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Optimal Task Dispatching on Multiple
Heterogeneous Multiserver Systems with
Dynamic Speed and Power Management

Keqin Li, Fellow, IEEE

Abstract—Cloud load balancing is the process of distributing workloads across multiple computing resources in a cloud environment.
Load distribution in cloud computing systems is more challenging than in other systems. The purpose of the paper is to address the
issue of optimal task dispatching on multiple heterogeneous multiserver systems with dynamic speed and power management. The
main contributions of the paper are to solve three problems, i.e., the optimal task dispatching problems with minimized average task
response time, minimized average power consumption, and minimized average cost-performance ratio, for multiple heterogeneous
multiserver systems with dynamic d-speed and power management. In our study, multiserver systems with dynamic speed and power
management are modeled as queueing systems, so that fundamental performance and cost metrics such as the average task
response time and the average power consumption can be obtained analytically. Our research problems are formulated as
multi-variable optimization problems and solved numerically. To the best of our knowledge, this is the first work that addresses load
distribution for performance optimization, power minimization, and cost-performance ratio optimization, collectively on multiple
heterogeneous servers with dynamic speed and power management.

Index Terms—Cost-performance ratio, dynamic speed and power management, multiserver system, power consumption, queueing model,

response time, task dispatching

1 INTRODUCTION

1.1 Motivation

LOUD load balancing is the process of distributing
workloads across multiple computing resources in a
cloud environment [1]. Load balancing allows enterprises to
manage application demands by allocating workload
among multiple computers or servers [3]. Load distribution
has been a classic research problem in distributed comput-
ing, cluster computing, and grid computing [36], and con-
tinues to be a fundamental issue in cloud computing, to
effectively increase the quality of service to cloud users and
to enhance the utilization of resources in cloud systems.
Load distribution in cloud computing systems is more
challenging than in other systems due to several reasons.
First, energy consumption has become a key issue for the nor-
mal operation and maintenance of cloud computing plat-
forms and datacenters, raising serious concerns from cloud
providers (see [7], [25], [31] for recent research on green data
centers, cloud computing systems, and distributed systems),
and load balancing becomes more difficult when reducing
energy consumption is also taken into consideration. Second,
modern servers deployed in cloud computing have become

o The author is with the Department of Computer Science, State University
of New York, New Paltz, NY 12561. E-mail: lik@newpaltz.edu.

Manuscript received 22 Sept. 2016, revised 10 May 2017; accepted 17 May
2017. Date of publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Keqin Li.)

Recommended for acceptance by L. Dobre, G. Mastorakis, C. X. Mavromoustakis,
and F. Xhafa.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSUSC.2017.2706425

<+

more and more sophisticated due to the multicore processor
architectures, the technique of workload dependent dynamic
power management [28], and heterogeneous servers which
are different in computing capacity and capability, power
consumption model, and dynamic speed and power manage-
ment scheme. Third, the objective of traditional load distribu-
tion is essentially to reduce the average task response time
(i.e., toincrease the quality of service); however, in cloud com-
puting, there are diversified objectives such as to reduce
energy consumption (i.e., to decrease the cost of service) and
to optimize the cost-performance ratio.

1.2 Our Contributions

The purpose of the paper is to address the issue of optimal task
dispatching on multiple heterogeneous multiserver systems
with dynamic speed and power management. The main con-
tributions of the paper are to solve three problems, i.e., the
optimal task dispatching problems with minimized average
task response time, minimized average power consumption,
and minimized average cost-performance ratio, for multiple
heterogeneous multiserver systems with dynamic d-speed
and power management. In our study, multiserver systems
with dynamic speed and power management are modeled as
queueing systems, so that fundamental performance and cost
metrics such as the average task response time and the
average power consumption can be obtained analytically
(Sections 2, 3, 4, and 5). Our research problems are formulated
as multi-variable optimization problems and solved numeri-
cally (Sections 6, 7, and 8). To the best of our knowledge, this is
the first work that addresses load distribution for performance
optimization, power minimization, and cost-performance
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ratio optimization, collectively on multiple heterogeneous
multiservers with dynamic speed and power management.

The rest of the paper is organized as follows. In Section 2,
we characterize a multiserver system using a queueing
model. In Section 3, we describe our server speed and
power consumption models. In Section 4, we characterize a
dynamic speed and power management scheme using a
birth-death process. In Section 5, we consider the class of
d-speed schemes. In Sections 6,7, and 8, we define and solve
the three optimization problems respectively, present
numerical data, and conduct performance comparison. In
Section 9, we review related research in cloud load balanc-
ing. In Section 10, we conclude the paper.

2 MULTISERVER SYSTEMS

To formulate and study the problem of optimal task dis-
patching and load distribution for multiple heterogeneous
multiserver systems with dynamic speed and power man-
agement in a cloud computing environment, we need an
analytical model for a multiserver system. A queueing
model for a group of n heterogeneous multiserver systems
S1,89,...,5, of sizes mi,mo,...,m, and speeds
51,52,...,5, will be employed in this paper. Assume that a
multiserver system S; has m; identical servers with speed
s;. Such a multiserver system can be treated as an M/M/m
queueing system which is elaborated as follows.

There is a Poisson stream of tasks with arrival rate A (mea-
sured by the number of tasks per second), i.e., the inter-arrival
times are independent and identically distributed (i.i.d.)
exponential random variables with mean 1/A. A task dis-
patching and load distribution algorithm splits the stream
into n substreams, such that the :th substream with arrival
rate )\; is sent to multiserver system S;, where 1 <i < n, and
A=A+ XA+ + \,. A multiserver system .S; maintains a
queue with infinite capacity for waiting tasks when all its m;
servers are busy. The first-come-first-served (FCFS) queueing
discipline is adopted by all multiserver systems. The task exe-
cution requirements (measured by the number of billion
instructions to be executed) arei.i.d. exponential random vari-
ables r with mean 7. The m; servers of system .S; have identical
execution speed s; (measured by billion instructions per sec-
ond (BIPS)). Hence, the task execution times on the servers of
system S; are ii.d. exponential random variables z; = r/s;
with mean z; = 7/s;.

Let u; = 1/z; = s,/7 be the average service rate, i.e., the
average number of tasks that can be finished by a server of
S; in one unit of time. The server utilization is

Ai N
P = ===
mil; m; i

which is the average percentage of time that a server of S; is
busy. Let p;; denote the probability that there are k tasks
(waiting or being processed) in the M/M/m queueing sys-
tem for S;. Then, we have ([24], p. 102)

k
(mip;)
Dio ;ﬂ,’ . E<my;
Pik = mm'ipk )
pio—— k=>mi
my;:

where

m;! 1—p;

m;—1 k m; -1
— (Mm;p; m;p;) 1
pi,o—(z( k:') +( ) : ) .

k=0

The probability of queueing in S; (i.e., the probability that a
newly arrived task must wait because all servers are busy) is

m; m;

Si is

Applying Little’s result ([24], p. 17), we get the average task
response time of \S; as

Ni P ( Pyi )
Ti=—=8+—2—7=71+—"2"—).
Y Cmi(l =) ' mi(1— p;)

In other words, the average task response time in multi-
server system S; is

7 mr.n,,,;fl pm,
Ti=—\14po—F 773/
ml (1= p)

3 POWER CONSUMPTION

Power dissipation and circuit delay in digital CMOS circuits
can be accurately modeled by simple equations, even for
complex microprocessor circuits. CMOS circuits have
dynamic, static, and short-circuit power dissipation; how-
ever, the dominant component in a well designed circuit is
dynamic power consumption P (i.e., the switching compo-
nent of power), which is approximately P = aCV?f (mea-
sured in Watt), where « is an activity factor, C'is the loading
capacitance, V' is the supply voltage, and f is the clock fre-
quency [9]. In the ideal case, the supply voltage and the
clock frequency are related in such a way that V o f¢ for
some constant ¢ > 0 [45]. The processor execution speed s
is usually linearly proportional to the clock frequency,
namely, s « f. For ease of discussion, we will assume that
V =bf* and s =cf, where b and c are some constants.
Hence, we know that power consumption is P = aCV2f =
ab?Cf2 1 = (ab>C/c* 1)1 = 5%, where & = ab’>C/c**!
and « = 2¢ + 1. For instance, by setting b = 1.16, aC' = 7.0,
c=10,¢=05a=2¢+1=20and £ = ab’C/c* = 9.4192,
the value of P calculated by the equation P = aCV?f = £s*
is reasonably close to that in [18] for the Intel Pentium M
processor.

