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Abstract—The problems of energy-constrained and time-constrained task scheduling on multiple heterogeneous computers are

investigated as combinatorial optimization problems. For a given set of independent tasks, our strategy is to find a schedule of the tasks

first, and then find a power allocation to the tasks, where the power allocation is performed in such a way that the total task execution

time or the total energy consumption is minimized. We are able to find an optimal partition of a given workload and use a modified list

scheduling (MLS) algorithm to generate a partition of the set of tasks that is an approximation of the optimal workload partition. Our

simulation results demonstrate that when compared with optimal solutions, the MLS algorithm has excellent expected performance in

solving the problems of energy-constrained and time-constrained scheduling of independent tasks on multiple heterogeneous

computers. For precedence constrained tasks represented by a directed acyclic graph (dag), our level-by-level modified list scheduling

(LL-MLS) algorithm schedules tasks level by level (LL) and schedules tasks in the same level by using the MLS algorithm. We are able

to solve the problems of optimal energy/time allocation to the levels and optimal workload partition for all levels in a given dag. Our

simulation results demonstrate that when compared with optimal solutions, the LL-MLS algorithm has excellent expected performance

in solving the problems of energy-constrained and time-constrained scheduling of precedence constrained tasks on multiple

heterogeneous computers.

Index Terms—Energy-constrained scheduling, expected performance bound, modified list scheduling, multiple heterogeneous computers,

time-constrained scheduling

Ç

1 INTRODUCTION

1.1 Motivation

HETEROGENEOUS system architectures (HSA) [1] have
attracted growing interest in modern high-perfor-

mance computing to achieve higher performance/power
ratio. In a recent (November 2015) Top500 listing, there are
104 supercomputing systems which adopt HSA. The Sugon
Cluster W780I system equipped with Xeon E5-2640v3 8C
2.6 GHz and NVIDIA Tesla K80 (installed in the Institute of
Modern Physics of Chinese Academy of Sciences) can
achieve the power efficiency of 4.778 Gflops/Watt. In the
area of cloud computing, there is a consensus that heteroge-
neous server architectures will dominate the future data
centers [33]. A typical future heterogeneous data center con-
tains specialized servers and accelerators including graphi-
cal processing units (GPUs), field-programmable gate
arrays (FPGAs), and digital signal processors (DSPs); vari-
ous storage systems such as network file system (NSF) and
Hadoop distributed file system (HDFS); and flexible inter-
connects such as Gigabit Ethernet and InfiniBand [9]. A het-
erogeneous architecture is also able to provide low-power
and high-throughput cores, along with application-specific
accelerators for large-scale applications [13]. Notice that

heterogeneity exists not only within a server [8], but also
between the servers [28].

It is a challenge on how to effectively and efficiently man-
age heterogeneous processors in current and future super-
computing systems and cloud computing platforms. The
problem becomes more difficult when processors are
equipped with the capability of dynamic voltage and fre-
quency scaling. Virtually all existing studies on energy-effi-
cient task scheduling on multiprocessors or multiple
computers assume that all the processors or computers
have the same power consumption model, i.e., the power
consumption is proportional to the execution speed raised
to the power a, where a is the same for all processors or
computers. However, it is well known that processors from
different manufacturers and vendors have very different
characteristics of performance (i.e., CPU/core speed) and
power consumption [2]. Unfortunately, there has been little
study on energy-efficient task scheduling on multiple het-
erogeneous computers which are characterized by different
values of a. The motivation of this paper is to make some
initial effort in this direction. Such investigation is certainly
of theoretical interest and practical importance, since a
large-scale data center may employ different servers manu-
factured by different vendors with different technologies,
which result in different power consumption models.

1.2 Our Contributions

In this paper, we investigate the problems of energy-con-
strained and time-constrained task scheduling on multiple
heterogeneous computers. We define these problems as
combinatorial optimization problems. Given a set of tasks
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with an energy budget, the energy-constrained scheduling
problem is to find a nonpreemptive schedule of the tasks,
such that the total energy consumption does not exceed the
given energy budget and that the total task execution time
is minimized. Given a set of tasks with a time deadline, the
time-constrained scheduling problem is to find a non-
preemptive schedule of the tasks, such that the total task
execution time does not exceed the given time deadline and
that the total energy consumption is minimized. These
problems have been investigated for independent/prece-
dence-constrained and sequential/parallel tasks on homo-
geneous computers [14], [15], [16], [18], [19], [20].

We find that for independent tasks, both problems contain
two subproblems, i.e., power allocation and task scheduling.
For a given set of tasks, our strategy is to find a schedule of the
tasks first, and then find a power allocation to the tasks, where
the power allocation is performed in such a way that the total
task execution time or the total energy consumption is mini-
mized (Theorems 1 and 2). Our investigation reveals the fact
that both scheduling problems can be reduced to the problem
of finding an optimal partition of the given set of tasks into
disjoint subsets. Fortunately, we are able to find an optimal
partition of a given workload (Theorems 3 and 4), and use a
modified list scheduling (MLS) algorithm to generate a parti-
tion of the set of tasks that is an approximation of the optimal
workload partition. Our simulation results demonstrate that
when compared with optimal solutions, the MLS algorithm
has excellent expected performance in solving the problems
of energy-constrained and time-constrained scheduling of
independent tasks onmultiple heterogeneous computers.

For precedence constrained tasks represented by a
directed acyclic graph (dag), there is an additional subprob-
lem of dealing with task inter-dependency. Our strategy to
handle precedence constraints is to schedule tasks level by
level (LL) and to schedule tasks in the same level by using
the MLS algorithm. Hence, our algorithm is called level-by-
level modified list scheduling (LL-MLS) algorithm. The key
issue in using the LL scheduling method is to find an opti-
mal energy or time allocation to the levels. Fortunately, we
are able to solve the problems of optimal energy/time allo-
cation to the levels and optimal workload partition for all
levels in a given dag (Theorems 5 and 6). Our simulation
results demonstrate that when compared with optimal solu-
tions, the LL-MLS algorithm has excellent expected perfor-
mance in solving the problems of energy-constrained and
time-constrained scheduling of precedence constrained
tasks on multiple heterogeneous computers.

To the best of our knowledge, this is the first paper that
investigates energy-efficient task scheduling on multiple
heterogeneous computers in a systematic and analytic way.

1.3 Paper Outline

Due to space limitation, this section is moved to the supple-
mentary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSUSC.2016.2623775.

2 RELATED RESEARCH

Reducing processor energy consumption has been an impor-
tant and pressing research issue in recent years. There has

been increasing interest and importance in developing high-
performance and energy-efficient computing systems. There
exists an explosive body of literature on energy-efficient com-
puting (see [3], [4], [32], [39] for comprehensive surveys).

2.1 Heterogeneous High-Performance Computing

Energy-efficient high-performance computing on heteroge-
neous systems has been studied extensively by numerous
researchers. In [22], the authors were concerned with the
problem of scheduling a bag-of-tasks application, made of a
collection of independent stochastic tasks with normal distri-
butions of task execution times, on a heterogeneous platform
with deadline and energy consumption budget constraints. In
[25], the authors proposed a new energy-aware scheduling
algorithm with reduced task duplication, which takes the
energy consumption as well as the makespan of an applica-
tion into consideration. In [29], the authors developed a real-
time and energy-efficient resource scheduling and optimiza-
tion framework to achieve high energy efficiency and low
response time in big data stream computing environments. In
[30], the authors proposed an energy-efficient workflow task
scheduling algorithm in order to obtain more energy reduc-
tion as well as maintain the quality of service by meeting the
deadlines. In [35], the authors addressed the problem of
energy-aware data allocation and task scheduling on a hetero-
geneous distributed shared-memory multiprocessor system
for real-time applications. In [37], the authors devised a novel
reliability maximization with energy constraint algorithm to
effectively balance the tradeoff between high reliability and
low energy consumption. In [38], the authors developed new
green task scheduling algorithms for heterogeneous com-
puters with changeable continuous and discrete speeds to
reduce energy consumption asmuch as possible and finish all
tasks before a deadline.

