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4 Abstract—We consider scheduling precedence constrained tasks of amobile application in a fog computing environment, which faces

5 multiple challenges of precedence constraints, power allocation, and performance-cost tradeoff. Our strategies to handle the three

6 challenges are described as follows. First, in pre-power-allocation algorithms and post-power-allocation algorithms, precedence constraints

7 are handled by the classic list scheduling algorithm and the level-by-level schedulingmethod respectively. Second, in a pre-power-allocation

8 algorithm (a post-power-allocation algorithm, respectively), a power allocation strategy is determined before (after, respectively) a

9 computation offloading strategy is decided. Third, the performance-cost tradeoff is dealt with by defining the energy-constrained scheduling

10 problem and the time-constrained scheduling problem. That is, between performance and cost, we fix one andminimize the other. The

11 main contributions of the present paper are highlighted as follows. We develop a class of pre-power-allocation algorithms for

12 both energy-constrained and time-constrained scheduling, which are based on the classic list scheduling algorithm and the equal-energy

13 method.We develop a class of post-power-allocation algorithms for both energy-constrained and time-constrained scheduling, which are

14 based on the level-by-level schedulingmethod and our previously proposed algorithms for independent tasks. We evaluate the proposed

15 algorithms by extensive experiments onmobile applicationswith randomly generated directed acyclic graphs and identify themost

16 effective and efficient heuristic algorithms. Our research in this paper studies computation offloading in the context of traditional task

17 scheduling while incorporating new and unique features of fog computing into consideration. To the author’s best knowledge, there has

18 been no such and similar study in the current literature.

19 Index Terms—Energy-constrained scheduling, fog computing, level-by-level scheduling, list scheduling, mobile application, post-power-allocation

20 algorithm, pre-power-allocation algorithm, precedence constrained tasks, task scheduling, time-constrained scheduling
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21 1 INTRODUCTION

22 1.1 Challenges and Motivation

23 MOBILE applications in mobile edge computing, fog com-
24 puting, embedded systems, and Internet of things
25 (IoT) are more and more powerful and sophisticated, such
26 as connected vehicles, face detection and recognition,
27 healthcare, image processing, intelligent video acceleration,
28 interactive gaming, IoT gateway, mobile Big Data analytics,
29 natural language processing, reality augmentation, smart
30 homes and enterprises, and speech recognition. Typically, a
31 mobile application generated on a user equipment (UE) can
32 be decomposed into numerous tasks with precedence con-
33 straints which can be arbitrarily complicated [23]. Further-
34 more, the tasks may have very different computation and
35 communication requirements.
36 Such a complicated mobile application is beyond the
37 computing capability of a mobile device for timely process-
38 ing. With the assistance of servers in mobile edge clouds
39 (MECs), tasks of a mobile application can be offloaded to
40 the MEC servers. Computation offloading provides an effi-
41 cacious means to enhance the computing power of a UE
42 and to extend the battery lifetime of a UE. By parallel and
43 possibly faster task execution on the MECs, a UE may

44complete an application in shorter time, at the cost of extra
45time for communication. By remote task processing on the
46MECs, a UE may save energy consumption for computa-
47tion and make its battery to last longer, at the cost of
48extra energy for communication.
49Computation offloading for a mobile application with
50precedence constrained tasks becomes scheduling prece-
51dence constrained tasks of a mobile application in a fog com-
52puting environment. However, fog computing introduces
53several new and unique features that are quite different from
54traditional energy-efficient task scheduling systems, and a
55fog computing environment is a sophisticated and hard-to-
56manage computing platform. First, a UE does not offload all
57its tasks to the MECs. In fact, a UE also has task execution
58capability. In other words, a task may not be offloaded and
59executed locally on the UE or may be offloaded to an MEC
60and executed remotely on the MEC. Second, a UE cannot
61change and control the computation speeds of theMECs, but
62only its own computation speed and its communication
63speeds to the MECs. In other words, a UE can only partially
64determine the execution time of a task. Third, only the energy
65consumption of computation and communication in the UE
66is considered in dealing with the energy-delay tradeoff. In
67other words, energy consumption in the MECs is not
68included into problem formulation and solution. Fourth, fog
69computing exhibits strong heterogeneity, that is, a task has
70different execution times and energy consumptions on the
71UE and theMECs due to different computation and commu-
72nication speeds and different characteristics of communica-
73tion channels.
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74 There are multiple challenges in scheduling precedence
75 constrained tasks of a mobile application in a heterogeneous
76 fog computing environment. First, a computation offloading
77 strategy needs to be decided, which tells when and where to
78 execute a task, such that all precedence constraints among
79 the tasks are satisfied. Second, a power allocation strategy
80 needs to be determined, which, for each task, gives the com-
81 putation speed for local execution or the communication
82 speed for remote execution. Third, both performance (i.e.,
83 overall execution time) and cost (i.e., total energy consump-
84 tion) should be included into consideration when an optimi-
85 zation problem is defined. It is already known that task
86 scheduling is NP-hard even for independent tasks and only
87 one MEC, and certainly becomes more challenging with
88 added concerns of precedence constraints, power allocation,
89 and performance-cost tradeoff, and the inability of a UE to
90 change and control the computation speeds of the MECs.
91 The motivation of this paper is to develop high-quality
92 heuristic algorithms for scheduling precedence constrained
93 tasks of a mobile application in a fog computing environment
94 by effectively handling all the above challenges. Our investi-
95 gation is conducted within a well developed framework,
96 which can inspire further research and better algorithms.

97 1.2 New Contributions

98 In this paper, we consider scheduling precedence con-
99 strained tasks of a mobile application in a fog computing

100 environment. Our strategies to handle the three challenges
101 are described as follows. First, in pre-power-allocation algo-
102 rithms and post-power-allocation algorithms, precedence
103 constraints are handled by the classic list scheduling algo-
104 rithm and the level-by-level scheduling method respec-
105 tively. Second, in a pre-power-allocation algorithm (a post-
106 power-allocation algorithm, respectively), a power allocation
107 strategy is determined before (after, respectively) a compu-
108 tation offloading strategy is decided. Third, the perfor-
109 mance-cost tradeoff is dealt with by defining the energy-
110 constrained scheduling problem and the time-constrained
111 scheduling problem. That is, between performance and
112 cost, we fix one and minimize the other. Using the above
113 strategies, scheduling precedence constrained tasks of a
114 mobile application in a fog computing environment can be
115 investigated systematically, and various heuristic algo-
116 rithms can be developed and their performance can be eval-
117 uated and compared.
118 Themain contributions of the present paper are highlighted
119 as follows.

120 � Wedevelop a class of pre-power-allocation algorithms
121 for both energy-constrained and time-constrained
122 scheduling,which are based on the classic list schedul-
123 ing algorithm and the equal-energymethod.
124 � We develop a class of post-power-allocation algo-
125 rithms for both energy-constrained and time-con-
126 strained scheduling, which are based on the level-
127 by-level scheduling method and our previously pro-
128 posed algorithms for independent tasks.
129 � We evaluate the proposed algorithms by extensive
130 experiments on mobile applications with randomly
131 generated directed acyclic graphs and identify the
132 most effective and efficient heuristic algorithms.

133Our research in this paper studies computation offloading
134in the context of traditional task scheduling while incorpo-
135rating new and unique features of fog computing into con-
136sideration. To the author’s best knowledge, there has been
137no such and similar study in the current literature. However,
138the techniques of pre-power-allocation, post-power-alloca-
139tion, list scheduling, level-by-level scheduling, energy-con-
140strained scheduling, and time-constrained scheduling are all
141borrowed from traditional energy-efficient task scheduling
142in parallel and distributed computing systems [11], [12].
143The organization of the paper is summarized as follows.
144In Section 2, we provide background information, including
145the models used in the paper, problem definitions, and NP-
146hardness. In Section 3, we develop pre-power-allocation
147algorithms. In Section 4, we develop post-power-allocation
148algorithms. In Section 5, we experimentally evaluate the
149performance of our proposed algorithms. In Section 6, we
150review related research. In Section 7, we conclude the paper.