Since the multiserver systems considered in this paper are
heterogeneous in the sense that each has its own £ and « val-
ues, we assume that a server of .S; with speed s, consumes
power &;s;". Notice that a server still consumes some amount
of power even when it is idle. We assume that an idle server
of S; consumes certain base power P/, which includes static
power dissipation, short-circuit power dissipation, and other
leakage and wasted power [2]. We will consider two types of
server speed and power consumption models.
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e In the idle-speed model, a server runs at zero speed
when there is no task to perform. Since the power for
speed s; is &;s;' and there are m; servers, the average
power Consumptlon of multlserver system S; is
P' - mz(p/LgZ (:Z + Pj) =\ ng +m1P*

e In the constant-speed model, a server of 5; still runs at
the speed s; even if there is no task to perform.
Hence, the power consumption of multiserver sys-
tem S7 is R =m,; (57:8;1/, + P:)

4 DyYNAMIC SPEED AND POWER MANAGEMENT

The technique of dynamic speed and power management refers
to dynamic server speed and power adjustment according
to the current workload (i.e., the number of tasks in a multi-
server system). Let the speed of the m; servers of S; be s,
when there are £ tasks in the queueing system, where £ > 0.
A sequence of server speeds (s;, 51,52, Si3,...) is called a
speed scheme of S;, which reflects and represents a strategy of
workload dependent dynamic speed and power manage-
ment. If ;1 = s;9 = s;3=--- =s;, then we have a single-
speed scheme for workload independent dynamic speed
and power management, i.e., a standard M/M/m queueing
system. Furthermore, if s;p =0, we have the idle-speed
mode; and if s, = s;, we have the constant-speed mode.

A multiserver system .S; with dynamic speed and power
management can be characterized by a birth-death process
([24], p. 53). The states are 0,1,2,...,k,..., where state k
means that there are k tasks in the multiserver system. The
birth rate (i.e., the task arrival rate) is fixed at );. The death
rates (i.e., the task service rates) are u,;; with k> 1. Then,
we have

S.
k%k, 1<k<m—1
Wik = Sik

mi—, k>m;.
T

This implies that ([24], p. 92)

k
_ )"i
Pik=Dip———————————
Mitlbio - Kk
(A7) 1
Pio l, : ) 1<k<m; -1
k! 81“’181“2 A . Sz‘?k
- _\k
A\iT 1
5,0 (A7) , k>my,
’ k—mj;
milm; 82‘,1571,2 - Sik
where
mz—l 1
1+
Z . Si‘lsag e Sik

A
+z;2M

=m; (O

—1
1
Si15i2 -+ Sik

A speed scheme is valid if it results in a stable queueing sys-
tem, i.e., p;o > 0.

Based on the p; ;’s, we get the average number of tasks (in
waiting or in execution) in S; as

V; = i kpi,k~
k=1

By Little’s result, the average task response time of .5; is

The average number of busy servers in 5; is

m;—1

B;, = kazk+ meqka

k=m;
and the average server utilization of S, is

B;
Py =—"=
my

The average server speed of S, is

o0
Si = E Di keSi k-
k=0

The average power consumption of S; is

m;—1

Pi="> pis(k(&sls + P7) + (m

k=0

+ Z pikmi(&isgy, + P)

k=m,

m;—1
<szkk57k + ZPMmZ 7l<) +mzp )

=m;

i —k)E)

for the idle-speed model, and

P = mem?(qufti + P

o0

=m;§; ZP;ka”k +m P,
k=0

for the constant-speed model.

5 d-SPEED SCHEMES

A 4 speed scheme of S; can be represented by
VY = (big, big, ..., bid;—15Si,1, Si2: - - -+ 8ig;), Wherem; < by <
bZ,Q < e < bi,[li—lr and Si1 < Sig < o0 < Sig;- The Speed

of the m; servers is s;; when there are k£ < b;; tasks, and s; »
when there are b;; +1 < k < b; 5 tasks , ..., and s;4,_; when
there are bjq,_o +1 < k < b4, tasks, and si.4; when there
are k> b; g1 + 1 tasks. Notice that the speed of an idle
server is immaterial in this section. Therefore, we have

ks"—l 1<k<my—1;
- mis;l, m; < k< byg;
ik mi % bija+1<k<by 2<j<d—1;
m; 81—_{117 k>big-1+1

r
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250 This implies that
A1
Pio )
X | ¥
k! 57
1<k<m;—1;
OO
Pi.om P
m;.m; Si1
m; < k < b7 13
(X?) 1
Dig = § Pio F—m; b bia—bi b 1—b 2 kb1’
] i 1,1 Yi,270,1 i,j—1 i,j—2 7,j—1
M Si1 Si2 TS irj
bij1+1<k<bj 2<j<d —1;
(A7) 1
Pio p—— ; ; } )
| m; by bio—bi1 bid;—1—bid;—2 k—bidg;—1
mi:m; il Si2 T Sidi1 Si.d;
252 k> big-1+1
253
254 Let us define
AT
,OZ = )
T omisi;
256
257 which is the server utilization of .S; when its server speed is
258 s5;5, where1l <i <n,and 1 < j < d;. Then, we obtain
k
(”Lipi,l)
Pio T’
1<k<m;—1;
myg
o
Pio mi! v
m; <k < by,
Pik =
m." bio—b biio k—b;
. 127001 'i,5—17Yi,5—-2 'i,5—1
Pio ,:021 5.2 PZ,J 1 ij )
bij1+1<k<bj 2<j<d—1;
Sy by bia=bin bid;—1=bid.—2 k—big1
pL'O m—i!pi’l IOLQ TN ivdi71 i‘df ?
k> bjg-1+1;
260
261 where
m;—1 k b; 1 m
 (mip; ) —~m;"
pio=|1+ %l +Z 7 Pin
k=1 k=m; (N
di-1  bij m; 1

J=2 k=b; j_1+1 " \I=1
—1
00 m, d;—1
M [T bia—bigo1 \ k=big1
+ ;! Pig id;
k=byga+1 T\ 1=

263

In the above equation, we assume that b, =0 for all
1< <n.
To continue the evaluation of p; o, we have

bv
m; mmi il
- — mﬂoz 1 m; " k
pio= |1+ Z m" Z Pia
v k=m;
ml i—1 /j—1 i)

H 11 b1

j=2 =1 k:bi,jfl*’l
—1
m; di—1 00
m,; b; 1—b; k—b; g._
) 1,07 Y,01-1 i,d;—1
T Pij > P
it \ =1 k=bi g g +1
m;—1 m; 770 bi,1+1
(14 72 (m Lle I L Pl T Pi
mi! 1- Pi1
my di—1 [j—1 bi j=bi j—1+1
+ m; X big=bii—1 \ Pij — Pij
m»' ’Oi‘l 1— o0, .
it 22 \U=1 Pij
-1
m; [di—1
+ m; " bi1—bi -1 Pid;
] Pij 1—
m;: =1 pi,di

A speed scheme is valid if it results in a stable queueing
system, i.e.,, pg > 0. It is clear that a d;-speed scheme is valid
if pl-’di < 1, i.e, Sid; > )\,f/rm

In the following, we derive closed-form expressions of
the average task
response time 7;, the average server utilization p;, the

several major quantities of §;, i.e,

average server speed 5;, and the average power consump-
tion P,. These closed-form expressions are critical to for-
mulate and solve the optimization problems to be
addressed in this paper.

Based on the p; ;'s, we get

00
Z Pik
=1

m;—1 (mi,o' l)k m™i
i, i
! ; (k=1  m!
i i+1 i1+1 i1+2
mtp:n] - (mi - 1)/0771Jr - (bi,l + )IO@ ]1 + bz 1P, ”1
2
(1- :Oi,l)
mmi d;—1 /5—-1 b
L Hp@l‘z* i1
m;! = \I=1 "
bi_'fbi‘ _1+1
((bm‘—l +1)piy = bijorory — (b + Dy
b j—b; i_1+2 1
+ b,’_’]'/)l‘zj 7 ) —
" (1 - pi,j)
+ m;ni {ﬁpbi,.l*ba.l—l (b'i:drl + 1)'02'7(17' - biﬂdiflp%:dz
i\l 2
b\ (1= pia)
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283 Hence, by using the above N;, the average task response
284 time of S, is
N;
T =3
i—1 k ;
_Pio ”’i: (mip;1)"  m" .
= (k=1 my!
i i1 i1+l b 1+2
mi,oZ]l —(m; — 1):0271+ = (bix + 1):01 11 +biap 0, 1l
(1 - /07:,1)
mL di— b
Ll i,1—1
i 2 (H )
bi j=bij-1+1
((bi,jfl + 1)pi; = bijo1p; — (bij+ 1)o7
bij—bi i 142 1
+ bijp; I )—2
" (1 - IOL/)
m;" 41 bty | (Big—1 +1)pia, — bi.,d,-—lp?,di
+— H Pig 2 )
Mz \ 121 (1—p;4,)
286
287 foralll <7 <n.
288 The average server utilization of S; is p; = B;/m;,
289 where B; is the average number of busy servers in .5; cal-
290 culated by
m;—1
B - Z kpzk+ Z mipik
k=m;
m;—1 (mlp 1)k ml—l mlp 1
(8 i
Pio Z +mi{ L —=pio Z .
= (k1)
292
293
294 The average server speed of S; is
m;—1
Z p1k511 + Z pzk511
k=m,;
di-1  bij
+Z Z pzk5t1+ Z szSZd
J=2 k=b;; 1+1 k= bzd _1+1
i—1 k i i b;1+1
— S (mipi,l) s, +m;n .:0;71 _:01?,11 s
7,0 v k! 7,1 ml' 1_ ,07',7] i1
d, 1/ b j—bij1+1
/1 bii-1 piJ_p,J i
— | Si;
1—pi
,”1 71 bzl 1 pi«,di
S E— Sz}d,j .
1- pl\,d,‘]
296
297
298 Assume that the speed of an idle server is s;(. For the
299 idle-speed model, we have s;( = 0. For the constant-speed
300 model, we have s;( = s;;. The average power consumption
301 by the m,; serversin §; is

mi—1

P = Z ik (k&
=0

bi1
+ Z pixmi(&isiy + P)

k=m;

d;i—1 b,j
D > pumil&s + )