2.2 Heterogeneous Cloud Computing

Many researchers have investigated various issues in hetero-
geneous cloud systems, including resource allocation, task
scheduling, performance guarantee, and energy saving. In
[11], the authors outlined a principled approach to designing
energy-efficient and heterogeneous data centers that are
robust against data center workload variations. In [23], the
authors emphasized that the operational cost of data centers
is dominated by the cost on energy consumption, and mod-
eled a data center as a cyber physical system to capture its
thermal properties. In [24], the authors presented a green
strategy model for heterogeneous cloud systems, and pro-
vided a solution for heterogeneous job-communicating tasks
and heterogeneous virtual machines that make up the nodes
of the cloud to guarantee the service-level agreement and to
optimize energy savings. In [26], the authors had the objective
to satisfy performance expectations of customers by heteroge-
neous dynamic dedicated server scheduling while consider-
ing heterogeneous servers and different priority classes of
customers. In [27], the authors proposed an optimization
strategy based on a mixed integer programming model for
achieving improvement on power-efficiency while providing
performance guarantee in the virtualized cluster. In [34], the
authors studied the multi-resource allocation problem in
cloud computing systems where the resource pool is
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constructed from a large number of heterogeneous servers,
representing different points in the configuration space of
resources such as processing,memory, and storage.However,
the above research did not include dynamic voltage and fre-
quency scaling into consideration.

Due to space limitation, some part of this section is
moved to the supplementary material, available online.

3 POWER ALLOCATION

The power consumption model adopted in this paper is the
following, which is a standard model used by virtually all
researchers in the field [3], [14], [15], [16], [18], [19], [20], [22],
[25], [29], [30], [35], [37], [38], [39]. Power dissipation and cir-
cuit delay in digital CMOS circuits can be accurately mod-
eled by simple equations, even for complex microprocessor
circuits. CMOS circuits have dynamic, static, and short-cir-
cuit power dissipation; however, the dominant component
in a well designed circuit is dynamic power consumption p
(i.e., the switching component of power), which is approxi-

mately p ¼ aCV 2f , where a is an activity factor,C is the load-
ing capacitance, V is the supply voltage, and f is the clock
frequency [7]. Since s / f , where s is the processor speed,

and f / V f with 0 < f � 1, which implies that V / f1=f,
we know that power consumption is p / fa and p / sa,
where a ¼ 1þ 2=f � 3. Furthermore, the value of a can be as
high as 7.667 for high supply voltage [36]. (Note: Although it
has been known that power consumption can be highly
dependent on types of applications [10], we assume that p is
primarily determined by s, as in the existing literature.)

The main parameter which characterizes the power effi-
ciency of a processor is a. In this paper, we consider task
scheduling on m heterogeneous computers specified by
a1;a2; . . . ;am. Assume that we are given n independent or
precedence constrained sequential tasks to be executed on
m heterogeneous processors. Let ri represent the execution
requirement (i.e., the number of CPU cycles or the number
of instructions) of task i, where 1 � i � n. We use pi to rep-
resent the power allocated to execute task i which is exe-
cuted on processor k. For ease of discussion, we will assume

that pi is simply s
ak
i , where si ¼ p

1=ak
i is the execution speed

of task i. The execution time of task i is ti ¼ ri=si ¼ ri=p
1=ak
i .

The energy consumed to execute task i is ei ¼ piti ¼
rip

1�1=ak
i ¼ ris

ak�1
i .

3.1 Energy-Constrained Scheduling

In this section, we define and examine the energy-con-
strained scheduling problem.

Given a set of n tasks with execution requirements
r1; r2; . . . ; rn, a group ofm heterogeneous computers charac-
terized by a1;a2; . . . ;am, and an energy constraint E, the
energy-constrained scheduling problem is to find a power allo-
cation p1; p2; . . . ; pn to the n tasks and a nonpreemptive
schedule of the n tasks on the m computers, such that the
total energy consumption of the n tasks does not exceed E
and that the total execution time of the n tasks (i.e., the
schedule length) is minimized.

A schedule of a set of n tasks on m computers is actually a
partition of the set of n tasks into m disjoint subsets or
groups, such that tasks in the kth group are executed on the

kth computer. Let Rk denote the kth group as well as the
total execution requirement of the tasks in the kth group,
where 1 � k � m. We use R ¼ r1 þ r2 þ � � � þ rn ¼ R1 þ
R2 þ � � � þRm to represent the total execution requirement
of all the n tasks. Assume that the given energy budget E is
divided intom parts, i.e., E1; E2; . . . ; Em, such that Ek is allo-
cated to computer k, where 1 � k � m.

The following theorem gives the optimal power allocation
and theminimized schedule length for a given schedule.

Theorem 1. For a given energy constraint E and a given sched-
ule of a set of n tasks onm computers R1; R2; . . . ; Rm, the min-
imized schedule length T satisfies

E ¼ R
a1
1

T a1�1
þ R

a2
2

T a2�1
þ � � � þ Ram

m

T am�1
:

The above minimized schedule length is achieved when

Ek ¼ R
ak
k =T ak�1; and all tasks in Rk are allocated with the

same power pk ¼ ðRk=T Þak and executed with the same speed
sk ¼ Rk=T , for all 1 � k � m.

Proof. It is already known in [14] that given energy con-
straint Ek, the total execution time of the tasks in Rk on
computer k is minimized when all tasks in Rk are sup-

plied with the same power pk ¼ ðEk=RkÞak=ðak�1Þ and exe-

cuted with the same speed sk ¼ ðEk=RkÞ1=ðak�1Þ, and the

minimized execution time is Tk ¼ R
ak=ðak�1Þ
k =E

1=ðak�1Þ
k : It is

clear that in order to minimize the schedule length T of
the n tasks on the m computers, we need to have
T1 ¼ T2 ¼ � � � ¼ Tm ¼ T , i.e., all the m computers com-
plete their assigned tasks at the same time. Hence, we get

T ¼ R
ak=ðak�1Þ
k =E

1=ðak�1Þ
k ; which gives Ek ¼ R

ak
k =T ak�1; for

all 1 � k � m. Since E ¼ E1 þ E2 þ � � � þ Em, we have E
given in the theorem. It is easy to verify that pk ¼
ðRk=T Þak and sk ¼ Rk=T , for all 1 � k � m. This proves
the theorem. tu
The significance of Theorem 1 is that we have reduced

the energy-constrained scheduling problem on multiple het-
erogeneous computers to the problem of finding a schedule
R1; R2; . . . ; Rm, such that T is minimized. This suggests an
effective approach to solving the energy-constrained sched-
uling problem. The method consists of three steps. In the
first step, we find R�

1; R
�
2; . . . ; R

�
m, such that T is minimized

(see Section 4.1 and Theorem 3). In the second step, we find
a partition R1; R2; . . . ; Rm of the n tasks into m disjoint
groups, such that R1; R2; . . . ; Rm are close to R�

1; R
�
2; . . . ; R

�
m

(see Section 5.1). In the third step, we use Theorem 1 to find
the optimal power allocation p1; p2; . . . ; pm and speed setting
s1; s2; . . . ; sm for the given schedule R1; R2; . . . ; Rm.

3.2 Time-Constrained Scheduling

In this section, we define and examine the time-constrained
scheduling problem.

Given a set of n tasks with execution requirements
r1; r2; . . . ; rn, a group ofm heterogeneous computers charac-
terized by a1;a2; . . . ;am, and a time constraint T , the time-
constrained scheduling problem is to find a power allocation
p1; p2; . . . ; pn to the n tasks and a nonpreemptive schedule of
the n tasks on them computers, such that the total execution
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time of the n tasks does not exceed T and that the total
energy consumption of the n tasks is minimized.

The following theorem gives the optimal power alloca-
tion and the minimized energy consumption for a given
schedule.

Theorem 2. For a given a time constraint T and a given schedule
of a set of n tasks on m computers R1; R2; . . . ; Rm, the mini-
mized energy consumption E is

E ¼ R
a1
1

T a1�1
þ R

a2
2

T a2�1
þ � � � þ Ram

m

T am�1
:

The above minimized energy consumption is achieved when all
tasks in Rk are allocated with the same power pk ¼ ðRk=T Þak
and executed with the same speed sk ¼ Rk=T , for all
1 � k � m.

Proof. It is already known in [14] that given time constraint
T , the total energy consumption of the tasks in Rk on
computer k is minimized when all tasks in Rk are sup-
plied with the same power pk ¼ ðRk=T Þak and executed
with the same speed sk ¼ Rk=T , and the minimized

energy consumption is Ek ¼ R
ak
k =T ak�1; where 1 � k �

m. This implies that given a time constraint T and a parti-
tion R1; R2; . . . ; Rm, the minimized energy consumption
of the n tasks is E ¼ E1 þE2 þ � � � þ Em, i.e., the E given
in the theorem. This proves the theorem. tu
The significance of Theorem 2 is that we have reduced

the time-constrained scheduling problem on multiple het-
erogeneous computers to the problem of finding a schedule
R1; R2; . . . ; Rm, such that E is minimized. This suggests an
effective approach to solving the time-constrained schedul-
ing problem. The method consists of three steps. In the first
step, we find R�

1; R
�
2; . . . ; R

�
m, such that E is minimized (see

Section 4.2 and Theorem 4). In the second step, we find a
partition R1; R2; . . . ; Rm of the n tasks into m disjoint
groups, such that R1; R2; . . . ; Rm are close to R�

1; R
�
2; . . . ; R

�
m

(see Section 5.1). In the third step, we use Theorem 2 to find
the optimal power allocation p1; p2; . . . ; pm and speed setting
s1; s2; . . . ; sm for the given schedule R1; R2; . . . ; Rm.