1512 BACKGROUND INFORMATION

152In this section, we present the models used in the paper,
153define our scheduling problems, and show their NP-
154hardness.
155Our task scheduling problem incorporated into a service-
156oriented fog computing environment is illustrated in Fig. 1.
157In such an environment, there are multiple UEs, multiple
158MECs, an application selector facing the UEs, and a task
159scheduler facing the MECs. The UEs can submit service
160requests in the form of mobile applications (see Section 2.1)
161that are put into an application pool. An application selector
162(i.e., a request server) chooses the next application (i.e., ser-
163vice request) to be processed according to certain criterion
164(e.g., quality of service). Once an application is chosen, a task
165scheduler decides when, where, and how to execute the tasks
166of the application on the multiple MECs (see Sections 2.2,
167and 2.3). Note that in this article, we focus on the design of
168the task scheduler, which includes a computation offloading
169strategy and a power allocation strategy (see Section 2.4).

Fig. 1. A service-oriented fog computing environment.
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170 2.1 The Application Model

171 In this section, we describe the mobile application model.
172 Let us assume that aUE has amobile applicationA ¼ ðL;�Þ,
173 which is specified as follows.
174 There is a list of tasks L ¼ ðt1; t2; . . .; tmÞ. Each task ti is
175 specified as ti ¼ ðri; diÞ, where ri is the computation require-
176 ment (i.e., the amount of computation, measured by the
177 number of billion processor cycles or the number of billion
178 instructions (BI) to be executed) of ti, and di is the communi-
179 cation requirement (i.e., the amount of data to be communi-
180 cated between the UE and an MEC, measured by the
181 number of million bits (MB)) of ti.
182 There are precedence constraints among the tasks, which
183 are specified by a partial order � . If ti1 � ti2 , then ti1 is a
184 predecessor of ti2 , and task ti2 cannot start its execution until
185 task ti1 is completed. A mobile application with precedence
186 constrained tasks can be described by a directed acyclic graph
187 (dag) G. The vertices in G are them tasks in L. The arcs in G
188 are given in such a way that there is an arc from ti1 to ti2 if
189 and only if ti1 � ti2 .

190 2.2 The Computation and Communication Models

191 In this section, we describe the task execution model.
192 Assume that there are n heterogeneous MECs, i.e., MEC1,
193 MEC2,..., MECn. Each MECj has computation speed sj (i.e.,
194 the processor execution speed,measured byGHz or the num-
195 ber of billion instructions that can be executed in one second),
196 which cannot be changed by the UE, for all 1 � j � n.
197 Each task ti can be executed on the UE or an MEC. Task
198 execution time includes computation time and communica-
199 tion time.
200 If ti is not offloaded and executed locally on the UE with
201 computation speed s0;i, which can be decided by the UE,
202 the computation time (measured by seconds) of ti on the UE
203 is ri=s0;i. There is no communication time for local execu-
204 tion. The execution time of ti with local execution on the UE
205 is Ti ¼ ri=s0;i, for all 1 � i � m.
206 If ti is offloaded to an MECji and executed remotely on
207 MECji , the computation time of ti on MECji is ri=sji . The
208 communication speed between theUE andMECji for ti is ci;ji
209 (i.e., the data transmission rate, measured by the number of
210 million bits that can be transmitted in one second), which
211 can be decided by the UE. The communication time (mea-
212 sured by seconds) between the UE andMECji for ti is di=ci;ji .
213 The execution time of ti with remote execution on MECji is
214 Ti ¼ ri=sji þ di=ci;ji , for all 1 � i � m and 1 � ji � n.

215 2.3 The Power Consumption Models

216 In this section, we describe the power consumption models
217 for both computation and communication.
218 There are two components in the UE’s power consump-
219 tion P (measured by Watts) for computation, i.e., dynamic
220 power consumption and static power consumption. The
221 dynamic component Pd is typically represented as Pd ¼ �sa0 ,
222 where � and a are some constants determined by the tech-
223 nology. The static component Ps is normally a constant.
224 Consequently, we get P ¼ Pd þ Ps ¼ �sa0 þ Ps. If ti is not off-
225 loaded and executed locally on the UE with computation
226 speed s0;i, the power consumption is Pi ¼ �sa0;i þ Ps, and the
227 energy consumption for computation (measured by Joules)

228of ti on the UE is Ei ¼ Piðri=s0;iÞ ¼ ðð�sa0;i þ PsÞ=s0;iÞri; for
229all 1 � i � m.
230Note that a UE consumes power for communication in
231addition to consuming power for computation. Let Pt;i;ji be
232the transmission power (measured by Watts) of the UE to
233MECji for task ti, where 1 � i � m and 1 � ji � n. Then, we
234have Pt;i;ji ¼ ð2ci;ji =wji � 1Þ=bji

, for all 1 � i � m and 1 � ji �
235n, where wji is the channel bandwidth and bji

is a quantity
236combining various factors such as the background noise
237power, the interference on the communication channel
238caused by other devices’ data transmission to the same
239MEC, and the channel gain between the UE and MECji . The
240energy consumption for communication (measured by
241Joules) of ti from the UE to MECji is Ei ¼ Pt;i;jiðdi=ci;jiÞ ¼
242ð2ci;ji =wji � 1Þ=ðbji

ci;jiÞdi, for all 1 � i � m and 1 � ji � n.
243Notice that for local execution on the UE, only energy
244consumption for computation is considered, and for remote
245execution on an MEC, only energy consumption for com-
246munication is considered. The total energy consumption of
247a mobile application is E ¼Pm

i¼1 Ei, which is the main cost
248measure of a mobile application.

2492.4 Problem Definitions

250In this section, we formally define our optimization prob-
251lems to be solved in this paper.
252A computation offloading strategy (a.k.a. schedule) of a
253mobile application A is to decide for each task ti, when (the
254starting time ti of execution) and where (the location, either
255the UE or an MEC, of execution) to execute ti, where 1 � i �
256m. A legitimate schedule must ensure that all tasks follow
257the precedence constraints, i.e., ti1 þ Ti1 � ti2 , if ti1 � ti2 . A
258power allocation strategy is to decide for each task ti, how (the
259computation speed s0;i for local execution on the UE or the
260communication speed ci;ji for remote execution on MECji )
261to execute ti, where 1 � i � m.
262We use T to denote the overall execution time to finish all
263the tasks in L (i.e., the makespan), which is the main perfor-
264mance measure of a mobile application.
265Given a mobile application A ¼ ðL;�Þ of a UE, where
266L ¼ ðt1; t2; . . .; tmÞ, with ti ¼ ðri; diÞ, for all 1 � i � m, in a
267fog computing environment with n MECs, i.e., MEC1,
268MEC2,..., MECn, where MECj has computation speed sj, for
269all 1 � j � n, and an energy constraint ~E, the energy-con-
270strained scheduling problem is to find a computation offload-
271ing strategy and a power allocation strategy for all tasks in
272L on the UE and MECs, such that E does not exceed ~E and
273T is minimized.
274Given amobile applicationA ¼ ðL;�Þ of a UE, whereL ¼
275ðt1; t2; . . .; tmÞ, with ti ¼ ðri; diÞ, for all 1 � i � m, in a fog
276computing environment with n MECs, i.e., MEC1, MEC2,...,
277MECn, whereMECj has computation speed sj, for all 1 � j �
278n, and a time constraint ~T , the time-constrained scheduling
279problem is to find a computation offloading strategy and a
280power allocation strategy for all tasks in L on the UE and
281MECs, such that T does not exceed ~T andE is minimized.

2822.5 NP-Hardness

283In this section, we show that even for very special cases, e.g.,
284for independent tasks and only one MEC, our combinatorial
285optimization problems are still NP-hard.
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286 Theorem 1. The energy-constrained scheduling problem is NP-
287 hard even for independent tasks and only one MEC.