=2 k=b; j_1+1

spi + B) + (mi — k) (&sy + )

o0
+ > pumi(&sty +P))

k:bi,d,f1+1

= &ipio < ( i (m

k=0

(mipi.l)k o
i — k) T 5i0

m +1 o my CARE
P T Pia o
+ ‘ i1

m;—1
\ ( 7IOL 1)
+

mi+1di—1 / /j—1
+ m;t big—bi1-1
m; pz‘,l
it 2 \ \=1

b j—bij-1+1
Pij — Pij > o

1—pi; "
Pid

di—1

b 1—b; 1 id .
| | pifl,l 1,11 5 S?Zd + mzljz*
1—1 1- pldz o

The average task response time 7" of a group of n hetero-

m;+1
m 1

+ i

geneous multiserver systems Sy, S, .. ., Sy, is
A1 A2 )x
T(A, Aoy \y) =—1T, T+ +2T,,
(A, A2y An) h\ 1+ \ 2+ h\

where T is treated as a function of load distribution
)\17 )\27 R )\n~

The average server utilization p of a group of n heteroge-
neous multiserver systems S}, Ss, ..., S5, is

At

A\
p()‘lv)‘Q"“’)\n) :T,Ol “FTZ,OQ"F

)\H
+ T Prs

where p is treated as a function of load distribution
DYTD. VI
The average server speed 5 of a group of n heterogeneous

multiserver systems 51, .52, ... ,.5, is
_ )\1 _ )\2 _ )\n _
5\, A, \,) = /\31—}—?5—0— 78"’

where 5 is treated as a function of load distribution
Al Ay ey A
The average power consumption P of a group of n het-

erogeneous multiserver systems Sy, Ss, .. ., S, is
A A A
P e M) = 5P+ TP+ TP
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where P is treated as a function of load distribution
/\17)‘2a-~-7)\'n-

6 MINIMIZING AVERAGE TASK RESPONSE TIME

In this section, we formulate and solve our optimal task dis-
patching problem with minimized average task response
time for multiple heterogeneous multiserver systems with
dynamic d-speed and power management.

6.1 Problem Definition

Our optimal task dispatching problem with minimized average
task response time for multiple heterogeneous multiserver
systems with dynamic d-speed and power management
can be specified as follows: given the number n of multi-
server systems, the sizes of the multiserver systems
,my, a di-speed scheme ¥; = (b;1,bi2,...,bidg-1,
8i1,8i2,---,8iq) of S;, for all 1 <i<mn, the power con-
sumption model parameters &, a1,&,0,...,&,,a,, the
base power consumption Py, Py, ..., P, the average task
execution requirement 7, and the task arrival rate A, find
a load distribution, i.e., the task arrival rates A, \o,..., A\,
to the multiserver systems, such that the average task
response time T'(A, Ag,...,\,) is minimized, subject to
the constraint

mi, Mo, ...

F(A,Agy ey An) = A,

where
F(>‘17A27"'7)‘n):>\1+)\2+"'+>\m

and p; < 1,foralll <i <n.

6.2 An Algorithm

The above optimization problem can be solved by using the
method of Lagrange multiplier, i.e.,

VT (A, Ay ooy M) = dVEA, A, ooy M),
that is,
oT oF

forall 1 < ¢ <n, where ¢ is a Lagrange multiplier.

As we see below, 97'/d); is an extremely complicated
function of );. Hence, an analytical solution is virtually
impossible to find. Instead, an algorithm for finding numer-
ical values of Aj,As,..., A, and ¢ can be developed. The
algorithm works as follows. We notice that 97'/9); is an
increasing function of ;. Therefore, given a ¢, we
can find A, 1<4i<n, by the bisection algorithm. The
obtained A, Ao, ...,
F(Ai, A2,...,\y) = A and such verification can be employed
to find ¢, again by the bisection method.

In the following, we give 97/d);. Notice
apw/a/\i =7/m;s;j foralll <i<mn,and1 < j<d,.

A, are used to verify the condition

that

Hence, we have 376
ar 1 oT;
=3 7—’1 )\7'7 )
oA )\( i+ ’8)\,1)
378
where 379
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TABLE 1
Example of Optimal Load Distribution for Minimized Response Time

A At A2 A3 A4 As A6 Az

2.6100000 0.0473071 0.0472956 0.3197633 0.3097695 0.3097233 0.7881092 0.7880320
7.8300000 0.3154758 0.3123869 1.1821506 1.0370448 1.0314151 1.9796175 1.9719093
13.0500000 0.7009647 0.6720685 2.2696756 1.7582472 1.7162086 2.9944324 2.9384029
18.2700000 1.1919042 1.0766962 3.4140124 2.4999040 2.3538749 3.9623531 3.7712554
23.4900000 1.8445035 1.5320024 4.2758345 3.3450729 2.9698706 4.9916418 4.5310743
28.7100000 2.5364377 2.0498104 4.8672405 4.4113331 3.5715823 6.0374878 5.2361082
33.9300000 3.0375862 2.7406338 5.3106865 5.6730410 4.2829612 6.8832824 6.0018089
39.1500000 3.3337301 3.3514801 5.6109929 6.2974411 6.3145647 7.3729934 6.8687977
44.3700000 3.6742732 3.8851955 5.9913695 6.8582394 7.7243267 7.9032366 8.3333592
49.5900000 4.2088832 4.4975042 6.6376575 7.6105212 8.5855438 8.6851887 9.3647014
and In Table 1, we show the optimal load distribution

8p,
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6.3 Numerical Data

foralll <i<n.

Let us consider n = 7 heterogeneous multiserver systems
S1,59,...,57. The sizes are m; = 3, mo =3, mg =5, my =5,
ms =5, mg =7, my =7, respectively. The values of d; are
di=2,dy=3,d3=2,dy=3,ds =4, ds =2, d7 = 3, respec-
tively. The d-speed schemes are v, = (5;1.0,1.5),
Yy = (6,9;1.0,1.3,1.6), vy =(6;1.0,1.4), v, = (8,12;1.0,
1.3,1.6), ¥ = (10,15,20;1.0,1.2,1.5,1.8), v = (11;1.0,1.3),
Y, = (14,21;1.0,1.2,1.4), respectively. S; and S, have the
same size but different d-speed schemes. Ss, Sy, and S5 have
the same size but different d-speed schemes. S; and S; have
the same size but different d-speed schemes. We set
& =20, ¢; =3.0, and P’ =2.0, for all 1 <i <n. Also, we
set 7 = 1. It is clear that the maximum task arrival rate is

n 3
A _ z m;Sid;
max 77 M

In our example, we have Ap,x = 52.2.

i, b1 j—
— b1+ 1)p; W
1—pi;

A1, A2,..., A7 which gives the minimized average task
response time for A = (25 — 1)Agqep, Where Agep = Amax/20
and j=1,2,3,...,10. We observe that when X is small to

moderate, S; is allocated more load than S,, since 57 is
more sensitive to the increased workload and increases
its speed earlier than S,. Furthermore, the increased
speed is higher than that of S;. However, as A becomes
large, .S; is allocated more load than S;, because the ulti-
mate speed of S is higher than that of S;. Similar situa-
tion also exists in the group of Ss, Si, S5. When A is small,
Ss3 receives more load than S;, and S; receives more load
than Ss. As \ increases, S3 receives less load than S,, but
S, still receives more load than S5. As \ further increases,
S3 receives less load than Sy, and S; receives less load
than Ss. Similar situation also exists in the group of Sg
and S7. When ) is small to moderate, Ss is assigned more
load than S7. However, as A becomes large, S is assigned
less load than S;.

6.4 Performance Comparison

We compare the performance (i.e,, the average task
response time) of a group of heterogeneous multiserver
systems with dynamic speed and power management
with that of the same group of heterogeneous multi-
server systems with static speed and power manage-
ment. In particular, we turn each multiserver system .S;
with a d;-speed scheme into a system with a 1-speed
scheme of speed s;. The speed s; is determined in such a
way that the power consumption of §; is still P,. Hence,
we have

P.—m, P 1/(e;=1)

for the idle-speed model, and

(-
' & \m;

e
for the constant-speed model.