4 LOWER BOUNDS

4.1 A Lower Bound for Optimal Schedule Length

The main purpose of this section is to develop a numerical
method to find R�

1; R
�
2; . . . ; R

�
m, i.e., an optimal partition of a

given workload R, assuming that R1; R2; . . . ; Rm are contin-
uous variables, such that T in Theorem 1 is minimized.

From Theorem 1, we know that the minimized schedule
length T can be viewed as a function of R1; R2; . . . ; Rm. We
are interested in the following optimization problem (i.e.,
optimal workload partition), namely, given m, a1;a2; . . . ;am,
R, and E, finding a partition R1; R2; . . . ; Rm of the workload
R, such that T is minimized, subject to the constraint that

F ¼ R1 þR2 þ � � � þRm ¼ R:

Unfortunately, there is no closed-form solution. Our objec-
tive is to develop a numerical method to find R�

1; R
�
2; . . . ; R

�
m

and the minimized T .
The significance of the study is two fold. First, the values

of R�
1; R

�
2; . . . ; R

�
m can be used to guide us in finding an

optimal schedule to solve the energy-constrained scheduling
problem. Second, the minimized T can be used as a lower
bound for the optimal schedule length TOPT, such that our
solutions can be comparedwith the optimal solutions.

Our main result of this section is the following theorem.

Theorem 3. The optimal schedule length has a lower bound
TOPT � T , where the minimized T and the partition
R�

1; R
�
2; . . . ; R

�
m that results in T can be obtained by solving the

mþ 1 equations, i.e., the constraint

R1 þR2 þ � � � þRm ¼ R;

andm equations

T ¼ akR
ak�1
k

Xm
j¼1

Rj

aj

 !
1

E

 !1=ðak�1Þ
;

for all 1 � k � m.

Note: The lower bound is implicitly given by equations
in the theorem. We will develop a numerical algorithm to
solve these equations after the proof. The main idea of the
proof is essentially to treat T as a function of R1; R2; . . . ; Rm.
The optimal workload partition problem can be solved by
minimizing T using a standard Lagrange multiplier system.
The proof can be skipped if the reader is less interested in
the details.

Proof. It is clear that the optimal schedule length may not
reach the minimized T , since the partition R�

1; R
�
2; . . . ; R

�
m

of R may not be realized by a partition of the n tasks, due
to the limited values of r1; r2; . . . ; rn. Hence, we have
TOPT � T .

To solve the optimization problem, we use a Lagrange
multiplier system, i.e., rT ¼ frF; where f is a Lagrange
multiplier. The above equation implies that @T=@Rk ¼
f@F=@Rk; for all 1 � k � m.

To find @T=@Rk, let us recall the equation of T in Theo-
rem 1, namely,

E ¼ R
a1
1

T a1�1
þ R

a2
2

T a2�1
þ � � � þ Ram

m

T am�1
:

We take a partial derivative of Rk on both sides of the
above equation and get

akR
ak�1
k

T ak�1
�

Xm
j¼1

ðaj � 1ÞRaj
j

T aj

 !
@T

@Rk
¼ 0;

which gives rise to

@T

@Rk
¼ akR

ak�1
k

T ak�1

Xm
j¼1

ðaj � 1ÞRaj
j

T aj

 !�1

;

for all 1 � k � m. Since @F=@Rk ¼ 1;we obtain

akR
ak�1
k

T ak�1

Xm
j¼1

ðaj � 1ÞRaj
j

T aj

 !�1

¼ f;

for all 1 � k � m.
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The last equation can be rewritten as akR
ak�1
k =T ak�1 ¼

fS; where

S ¼
Xm
j¼1

ðaj � 1ÞRaj
j

T aj
:

Hence, by Theorem 1, we have

Ek ¼ R
ak
k

T ak�1
¼ fS

Rk

ak
;

for all 1 � k � m. The above equation implies that

E ¼ E1 þ E2 þ � � � þ Em ¼ fS
Xm
j¼1

Rj

aj
;

and

fS ¼ E
Xm
j¼1

Rj

aj

 !�1

;

and

Ek ¼ Rk

ak

Xm
j¼1

Rj

aj

 !�1

E

¼ Rk=ak

R1=a1 þR2=a2 þ � � � þRm=am

� �
E;

for all 1 � k � m.
By Theorem 1, we have T ¼ R

ak
k =Ek

� �1=ðak�1Þ
: Substi-

tuting Ek, we get

T ¼ akR
ak�1
k

Xm
j¼1

Rj

aj

 !
1

E

 !1=ðak�1Þ
;

for all 1 � k � m. From the last m equations, plus the
condition R1 þR2 þ � � � þRm ¼ R; we can find
R�

1; R
�
2; . . . ; R

�
m and the resulting minimized T . tu

It is clear that the sophistication of the system of nonlinear
equations in Theorem 3 does not accommodate a closed-form
solution. In the following, we develop a numerical method to
find a solution to themþ 1 equations in Theorem 3.

First,we need amethod to findR1; R2; . . . ; Rm for a fixedT .
To this end,we letW ¼Pm

k¼1 Rk=ak: Therefore,we obtain

Rk ¼ T
E

akW

� �1=ðak�1Þ
;

for all 1 � k � m. It is clear that W can be found by the clas-
sic bisection method [5]. The reason is that R1; R2; . . . ; Rm

all decrease with W . Hence, our numerical method can be
described as follows. First, let W ¼ W0 be some arbitrary
value. We keep reducingW (e.g., halvingW ) and increasing
R1; R2; . . . ; Rm, until W ¼ W1 and W1 <

Pm
k¼1 Rk=ak: Next,

we let W ¼ W0 and keep increasing W (e.g., doubling W )
and decreasing R1; R2; . . . ; Rm, until W ¼ W2 and W2 >Pm

k¼1 Rk=ak: Finally, we can search W in ½W1;W2�, such that

W ¼Pm
k¼1 Rk=ak: Once W is determined, R1; R2; . . . ; Rm

can be calculated in a straightforward manner. The detailed
procedure of the above method is given in Algorithm 1 of
the supplementary material, available online.

Second, we can also find the minimized T by using the
bisection method. It is observed that the values in
R1; R2; . . . ; Rm all increase with T . Hence, our numerical
method can be described as follows. First, let T ¼ T0 be some
arbitrary value. We keep reducing T (e.g., halving T ) and
decreasing R1; R2; . . . ; Rm, until R1 þR2 þ � � � þ Rm < R:
Next, we let T ¼ T0 and keep increasing T (e.g., doubling T )
and increasing R1; R2; . . . ; Rm, until R1 þR2 þ � � � þRm >
R: Finally, we can search T in ½T1; T2�, such that
R1 þR2 þ � � � þRm ¼ R: The final values of R1; R2; . . . ; Rm

are considered as the numerical solution of R�
1; R

�
2; . . . ; R

�
m.

The detailed procedure of the abovemethod is given inAlgo-
rithm 2 of the supplementarymaterial, available online.

4.2 A Lower Bound for Optimal Energy
Consumption

The main purpose of this section is to develop a numerical
method to find R�

1; R
�
2; . . . ; R

�
m, i.e., an optimal partition of a

given workload R, assuming that R1; R2; . . . ; Rm are contin-
uous variables, such that E in Theorem 2 is minimized.

From Theorem 2, we know that the minimized energy
consumption E can be viewed as a function of
R1; R2; . . . ; Rm. We are interested in the following optimiza-
tion problem (i.e., optimal workload partition), namely, given
m, a1;a2; . . . ;am, R, and T , finding a partition
R1; R2; . . . ; Rm of the workload R, such that E is minimized,
subject to the constraint that

F ¼ R1 þR2 þ � � � þRm ¼ R:

Again, there is no closed-form solution. Our objective is to
develop a numerical method to find R�

1; R
�
2; . . . ; R

�
m and the

minimized E.
The significance of the study is two fold. First, the values

of R�
1; R

�
2; . . . ; R

�
m can be used to guide us in finding an opti-

mal schedule to solve the time-constrained scheduling prob-
lem. Second, the minimized E can be used as a lower bound
for the optimal energy consumption EOPT, such that our sol-
utions can be compared with the optimal solutions.