288 Proof. Assume that tasks t1; t2; . . .; tm0 are executed on the
289 UE with total energy consumption ~E. We can show that
290 the overall execution time T on the UE is minimized when
291 all the tasks have the same computation speed on the UE.
292 Let us assume that ti is executed with computation speed
293 s0;i on the UE, where 1 � i � m0. Then, we have

T ðs0;1; s0;2; . . .; s0;m0 Þ ¼
Xm0
i¼1

ri=s0;i; (1)

295295

296 and

Eðs0;1; s0;2; . . .; s0;m0 Þ ¼
Xm0
i¼1
ð�sa�10;i þ Ps=s0;iÞri; (2)

298298

299 where both the overall execution time T ðs0;1; s0;2; . . .; s0;m0 Þ
300 and the total energy consumption Eðs0;1; s0;2; . . .; s0;m0 Þ are
301 viewed as functions of the computation speeds s0;1; s0;2;
302 . . .; s0;m0 . To minimize T ðs0;1; s0;2; . . .; s0;m0 Þ subject to the
303 constraint Eðs0;1; s0;2; . . .; s0;m0 Þ ¼ ~E, we use the Lagrange
304 multiplier system

rT ðs0;1; s0;2; . . .; s0;m0 Þ ¼ �rEðs0;1; s0;2; . . .; s0;m0 Þ; (3)
306306

307 where � is a Lagrange multiplier. Since

@T ðs0;1; s0;2; . . .; s0;m0 Þ
@si

¼ �
@Eðs0;1; s0;2; . . .; s0;m0 Þ

@si
; (4)

309309

310 that is

� ri
s20;i
¼ �ri �ða� 1Þsa�20;i �

Ps

s20;i

 !
; (5)

312312

313 we have

s0;i ¼ s0 ¼
�

1

�ða� 1Þ
�
Ps � 1

�

��1=a

; (6)

315315

316 for all 1 � i � m0. Substituting the above si;0 into the con-
317 straint Eðs0;1; s0;2; . . .; s0;m0 Þ ¼ ~E, we get

R

�
�sa�10 þ Ps

s0

�
¼ ~E; (7)

319319

320 where R ¼ r1 þ r2 þ � � � þ rm0 is the total execution
321 requirement of them0 tasks. The above discussion implies
322 that the overall execution time T on the UE is minimized
323 when all the tasks have the same computation speed s0 on
324 the UE, which can be found by solving the equation

�sa0 � ð ~E=RÞs0 þ Ps ¼ 0: (8)
326326

327 For instance, when a ¼ 2, we have

s0 ¼ 1

2�
~E=Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~E=RÞ2 � 4�Ps

q� �
: (9)

329329

330

331 Assume that tasks t1; t2; . . .; tm0 are executed on MEC1

332 with total energy consumption ~E. We can show that the
333 overall execution time T on the MEC is minimized when

334all the tasks have the same communication speed
335between the UE and MEC1. Let us assume that ti is exe-
336cuted with communication speed ci;1 between the UE
337and MEC1, where 1 � i � m0. Then, we have

T ðc1;1; c2;1; . . .; cm;01Þ ¼
Xm0
i¼1
ðri=s1 þ di=ci;1Þ; (10)

339339

340and

Eðc1;1; c2;1; . . .; cm;01Þ ¼
Xm0
i¼1

�
2ci;1=w1 � 1

b1ci;1

�
di; (11)

342342

343where both the overall execution time T ðc1;1; c2;1; . . .; cm;01Þ
344and the total energy consumption Eðc1;1; c2;1; . . .; cm;01Þ are
345viewed as functions of the communication speeds c1;1;
346c2;1; . . .; cm;01. To minimize T ðc1;1; c2;1; . . .; cm;01Þ subject to
347the constraint Eðc1;1; c2;1; . . .; cm;01Þ ¼ ~E, we use the
348Lagrangemultiplier system

rT ðc1;1; c2;1; . . .; cm;01Þ ¼ �rEðc1;1; c2;1; . . .; cm;01Þ; (12)
350350

351where � is a Lagrange multiplier. Since

@T ðc1;1; c2;1; . . .; cm;01Þ
@ci;1

¼ �
@Eðc1;1; c2;1; . . .; cm;01Þ

@ci;1
; (13)

353353

354that is

� di
c2i;1
¼ �di

�
2ci;1=w1ðln 2=w1Þci;1 � ð2ci;1=w1 � 1Þ

b1c
2
i;1

�
; (14)

356356

357we have ci;1 ¼ c1 for all 1 � i � m0. Substituting the above
358ci;1 into the constraintEðc1;1; c2;1; . . .; cm;01Þ ¼ ~E, we get�

2c1=w1 � 1

b1c1

�
D ¼ ~E; (15)

360360

361where D ¼ d1 þ d2 þ � � � þ dm0 is the total communication
362requirement of the m0 tasks. The above discussion
363implies that the overall execution time T on the MEC is
364minimized when all the tasks have the same communica-
365tion speed c1 between the UE and MEC1, which can be
366found by solving the equation

2c1=w1 � ð ~E=DÞb1c1 � 1 ¼ 0: (16) 368368

369

370When tasks have the same computation speed on the
371UE and the same communication speed between the UE
372and MEC1, the energy-constrained scheduling problem
373becomes the problem of optimal computation offloading with
374energy constraint [13], which has been proven to be NP-
375hard for independent tasks and only one MEC. tu
376Theorem 2. The time-constrained scheduling problem is NP-
377hard even for independent tasks and only one MEC.

378Proof. The proof follows a similar argument to that of the
379proof of Theorem 1.
380Assume that tasks t1; t2; . . .; tm0 are executed on the UE
381with overall execution time ~T . We can show that total
382energy consumptionE for computation isminimizedwhen
383all the tasks have the same computation speed on theUE.
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384 Assume that tasks t1; t2; . . .; tm0 are executed on MEC1

385 with overall execution time ~T . We can show that total
386 energy consumption E for communication is minimized
387 when all the tasks have the same communication speed
388 between the UE and MEC1.
389 When tasks have the same computation speed on the
390 UE and the same communication speed between the UE
391 and MEC1, the time-constrained scheduling problem
392 becomes the problem of optimal computation offloading with
393 time constraint [13], which has been proven to be NP-hard
394 for independent tasks and only one MEC. tu
395 The remaining of the paper is to seek heuristic algorithms
396 which are able to produce high-quality solutions.

397 3 PRE-POWER-ALLOCATION ALGORITHMS

398 In this section, we develop pre-power-allocation algorithms.
399 In these algorithms, a power allocation strategy is deter-
400 mined before a computation offloading strategy is decided.

401 3.1 Energy-Constrained Scheduling

402 In this section, we consider energy-constrained scheduling
403 with pre-power-allocation.
404 There are several methods for pre-power-allocation [11].
405 In the equal-speed method, all tasks have the same computa-
406 tion speed. This is not possible in fog computing, since the
407 UE cannot change the computation speed of an MEC. In the
408 equal-time method, all tasks have the same execution time.
409 This is again not possible in fog computing, since the UE
410 can only control the communication time. In this paper, we
411 adopt the equal-energy method, in which, all tasks consume
412 the same amount of energy, i.e., ~E=m. The advantage is that
413 when a task is scheduled on the UE or an MEC, its computa-
414 tion or communication speed can be decided immediately.
415 If ti is not offloaded and executed locally on the UE with
416 computation speed s0;i, we have

Ei ¼ ð�sa�10;i þ Ps=s0;iÞri ¼ ~E=m; (17)
418418

419 that is

�sa0;i � ð ~E=ðmriÞÞs0;i þ Ps ¼ 0: (18)

421421

422 When a ¼ 2, we get

s0;i ¼ 1

2�
~E=ðmriÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~E=ðmriÞÞ2 � 4�Ps

q� �
: (19)

424424

425 In general, we observe that �sa0;i � ð ~E=ðmriÞÞs0;i < 0, which

426 implies that s0;i < ð ~E=ð�mriÞÞ1=ða�1Þ. Hence, Eq. (18) can be

solved numerically by using the standard bisection method,

which searches for s0;i in the interval ½0; ð ~E=ð�mriÞÞ1=ða�1Þ�.
However, as mentioned in [13]

Ei � riP
1�1=a
s �1=a

a

ða� 1Þ1�1=a
: (20)

Thus, Eq. (18) has a solution only if

~E � mriP
1�1=a
s �1=a

a

ða� 1Þ1�1=a
: (21)

428428

429For instance, when a ¼ 2, we must have

~E � 2mri
ffiffiffiffiffiffiffi
�Ps

p
: (22) 431431

432

433If ti is offloaded to an MECji and executed remotely on
434MECji , we have

Ei ¼
�
2ci;ji =wji � 1

bji
ci;ji

�
di ¼ ~E=m; (23)