Consider the same group of heterogeneous multiserver
systems specified in Section 6.3. For A = zA,., where
x = 0.55,0.65,0.75,0.85,0.95, we show in Tables 2 and 3 (for
the idle-speed model and the constant-speed model respec-
tively): (1) the optimal load distribution Aj, A, ..., Ay (2) p;,
Siy 1—’1',/ and /0(>\17 )‘Qa cee aA’n)/ §(>\17 )‘Qa RN} )‘n)/ T(>\17 )‘Qa RN} )‘n)
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TABLE 2
Numerical Data for Response Time Comparison (Idle-Speed Model)

Dynamic Management

Static Management

{ Ai Pi Si T Pi Si T P;
A =28.71
1 2.5364377 0.7681015 1.0773778 1.3206634 0.7295129 1.1589641 1.4331542 12.8138752
2 2.0498104 0.6658566 1.0174135 1.2972947 0.6569453 1.0400715 1.3639821 10.4347598
3 4.8672405 0.8436211 1.1298270 1.1814020 0.8089300 1.2033774 1.3280669 24.0966683
4 4.4113331 0.8254002 1.0568664 1.2763990 0.8018232 1.1003256 1.4202736 20.6817466
5 3.5715823 0.7076388 1.0066777 1.2117941 0.7052512 1.0128540 1.2460723 17.3279807
6 6.0374878 0.8270231 1.0354752 1.2119036 0.8139019 1.0597079 1.3171497 27.5599671
7 5.2361082 0.7436926 1.0043228 1.1737509 0.7422977 1.0077027 1.1975529 24.6341673
Average 0.7828258 1.0479060 1.2253758 0.7659659 1.0823589 1.3177838 21.5840358
A =133.93
1 3.0375862 0.8608391 1.1516896 1.5009202 0.8102051 1.2497190 1.7331485 15.4881891
2 2.7406338 0.8354326 1.0781120 1.5921013 0.8033635 1.1371498 1.8523446 13.0878804
3 5.3106865 0.8871277 1.1750096 1.2852018 0.8521317 1.2464474 1.5172944 26.5016955
4 5.6730410 0.9439792 1.1906290 1.5315626 0.8970483 1.2648240 1.9516355 28.1512313
5 4.2829612 0.8285640 1.0280283 1.4200655 0.8183943 1.0466742 1.5763157 19.3841986
6 6.8832824 0.9032609 1.0800652 1.3598377 0.8818255 1.1151028 1.6273449 31.1180939
7 6.0018089 0.8402473 1.0171540 1.3373252 0.8349485 1.0268912 1.4477434 26.6578806
Average 0.8776920 1.1019695 1.4118793 0.8506748 1.1502849 1.6537761 24.7737396
A=39.15
1 3.3337301 0.9030598 1.2081835 1.6710562 0.8516498 1.3048126 2.0289610 17.3515898
2 3.3514801 0.9292783 1.1878817 1.9237247 0.8791795 1.2706847 2.4817211 16.8228657
3 5.6109929 0.9129110 1.2092876 1.3997695 0.8798831 1.2753952 1.7216034 28.2540501
4 6.2974411 0.9729608 1.2865274 1.7157636 0.9259867 1.3601580 2.3673518 33.3009065
5 6.3145647 0.9882542 1.2746587 2.1621042 0.9369008 1.3479687 2.7332767 32.9473751
6 7.3729934 0.9365007 1.1167841 1.4960937 0.9127924 1.1539149 1.9360035 33.6345694
7 6.8687977 0.9249884 1.0562684 1.6080587 0.9103614 1.0778761 2.0320806 29.9605692
Average 0.9418463 1.1860614 1.6961956 0.9055762 1.2453045 2.1747421 29.2285994
A =44.37
1 3.6742732 0.9414832 1.2832745 2.0150094 0.8962696 1.3665059 2.6377040 19.7222231
2 3.8851955 0.9728436 1.3222216 2.3854605 0.9253194 1.3995872 3.4642047 21.2209868
3 5.9913695 0.9416697 1.2566042 1.6540466 0.9138010 1.3113073 2.1668005 30.6046396
4 6.8582394 0.9878085 1.3838393 2.0114442 0.9494535 1.4446709 3.0928130 38.6273082
5 7.7243267 0.9992725 1.5455929 2.6593743 0.9616366 1.6064960 3.5613942 49.8703370
6 7.9032366 0.9639673 1.1650665 1.7557030 0.9417963 1.1988089 2.5368038 36.7161578
7 8.3333592 0.9897380 1.2007419 2.2478005 0.9657327 1.2327219 3.8517882 39.3268016
Average 0.9745432 1.3077382 2.1078654 0.9419364 1.3608135 3.0876894 36.2025506
A =49.59
1 4.2088832 0.9839852 1.4189758 4.2143967 0.9635830 1.4559835 6.5458335 23.8447225
2 4.4975042 0.9951155 1.5040526 4.6078904 0.9744646 1.5384532 8.7289062 27.2897289
3 6.6376575 0.9817239 1.3458075 3.3930260 0.9694290 1.3693953 5.1468832 34.8944486
4 7.6105212 0.9976013 1.5245030 3.6918481 0.9819158 1.5501373 7.4587024 46.5750338
5 8.5855438 0.9999345 1.7171742 4.2490716 0.9857502 1.7419309 8.3453191 62.1026290
6 8.6851887 0.9908721 1.2498691 3.3237435 0.9802346 1.2657595 6.1642549 41.8298999
7 9.3647014 0.9990413 1.3387731 3.9472290 0.9885942 1.3532493 9.6783993 48.2988507
Average 0.9935923 1.4399575 3.8595099 0.9796433 1.4631126 7.5329490 43.5160866

with dynamic speed and power management; (3) p;, s;,
T;j and p()\l, )\2, PN )\n)/ 8()\1, )\2, ceey )\n)/ T()‘l-/ )\2, RN )\n)
with static speed and power management; (4) P, and
P(A\, A, ..., Ay). It is observed that for the same P, the
server S; with dynamic speed and power management
has higher average server utilization, slower average
server speed, and shorter average task response time
than the server S; with static speed and power manage-
ment. The difference is more noticeable when the server
utilization gets higher.

7 MINIMIZING AVERAGE POWER CONSUMPTION

In this section, we formulate and solve our optimal task dis-
patching problem with minimized average power con-
sumption for multiple heterogeneous multiserver systems
with dynamic d-speed and power management.

7.1 Problem Definition

Our optimal task dispatching problem with minimized average
power consumption for multiple heterogeneous multiserver
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TABLE 3
Numerical Data for Response Time Comparison (Constant-Speed Model)