Our main result of this section is the following theorem.

Theorem 4. The optimal energy consumption has a lower bound
EOPT � E, where the minimized E and the partition
R�

1; R
�
2; . . . ; R

�
m that results in E are

E ¼ T
Xm
k¼1

f

ak

� �ak=ðak�1Þ
;

and

R�
k ¼

f

ak

� �1=ðak�1Þ
T;

for all 1 � k � m, and f satisfies

Xm
k¼1

f

ak

� �1=ðak�1Þ
¼ R

T
:

Note: The lower bound is implicitly given by equations
in the theorem. We will develop a numerical algorithm to
solve these equations after the proof. The main idea of the
proof is similar to that of Theorem 3 and can be skipped.
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Proof. It is clear that the optimal energy consumption may
not reach the minimized E, since the partition
R�

1; R
�
2; . . . ; R

�
m of R may not be realized by a partition of

the n tasks. Hence, we have EOPT � E.
To solve the optimization problem, we use a Lagrange

multiplier system, i.e., rE ¼ frF; where f is a Lagrange
multiplier. The above equation implies that @E=@Rk ¼
f@F=@Rk; for all 1 � k � m. From Theorem 2, we get

akR
ak�1
k =T ak�1 ¼ f; and consequently,

Rk ¼ f

ak

� �1=ðak�1Þ
T;

for all 1 � k � m. Since R1 þR2 þ � � � þRm ¼ R, we get

R ¼ T
Xm
k¼1

f

ak

� �1=ðak�1Þ
:

By Theorem 2, we have

E ¼
Xm
k¼1

R
ak
k

T ak�1
¼ T

Xm
k¼1

f

ak

� �ak=ðak�1Þ
:

The theorem is proven. tu
The equation for f in Theorem 4 can be solved by using

the bisection method, where we observe that the left-hand
side of the equation is an increasing function of f. Hence, our
numerical method can be described as follows. Assume that

S ¼
Xm
k¼1

f

ak

� �1=ðak�1Þ
:

First, let f ¼ f0 be some arbitrary value. We keep reducing
f (e.g., halving f), until S < R=T . Next, we let f ¼ f0 and
keep increasing f (e.g., doubling f), until S > R=T . Finally,
we can search f in ½f1;f2�, such that S ¼ R=T . Once f is
available, we can calculate R�

1; R
�
2; . . . ; R

�
m and the mini-

mized energy consumption E. The detailed procedure of
the above method is given in Algorithm 3 of the supplemen-
tary material, available online.

5 SCHEDULING INDEPENDENT TASKS

5.1 The MLS Algorithm

We now describe our heuristic algorithms.
Let R�

1; R
�
2; . . . ; R

�
m denote the partition obtained in Theo-

rem 3 which results in the minimized T . Our strategy to
solve the energy-constrained scheduling problem is to find
a partition R1; R2; . . . ; Rm of the n tasks into m disjoint
groups, such that R1; R2; . . . ; Rm are close to the optimal
workload partition R�

1; R
�
2; . . . ; R

�
m.

Let R�
1; R

�
2; . . . ; R

�
m denote the partition obtained in Theo-

rem 4 which results in the minimized E. Our strategy to
solve the time-constrained scheduling problem is to find a
partition R1; R2; . . . ; Rm of the n tasks into m disjoint
groups, such that R1; R2; . . . ; Rm are close to the optimal
workload partition R�

1; R
�
2; . . . ; R

�
m.

For both energy-constrained scheduling and time-con-
strained scheduling, we are facing the same problem, namely,
given R�

1; R
�
2; . . . ; R

�
m, finding a partition of the n tasks into

m disjoint groups, such that R1; R2; . . . ; Rm are close to

R�
1; R

�
2; . . . ; R

�
m. Once a scheduleR1; R2; . . . ; Rm is determined,

we can use Theorem 1 to find an optimal power allocation for
energy-constrained scheduling, or Theorem 2 to find an opti-
mal power allocation for time-constrained scheduling.

To generate a partition of the n tasks into m disjoint
groups, we treat the task execution requirements r1; r2; . . . ;
rn as task execution times. (Note: They are not the actual
task execution times, but only the input to the MLS algo-
rithm for the purpose of generating a partition.) The n tasks
are assigned to the m computers by using the classic list
scheduling algorithm [12] with some modifications. Our
modified list scheduling algorithm works as follows.

� Initially, the n tasks are arranged into a list. The first
m tasks are assigned to the m computers, one task
per computer.

� Whenever a computer completes a task, the next task
in the list is assigned to the computer.

� As soon as the total task execution requirement of a
computer k exceeds R�

k, the computer is blocked and
does not accept more tasks.

The result of the above procedure is a task assignment to
the m computers, i.e., a schedule of the n tasks on the m
computers. The resulted partition R1; R2; . . . ; Rm is consid-
ered as an approximation of R�

1; R
�
2; . . . ; R

�
m.

5.2 Numerical Examples

In this section,we give examples of our numerical calculations.
In Table 1, we demonstrate numerical data of energy-

constrained scheduling of independent tasks. We consider
m ¼ 7 heterogeneous computers with ða1;a2;a3;a4;a5;a6;
a7Þ ¼ ð3:0; 3:5; 4:0; 4:5; 5:0; 5:5; 6:0Þ: (Note: As commonly
accepted, the value of a is at least 3 [7]. As mentioned ear-
lier, the value of a can be as high as 7.667 for high supply
voltage [36].) Let us assume that the total amount of task
execution requirement is set as R ¼ 100. For energy con-
straint E ¼ 200; 400; 600; 800; 1;000, we show R�

k, Ek, pk, and
sk for all 1 � k � m. (Note: The values of R and E are set in
such a way that the execution speeds are in a reasonable
range.) These data are calculated by using Theorem 3. The
minimized T is also given. We observe that due to the het-
erogeneity of the ak’s, the workload R and the energy E are
unevenly distributed among the computers, such that a
computer with a smaller ak is assigned more workload and
allocated more energy. Furthermore, tasks assigned to a
computer with a smaller ak are supplied with more power
and executed with faster speed. In fact, as E increases, the
ratios R�

1=R
�
m, E1=Em, p1=pm, and s1=sm all increase.

In Table 2, we demonstrate numerical data of time-con-
strained scheduling of independent tasks. The values ofm,R,
and the ak’s are the same as Table 1. For time constraint
T ¼ 12:0; 10:5; 9:0; 7:5; 6:0, we show R�

k, Ek, pk, and sk for all
1 � k � m. These data are calculated by using Theorem 4. The
minimized E is also given. It is observed that as T decreases,
the ratiosR�

1=R
�
m,E1=Em, p1=pm, and s1=sm all increase.

5.3 Performance Data

We now present simulation data to demonstrate the perfor-
mance of our heuristic algorithms on m ¼ 7 heterogeneous
computers with the same ak’s in Section 5.2.
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The solutions produced by our algorithms will be com-
pared with optimal solutions (actually, the lower bounds in
Theorems 3 and 4). Our performance measures are defined
as follows.

Let A be a heuristic algorithm for the energy-constrained
scheduling problem. We use TA to denote the length of the
schedule produced by algorithm A. Then, the ratio TA=TOPT

is called the performance ratio of algorithm A. If
TA=TOPT � B, then B is called a performance bound. Let T �

denote the minimized T in Theorem 3. It is clear that
B ¼ TA=T

� is a performance bound. Furthermore, if the task
execution requirements are random variables, TA, T

�, and B

are all random variables. The expectation B is called the
expected performance bound.

Let A be a heuristic algorithm for the time-constrained
scheduling problem. We use EA to denote the amount of
energy consumed by algorithm A. Then, the ratio EA=EOPT

is called the performance ratio of algorithm A. If
EA=EOPT � C, then C is called a performance bound. Let E�

denote the minimized E in Theorem 4. It is clear that
C ¼ EA=E

� is a performance bound. Furthermore, if the
task execution requirements are random variables, EA, E

�,

and C are all random variables. The expectation C is called
the expected performance bound.