436436

437that is

2ci;ji =wji � ð ~E=ðmdiÞÞbji
ci;ji � 1 ¼ 0: (24)

439439

440By using a Taylor series, we know that for an exponential
441function bx, we have

bx > 1þ ðln bÞxþ 1

2
ðln bÞ2x2; (25)

443443

444where we notice that ðbxÞ0 ¼ bx ln b and ðbxÞ00 ¼ bxðln bÞ2. By
445letting b ¼ 21=wji and x ¼ ci;ji , we get

2ci;ji =wji > 1þ ðln 2=wjiÞci;ji þ
1

2
ðln 2=wjiÞ2c2i;ji ; (26)

447447

448and

ðln 2=wjiÞci;ji þ
1

2
ðln 2=wjiÞ2c2i;ji < ð ~E=ðmdiÞÞbji

ci;ji ;

(27)
450450

451which implies that

ci;ji < c	i;ji ¼
2ðð ~E=ðmdiÞÞbji

� ðln 2=wjiÞÞ
ðln 2=wjiÞ2

: (28)

453453

454Hence, Eq. (24) can be solved numerically by using the stan-
455dard bisection method, which searches for ci;ji in the inter-
456val ½0; c	i;ji �. As mentioned in [13]

Ei >

�
ln 2

wjibji

�
di: (29)

458458

459Thus, Eq. (24) has a solution only if

~E > m

�
ln 2

wjibji

�
di: (30)

461461

462

463Our energy-constrained scheduling algorithm with pre-
464power-allocation, called Energy-Constrained List Schedul-
465ing with Heuristic H (ECLS-H), is presented in Algorithm 1
466(see Section 5.1 forH).
467Notation: In this paper, we define

indexminðx1; x2; . . .; xnÞ;
469469

470to be the index j such that xj ¼ minðx1; x2; . . .; xnÞ. Similarly,
471we define

indexmaxðx1; x2; . . .; xnÞ;
473473

474to be the index j such that xj ¼ maxðx1; x2; . . .; xnÞ.
475The algorithm is essentially the classic list scheduling algo-
476rithm [3] adapted for a fog computing environment. With
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477 pre-power-allocation, the execution time of a task can be
478 available when the task is scheduled for execution.

479 Algorithm 1. Energy-Constrained List Scheduling With
480 HeuristicH (ECLS-H)

481 Input: A ¼ ðL;�Þ with L ¼ ðt1; t2; . . .; tmÞ, where ti ¼ ðri; diÞ,
482 for all 1 � i � m, UE ¼ ð�;a; PsÞ, MECj ¼ ðsj; wj;bjÞ, for all
483 1 � j � n, and ~E.
484 Output: A computation offloading strategy and a power
485 allocation strategy such that E does not exceed ~E and T is
486 minimized.
487 Initialize the list L using heuristicH; (1)
488 T  0; (2)
489 for (each unscheduled ready task ti) do (3)
490 if (there is an available MECj) then (4)
491 Schedule ti on MECj at time 0; (5)
492 Wj  the execution time of ti; (6)
493 Remove ti from L; (7)
494 end if; (8)
495 end do; (9)
496 while (there is still a running task) do (10)
497 j indexmin0�j0�n;Wj0 6¼0ðWj0 Þ; (11)
498 T  T þWj; (12)
499 for (j0 ¼ 0; j0 � n; j0++) do (13)
500 if (Wj0 6¼ 0) then (14)
501 Wj0  Wj0 �Wj; (15)
502 end if; (16)
503 end do; (17)
504 for (each unscheduled ready task ti) do (18)
505 if (there is an available MECj) then (19)
506 Schedule ti on MECj at time T ; (20)
507 Wj  the execution time of ti; (21)
508 Remove ti from L; (22)
509 end if; (23)
510 end do; (24)
511 end do. (25)

512 The list L is initialized with heuristic H (line (1)). The
513 variable T dynamically records the current time as a sched-
514 ule move on (line (2)). The for-loop in lines (3)–(9) schedules
515 the first batch of ready tasks (line (3)) at time 0 (line (5)). Let
516 Wj (line (6)) denote the remaining execution time of the task
517 currently running on MEC j, for all 0 � j � n, where we set
518 UE ¼ MEC0 for convenience. The while-loop in lines (10)–
519 (25) schedules the remaining tasks. In each repetition, the
520 following actions are performed. First, the MECj which
521 completes its current task the earliest is identified (line (11)).
522 Second, the time clock moves on to the moment when MECj

523 completes its current task (line (12)). Third, the remaining
524 execution time of each busy MEC (line (14)) is updated (line
525 (15)) by the for-loop in lines (13)–(17). Fourth, the next batch
526 of ready tasks (line (18)) are scheduled at time T (line (20))
527 by the for-loop in lines (18)–(24). The execution time of ti
528 (lines (6) and (21)) is ri=s0;i if j ¼ 0, where s0;i is found by
529 solving Eq. (18), and ri=sji þ di=ci;ji if j > 0, where ci;ji is
530 found by solving Eq. (24). The algorithm tells when and
531 where (lines (5) and (20)), and how (lines (6) and (21)) to
532 execute ti, for all 1 � i � m.
533 When Eqs. (18) or (24) cannot be solved due to insuffi-
534 cient energy allocation, the UE or MECj is considered not
535 available and skipped.

536The time complexity of the algorithm is analyzed as fol-
537lows. Line (1) typically takesOðmlogmÞ time. The for-loop in
538lines (3)–(9) repeats m times. Line (6) needs to solve Eq. (18)
539or Eq. (24), which requires Oðlog ðI=�ÞÞ time, where I is the
540length of the largest search internal in this paper. However,
541line (6) is performed at most n times. Thus, the for-loop in
542lines (3)–(9) takes Oðmþ nlog ðI=�ÞÞ time. The while-loop in
543lines (10)–(25) repeats m times, one for each completed task.
544In each repetition of the while-loop, line (11) requires OðnÞ
545time; the for-loop in lines (13)–(17) requires OðnÞ time; the
546for-loop in lines (18)–(24) requires Oðmþ nlog ðI=�ÞÞ time.
547Therefore, the while-loop in lines (10)–(25), and the overall
548time complexity of Algorithm 1 isOðmðmþ nlog ðI=�ÞÞÞ.

5493.2 Time-Constrained Scheduling

550In this section, we consider time-constrained scheduling
551with pre-power-allocation.
552Our time-constrained scheduling algorithm with pre-
553power-allocation, called Time-Constrained List Scheduling
554with HeuristicH (TCLS-H), is presented in Algorithm 2.

555Algorithm 2. Time-Constrained List Scheduling With
556HeuristicH (TCLS-H)

557Input: A ¼ ðL;�Þ with L ¼ ðt1; t2; . . .; tmÞ, where ti ¼ ðri; diÞ,
558for all 1 � i � m, UE ¼ ð�;a; PsÞ, MECj ¼ ðsj; wj;bjÞ, for all
5591 � j � n, and ~T .
560Output: A computation offloading strategy and a power
561allocation strategy such that T does not exceed ~T and E
562is minimized.
563~E  a reasonable value; (1)
564do (2)
565Call Algorithm ECLS-H with ~E to get T ; (3)
566~E  ~E þ DE; (4)
567while ðT > ~T Þ; (5)
568f ~T=T ; (6)
569for (i ¼ 1; i � m; i++) do (7)
570if (ji ¼ 0) then (8)
571s0;i  s0;i=f; (9)
572else (10)
573ci;ji  di=ðfðri=sji þ di=ci;jiÞ � ri=sjiÞ; (11)
574end if; (12)
575end do. (13)

576It is very difficult to decide the computation or communi-
577cation speed when a task is scheduled in time-constrained
578scheduling to guarantee a time constraint. Our strategy is to
579adopt a two stage process. In the first stage (lines (1)–(5)), we
580find ~E such that T obtained by the ECLS-H algorithm (line
581(3)) is no longer than ~T (line (5)). This can be realized by set-
582ting ~E to some reasonable value (line (1)), and gradually
583increasing ~E (line (4)) until T � ~T . In the second stage (lines
584(6)–(13)), the execution time of each task (line (7)) is scaled by
585a factor of f ¼ ~T=T � 1 (line (6)) by reducing the computa-
586tion or communication speed as follows. If task ti is sched-
587uled on the UE (line (8)), s0;i is changed to s00;i, such that
588ri=s