Dynamic Management

Static Management

1 i Oi S; T; 1% 8 T P;
A= 28.71
1 2.5364377 0.7681015 1.0773778 1.3206634 0.7617091 1.1099766 1.6394386 14.2052663
2 2.0498104 0.6658566 1.0174135 1.2972947 0.6673538 1.0238500 1.4126404 12.4396201
3 4.8672405 0.8436211 1.1298270 1.1814020 0.8382585 1.1612743 1.5321694 25.6604574
4 44113331 0.8254002 1.0568664 1.2763990 0.8206080 1.0751377 1.5466112 22.4277449
5 3.5715823 0.7076388 1.0066777 1.2117941 0.7084245 1.0083171 1.2579981 20.2515928
6 6.0374878 0.8270231 1.0354752 1.2119036 0.8252656 1.0451159 1.3796808 29.9816443
7 5.2361082 0.7436926 1.0043228 1.1737509 0.7440947 1.0052691 1.2037111 28.2224708
Average 0.7828258 1.0479060 1.2253758 0.7805240 1.0617881 1.4092527 23.9108833
A= 33.93
1 3.0375862 0.8608391 1.1516896 1.5009202 0.8449940 1.1982674 2.1300620 16.3231546
2 2.7406338 0.8354326 1.0781120 1.5921013 0.8274229 1.1040842 2.1169668 14.0752849
3 5.3106865 0.8871277 1.1750096 1.2852018 0.8792110 1.2080573 1.8100569 27.6304184
4 5.6730410 0.9439792 1.1906290 1.5315626 0.9207538 1.2322601 2.4694299 28.7114392
5 4.2829612 0.8285640 1.0280283 1.4200655 0.8273424 1.0353540 1.6461111 21.0985588
6 6.8832824 0.9032609 1.0800652 1.3598377 0.8965313 1.0968117 1.8068107 32.4724419
7 6.0018089 0.8402473 1.0171540 1.3373252 0.8398833 1.0208576 1.4808309 28.8944185
Average 0.8776920 1.1019695 1.4118793 0.8689203 1.1253476 1.8941521 26.0853500
A =39.15
1 3.3337301 0.9030598 1.2081835 1.6710562 0.8836364 1.2575799 2.5908590 17.9332308
2 3.3514801 0.9292783 1.1878817 1.9237247 0.9060477 1.2330036 3.1928939 17.2471958
3 5.6109929 0.9129110 1.2092876 1.3997695 0.9040720 1.2412713 2.1016687 29.1249406
4 6.2974411 0.9729608 1.2865274 1.7157636 0.9463816 1.3308461 3.1876247 33.5712982
5 6.3145647 0.9882542 1.2746587 2.1621042 0.9558505 1.3212452 3.8143407 33.0648328
6 7.3729934 0.9365007 1.1167841 1.4960937 0.9271947 1.1359910 2.2477931 34.5235600
7 6.8687977 0.9249884 1.0562684 1.6080587 0.9195691 1.0670833 2.2208682 31.0107316
Average 0.9418463 1.1860614 1.6961956 0.9247316 1.2188718 2.7360927 29.8533778
A =44.37
1 3.6742732 0.9414832 1.2832745 2.0150094 0.9217965 1.3286639 3.4983297 20.0733238
2 3.8851955 0.9728436 1.3222216 2.3854605 0.9462073 1.3686907 4.8056462 21.3839252
3 5.9913695 0.9416697 1.2566042 1.6540466 0.9329531 1.2843881 2.7241209 31.1879425
4 6.8582394 0.9878085 1.3838393 2.0114442 0.9646444 1.4219207 4.3350344 38.7492228
5 7.7243267 0.9992725 1.5455929 2.6593743 0.9741988 1.5857804 5.2064454 49.8776121
6 7.9032366 0.9639673 1.1650665 1.7557030 0.9538023 1.1837189 3.1048496 37.2206160
7 8.3333592 0.9897380 1.2007419 2.2478005 0.9751822 1.2207769 5.1873599 39.4704693
Average 0.9745432 1.3077382 2.1078654 0.9569137 1.3392853 4.1820913 36.4616056
A =49.59
1 4.2088832 0.9839852 1.4189758 4.2143967 0.9738274 1.4406670 9.1009019 23.9408112
2 4.4975042 0.9951155 1.5040526 4.6078904 0.9824525 1.5259446 12.6936196 27.3190359
3 6.6376575 0.9817239 1.3458075 3.3930260 0.9771287 1.3586046 6.8073596 35.0772092
4 7.6105212 0.9976013 1.5245030 3.6918481 0.9876913 1.5410728 10.8689528 46.5990211
5 8.5855438 0.9999345 1.7171742 4.2490716 0.9904733 1.7336245 12.3983244 62.1032839
6 8.6851887 0.9908721 1.2498691 3.3237435 0.9852735 1.2592861 8.1585711 41.9576906
7 9.3647014 0.9990413 1.3387731 3.9472290 0.9922522 1.3482605 14.0993900 48.3122719
Average 0.9935923 1.4399575 3.8595099 0.9855452 1.4543288 10.7408595 43.5800730

systems with dynamic d-speed and power management can
be specified as follows: given the number n of multiserver
systems, the sizes of the multiserver systems m;, mo, ..., m,,
a di—speed scheme 1//L = (bi,l’ bikg, ey bl‘7di,1, Si158i2y ¢+ Si,di)
of Sj, forall 1 < ¢ < n, the power consumption model param-
eters &1, 01,6, 09,...,&,, oy, the base power consumption
P/, Py, ..., P, theaverage task execution requirement 7, and
the task arrival rate ), find a load distribution, i.e., the task
arrival rates A1, Ag, ..., A, to the multiserver systems, such

that the average power consumption P(A, Az, . ..

imized, subject to the constraint

where

F(M\, A, - ..

F(\i, A,

and p; < 1,foralll <i<mn.

)‘n) - )‘7

, An) 1S min- 472
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7.2 An Algorithm
The above optimization problem can be solved by using the
method of Lagrange multiplier, i.e.,

VP, A, M) = dVF(OL Aoy, \),
that is,
apr oF
N aA,;_‘z”

forall 1 < i < n, where ¢ is a Lagrange multiplier.

As we see below, dP/d); is an extremely complicated
function of )\;. Hence, an analytical solution is virtually
impossible to find. Instead, an algorithm for finding numer-
ical values of Aj,Ag,..., A, and ¢ can be developed. The
algorithm works as follows. We notice that dP/d)\; is an
increasing function of );. Therefore, given a ¢, we can find
Ai, 1 <i<mn, by the bisection algorithm. The obtained
A, A9,..., A, are used to verify the condition
F(M, Ao, ..., A\y) = A and such verification can be employed
to find ¢, again by the bisection method.

In the following, we give dP/d);. It is clear that

P 1 oP;
P p ot
5y A( o ‘aAi)’
where
oF, P —miP dpig
N pio aN;
mi—1 mk 7
iDi i — k)L kpl Tt —— | s
+§p,ﬂ<<;(m, ) k! Pi ’rnisiJ)SZ‘O
Wl ok 7
i k }7‘,71
* <; (k — 1)' Pi m;S; 1
mmitl mp"“ — (bi1 + l)p?iil
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m;! L= piy

m; bt‘l+l A
Pi1 — Pig T o
+ 2 | sia
(1 —pi1) MiSi,1
m;+1 d;—1 j—1
m;' N biy=biy 1
D 1~
’f)’lz' 5 b
=2 =1 \V#l
y b; j=bi j—1+1
bii—big1=1 T Pij = Pij
—bii1)p;;
m;si 1=
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+([]ei
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+ S
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+ m; " Z 11' b
m.! z 14
i =1 z’#z

(biy

b;1—bij-1-1 p’i,,{l'
big —bii-1)p;] -
( ) ™m;si 1- pi,dZ
d—1 _
7T bii—bii Pid; r o
+ Pi + Sia; |
<111 " ) (1 —pig; (1= pig)° )mmd>

foralll <i<n.

7.3 Numerical Data

Consider the same group of heterogeneous multiserver
systems specified in Section 6.3. In Tables 4 and 5, for
the idle-speed model and the constant-speed model
respectively, we show the optimal load distribution

A1, A2, ..., A7 which gives the minimized average power
consumption for A= (2j — 1)Asep, Where Agep = Amax/20
and j=1,2,3,...,10. We observe that optimal task dis-

patching with minimized average power consumption is
trickier than optimal task dispatching with minimized
average task response time due to situations of under-

flow and overflow. Let us consider
op;

. =P+ N —

.BL i + i aAl )

where 1 < ¢ < n.Itis required that g; = A\¢ forall 1 < i <n.
It is clear that g; > P, and P, > m;P’ for the idle-speed
model and P > m; (E,sf’l + PF) for the constant-speed
model. Hence, if A is too small, the condition g; = A¢ may
not be satisfied by some multiserver system S;. In this case,
we have to set \; = 0, which implies that P; = m; P (for the
idle-speed model) or P, = m,-,(@s‘;""'l + P) (for the constant-
speed model), B; = P, (which is greater than \¢, i.e., under-
flow), and p; = 0. For instances, in Table 4, the above situa-
tion happens to Ss and 57 when A = 2.61. In Table 5, the
above situation happens to S3, Sy, S5, Ss, 57 when A = 2.61,
and to Sg and S; when A = 7.83 and A = 13.05. Furthermore,
it is observed that 9P;/d\; approaches an upper bound 7; as
A increases. For example, for S, 9P /d\; approaches
. = 8.4208957 for the idle-speed model and m; = 8.1331346
for the constant-speed model. Hence, if X is too large, the
condition B; = A¢ may not be satisfied by some multiserver
system 5;. In this case, we can only set ); sufficiently close
to m;siy, /7, and p; is sufficiently close to 1, and the g; is suf-
ficiently close to m; (&;s7} + P;) + (m;siy, /7)m; (which is less
than \¢, i.e., overflow, and for S, this value is 64.1440306 for
the idle-speed model and 62.8491057 for the constant-speed
model). For instances, in Table 4, the above situation hap-
pens to S} when A = 39.15, and to 51, 52, 55 when A = 44.37,
and to S, 55,53, 5 when \ = 49.59. In Table 5, the above
situation happens to Si, 5,53 when A =44.37, and to
Sl, Sz, 53, S@ when \ = 49.59.

7.4 Performance Comparison

We compare the cost (i.e., the average power consumption)
of a group of heterogeneous multiserver systems with
dynamic speed and power management with that of the
same group of heterogeneous multiserver systems with
static speed and power management. In particular, we turn
each multiserver system S; with a d;-speed scheme into a
system with a 1-speed scheme of speed s;. The speed s; is
determined in such a way that the average task response
time of S; is still 7T;.