In Table 3, we show simulation data for the expected per-
formance bound B of the modified list scheduling algorithm
for the energy-constrained scheduling problem. For each
combination of n ¼ 50; 100; 150; . . . ; 500 and E ¼ 100; 200;
300; 400; 500, we generate 2,000 sets of n tasks, whose task
execution requirements are random numbers uniformly

TABLE 1
Numerical Data of Energy-Constrained

Scheduling of Independent Tasks

E k R�
k Ek pk sk T

1 18.79233 51.62622 4.55339 1.65747
2 15.97030 37.60589 3.31681 1.40857
3 14.42734 29.72604 2.62181 1.27248

200 4 13.47787 24.68423 2.17713 1.18874 11.33798
5 12.84683 21.17566 1.86767 1.13308
6 12.40420 18.58733 1.63939 1.09404
7 12.08114 16.59463 1.46363 1.06555

1 21.05451 113.76871 12.56077 2.32455
2 16.72241 77.45145 8.55112 1.84626
3 14.44063 58.52278 6.46128 1.59434

400 4 13.06264 47.05626 5.19530 1.44220 9.05746
5 12.15384 39.40420 4.35047 1.34186
6 11.51663 33.94390 3.74762 1.27151
7 11.04933 29.85270 3.29592 1.21991

1 22.44906 180.17983 22.73851 2.83305
2 17.13833 117.90436 14.87941 2.16284
3 14.41453 86.77005 10.95029 1.81910

600 4 12.79567 68.46679 8.64044 1.61480 7.92399
5 11.73840 56.52860 7.13385 1.48137
6 11.00140 48.16310 6.07813 1.38837
7 10.46260 41.98728 5.29875 1.32037

1 23.46903 249.41050 34.64410 3.25994
2 17.42106 158.68917 22.04255 2.41985
3 14.38067 114.61985 15.92115 1.99753

800 4 12.59611 89.24105 12.39593 1.74965 7.19922
5 11.44006 72.94557 10.13243 1.58907
6 10.63851 61.66783 8.56590 1.47773
7 10.05457 53.42603 7.42109 1.39662

1 24.27702 320.75766 48.02557 3.63489
2 17.63269 199.68864 29.89846 2.64006
3 14.34560 142.15488 21.28420 2.14790

1,000 4 12.43579 109.53770 16.40058 1.86195 6.67889
5 11.20696 88.84248 13.30198 1.67797
6 10.35890 74.65411 11.17762 1.55099
7 9.74305 64.36452 9.63700 1.45878

TABLE 2
Numerical Data of Time-Constrained Scheduling

of Independent Tasks

T k R�
k Ek pk sk E

1 18.23823 42.12946 3.51079 1.51985
2 15.77044 31.22483 2.60207 1.31420
3 14.41239 24.96896 2.08075 1.20103

12.0 4 13.57551 20.90585 1.74215 1.13129 167.45616
5 13.02027 18.04572 1.50381 1.08502
6 12.63234 15.91642 1.32637 1.05270
7 12.35082 14.26491 1.18874 1.02924

1 19.55369 67.81211 6.45830 1.86226
2 16.23462 48.25851 4.59605 1.54615
3 14.44007 37.55858 3.57701 1.37524

10.5 4 13.34092 30.84417 2.93754 1.27056 253.92469
5 12.61092 26.24078 2.49912 1.20104
6 12.09786 22.88474 2.17950 1.15218
7 11.72193 20.32580 1.93579 1.11637

1 21.12014 116.30682 12.92298 2.34668
2 16.74276 79.02943 8.78105 1.86031
3 14.43995 59.63970 6.62663 1.60444

9.0 4 13.05025 47.91109 5.32345 1.45003 407.84453
5 12.13410 40.09287 4.45476 1.34823
6 11.49187 34.51896 3.83544 1.27687
7 11.02093 30.34566 3.37174 1.22455

1 23.03194 217.20454 28.96061 3.07093
2 17.30206 139.85872 18.64783 2.30694
3 14.39664 101.82651 13.57687 1.91955

7.5 4 12.68204 79.73265 10.63102 1.69094 707.81618
5 11.56734 65.45207 8.72694 1.54231
6 10.79263 55.51678 7.40224 1.43902
7 10.22735 48.22491 6.42999 1.36365

1 25.44568 457.65669 76.27611 4.24095
2 17.92020 276.26237 46.04373 2.98670
3 14.28281 192.66399 32.11066 2.38047

6.0 4 12.20084 146.29319 24.38220 2.03347 1,371.72046
5 10.87478 117.35388 19.55898 1.81246
6 9.96611 97.77094 16.29516 1.66102
7 9.30959 83.71940 13.95323 1.55160

TABLE 3
Simulation Data of B for Independent Tasks (CI¼ 	0:134%)

n E ¼ 100 E ¼ 200 E ¼ 300 E ¼ 400 E ¼ 500

50 1.04361 1.04947 1.05253 1.05580 1.05689
100 1.01326 1.01510 1.01600 1.01656 1.01668
150 1.00625 1.00765 1.00770 1.00780 1.00770
200 1.00366 1.00452 1.00452 1.00450 1.00441
250 1.00223 1.00296 1.00295 1.00287 1.00293
300 1.00150 1.00215 1.00213 1.00209 1.00202
350 1.00098 1.00155 1.00159 1.00153 1.00152
400 1.00046 1.00123 1.00122 1.00120 1.00119
450 1.00025 1.00097 1.00098 1.00095 1.00094
500 1.00038 1.00080 1.00079 1.00077 1.00077
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distributed in ½0; 1�. For each set of tasks, we calculate the
lower bound T � of TOPT by using Theorem 3. We also simu-
late the MLS algorithm and find its schedule length TMLS.
The performance bound is obtained as B ¼ TMLS=T

�. The
average value of the 2,000 values of B is then reported in
Table 3. The 99 percent confidence interval of all the data in
Table 3 is no more than 	0:134 percent.

In Table 4, we show simulation data for the expected per-
formance bound C of the modified list scheduling algorithm
for the time-constrained scheduling problem. For each com-
bination of n ¼ 50; 100; 150; . . . ; 500 and T ¼ 4:0t; 3:5t; 3:0t;
2:5t; 2:0t, where t ¼ n=50, we generate 2,000 sets of n tasks,
whose task execution requirements are random numbers
uniformly distributed in ½0; 1�. For each set of tasks, we cal-
culate the lower bound E� of EOPT by using Theorem 4. We
also simulate the MLS algorithm and find its energy con-
sumption EMLS. The performance bound is obtained as
C ¼ EMLS=E

�. The average value of the 2,000 values of C is
then reported in Table 4. The 99 percent confidence interval
of all the data in Table 4 is no more than 	0:441 percent.

In the following, we point out some observations.
From Table 3, we observe that B is very close to 1. For a

given n, the expected performance bound B slightly
increases as E increases, and then decreases as E further
increases, primarily due to the lower bounds. For a given E,

the expected performance bound B decreases as n increases.
From Table 4, we observe that C is very close to 1. For a

given n, the expected performance bound C slightly
increases as T decreases, and then decreases as T further
decreases, primarily due to the lower bounds. For a given T ,

the expected performance boundC decreases as n increases.
Notice that all the data in Tables 3 and 4 are for expected

performance bounds. The actual values of expected perfor-
mance ratios are smaller and closer to the optimal. Our sim-
ulation results demonstrate that the MLS algorithm has
excellent expected performance in solving the problems of
energy-constrained and time-constrained scheduling of
independent tasks on multiple heterogeneous computers.

6 SCHEDULING PRECEDENCE CONSTRAINED

TASKS

6.1 The LL-MLS Algorithm

A set of precedence constrained tasks can be represented by a
directed acyclic graph. The nodes in a dag are tasks and arcs in
the dag are precedence constraints. A dag can be divided into
v levels. Tasks with no any predecessor are in level 1. In

general, a task is in level l if the longest path from a node in
level 1 to the task contains l nodes. LetRl denote the total exe-
cution requirement of tasks in level l, where 1 � l � v.

Our strategy to schedule precedence constrained tasks is to
schedule tasks in a dag level by level, that is, tasks in level l can-
not be executed until all tasks in level l� 1 are finished. Since
tasks in each level l are independent of each other, they can be
scheduled by using the MLS algorithm. Therefore, our algo-
rithm is called level-by-level modified list scheduling algorithm.

Let El denote the amount of energy allocated to tasks in
level l (or, the amount of energy consumed by tasks in level l),
where 1 � l � v, such that E1 þE2 þ � � � þ Ev ¼ E. Let Tl

denote the execution time allocated to tasks in level l (or, the
total execution time of tasks in level l), where 1 � l � v, such
that T1 þ T2 þ � � � þ Tv ¼ T .