0
0;i ¼ fðri=s0;iÞ, which gives s00;i ¼ s0;i=f (line (9)). If task ti

589is scheduled on MECj (line (10)), ci;ji is changed to c0i;ji , such
590that ri=sji þ di=c

0
i;ji
¼ fðri=sji þ di=ci;jiÞ, which gives c0i;ji ¼

591di=ðfðri=sji þ di=ci;jiÞ � ri=sjiÞ (line (11)). Notice that such
592execution time scaling does not affect the the precedence
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593 constraints among the tasks and the locations to execute the
594 tasks, only the starting times for execution of the tasks.
595 After computation and communication speed reduction,
596 tasks no longer consume the same amount of energy. How-
597 ever, this is not an issue at all, since our original purpose is
598 to produced a computation offloading strategy and a power
599 allocation strategy such that the time constraint is satisfied.
600 It is clear that if the ECLS-H algorithm is called K times
601 in the first stage, the overall time complexity of Algorithm 2
602 is OðKmðmþ nlog ðI=�ÞÞÞ. The value K depends on the ini-
603 tial value of ~E and the increment DE.

604 4 POST-POWER-ALLOCATION ALGORITHMS

605 In this section, we develop post-power-allocation algorithms.
606 In these algorithms, a power allocation strategy is determined
607 after a computation offloading strategy is decided.

608 4.1 Energy-Constrained Scheduling

609 In this section, we consider energy-constrained scheduling
610 with post-power-allocation.
611 A directed acyclic graph can be decomposed into v levels,
612 where the levels are defined as follows. Level 1 consists of
613 initial tasks, i.e., tasks with no predecessors. Generally, level
614 l contains a task ti if the number of nodes on the longest
615 path from some initial task to task ti is l, where 1 � l � v.
616 Let Ll denote the set of tasks in level l, for all 1 � l � v.
617 Thus, we have L ¼ L1 [ L2 [ � � � [ Lv.
618 We adopt the level-by-level schedulingmethod, i.e., tasks in
619 L are scheduled level by level. This means that only when
620 all tasks in Ll�1 are completed, can tasks in Ll start their exe-
621 cution. The schedule of each level is produced individually,
622 independently, and separately. The schedule of the entire
623 mobile application is simply a concatenation of the v sched-
624 ules for L1; L2; . . .; Lv.
625 Since all tasks in the same level are independent of each
626 other, we can schedule them by using any heuristic energy-
627 constrained scheduling algorithm H for independent tasks,
628 e.g., those developed in [13]. All these algorithms have a
629 unique feature, i.e., a power allocation strategy is deter-
630 mined after a computation offloading strategy is decided.
631 Our energy-constrained scheduling algorithm with
632 post-power-allocation, called Energy-Constrained Level-
633 by-Level Scheduling with Heuristic H (ECLL-H), is pre-
634 sented in Algorithm 3.
635 The key issue in level-by-level energy-constrained sched-
636 uling is to determine how the given energy budget ~E is allo-
637 cated to the v levels. Let HðLl; ElÞ be the overall execution
638 time when algorithm H is applied to Ll with energy con-
639 straint El. Initially, each level Ll is scheduled by using algo-
640 rithm H with some initial energy allocation El (lines (1)–(3)).
641 Then, the remaining energy ~E � ðE1 þ E2 þ � � � þ EvÞ (line
642 (4)) is divided by K to get E0 (line (5)), and the while-loop in
643 lines (6)–(16) is repeated slightly more than K times. In each
644 repetition, the following actions are performed. First, DE is
645 determined, which is a random number g times E0, where g
646 is uniformly distributed in [0.5,1.0] (line (10)). Second,
647 the level l0 which results in the largest reduction in its
648 overall execution time if DE extra energy is provided, i.e.,
649 HðLl;ElÞ �HðLl; El þ DEÞ, is selected (line (12)). Third, level
650 l0 is allocated DE extra energy (line (13)). The while-loop

651terminates after all the remaining energy is allocated (line
652(6)). The overall execution time T of the mobile application is
653simplyHðL1; E1Þ þHðL2; E2Þ þ � � � þHðLv;EvÞ (line (17)).

654Algorithm 3. Energy-Constrained Level-by-Level Sched-
655uling With HeuristicH (ECLL-H)

656Input: A ¼ ðL;�Þ with L ¼ ðt1; t2; . . .; tmÞ, where ti ¼ ðri; diÞ,
657for all 1 � i � m, UE ¼ ð�;a; PsÞ, MECj ¼ ðsj; wj;bjÞ, for all
6581 � j � n, and ~E.
659Output: A computation offloading strategy and a power
660allocation strategy such that E does not exceed ~E and T
661is minimized.
662for (l ¼ 1; l � v; l++) do (1)
663Tl  HðLl; ElÞ; (2)
664end do; (3)
665remainingE  ~E � ðE1 þ E2 þ � � � þ EvÞ; (4)
666E0  ð ~E � ðE1 þ E2 þ � � � þ EvÞÞ=K; (5)
667while (remainingE > 0) do (6)
668if (remainingE � E0) then (7)
669DE  remainingE; (8)
670else (9)
671DE  gE0, where g 2 ½0:5; 1:0�; (10)
672end if; (11)
673l0  indexmax1�l�vðTl �HðLl; El þ DEÞÞ; (12)
674El0  El0 þ DE; (13)
675Tl0  HðLl0 ; El0 Þ; (14)
676remainingE  remainingE � DE; (15)
677end do; (16)
678T  T1 þ T2 þ � � � þ Tv. (17)

679The initial energy constraint El for Ll is determined as
680follows. Let us define Rl ¼

P
ti2Ll

ri and Dl ¼
P

ti2Ll
di, for

681all 1 � l � v. Then, according to [13], we can set El as

El ¼ RlP
1�1=a
s �1=a

a

ða� 1Þ1�1=a
þ
�

ln 2

min1�j�nðwjbjÞ
�
Dl;

(31)
683683

684for all 1 � l � v.
685We would like to mention that for independent tasks in
686the same level, our heuristic energy-constrained scheduling
687algorithm H assigns the same computation speed s0 to all
688tasks executed locally on the UE and the same communica-
689tion speed cj to all tasks executed remotely on MECj. How-
690ever, tasks from different levels have different computation
691speeds even if they are all executed locally on the UE, and
692tasks from different levels have different communication
693speeds even if they are all executed remotely on the same
694MEC.
695The time complexity of Algorithm 3 is analyzed as
696follows. From [13], we know that algorithm H takes
697OðjLljn2log ðI=�ÞÞ time in line (2). Thus, the for-loop in
698lines (1)–(3) takes Oðmn2log ðI=�ÞÞ time, since jL1j þ jL2j þ
699� � � þ jLvj ¼ m. The most time consuming step in the while-
700loop of lines (6)–(16) is line (12), which takesOðmn2log ðI=�ÞÞ
701time. Therefore, the overall time complexity of Algorithm 3
702isOðKmn2log ðI=�ÞÞ.

7034.2 Time-Constrained Scheduling

704In this section, we consider time-constrained scheduling with
705post-power-allocation.
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706 Our time-constrained scheduling algorithm with post-
707 power-allocation, called Time-Constrained Level-by-Level
708 Scheduling with Heuristic H (TCLL-H), is presented in
709 Algorithm 4.