Consider the same group of heterogeneous multiserver
systems specified in Section 6.3. For A = zA,., where
x = 0.35,0.45,0.55,0.65, (which are chosen such that both
underflow and overflow do not happen to any server,) we
show in Tables 6 and 7 (for the idle-speed model and the
constant-speed model respectively): (1) the optimal load
distribution Ay, Mg, ..., Ay (2) p;, 5, P, and p(A1, Aa,y ..., A\y),
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TABLE 4
Example of Optimal Load Distribution for Minimized Power Consumption (ldle-Speed Model)
A Parameter i=1 i=2 1=3 i=4 i=5 i=6 =7
2.61 i 1.0842747 1.1195798 0.1353818 0.1353818 0.1353818 0.0000000 0.0000000
P 8.2016087 8.2478319 10.2707637 10.2707637 10.2707637 14.0000000 14.0000000
Bi 10.5415274 10.5415274 10.5415274 10.5415274 10.5415274 14.0000000 14.0000000
Pi 0.3599556 0.3727164 0.0270764 0.0270764 0.0270764 0.0000000 0.0000000
7.83 i 1.7480736 1.8865460 1.2323621 1.2403749 1.2408643 0.2408896 0.2408896
P 9.8457235 9.9808234 12.4696113 12.4809785 12.4817377 14.4817792 14.4817792
Bi 14.9635583 14.9635583 14.9635583 14.9635583 14.9635583 14.9635583 14.9635583
0i 0.5671545 0.6179113 0.2463270 0.2480673 0.2481725 0.0344128 0.0344128
13.05 i 2.1041572 2.2502850 2.0378964 2.1417901 2.1683407 1.1737649 1.1737657
P 11.0116666 11.0665374 14.1613166 14.2989045 14.3387714 16.3475301 16.3475314
Bi 18.6950629 18.6950629 18.6950629 18.6950629 18.6950629 18.6950629 18.6950629
Pi 0.6656812 0.7212069 0.4050339 0.4278490 0.4335893 0.1676807 0.1676808
18.27 i 2.4242222 2.5444642 2.7136032 2.9606360 3.1164610 2.2549374 2.2556761
P, 12.3017405 12.1862428 15.7973290 16.0729244 16.2897739 18.5101494 18.5113583
Bi 23.0227898 23.0227898 23.0227898 23.0227898 23.0227898 23.0227898 23.0227898
Oi 0.7434831 0.7937213 0.5317051 0.5871705 0.6211933 0.3221274 0.3222393
23.49 i 2.7568488 2.8273641 3.3197318 3.6017301 3.8324120 3.5527627 3.5991505
P 13.9127109 13.5307130 17.5853866 17.7523412 17.9985596 21.1269397 21.2005105
Bi 28.4254980 28.4254980 28.4254980 28.4254980 28.4254980 28.4254980 28.4254980
Pi 0.8123268 0.8520676 0.6357939 0.7028162 0.7546236 0.5070260 0.5141046
28.71 i 3.1545249 3.1449687 3.9550678 4.1649502 4.3698283 4.8213631 5.0992969
P 16.2003006 15.3982259 19.8983294 19.6634171 19.6963828 23.9294509 24.3204646
Bi 35.8363871 35.8363871 35.8363871 35.8363871 35.8363871 35.8363871 35.8363871
Pi 0.8785638 0.9034851 0.7318411 0.7915979 0.8414630 0.6819165 0.7252111
33.93 i 3.7405568 3.5872684 4.7829476 4.7950995 49122087 5.9257910 6.1861280
P 20.2088845 18.6452106 23.6655155 22.5358645 22.0979863 27.1615742 27.2467587
Bi 47.8873399 47.8873399 47.8873399 47.8873399 47.8873399 47.8873399 47.8873399
Pi 0.9478402 0.9521980 0.8345770 0.8711373 0.9096010 0.8152470 0.8609434
39.15 i 4.4999995 4.1450298 5.7531812 5.4501998 5.4487614 6.8972309 6.9555974
P, 26.2499962 23.6842132 29.1162547 26.5402368 25.4177574 31.1851463 30.3765193
Bi 64.1440234 64.4091020 64.4091020 64.4091020 64.4091020 64.4091020 64.4091020
Pi 1.0000000 0.9849413 0.9241513 0.9294415 0.9544152 0.9043181 0.9315286
44.37 i 4.4999995 4.7999995 6.9999993 6.2302999 6.0743116 8.0142542 7.7511359
P 26.2499962 30.5759947 37.4399950 32.7049145 30.6002548 37.4040910 35.0237865
Bi 64.1440234 83.8936667 87.4831403 87.5626383 87.5626383 87.5626383 87.5626383
Pi 1.0000000 1.0000000 1.0000000 0.9705634 0.9823964 0.9686970 0.9744389
49.59 i 4.4999995 4.7999995 6.9999993 7.6943158 7.2059347 9.0999991 9.2897521
P 26.2499962 30.5759947 37.4399950 47.5052151 43.1079740 44.7579934 47.6051582
Bi 64.1440234 83.8936667 87.4831403 133.2705387 133.2705387 110.3166738 133.2705387
Pi 1.0000000 1.0000000 1.0000000 0.9982302 0.9977916 1.0000000 0.9987734
5(A1, A2, .., A), P(A1, Ay ..oy A,) with dynamic speed and  different factors which determine the cost of cloud comput-
power management; (3) p;, s, P and p(Ai,Ag,...,A\,), ing. Since the number of servers m,; is fixed in dynamic
s(AL, A2, ), P(A1, Ag, ..., A\,) with static speed and speed and power management, our cost measure is mainly
power management; (4) 7, and T(A\j,Xo,...,\,). It is the cost of power consumption P;, the lower, the better. The

observed that for the same 7j, the server S; with dynamic
speed and power management has higher average server
utilization, slower average server speed, and less average
power consumption than the server S; with static speed and
power management. The difference is more noticeable
when the server utilization gets higher.

8 MINIMIZING AVERAGE COST-PERFORMANCE
RATIO
For a multiserver system S;, our performance measure is

1/T;, which is inversely proportional to the average task
response time 7;, the higher, the better. There are many

cost-performance (or price-performance) ratio (CPR) refers
to a product’s ability to deliver performance for its cost.
Generally speaking, products with a lower CPR are more
desirable, excluding other factors. In this paper, we define
CPR as cost/performance, i.e., R; = P, T;. The average cost-
performance ratio R of a group of n heterogeneous multi-

server systems 51, Sy, ..., S, is
! Ao An
R(/\l,)\Q,--.,)\n)—)\R1+)\R2+ +/\Rn
)\1 )\2 >\77,
=—PNh+—PT+- - +—PT,,
N 1+ Y 2 2+ -+ PN
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TABLE 5
Example of Optimal Load Distribution for Minimized Power Consumption (Constant-Speed Model)
A Parameter i=1 =2 1=3 1=4 i=5 i=06 =
2.61 i 1.1728906 1.4371094 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
P, 12.0627557 12.0541020 20.0000000 20.0000000 20.0000000 28.0000000 28.0000000
Bi 12.3837221 12.3837221 20.0000000 20.0000000 20.0000000 28.0000000 28.0000000
0; 0.3887616 0.4768231 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
7.83 i 2.3281863 2.4942605 0.5951178 1.0014405 1.4109949 0.0000000 0.0000000
P 13.5607284 13.2835920 20.0000662 20.0000540 20.0000455 28.0000000 28.0000000
Bi 20.0004961 20.0004961 20.0004961 20.0004961 20.0004961 28.0000000 28.0000000
0 0.7212997 0.7821605 0.1190220 0.2002868 0.2821977 0.0000000 0.0000000
13.05 i 2.3996846 2.5532548 2.1584024 2.7422196 3.1964385 0.0000000 0.0000000
P; 13.7665044 13.4495537 20.1505621 20.1191198 20.0971320 28.0000000 28.0000000
Bi 20.9431494  20.9431494 20.9431494 20.9431494 20.9431494 28.0000000 28.0000000
Pi 0.7379123 0.7957092 0.4282272 0.5454971 0.6366746 0.0000000 0.0000000
18.27 i 2.8465108 2.9098180 3.4739741 3.8717132 41768601 0.3628308 0.6777372
P, 15.4222361 14.7769559 21.4982894 21.1318170 20.9034529 28.0000000 28.0000000
Bi 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000
Oi 0.8287585 0.8668426 0.6604304 0.7472092 0.8121575 0.0518330 0.0968196
23.49 i 2.8479667 2.9109495 3.4768436 3.8739398 4.1787035 2.7299974 3.4715995
P, 15.4286726 14.7821008 21.5036659 21.1357722 20.9065892 28.0024245 28.0019663
Bi 28.0259031 28.0259031 28.0259031 28.0259031 28.0259031 28.0259031 28.0259031
0; 0.8290179 0.8670383 0.6608810 0.7475620 0.8124483 0.3899562 0.4959042
28.71 i 3.0382954 3.0574255 3.8273903 4.1395930 4.3968461 4.8480393 5.4024105
P 16.3267062 15.4996066 22.2568723 21.6862564 21.3433191 28.3996312 28.3094296
Bi 31.5452797 31.5452797 31.5452797 31.5452797 31.5452797 31.5452797 31.5452797
Pi 0.8609509 0.8907800 0.7137149 0.7879319 0.8453720 0.6854229 0.7657734
33.93 i 3.6198098 3.4905742 4.7276233 4.7726405 49062870 6.0592611 6.3538041
P; 19.7121798 18.2119946 25.1021726 23.7307516 22.9771479 30.0296034 29.5291440
Bi 43.4882453 43.4882453 43.4882453 43.4882453 43.4882453 43.4882453 43.4882453
Pi 0.9360005 0.9435795 0.8285024 0.8686990 0.9089808 0.8292750 0.8786217
39.15 i 4.4088190 4.0575231 5.7585727 5.4359878 5.4333716 7.0119530 7.0437729
P, 25.5138652 22.9459282 29.9036852 27.1574566 25.7737714 32.9683220 31.6881024
Bi 60.8379086 60.8379086 60.8379086 60.8379086 60.8379086 60.8379086 60.8379086
0i 0.9954356 0.9813833 0.9245658 0.9284289 0.9534291 0.9127652 0.9377844
44.37 i 4.4999995 4.7999995 6.9999993 6.1990138 6.0391802 8.0643531 7.7674546
P 26.2499963 30.5759947 37.4399953 32.7365625 30.4593159 38.1288777 35.4843477
Bi 62.8490985 83.5509420 84.2102690 84.5471817 84.5471817 84.5471817 84.5471817
0i 1.0000000 1.0000000 1.0000000 0.9693935 0.9813557 0.9707243 0.9750250
49.59 i 4.4999995 4.7999995 6.9999993 7.6968120 7.2023225 9.0999991 9.2908680
P 26.2499963 30.5759947 37.4399953 47.5505645 43.0850376 44.7579937 47.6325623
Bi 62.8490985 83.5509420 84.2102690 132.8200740 132.8200740 107.9557001 132.8200740
Pi 1.0000000 1.0000000 1.0000000 0.9982479 0.9977754 1.0000000 0.9987777