Ourmain concern for energy-constrained scheduling is the
determination of E1; E2; . . . ; Ev, such that the total execution
time of all tasks in a dag, i.e., T ¼ T1 þ T2 þ � � � þ Tv, is mini-
mized (see Section 6.2 and Theorem 5). Once an optimal
energy allocation E1; E2; . . . ; Ev is available, we can use
the MLS algorithm in Section 5.1 to schedule the v levels
separately and sequentially. Our main concern for time-
constrained scheduling is the determination of T1; T2; . . . ; Tv,
such that the total energy consumption of all tasks in a dag,
i.e.,E ¼ E1 þE2 þ � � � þEv, is minimized (see Section 6.3 and
Theorem 6). Once an optimal time allocation T1; T2; . . . ; Tv is
available, we can use the MLS algorithm in Section 5.1 to
schedule the v levels separately and sequentially. We will
address these two issues in the next two sections.

6.2 Optimal Energy Allocation

According to the level-by-level scheduling method, the total
execution time T of all tasks in a dag is simply the summa-
tion of the Tl’s, i.e.,

T ¼ T1 þ T2 þ � � � þ Tv;

where Tl is viewed as a function of El, and T is viewed as a
function of E1; E2; . . . ; Ev. Hence, we can define the follow-
ing optimization problem (i.e., optimal energy allocation and
workload partition), namely, given m, a1;a2; . . . ;am, R1;
R2; . . . ; Rv, and E, finding E1; E2; . . . ; Ev, such that T is min-
imized, subject to the constraint that

F ¼ E1 þE2 þ � � � þ Ev ¼ E:

Notice that each Rl should be further divided into
Rl;1; Rl;2; . . . ; Rl;m by using Theorem 3, such that Tl is mini-
mized for a given El, where 1 � l � v.

Note: The main purpose of the following mathematical
derivation is to develop a numerical procedure to solve the
above optimization problem. The reader can skip this part
and go to Table 5.

To solve the above optimization problem, we use a
Lagrange multiplier system, i.e., rT ¼ frF; where f is a
Lagrange multiplier. The above equation implies that

@T

@El
¼ f

@F

@El
;

or, equivalently, @Tl=@El ¼ f; for all 1 � l � v. In the follow-
ing, we develop a numerical procedure to solve the optimi-
zation problem.

TABLE 4
Simulation Data of C for Independent Tasks (CI¼ 	0:441%)

n T ¼ 4:0t T ¼ 3:5t T ¼ 3:0t T ¼ 2:5t T ¼ 2:0t

50 1.04858 1.07863 1.11797 1.15142 1.18113
100 1.01890 1.03379 1.04336 1.04929 1.05416
150 1.01150 1.01874 1.02255 1.02490 1.02500
200 1.00829 1.01210 1.01428 1.01494 1.01410
250 1.00623 1.00871 1.00967 1.00950 1.00890
300 1.00489 1.00651 1.00680 1.00640 1.00624
350 1.00392 1.00503 1.00510 1.00482 1.00464
400 1.00334 1.00401 1.00402 1.00376 1.00359
450 1.00276 1.00333 1.00313 1.00289 1.00274
500 1.00238 1.00263 1.00251 1.00241 1.00223
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To find @Tl=@El, we recall from Theorem 3 that for a given
El, there is an optimal partition Rl;1; Rl;2; . . . ; Rl;m which
results in the minimized Tl. The values of Rl;1; Rl;2; . . . ; Rl;m

and Tl can be obtained by solving the mþ 1 equations, i.e.,
the constraint

Rl;1 þRl;2 þ � � � þRl;m ¼ Rl;

andm equations

Tl ¼ akR
ak�1
l;k

Xm
j¼1

Rl;j

aj

 !
1

El

 !1=ðak�1Þ
;

for all 1 � k � m. From Table 1, we know that Tl as well as
Rl;1; Rl;2; . . . ; Rl;m are all functions of El. We take a partial
derivative of El on both sides of the above equation and get

@Tl

@El
¼ 1

ak � 1
� 1

T
ak�2
l

� ak ðak � 1ÞRak�2
l;k R0

l;k

Xm
j¼1

Rl;j

aj

 !
1

El

 

þR
ak�1
l;k

Xm
j¼1

R0
l;j

aj

 !
1

El
�R

ak�1
l;k

Xm
j¼1

Rl;j

aj

 !
1

E2
l

!
;

where R0
l;k ¼ @Rl;k=@El, for all 1 � k � m. The last equation

can be rewritten as

ðak � 1ÞR0
l;k

Xm
j¼1

Rl;j

aj

 !
þRl;k

Xm
j¼1

R0
l;j

aj

 !

¼ fT
ak�2
l 1� 1

ak

� �
El

R
ak�2
l;k

þRl;k

Xm
j¼1

Rl;j

aj

 !
1

El
;

for all 1 � k � m.
For a given f, we need to find El, where 1 � l � v. For a

given El, the values of Rl;1; Rl;2; . . . ; Rl;m and Tl can be
obtained from Theorem 3. The values of R0

l;1; R
0
l;2; . . . ; R

0
l;m

can be obtained by solving the above m equations, which
form a system of linear equations,

X
j6¼k

Rl;k

aj

� �
R0

l;j þ ðak � 1Þ
Xm
j¼1

Rl;j

aj

 !
þRl;k

ak

 !
R0

l;k

¼ fT
ak�2
l 1� 1

ak

� �
El

R
ak�2
l;k

þRl;k

Xm
j¼1

Rl;j

aj

 !
1

El
;

for all 1 � k � m. The detailed procedure of the above
method is given in Algorithm 4 of the supplementary mate-
rial, available online. Hence, we only need to determine El,
such that R0

l;1 þR0
l;2 þ � � � þR0

l;m ¼ 0. It is noticed that

R0
l;1 þR0

l;2 þ � � � þR0
l;m is a decreasing function of El, and the

value of El can be found by using the bisection method. The
detailed procedure of the above method is given in Algo-
rithm 5 of the supplementary material, available online.

Finally, to find E1; E2; . . . ; Ev, we notice that all the El’s
as well as E1 þ E2 þ � � � þEv are increasing functions of f.
Therefore, we only need to determine f, such that
E1 þE2 þ � � � þ Ev ¼ E, by using the bisection method.
Once E1; E2; . . . ; Ev are available, we can calculate
Rl;1; Rl;2; . . . ; Rl;m and Tl, for all 1 � l � v, by using Theorem
3, and T as a direct consequence. The detailed procedure of
the above method is given in Algorithm 6 of the supplemen-
tary material, available online.

In Table 5, we demonstrate numerical data of energy-con-
strained scheduling of precedence constrained tasks. We con-
sider m ¼ 7 heterogeneous computers with the same ak’s in
Section 5.2. Assume that a dag has v ¼ 4 levels, withRl ¼ 10l,
where 1 � l � v, and R ¼ 100. The energy constraint is
E ¼ 200. For all 1 � l � v, we show El and Tl, as well as R�

l;k,

El;k, pl;k, and sl;k, for all 1 � k � m. The following facts are
observed, which are described by surprisingly simple rela-
tions, and are not obvious at all from the above derivation.

Theorem 5. Assume that (1) R�
1; R

�
2; . . . ; R

�
m is an optimal parti-

tion of a workload R of independent tasks obtained from Theo-
rem 3; (2) E1; E2; . . . ; Em is the corresponding optimal energy
allocation of a given energy constraint E; (3) T is the resulting
minimized schedule length; (4) p1; p2; . . . ; pm are the power set-
tings of the m computers; (5) s1; s2; . . . ; sm are the speed set-
tings of them computers. For the optimal energy allocation and
workload partition problem with R1; R2; . . . ; Rv and E, where
R1 þR2 þ � � � þRv ¼ R, we have the following facts.

1) El,R
�
l;k, El;k, and Tl are linearly proportional toRl, i.e.,

they can be obtained fromE,R�
k,Ek, and T by scaling a

factor ofRl=ðR1 þR2 þ � � � þRvÞ, for all 1 � l � v.
2) p1;k ¼ p2;k ¼ � � � ¼ pv;k ¼ pk.
3) s1;k ¼ s2;k ¼ � � � ¼ sv;k ¼ sk.