710 Algorithm 4. Time-Constrained Level-by-Level Schedul-
711 ing With HeuristicH (TCLL-H)

712 Input: A ¼ ðL;�Þ with L ¼ ðt1; t2; . . .; tmÞ, where ti ¼ ðri; diÞ,
713 for all 1 � i � m, UE ¼ ð�;a; PsÞ, MECj ¼ ðsj; wj;bjÞ, for all
714 1 � j � n, and ~T .
715 Output: A computation offloading strategy and a power alloca-
716 tion strategy such thatT does not exceed ~T andE isminimized.
717 for (l ¼ 1; l � v; l++) do (1)
718 El  HðLl; TlÞ; (2)
719 end do; (3)
720 additionalT  ðT1 þ T2 þ � � � þ TvÞ � ~T ; (4)
721 T 0  ððT1 þ T2 þ � � � þ TvÞ � ~T Þ=K; (5)
722 while (additionalT > 0) do (6)
723 if (additionalT � T 0) then (7)
724 DT  additionalT ; (8)
725 else (9)
726 DT  gT 0, where g 2 ½0:5; 1:0�; (10)
727 end if; (11)
728 l0  indexmin1�l�vðHðLl; Tl � DT Þ � ElÞ; (12)
729 Tl0  Tl0 � DT ; (13)
730 El0  HðLl0 ; Tl0 Þ; (14)
731 additionalT  additionalT � DT ; (15)
732 end do; (16)
733 E  E1 þ E2 þ � � � þ Ev. (17)

734 The key issue in level-by-level time-constrained schedul-
735 ing is to determine how the given time budget ~T is allocated
736 to the v levels. Let HðLl; TlÞ be the total energy consumption
737 when algorithm H is applied to Ll with time constraint Tl.
738 Initially, each level Ll is scheduled by using algorithm H
739 with some initial time allocation Tl (lines (1)–(3)). Then, the
740 additional time ðT1 þ T2 þ � � � þ TvÞ � ~T (line (4)) is divided
741 byK to get T 0 (line (5)), and the while-loop in lines (6)–(16) is
742 repeated slightly more than K times. In each repetition, the
743 following actions are performed. First, DT is determined,
744 which is a random number g times T 0, where g is uniformly
745 distributed in [0.5,1.0] (line (10)). Second, the level l0 which
746 results in the minimum increment in its total energy con-
747 sumption if DT amount of time is reduced, i.e., HðLl; Tl �
748 DT Þ �HðLl; TlÞ, is selected (line (12)). Third, the execution
749 time of level l0 is reduced by DT (line (13)). The while-loop
750 terminates after all the additional time is reduced (line (6)).
751 The total energy consumption E of the mobile application is
752 simplyHðL1; T1Þ þHðL2; T2Þ þ � � � þHðLv; TvÞ (line (17)).
753 The initial time constraint Tl for Ll is determined as fol-
754 lows. According to [13], we can set Tl as

Tl ¼ Rl

minðs1; s2; . . .; snÞ ; (32)

756756

757 for all 1 � l � v.
758 The time complexity of Algorithm 4 is analyzed as fol-
759 lows. From [13], we know that algorithm H takes OðjLljnÞ
760 time in line (2). Thus, the for-loop in lines (1)–(3) takes
761 OðmnÞ time, since jL1j þ jL2j þ � � � þ jLvj ¼ m. The most
762 time consuming step in the while-loop of lines (6)–(16) is

763line (12), which takes OðmnÞ time. Therefore, the overall
764time complexity of Algorithm 4 is OðKmnÞ.

7655 EXPERIMENTAL PERFORMANCE EVALUATION

766We experimentally evaluate the performance of our pro-
767posed algorithms in this section.

7685.1 Experiment Settings

769A fog computing environment with one UE and n ¼ 7 MECs
770is considered. TheUE is configuredwith the followingparam-
771eters: � ¼ 0:1, a ¼ 2:0, Ps ¼ 0:05 Watts. The MECj is config-
772ured with the following parameters: sj ¼ 3:1� 0:1j BI/
773second, wj ¼ 2:9þ 0:1j MB/second, bj ¼ 2:1� 0:1j Watts�1,
774for all 1 � j � n.
775Task computation and communication requirements are
776randomly generated. The ri’s are independent and identi-
777cally and uniformly distributed in the range [1.5,5.0]. The
778di’s are independent and identically and uniformly distrib-
779uted in the range [1.0, 3.0].
780A random directed acyclic graph with m nodes and arc
781probability p is generated using the following procedure.
782For each pair of tasks ti1 and ti2 , where 1 � i1 < i2 � m, an
783arc ðti1 ; ti2Þ exists with probability p. The arc probabilities
784are independent of each other. It is easy to see that the
785expected number of successors of task ti is ðm� iÞp, where
7861 � i � m. If p ¼ b=m, then it is in the range ½0; bÞ. We set b ¼
7872 in this section.
788To show numerical characteristics of the above random
789dags, form ¼ 20; 40; 60; . . .; 200, the expected number of lev-
790els v, and the expected number of tasks (width) ml on level l
791for l ¼ 1; 2; 3; 4, are displayed below. These data are the
792averages of those collected from 5000 random dags. For all
793the data in the table, the maximum 99% confidence interval
794(C.I.) is 
2.59677%. It is observed that a random dag exhib-
795its the shape of an inverted cone, i.e., the levels 1, 2, 3, 4,...
796have decreasing widths.

797m v m1 m2 m3 m4

79820 4.426 8.756 5.389 3.309 1.684
79940 5.151 17.450 10.460 6.469 3.444
80060 5.541 26.128 15.594 9.593 5.197
80180 5.823 34.731 20.758 12.674 6.968
802100 6.054 43.434 25.691 15.830 8.765
803120 6.192 52.061 30.860 19.020 10.527
804140 6.341 60.654 36.013 22.160 12.340
805160 6.463 69.414 41.013 25.316 14.049
806180 6.583 77.900 46.110 28.415 15.825
807200 6.644 86.725 51.206 31.549 17.610

808The following heuristics for the initial order of L ¼ ðti1 ; ti2 ;
809. . .; timÞ are considered in this paper.

810� ORG (Original Order) – Tasks are arranged in their
811original order.
812� SRF (Smallest Requirement First) – Tasks are ordered
813in such a way that ri1 � ri2 � � � � � rim .
814� LRF (Largest Requirement First) – Tasks are ordered in
815such a way that ri1 � ri2 � � � � � rim .
816� SDF (Smallest Data First) – Tasks are ordered in such
817a way that di1 � di2 � � � � � dim .
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818 � LDF (Largest Data First) – Tasks are ordered in such a
819 way that di1 � di2 � � � � � dim .
820 � SRD (Smallest Requirement-Data-Ratio First) – Tasks
821 are ordered in such a way that ri1=di1 � ri2=di2 �
822 � � � � rim=dim .
823 � LRD (Largest Requirement-Data-Ratio First) – Tasks
824 are ordered in such a way that ri1=di1 � ri2=di2 �
825 � � � � rim=dim .
826 � RANk (Best of k Random Orders) – Tasks are arranged
827 in k random orders and the best of the k solutions
828 are taken. We set k ¼ 10; 30; 50.

829 5.2 Evaluation of Pre-Power-Allocation Algorithms

830 In this section, we examine the performance of pre-power-
831 allocation algorithms.
832 In Table 1, we display our experimental results for energy-
833 constrained list scheduling. We set m ¼ 20; 40; 60; . . .; 200 for
834 the number of tasks, and ~E ¼ 4þ 8ðm=10Þ Joules for the
835 energy constraint. For eachm, we generateM ¼ 500 random
836 directed acyclic graphs withm nodes and arc probability p ¼
837 2=m. For each randomdag, we employ the ten proposed heu-
838 ristic algorithms, i.e., ECLS-H with H ¼ ORG, LRF, SRF,
839 LDF, SDF, LRD, SRD, RAN10, RAN30, andRAN50. The aver-
840 age of the M results of each heuristic algorithm is shown in
841 the table. For all the data in the table, the maximum 99% C.I.
842 is
2.73657%.
843 In Table 2, we display our experimental results for time-
844 constrained list scheduling. We set m ¼ 20; 40; 60; . . .; 200 for
845 the number of tasks, and ~T ¼ 3þ 3ðm=10Þ seconds for the
846 time constraint. (We set ~E ¼ 6þ 4ðm=10Þ in line (1) andDE ¼
847 1 in line (4).) For each m, we generate M ¼ 1000 random

848directed acyclic graphs withm nodes and arc probability p ¼
8492=m. For each random dag, we employ the ten proposed heu-
850ristic algorithms, i.e., TCLS-H withH ¼ORG, LRF, SRF, LDF,
851SDF, LRD, SRD, RAN10, RAN30, and RAN50. The average of
852theM results of each heuristic algorithm is shown in the table.
853For all the data in the table, the maximum 99% C.I. is
854
3.27861%.
855From Tables 1 and 2, we can make the following impor-
856tant observations.