where R is treated as a function of load distribution
A A2,y A

In this section, we formulate and solve our optimal task
dispatching problem with minimized average cost-perfor-
mance ratio for multiple heterogeneous multiserver systems
with dynamic d-speed and power management.

(Due to space limitation, the remaining content of this sec-
tion is moved to the supplementary file, online available.)

9 RELATED RESEARCH

There have been extensive research in cloud load balancing
and load distribution. Several surveys and comparative
studies have been conducted. In [4], existing load balancing
techniques in cloud computing were discussed and com-
pared based on various parameters. In [16], the authors
explored autonomic approaches for optimizing provisioning

for heterogeneous workloads on enterprise grids and clouds,
and reviewed load balancing strategies for cloud infrastruc-
tures. In [20], the author surveyed various dynamic load bal-
ancing algorithms in cloud with discussion and comparison
of the pros and cons of these algorithms. In [21], the authors
presented a comparative study of various load balancing
schemes in different cloud environments based on require-
ments specified in service level agreement. In [22], the
authors gave an overview of many load balancing algo-
rithms which help to achieve better throughput and improve
the response time in cloud environments. In [23], the authors
gave an overview of load balancing in cloud computing by
exposing the most important research challenges. In [30], the
authors investigated the different algorithms proposed to
resolve the issue of load balancing and task scheduling in
cloud computing, and discussed and compared these algo-
rithms to provide an overview of the latest approaches in the
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TABLE 6
Numerical Data for Power Consumption Comparison (Idle-Speed Model)

Dynamic Management

Static Management

1 Ai Pi S; P Oi S; b T;
A= 18.27
1 2.4242222 0.7434831 1.0645909 12.3017405 0.6894232 1.1721016 12.6609003 1.2898882
2 2.5444642 0.7937213 1.0544334 12.1862428 0.7416644 1.1435829 12.6552086 1.5005392
3 2.7136032 0.5317051 1.0110156 15.7973290 0.5220176 1.0396596 15.8662241 1.0224552
4 2.9606360 0.5871705 1.0049567 16.0729244 0.5798343 1.0212008 16.1750044 1.0780187
5 3.1164610 0.6211933 1.0020989 16.2897739 0.6168970 1.0103667 16.3628216 1.1228339
6 2.2549374 0.3221274 1.0000066 18.5101494 0.3221195 1.0000447 18.5102779 1.0018714
7 2.2556761 0.3222393 1.0000002 18.5113583 0.3222390 1.0000014 18.5113652 1.0019188
Average 0.5688214 1.0189496 15.6291556 0.5510368 1.0539329 15.7813768 1.1455737
A =23.49
1 2.7568488 0.8123268 1.1066228 13.9127109 0.7424444 1.2377352 14.4469210 1.3894011
2 2.8273641 0.8520676 1.0903871 13.5307130 0.7846219 1.2011577 14.1585278 1.6344130
3 3.3197318 0.6357939 1.0281525 17.5853866 0.6125646 1.0838797 17.8000096 1.0426273
4 3.6017301 0.7028162 1.0175298 17.7523412 0.6807017 1.0582404 18.0669587 1.1507922
5 3.8324120 0.7546236 1.0118588 17.9985596 0.7359993 1.0414173 18.3128848 1.2784317
6 3.5527627 0.5070260 1.0005116 21.1269397 0.5062434 1.0025564 21.1419006 1.0206776
7 3.5991505 0.5141046 1.0000597 21.2005105 0.5139661 1.0003857 21.2038553 1.0248849
Average 0.6740868 1.0320808 17.8488773 0.6479153 1.0801009 18.1197701 1.2035740
A= 28.71
1 3.1545249 0.8785638 1.1729445 16.2003006 0.7972748 1.3188782 16.9742114 1.5595601
2 3.1449687 0.9034851 1.1448378 15.3982259 0.8232977 1.2733217 16.1981788 1.8009095
3 3.9550678 0.7318411 1.0591724 19.8983294 0.6904233 1.1456935 20.3829522 1.0773785
4 4.1649502 0.7915979 1.0413921 19.6634171 0.7504242 1.1100255 20.2637421 1.2347995
5 4.3698283 0.8414630 1.0325027 19.6963828 0.8045418 1.0862899 20.3130199 1.4507935
6 4.8213631 0.6819165 1.0068496 23.9294509 0.6718277 1.0252124 24.1350892 1.0847631
7 5.0992969 0.7252111 1.0032599 24.3204646 0.7184896 1.0138921 24.4839225 1.1520848
Average 0.7825571 1.0557009 20.3966297 0.7446551 1.1208445 20.8805643 1.3037979
A =33.93
1 3.7405568 0.9478402 1.2990120 20.2088845 0.8731989 1.4279133 21.2535143 2.1182163
2 3.5872684 0.9521980 1.2435581 18.6452106 0.8660691 1.3806705 19.6764684 2.0904415
3 4.7829476 0.8345770 1.1220125 23.6655155 0.7731772 1.2372190 24.6426200 1.1671458
4 4.7950995 0.8711373 1.0878826 22.5358645 0.8086086 1.1860126 23.4898211 1.3461104
5 49122087 0.9096010 1.0728407 22.0979863 0.8540097 1.1503871 23.0015395 1.6586429
6 5.9257910 0.8152470 1.0312946 27.1615742 0.7823460 1.0820552 27.8763473 1.1969086
7 6.1861280 0.8609434 1.0227892 27.2467587 0.8322456 1.0618651 27.9504300 1.3877706
Average 0.8769587 1.1084997 23.6305970 0.8231054 1.1945310 24.5112835 1.5114816

field. In [33], the authors provided a comprehensive review
on the existing load balancing strategies and presented load
balancer as a service model adopted by the major market
players. In [35], the authors presented a survey of dynamic
load balancing strategies on cloud, with focus on various
metrics to analyze the efficacy of existing techniques. In [37],
various load balancing algorithms were compared on the
basis of their metrics.