TABLE 5
Numerical Data of Energy-Constrained Scheduling

of Precedence Constrained Tasks

l El k R�
l;k El;k pl;k sl;k Tl

1 1.87923 5.16262 4.55339 1.65747
2 1.59703 3.76059 3.31681 1.40857
3 1.44273 2.97260 2.62181 1.27248

1 20.00000 4 1.34779 2.46842 2.17713 1.18874 1.13380
5 1.28468 2.11757 1.86767 1.13308
6 1.24042 1.85873 1.63939 1.09404
7 1.20811 1.65946 1.46363 1.06555

1 3.75847 10.32524 4.55339 1.65747
2 3.19406 7.52118 3.31681 1.40857
3 2.88547 5.94521 2.62181 1.27248

2 40.00000 4 2.69557 4.93685 2.17713 1.18874 2.26760
5 2.56937 4.23513 1.86767 1.13308
6 2.48084 3.71747 1.63939 1.09404
7 2.41623 3.31893 1.46363 1.06555

1 5.63770 15.48787 4.55339 1.65747
2 4.79109 11.28177 3.31681 1.40857
3 4.32820 8.91781 2.62181 1.27248

3 60.00000 4 4.04336 7.40527 2.17713 1.18874 3.40140
5 3.85405 6.35270 1.86767 1.13308
6 3.72126 5.57620 1.63939 1.09404
7 3.62434 4.97839 1.46363 1.06555

1 7.51693 20.65049 4.55339 1.65747
2 6.38812 15.04236 3.31681 1.40857
3 5.77093 11.89042 2.62181 1.27248

4 80.00000 4 5.39115 9.87369 2.17713 1.18874 4.53519
5 5.13873 8.47026 1.86767 1.13308
6 4.96168 7.43493 1.63939 1.09404
7 4.83245 6.63785 1.46363 1.06555
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Proof. Notice that the minimized T 0 of the optimal energy
allocation and workload partition problem cannot be
shorter than the minimized T of the workload partition
problem of the same set of tasks with all precedence
constraints removed (i.e., tasks become independent of
each other). The minimized T of the set of independent
tasks is given by Theorem 3. If we can show that T 0 is
the same as T , then T 0 will be obviously optimal, i.e.,
we get an optimal energy allocation and workload par-
tition. Fortunately, this is indeed true, as stated in the
theorem.

The key observation is the fact that the equations in
Theorem 3 still hold if E, the Rk’s, and T are scaled by
a common factor. This explains Fact 1), i.e., if we set
El, the R�

l;k’s, the El;k’s, and Tl according to Fact 1),

then they will satisfy the equations in Theorem 3, and
become the input and output of the workload partition
problem for level l, for all 1 � l � v. This implies that
T 0 ¼ T1 þ T2 þ � � � þ Tv ¼ T , and we do get a solution to
the optimal energy allocation and workload partition
problem.

Furthermore, since pl;k ¼ ðRl;k=TlÞak and sl;k ¼ Rl;k=Tl,
for all 1 � l � v and 1 � k � m, Facts 2)-3) are direct
consequences, since Rl;k and Tl are all scaled by a com-
mon factor. tu

6.3 Optimal Time Allocation

According to the level-by-level scheduling method, the total
energy consumption E of all tasks in a dag is simply the
summation of the El’s, i.e., E ¼ E1 þ E2 þ � � � þEv; where
El is viewed as a function of Tl, and E is viewed as a func-
tion of T1; T2; . . . ; Tv. Hence, we can define the following
optimization problem (i.e., optimal time allocation and work-
load partition), namely, given m, a1;a2; . . . ;am, R1; R2; . . . ;

Rv, and T , finding T1; T2; . . . ; Tv, such that E is minimized,
subject to the constraint that

F ¼ T1 þ T2 þ � � � þ Tv ¼ T:

Notice that each Rl should be further divided into
Rl;1; Rl;2; . . . ; Rl;m by using Theorem 4, such that El is mini-

mized for a given Tl, where 1 � l � v.
Note: The main purpose of the following mathematical

derivation is to develop a numerical procedure to solve the
above optimization problem. The reader can skip this part
and go to Table 6.

To solve the above optimization problem, we use a
Lagrange multiplier system, i.e., rE ¼ frF; where f is a
Lagrange multiplier. The above equation implies that
@E=@Tl ¼ f@F=@Tl; or, equivalently, @El=@Tl ¼ f; for all
1 � l � v. In the following, we develop a numerical pro-
cedure to solve the optimization problem.

To find @El=@Tl, we recall from Theorem 4 that for a given
Tl, there is an optimal partition Rl;1; Rl;2; . . . ; Rl;m which
results in the minimized El given by

El ¼ Tl

Xm
k¼1

fl

ak

� �ak=ðak�1Þ
;

where fl is also a function of Tl. We take a partial derivative
of Tl on both sides of the above equation and get

@El

@Tl
¼
Xm
k¼1

fl

ak

� �ak=ðak�1Þ

þ Tlf
0
l

Xm
k¼1

1

ak � 1

fl

ak

� �1=ðak�1Þ !
;

where f0
l ¼ @fl=Tl. It remains to find f0

l. Since fl satisfies

Xm
k¼1

fl

ak

� �1=ðak�1Þ
¼ Rl

Tl
;

we can take a partial derivative of Tl on both sides of the
above equation and get

f0
l

Xm
k¼1

1

akðak � 1Þ
ak

fl

� �ðak�2Þ=ðak�1Þ
¼ �Rl

T 2
l

;

which implies that

f0
l ¼ �Rl

T 2
l

Xm
k¼1

1

akðak � 1Þ
ak

fl

� �ðak�2Þ=ðak�1Þ !�1

:

Substituting f0
l into the equation of @El=@Tl and noticing that

@El=@Tl ¼ f, we get

TABLE 6
Numerical Data of Time-Constrained Scheduling

of Precedence Constrained Tasks

l Tl k R�
l;k El;k pl;k sl;k El

1 1.82382 4.21295 3.51079 1.51985
2 1.57704 3.12248 2.60207 1.31420
3 1.44124 2.49690 2.08075 1.20103

1 1.20000 4 1.35755 2.09059 1.74215 1.13129 16.74562
5 1.30203 1.80457 1.50381 1.08502
6 1.26323 1.59164 1.32637 1.05270
7 1.23508 1.42649 1.18874 1.02924

1 3.64765 8.42589 3.51079 1.51985
2 3.15409 6.24497 2.60207 1.31420
3 2.88248 4.99379 2.08075 1.20103

2 2.40000 4 2.71510 4.18117 1.74215 1.13129 33.49123
5 2.60405 3.60914 1.50381 1.08502
6 2.52647 3.18328 1.32637 1.05270
7 2.47016 2.85298 1.18874 1.02924

1 5.47147 12.63884 3.51079 1.51985
2 4.73113 9.36745 2.60207 1.31420
3 4.32372 7.49069 2.08075 1.20103

3 3.60000 4 4.07265 6.27176 1.74215 1.13129 50.23685
5 3.90608 5.41372 1.50381 1.08502
6 3.78970 4.77493 1.32637 1.05270
7 3.70525 4.27947 1.18874 1.02924

1 7.29529 16.85178 3.51079 1.51985
2 6.30818 12.48993 2.60207 1.31420
3 5.76496 9.98758 2.08075 1.20103

4 4.80000 4 5.43020 8.36234 1.74215 1.13129 66.98246
5 5.20811 7.21829 1.50381 1.08502
6 5.05294 6.36657 1.32637 1.05270
7 4.94033 5.70596 1.18874 1.02924
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f ¼
Xm
k¼1

fl

ak

� �ak=ðak�1Þ

�Rl

Tl

Xm
k¼1

1

akðak � 1Þ
ak

fl

� �ðak�2Þ=ðak�1Þ !�1

Xm
k¼1

1

ak � 1

fl

ak

� �1=ðak�1Þ !
:

It is noticed that the right-hand side of the above equation is
negative and an increasing function of Tl. Thus, for any given
f < 0, we can find Tl by using the bisection method. The
detailed procedure of the above method is given in Algo-
rithm 7 of the supplementarymaterial, available online.

To determine T1; T2; . . . ; Tv, we notice that all the Tl’s as
well as T1 þ T2 þ � � � þ Tv are increasing functions of f.
Therefore, we only need to determine f, such that
T1 þ T2 þ � � � þ Tv ¼ T . Once T1; T2; . . . ; Tv are available, we
can calculate Rl;1; Rl;2; . . . ; Rl;m and El, for all 1 � l � v, by
using Theorem 4, and E as a direct consequence. The
detailed procedure of the above method is given in Algo-
rithm 8 of the supplementary material, available online.

In Table 6, we demonstrate numerical data of time-con-
strained scheduling of precedence constrained tasks. The
values of m, the ak’s, v, and the Rl’s are the same as Table 5.
The time constraint is T ¼ 12. For all 1 � l � v, we show Tl

and El, as well as R�
l;k, El;k, pl;k, and sl;k, for all 1 � k � m.

We observe the same facts as those in Table 5.