857� The heuristics LRF, SRF, LDF, SDF, LRD, SRD do not
858yield noticeable difference in performance. Surpris-
859ingly, even ORG performs better than LRF, SRF,
860LDF, SDF, LRD, SRD.
861� The strategy of repeating the algorithm multiple
862times does yield performance improvement. RAN10
863performs noticeably better than ORG, LRF, SRF, LDF,
864SDF, LRD, SRD. However, excessive repetition does
865not bring much benefit, e.g., RAN30 and RAN50 do
866not perform noticeably better than RAN10.

8675.3 Evaluation of Post-Power-Allocation Algorithms

868In this section, we examine the performance of post-power-
869allocation algorithms.
870In Table 3, we display our experimental results for energy-
871constrained level-by-level scheduling. We set m ¼ 20; 40; 60;
872. . .; 200 for the number of tasks, and ~E ¼ 4þ 8ðm=10Þ Joules
873for the energy constraint. For each m, we generate M ¼ 200
874random directed acyclic graphs withm nodes and arc proba-
875bility p ¼ 2=m. For each random dag, we employ the ten pro-
876posed heuristic algorithms, i.e., ECLL-H withH ¼ORG, LRF,

TABLE 1
Experimental Data for Energy-Constrained List Scheduling (99% C.i. = 
2.73657%)

m ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 6.33308 6.48709 6.66739 6.55910 6.42811 6.40151 6.59637 5.90977 5.78460 5.74500
40 9.11599 10.04377 9.93155 10.01859 9.86338 9.95566 9.95979 8.56220 8.34164 8.26095
60 12.33894 13.63935 13.55841 13.58227 13.44811 13.48620 13.57923 11.84143 11.62201 11.53058
80 15.73861 17.09231 17.19463 17.24645 17.09973 17.10994 17.11351 15.29914 15.11473 15.03161
100 19.36595 20.75231 20.72037 20.97696 20.84537 20.82771 20.80411 18.90222 18.68869 18.60861
120 23.02285 24.54459 24.47294 24.65159 24.41779 24.42716 24.46665 22.58554 22.37142 22.27217
140 26.55621 28.01454 28.00879 28.23518 28.05862 28.01719 28.05040 26.16482 25.95939 25.86265
160 30.22643 31.62066 31.70171 31.84462 31.65625 31.38314 31.80101 29.79547 29.56064 29.46299
180 33.87471 35.42949 35.49348 35.64393 35.57105 35.43361 35.49940 33.46656 33.24222 33.14254
200 37.49787 38.87911 38.89904 39.16259 39.01920 38.92612 39.03835 37.07450 36.84821 36.76140

TABLE 2
Experimental Data for Time-Constrained List Scheduling (99% C.i. = 
3.27861%)

m ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 9.92750 9.96305 10.21354 10.30031 9.72279 9.71818 10.42555 7.68352 7.50296 7.43569
40 13.46612 14.37904 14.37946 14.60144 14.33305 14.32447 14.51679 12.72746 12.52871 12.44246
60 18.98870 20.31615 20.14062 20.24720 20.11653 20.26532 20.24780 18.57314 18.38512 18.30668
80 24.97693 26.24193 26.14677 26.20386 26.10228 26.32500 26.30230 24.62434 24.43361 24.34567
100 31.17557 32.41219 32.41821 32.23753 32.33055 32.65344 32.55194 30.79719 30.59395 30.49837
120 37.39229 38.88093 38.70792 38.46860 38.73005 39.04237 38.86885 37.00367 36.77652 36.67288
140 43.66139 45.19537 45.03864 44.68140 44.94225 45.41580 45.23217 43.24306 42.99051 42.88581
160 50.04367 51.70387 51.49461 51.03058 51.37655 51.94286 51.85121 49.60160 49.33935 49.22079
180 56.52746 58.22899 58.00216 57.36592 57.94094 58.57126 58.36803 55.95753 55.69383 55.57383
200 62.97426 64.87100 64.53795 63.74898 64.30659 65.15472 64.94806 62.32742 62.03703 61.89727
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877 SRF, LDF, SDF, LRD, SRD, RAN10, RAN30, and RAN50. The
878 parameterK is set as 10. The average of theM results of each
879 heuristic algorithm is shown in the table. For all the data in
880 the table, themaximum 99%C.I. is
3.66418%.
881 In Table 4, we display our experimental results for time-
882 constrained level-by-level scheduling. We set m ¼ 20; 40;
883 60; . . .; 200 for the number of tasks, and ~T ¼ 3þ 3ðm=10Þ
884 seconds the time constraint. For each m, we generate M ¼
885 400 random directed acyclic graphs with m nodes and arc
886 probability p ¼ 2=m. For each random dag, we employ the
887 ten proposed heuristic algorithms, i.e., TCLL-H with H ¼
888 ORG, LRF, SRF, LDF, SDF, LRD, SRD, RAN10, RAN30, and
889 RAN50. The parameter K is set as 200. The average of the
890 M results of each heuristic algorithm is shown in the table.
891 For all the data in the table, the maximum 99% C.I. is
892 
4.32958%.
893 From Tables 3 and 4, we can make the following impor-
894 tant observations.

895 � Different heuristics do yield noticeable difference in
896 performance. First, when m is small (large, respec-
897 tively), i.e., when m � 100 (m > 100, respectively),
898 LRF (SRD, respectively) is the best heuristic among
899 ORG, LRF, SRF, LDF, SDF, LRD, SRD for energy-con-
900 strained level-by-level scheduling. Second, LDF is the
901 best heuristic amongORG, LRF, SRF, LDF, SDF, LRD,
902 SRD for time-constrained level-by-level scheduling.
903 � The strategy of repeating the algorithm multiple
904 times does not yield much performance improve-
905 ment. For instance, the performance of SRD and
906 LDF are already very close to that of RAN50 for

907energy-constrained and time-constrained level-by-
908level scheduling respectively.

9095.4 Comparison

910It is observed that post-power-allocation algorithms consis-
911tently outperform pre-power-allocation algorithms in
912almost all cases. Although the list scheduling algorithm is
913very effective and efficient in handling precedence con-
914straints, the equal-energy method for pre-power-allocation
915is not efficient. Although the level-by-level scheduling
916method is not as efficient as the list scheduling algorithm,
917the computation offloading strategies and the post-power-
918allocation strategies developed in [13] for independent tasks
919in the same level are very effective and efficient.

9206 RELATED RESEARCH

921We review related research in this section.
922In recent years, extensive investigation has been con-
923ducted for computation offloading in mobile edge comput-
924ing and fog computing, which has been a very active and
925productive research area. Refs. [1], [10], [20] provide recent
926comprehensive surveys.
927Scheduling precedence constrained tasks for mobile
928applications in mobile edge computing and fog computing
929has been investigated by several researchers (see Table 5).
930Almost in all existing studies, only the case of one UE and
931one MEC has been considered. Therefore, the where issue in
932a computation offloading strategy becomes a whether issue,
933i.e., a binary computation offloading decision (either local
934or remote execution), and task scheduling is conducted only

TABLE 3
Experimental Data for Energy-Constrained Level-by-Level Scheduling (99% C.i. = 
3.66418%)

m ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 6.14116 6.41678 5.63241 6.31427 6.01120 6.25182 5.97162 5.58039 5.54089 5.52361
40 9.39722 9.62249 8.77565 9.68777 9.17091 9.37413 9.11474 8.62037 8.54037 8.51479
60 12.62807 12.75280 11.91830 13.01803 12.24451 12.39116 12.33286 11.70112 11.61171 11.57667
80 15.81300 15.77216 15.16399 16.27605 15.31049 15.37886 15.58691 14.87892 14.76326 14.72709
100 19.07778 18.94351 18.46658 19.73619 18.55745 18.52221 18.99568 18.14137 18.04773 18.01506
120 22.32952 21.99955 21.81596 23.06160 21.78133 21.59613 22.36492 21.38840 21.29001 21.24946
140 25.46007 24.99503 25.00448 26.31298 24.83862 24.55783 25.60256 24.51529 24.42089 24.37641
160 28.76626 28.11156 28.29632 29.68970 28.04417 27.66150 28.99075 27.77727 27.66976 27.63487
180 31.97630 31.22202 31.58380 33.04419 31.23029 30.72951 32.34895 31.00756 30.91417 30.88518
200 35.94577 34.98050 35.55188 37.11161 35.12320 34.55036 36.43820 34.95769 34.86119 34.81617