Numerous researchers have investigated various
approaches to cloud load balancing. In [5], the authors
showed a new approach to dynamic load balancing using the
concept of mobile agent, i.e., a software program which exe-
cutes independently and performs the basic task. In [10], the
authors proposed a novel load balancing strategy using a
genetic algorithm, which thrives to balance the load of a cloud
infrastructure while trying to minimize the makespan of a
given task set. In [11], the authors proposed an algorithm
named honey bee behavior inspired load balancing, which

aims to achieve well balanced load across virtual machines
for maximizing the throughput and minimizing the amount
of waiting time of the tasks. In [12], the authors proposed a
novel approach to dynamic load balancing in cloud comput-
ing systems based on the phenomena of self-organization in a
game theoretical spatially generalized prisoner’s dilemma
model defined on the two-dimensional cellular automata
space. In [14], the authors focused on two load balancing algo-
rithms in cloud, i.e., Min-Min and Max-Min, to minimize
response time and waiting time. In [15], the authors used an
agent-based dynamic load balancing approach which greatly
reduces the communication cost of servers, accelerates the
rate of load balancing, and improves the throughput and
response time of the cloud. In [27], the author studied the
problem of optimal distribution of generic tasks over a group
of heterogeneous blade servers in a cloud computing environ-
ment or a data center, such that the average response time of
generic tasks is minimized. In [34], the authors introduced a
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TABLE 7
Numerical Data for Power Consumption Comparison (Constant-Speed Model)

Dynamic Management

Static Management

1 i Oi S; P Pi S P; T;
A= 18.27
1 2.8465108 0.8287585 1.1200785 15.4222361 0.7554397 1.2560062 17.8884866 1.4214638
2 2.9098180 0.8668426 1.1030967 14.7769559 0.7955205 1.2192513 16.8750411 1.6757537
3 3.4739741 0.6604304 1.0343644 21.4982894 0.6329626 1.0976869 23.2262120 1.0494653
4 3.8717132 0.7472092 1.0271335 21.1318170 0.7163783 1.0809131 22.6290978 1.1889633
5 4.1768601 0.8121575 1.0232146 20.9034529 0.7822343 1.0679307 22.1794919 1.3839079
6 0.3628308 0.0518330 1.0000000 28.0000000 0.0518330 1.0000000 28.0000000 1.0000000
7 0.6777372 0.0968196 1.0000000 28.0000000 0.0968196 1.0000000 28.0000000 1.0000012
Average 0.7414020 1.0554264 19.6959689 0.7000220 1.1287641 21.3519564 1.3132156
A= 23.49
1 2.8479667 0.8290179 1.1203043 15.4286726 0.7556470 1.2563038 17.8969394 1.4220083
2 2.9109495 0.8670383 1.1032782 14.7821008 0.7956655 1.2195031 16.8817807 1.6763290
3 3.4768436 0.6608810 1.0344878 21.5036659 0.6333324 1.0979522 23.2358027 1.0496007
4 3.8739398 0.7475620 1.0272260 21.1357722 0.7166550 1.0811170 22.6362473 1.1892949
5 4.1787035 0.8124483 1.0232924 20.9065892 0.7824597 1.0680943 22.1850897 1.3845224
6 2.7299974 0.3899562 1.0000434 28.0024245 0.3898984 1.0002596 28.0109066 1.0053327
7 3.4715995 0.4959042 1.0000386 28.0019663 0.4958160 1.0002557 28.0107423 1.0205400
Average 0.6922031 1.0411335 21.4829495 0.6599336 1.0983336 22.7759601 1.2455967
A= 28.71
1 3.0382954 0.8609509 1.1518143 16.3267062 0.7819008 1.2952604 19.0383468 1.5012496
2 3.0574255 0.8907800 1.1283619 15.4996066 0.8134792 1.2528185 17.7981997 1.7528783
3 3.8273903 0.7137149 1.0517631 22.2568723 0.6760116 1.1323445 24.5189688 1.0688158
4 4.1395930 0.7879319 1.0399867 21.6862564 0.7476681 1.1073344 23.5780185 1.2306709
5 4.3968461 0.8453720 1.0339972 21.3433191 0.8074595 1.0890567 22.9166967 1.4605413
6 4.8480393 0.6854229 1.0071542 28.3996312 0.6749374 1.0261352 29.1266143 1.0867920
7 5.4024105 0.7657734 1.0059996 28.3094296 0.7546193 1.0227315 28.9765892 1.2030461
Average 0.7840352 1.0499455 22.8637143 0.7469300 1.1136188 24.4590540 1.2990498
A =33.93
1 3.6198098 0.9360005 1.2706028 19.7121798 0.8572006 1.4076089 22.7339050 1.9419825
2 3.4905742 0.9435795 1.2199452 18.2119946 0.8574522 1.3569558 20.9916131 2.0174694
3 4.7276233 0.8285024 1.1170223 25.1021726 0.7680658 1.2310465 28.6562063 1.1584887
4 4.7726405 0.8686990 1.0858291 23.7307516 0.8068443 1.1830388 26.5575855 1.3418731
5 4.9062870 0.9089808 1.0722767 22.9771479 0.8535666 1.1495968 25.1927595 1.6562885
6 6.0592611 0.8292750 1.0363338 30.0296034 0.7931842 1.0913086 32.1957843 1.2149213
7 6.3538041 0.8786217 1.0290646 29.5291440 0.8455852 1.0734415 31.3166234 1.4372288
Average 0.8786241 1.1022567 25.0270766 0.8235910 1.1898375 27.5701743 1.4904961

threshold based dynamic compare and balance algorithm for
cloud server optimization, which also minimizes the number
of host machines to be powered on for reducing the cost of
cloud services. In [38], the authors proposed an autonomous
agent-based load balancing algorithm, which provides
dynamic load balancing for cloud environment. In [39], an
enhanced shortest job first scheduling algorithm was used to
achieve reduced response time and reduced starvation and
job rejection rate. In [41], the authors developed an approach
from machine learning to learn task arrival and execution pat-
terns online, i.e., automatically acquiring such knowledge
without any beforehand modeling and proactively allocating
tasks on account of the forthcoming tasks and their execution
dynamics. In [42], the authors studied the collaboration
among benevolent clouds that are cooperative in nature and
willing to accept jobs from other clouds, and took advantage
of machine learning, and proposed a distributed scheduling
mechanism to learn the knowledge of job model, resource

performance, and others’ policies. In [43], the authors pro-
posed a fairness-aware load balancing algorithm, where the
load balancing problem is defined as a game, and the Nash
equilibrium solution for this problem minimizes the expected
response time, while maintaining fairness.

Cloud load distribution has been considered together
with energy consumption. In [6], the authors conducted a
survey of research in energy-efficient computing and pro-
posed architectural principles for energy-efficient manage-
ment of clouds and energy-efficient resource allocation
policies and scheduling algorithms considering QoS expect-
ations and power usage characteristics of the devices. In [8],
the authors addressed optimal power allocation and load
distribution for multiple heterogeneous multicore server
processors across clouds and data centers as optimization
problems. In [13], the authors proposed a new power-aware
load balancing algorithm based on artificial bee colony to
detect both over-utilized and under-utilized hosts for
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effective power management. In [17], the authors studied the
problem of power consumption minimization with perfor-
mance constraint in heterogeneous distributed embedded
systems by optimal load distribution. In [19], the authors dis-
cussed existing load balancing techniques in cloud comput-
ing and further compared them based on various parameters
and discussed these techniques from energy consumption
and carbon emission perspective. In [26], the author consid-
ered the problem of optimal power allocation among multi-
ple heterogeneous servers, i.e., minimizing the average task
response time of multiple heterogeneous computer systems
with energy constraint. In [29], the authors modeled a data
center as a cyber physical system to capture the thermal
properties exhibited by the data center, where software
aspects such as scheduling, load balancing, and computa-
tions are the cyber component, and hardware aspects such
as servers and switches are the physical component. In [32],
the authors investigated load distribution strategies to mini-
mize electricity cost and increase renewable energy integra-
tion subject to compliance with service level agreement, with
consideration of the adverse effects of switching the servers.
In [40], the authors investigated performance and power
tradeoff for multiple heterogeneous servers by considering
two problems, i.e., optimal job scheduling with fixed service
rates and joint optimal service speed scaling and job schedul-
ing. In [44], the authors employed a game theoretic approach
to solving the problem of minimizing energy consumption
as a Stackelberg game, and modeled the problem of minimiz-
ing average task response time as a noncooperative game
among decentralized scheduler agents as they compete with
one another in the shared resources.

10 CONCLUSION

We have formulated and solved three optimization prob-
lems, i.e., the optimal task dispatching problems with mini-
mized average task response time, minimized average
power consumption, and minimized average cost-perfor-
mance ratio, on multiple heterogeneous multiserver sys-
tems with dynamic d-speed and power management. We
have also demonstrated numerical data and conducted per-
formance comparison between dynamic management and
static management of speed and power.

In this paper, each server has a known speed scheme. As a
further research direction, the optimal task dispatching
problem in this paper can be extended to the optimal task
dispatching and speed scheme problem, in which the speed
scheme of a server is also to be determined in such a way that
the overall power consumption of the multiserver systems
does not exceed a given power budget. This is an extremely
difficult problem, since the choice of a speed scheme can be
arbitrarily complicated. Even though we only consider a
d-speed scheme, it still has 2d — 1 parameters in ;. By
including the task arrival rate )\;, each multiserver system
has 2d parameters to determine, and our optimization prob-
lem has 2nd parameters to determine. When d = 2, we still
have 4n parameters. It is conceivable that the optimization
problem is very sophisticated. However, we would like to
mention that when d =1, i.e., for single-speed multiserver
systems, the optimal load distribution and power allocation
(i.e., speed determination) problem has been solved [8].
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