Theorem 6. Assume that (1)R�
1; R

�
2; . . . ; R

�
m is an optimal parti-

tion of a workload R of independent tasks obtained from Theo-
rem 4, where the time constraint is T ; (2) E1; E2; . . . ; Em is the
corresponding energy consumption of the m computers; (3) E
is the resulting minimized energy consumption; (4)
p1; p2; . . . ; pm are the power settings of the m computers; (5)
s1; s2; . . . ; sm are the speed settings of them computers. For the
optimal time allocation and workload partition problem with
R1; R2; . . . ; Rv and T , where R1 þR2 þ � � � þRv ¼ R, we
have the following facts.

1) Tl, R
�
l;k, El;k, and El are linearly proportional to Rl,

i.e., they can be obtained from T , R�
k, Ek, and E by

scaling a factor of Rl=ðR1 þR2 þ � � � þRvÞ, for all
1 � l � v.

2) p1;k ¼ p2;k ¼ � � � ¼ pv;k ¼ pk.
3) s1;k ¼ s2;k ¼ � � � ¼ sv;k ¼ sk.

Proof. The proof follows the same argument as that of The-
orem 5. The key observation is the fact that the equations
in Theorem 4 still hold if E, the Rk’s, and T are scaled by
a common factor. tu

6.4 Performance Data

In this section, we present simulation results to demonstrate
the expected performance of the LL-MLS algorithm onm ¼ 7
heterogeneous computers with the same ak’s in Section 5.2.

Again, the solutions produced by the LL-MLS algorithm
are comparedwith optimal solutions. Notice that the optimal
schedule length of tasks in a dag with a given energy budget
cannot be shorter than the optimal schedule length of the
same set of tasks with the same energy budget and with all
precedence constraints removed. Similarly, the minimum
energy consumption of tasks in a dagwith a given time dead-
line cannot be less than theminimum energy consumption of
the same set of taskswith the same time deadline andwith all
precedence constraints removed.Hence, the lower bounds in
Section 4 are also applicable to precedence constrained tasks.

In Table 7, we show simulation data for the expected per-
formance bound B of the LL-MLS algorithm for the energy-
constrained scheduling problem. We consider a dag with v
levels. The number of tasks in level l is 10l, for all 1 � l � v.
For each combination of v ¼ 2; 3; 4; . . . ; 11 and E ¼ 200;
400; 600; 800; 1;000, we generate 2,000 sets of n ¼ 5vðvþ 1Þ
tasks, whose task execution requirements are random num-
bers uniformly distributed in ½0; 1�. For each set of tasks, we
calculate the lower bound T � of TOPT by using Theorem 3.
We also simulate the LL-MLS algorithm and find its sched-
ule length TLL-MLS. The performance bound is obtained as
B ¼ TLL-MLS=T

�. The average value of the 2,000 values of B
is then reported in Table 7. The 99 percent confidence inter-
val of all the data in Table 7 is no more than 	0:459 percent.

In Table 8, we show simulation data for the expected per-
formance bound C of the LL-MLS algorithm for the time-
constrained scheduling problem. We consider the same dag
as that in Table 7. For each combination of v ¼ 2; 3; 4; . . . ; 11

and T ¼ 0:45t; 0:40t; 0:35t; 0:30t; 0:25t, where t ¼ v2, we gen-
erate 2,000 sets of n tasks, whose task execution require-
ments are random numbers uniformly distributed in ½0; 1�.
For each set of tasks, we calculate the lower bound E� of
EOPT by using Theorem 4. We also simulate the LL-MLS
algorithm and find its energy consumption ELL-MLS. The
performance bound is obtained as C ¼ ELL-MLS=E

�. The
average value of the 2,000 values of C is then reported in

TABLE 7
Simulation Data of B for Precedence Constrained

Tasks (CI¼ 	0:459%)

v E ¼ 200 E ¼ 400 E ¼ 600 E ¼ 800 E ¼ 1;000

2 1.16462 1.18053 1.20596 1.22700 1.24971
3 1.12846 1.13468 1.13272 1.13369 1.13539
4 1.09418 1.10565 1.10753 1.11145 1.11009
5 1.06875 1.08214 1.08684 1.08925 1.09172
6 1.05101 1.06395 1.06890 1.07236 1.07458
7 1.03842 1.05040 1.05540 1.05932 1.06155
8 1.02886 1.04020 1.04541 1.04851 1.05055
9 1.02151 1.03266 1.03740 1.04011 1.04268
10 1.01599 1.02661 1.03105 1.03427 1.03600
11 1.01198 1.02162 1.02599 1.02890 1.03079

TABLE 8
Simulation Data of C for Precedence Constrained

Tasks (CI¼ 	1:809%)

v T ¼ 0:45t T ¼ 0:40t T ¼ 0:35t T ¼ 0:30t T ¼ 0:25t

2 1.77451 1.94078 2.15927 2.48986 2.97784
3 1.40733 1.50228 1.63698 1.81861 2.05889
4 1.25637 1.32314 1.41607 1.53371 1.68714
5 1.18150 1.23322 1.30014 1.38803 1.49647
6 1.13428 1.17670 1.23373 1.29589 1.37592
7 1.10240 1.13920 1.18599 1.23841 1.29883
8 1.08240 1.11338 1.15292 1.19641 1.24686
9 1.06720 1.09421 1.12827 1.16466 1.20648
10 1.05637 1.08065 1.10980 1.14244 1.17549
11 1.04812 1.07067 1.09668 1.12244 1.15475
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Table 8. The 99 percent confidence interval of all the data in
Table 8 is no more than 	1:809 percent.

From Table 7, we observe that B is very close to 1. For a

given v, the expected performance bound B slightly
increases as E increases, primarily due to the lower bounds.

For a given E, the expected performance bound B decreases
as v increases.

From Table 8, we observe that C is reasonably close to 1,
except for small values of v. For a given v, the expected

performance bound C increases slightly (except for small v)
as T decreases, primarily due to the lower bounds. For a

given T , the expected performance bound C decreases as v
increases.

Notice that all the data in Tables 7 and 8 are for expected
performance bounds. The actual values of expected perfor-
mance ratios are smaller and closer to the optimal. Our
simulation results demonstrate that the LL-MLS algorithm
has excellent expected performance in solving the problems
of energy-constrained and time-constrained scheduling of
precedence constrained tasks on multiple heterogeneous
computers.

7 SUMMARY AND FURTHER RESEARCH

We have addressed the problems of energy-constrained and
time-constrained scheduling of independent or precedence
constrained tasks on multiple heterogeneous computers as
combinatorial optimization problems. Four key techniques
have been developed in this paper.

� First, we show how to find an optimal energy or time
allocation to levels of a dag, such that the perfor-
mance of the level-by-level scheduling method can
be optimized (Theorems 5 and 6).

� Second, for independent tasks in the same level, we
show how to find an optimal workload partition,
such that the modified list scheduling algorithm can
be employed to find an approximate task schedule
(Theorems 3 and 4).

� Third, for a given schedule, we show how to find an
optimal power allocation, such that the total execu-
tion time or the total energy consumption is mini-
mized (Theorems 1 and 2).

� Fourth, we derive lower bounds for the optimal
schedule length and the optimal energy consump-
tion, so that solutions produced by our heuristic
algorithms can be compared with optimal solutions
(Theorems 3 and 4).

Our extensive simulation results demonstrate that by
using the above techniques, the MLS algorithm has excel-
lent and close-to-optimal expected performance in solving
the problems of energy-constrained and time-constrained
scheduling of independent tasks on multiple heteroge-
neous computers, and that the LL-MLS algorithm has
excellent and close-to-optimal expected performance in
solving the problems of energy-constrained and time-con-
strained scheduling of precedence constrained tasks on
multiple heterogeneous computers. Our research in this
paper reveals that energy-efficient task scheduling on het-
erogeneous computers can be studied analytically, just as
what we did for homogeneous computers. To the best of

our knowledge, there has been no such method and result
in the existing literature. Our investigation in this paper
has made significant initial effort and our advanced meth-
ods and deep results in this paper are the current state-of-
the-art. Furthermore, this paper should inspire further
research interest.

To conclude the paper, we would like to mention several
further research directions. First, it has been observed that
power consumption is dependent on specific types of appli-
cations [10]. It is a challenge to incorporate such depen-
dency into energy-efficient task scheduling. Second, our
study in this paper can be extended to more sophisticated
power consumption models, such as discrete and bounded
clock frequency and supply voltage and execution speed
and power supply levels, as what we have done for homo-
geneous computers [20]. Third, in a way similar to that of
most existing studies, our research in this paper is primarily
analytical and experimental. It needs further effort to apply
such analytical and simulation results to actual applications
in realistic systems. Due to space limitation, further investi-
gation in these directions is beyond the scope of the paper
and deserves separate papers.
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