TABLE 4
Experimental Data for Time-Constrained Level-by-Level Scheduling (99% C.i. = 
4.32958%)

m ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 7.17612 7.45978 6.95541 7.31397 7.07785 7.27085 7.15486 6.91344 6.87709 6.86554
40 12.33779 12.67933 12.24361 12.52658 12.24655 12.49158 12.55159 12.05454 12.02382 12.01221
60 17.90778 18.28847 17.94457 18.11941 17.81361 18.17692 18.40052 17.63386 17.60367 17.59392
80 23.64200 24.08126 23.77834 23.84809 23.59230 24.06870 24.35092 23.36042 23.33168 23.32336
100 29.17348 29.68381 29.43206 29.39553 29.17235 29.71204 30.16238 28.90701 28.87904 28.86922
120 34.85638 35.43268 35.18821 35.11733 34.86430 35.54556 36.11573 34.58585 34.55644 34.54599
140 40.41645 41.06815 40.87987 40.66464 40.44734 41.26272 41.94877 40.13437 40.10787 40.09642
160 46.13776 46.82764 46.67916 46.42114 46.18082 47.10550 47.96953 45.84501 45.81365 45.80240
180 51.76933 52.57947 52.48760 52.09895 51.86871 52.94790 53.92911 51.50235 51.47520 51.46351
200 59.16643 60.60973 59.91616 59.54336 59.42100 61.31686 61.79147 58.75088 58.68758 58.66142
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935 on a UE and an MEC. A power allocation strategy still
936 involves the computation speed for local execution and/or
937 the communication speed remote execution. The main per-
938 formance measure is the overall execution time (i.e., the
939 makespan, or the maximum completion time of all tasks) of
940 a mobile application. Sometimes, the summation of execu-
941 tion times (or completion times) of all tasks is also used as a
942 performance measure. The main cost measure has been
943 unanimously the total energy consumption of a mobile
944 application.
945 Bymanipulating only the computation offloading decision,
946 Deng et al.minimized the total energy consumptionwhile sat-
947 isfying a strict delay (i.e., makespan) constraint using a parti-
948 cle swarm optimization algorithm [2]. Based on computation
949 offloading decision, transmission power allocation, and clock
950 frequency control, Guo et al. minimized the summation of
951 each task’s weighted sum of completion time and energy con-
952 sumption [4]. Jia et al. presented an online task offloading
953 algorithm on a mobile device to minimize the completion
954 time of an application [6]. By making computation offloading
955 decision and transmission power selection, Khalili and
956 Simeoneminimized aweighted sumof total energy consump-
957 tion and overall latency (i.e., makespan) [9]. By computation
958 offloading adjusting and frequency scaling, Liang et al. tried
959 to minimize the makespan over an MEC center with multiple
960 servers [14]. By making computation offloading decision and
961 transmission power selection, Lorenzo et al. minimized the
962 energy consumption at the mobile site, under a power budget
963 constraint and a latency constraint, where “latency” is the
964 summation of task transfer and execution times [19]. By
965 manipulating only the computation offloading decision,Mah-
966 moodi et al.maximized the energy saved through remote exe-
967 cution, with a runtime deadline constraint, i.e., the
968 completion time of the last component (i.e., makespan) does
969 not exceed a time deadline [21].
970 The above literature review reveals several major weak-
971 nesses of current research. First, only a single MEC is consid-
972 ered, which makes the computation offloading decision
973 much simpler and eliminates the challenging MEC selection
974 problem. Second, some researchers adopt the summation of
975 task execution times, not the makespan, as the performance
976 measure, which not only makes less sense, but also simplifies
977 the problem. Third, computation offloading should be con-
978 ducted together with power allocation for computation and
979 communication speeds and energy constraint. For these rea-
980 sons, there is lack of investigation of combinatorial optimiza-
981 tion approach to computation offloadingwithin a framework
982 similar to that of traditional energy-efficient task scheduling.
983 In this paper, we have considered multiple heterogeneous

984MECswhich have different computation speeds and commu-
985nication speeds.We have also employed the makespan as the
986performance measure, which is the main objective of optimi-
987zation in traditional task scheduling and the main concern
988for a mobile application consisting of tasks connected by a
989directed acyclic graph. Furthermore, we have incorporated
990power allocation and energy constraint into consideration.
991Some researchers have explored related but different sit-
992uations and environments. A fully polynomial time approxi-
993mation scheme was proposed by Kao et al. to find a task
994assignment strategy on multiple devices, so as to minimize
995the cost constrained latency [7]. Lin et al. considered amobile
996device with multiple heterogeneous cores and minimized
997the total energy consumption under a task completion time
998(i.e., makespan) budget, i.e., a delay constraint, by making
999computation offloading decision and determining heteroge-
1000neous cores mapping, execution frequency of each local task,
1001schedule of the tasks on heterogeneous cores and the
1002MEC [15]. Liu et al. investigated task offloading with both
1003precedence and placement constraints in a multi-user MEC
1004environment based on spatio-temporal information of tasks
1005and servers [16]. Liu et al.minimized the total weighted cost
1006of energy and delay in a multiple MEC environment by
1007incorporating the mobility of a mobile device into consider-
1008ation [17]. Long et al. studied oneMEC and one cloud server,
1009i.e., there are three (local, edge, cloud) computation models
1010for each task, and minimized the total energy consumption
1011under an application completion time (i.e., makespan) con-
1012straint by manipulating only computation offloading deci-
1013sion [18]. Yang et al. concerned multiple UEs and one MEC
1014with multiple homogeneous servers, where the computation
1015offloading decision needs to determine where (including the
1016mobile device and the cloud servers) to execute a task, and
1017minimized the average application delay of the users, where
1018the dags are linear and sequential dags and energy consump-
1019tion is not considered [24].
1020We would like to mention that there are studies focusing
1021on hierarchical fog computing environments [5], [8], [22].
1022These work mainly paid attention on the structure of a multi-
1023level fog computing network, not the structure of a mobile
1024application.

10257 CONCLUDING REMARKS

1026In this paper, we have addressed scheduling precedence
1027constrained tasks of a mobile application in a fog computing
1028environment. We have developed the class of pre-power-
1029allocation algorithms and the class of pre-power-allocation
1030algorithms. We have also experimentally evaluated the

TABLE 5
Research in Computation Offloading for Mobile ApplicationsWith Precedence Constrained Tasks (✓: Considered; –: Not Considered)

Work Precedence Constraint Multiple MECs Computation Speed Communication Speed Makespan Energy Constraint

Ref. [2] ✓ – – – ✓ ✓

Ref. [4] ✓ – ✓ ✓ – ✓

Ref. [6] ✓ – – – ✓ –
Ref. [9] ✓ – – ✓ ✓ ✓

Ref. [14] ✓ – ✓ – ✓ –
Ref. [19] ✓ – – ✓ – ✓

Ref. [21] ✓ – – – ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓ ✓
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1031 proposed algorithms, and found that ECLL-LRF and ECLL-
1032 SRD are the best algorithms for energy-constrained schedul-
1033 ing, and TCLL-LDF is the best algorithm for time-constrained
1034 scheduling.
1035 There are several research directions worth of further
1036 exploration. First, there is still room for performance
1037 improvement by considering more sophisticated and effi-
1038 cient computation offloading strategies and power alloca-
1039 tion strategies and new algorithmic schemes different from
1040 pre-power-allocation algorithms and post-power-allocation
1041 algorithms. Second, it is definitely interesting and challeng-
1042 ing to analyze the performance of heuristic algorithms
1043 when compared with optimal solutions. So far, little result
1044 is known in this area even for independent tasks [13], and
1045 much efforts and insights are required to bring break-
1046 through and significant advancement.
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