 show that for the same performance constraint,
1047decreasing the speed of data communication or increasing
1048the amount of data communication results in noticeable
1049increment in the average power consumption. The reason is
1050that the processing times of offloaded tasks on all the MECs
1051are increased. To keep the same average response time, the
1052speed of the UE should be significantly enhanced to handle
1053increased amount of offloadable but not offloaded tasks. (3)
1054However, Fig. 7 shows that increasing the energy consump-
1055tion of data communication only slightly increases the aver-
1056age power consumption of the UE.
1057(Due to space limitation, our numerical data to show the
1058power-performance tradeoff and the impact of various
1059parameters for the constant-speed model are moved to
1060Section 2.2 of the supplementary file, available online.)

10618 MINIMIZATION OF COST-PERFORMANCE RATIO

1062In this section, we solve the problem of minimization of the
1063cost-performance ratio. (Due to space limitation, this section
1064is moved to Section 3 of the supplementary file, available
1065online.)

10669 CONCLUDING REMARKS

1067We have considered computation offloading strategy optimi-
1068zation with multiple heterogeneous servers in mobile edge
1069computing. Our approach is to establish a queueing model
1070for a UE and multiple MECs, and also power consumption
1071models for the UE, so that the discussion on cost and perfor-
1072mance can be carried out rigorously. In particular, we have
1073formulated and investigated three multi-variable optimiza-
1074tion problems, i.e., minimization of average response time
1075with average power consumption constraint, minimization
1076of average power consumption with average response time
1077constraint, and minimization of cost-performance ratio. We
1078have developed effective and efficient numerical algorithms
1079to solve the three problems. We have also demonstrated
1080numerical examples and data to show the effectiveness of our
1081method and to show the power-performance tradeoff, the
1082power-time product, and the impact of various parameters.
1083Since our models involve parameters easily available for any
1084UE and MECs in any real-world scenario and our methods

Fig. 5. The average power consumption P versus the average response
time T � (varying ci, idle-speed model).

Fig. 6. The average power consumption P versus the average response
time T � (varying d, idle-speed model).

Fig. 7. The average power consumption P versus the average response
time T � (varying J, idle-speed model).
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1085 are computationally very efficient, the proposed computation
1086 offloading strategy optimizations in this paper can be applied
1087 to any real-world applications inmobile edge computing and
1088 fog computing.
1089 There are still some issues worth of further investigation.
1090 First, in our model, it is assumed that an MEC server per-
1091 forms communication with the UE and then does the compu-
1092 tation for each offloaded task. It is clear that enhanced
1093 performance can be achieved by overlapping communication
1094 and computation, i.e., communication is performed while a
1095 task is waiting. However, it is very challenging to analytically
1096 study such a sophisticated situation. Second, it is interesting
1097 to consider the case when each MEC server is a multicore
1098 server and requires a multiserver queueing model (e.g., M/
1099 G/m). Finally, it is of practical interest and importance to
1100 implement the optimizing techniques developed in this
1101 paper in real application environments.
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