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1 SIMULATION SETTINGS AND RESULTS

Simulations have been conducted for two purposes,
namely, (1) to validate our analytical results (Theo-
rems 1 and 2); (2) and to find more effective queueing
disciplines which increase the net profit of a service
provider.

In Table 1, we show our simulation results by
using the same parameters in Figures 1–10. For each
λ = 6.05, 6.15, ..., 6.95, we trace the behavior of an
M/M/m queueing system with the FCFS queueing
discipline by generating a Poisson stream of service
requests with arrival rate λ, recording the waiting and
response times of each service request, and calculat-
ing the service charge to each service request. The
average service charge of 1,000,000 service requests
is reported in Table 1 for each λ. Notice that the
maximum 99% confidence interval of all the data
in the table is ±0.5165372%. The analytical data in
the table are obtained by Theorem 2 to calculate
the expected charge to a service request. It is easily
observed that our simulation results match with the
analytical data very well. These results validate our
theoretically predicted service charge in Theorem 2,
which is based on our analytical result on waiting
time distribution in Theorem 1.

Our analysis in this paper is based on the FCFS
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queueing discipline. A different queueing discipline
may change the distribution of the waiting times, and
thus, changes the average task response time and the
expected service charge. Since the cost of a service
provider remains the same, an increased/decreased
expected service charge to a service request in-
creases/decreases the expected net business gain of
a service provider. To show the effect of queueing
disciplines on the net profit of a service provider, we
only need to show the effect of queueing disciplines
on the expected service charge to a service request. We
consider two simple queueing disciplines, namely,

• Shortest Task First (STF): Tasks (service requests)
are arranged in a waiting queue in the increasing
order of their task execution requirements;

• Largest Task First (LTF): Tasks (service requests)
are arranged in a waiting queue in the decreasing
order of their task execution requirements.

While other queueing disciplines can also be consid-
ered, these two disciplines are already very encourag-
ing.

In Table 1, we also display our simulation results for
STF and LTF by using the same parameters for FCFS.
For each λ = 6.05, 6.15, ..., 6.95, we trace the behavior
of an M/M/m queueing system with the STF and
the LTF queueing disciplines respectively. The average
service charge of 1,000,000 service requests is reported
in Table 1 for each λ. We have the following observa-
tions.

• STF performs consistently better than FCFS.
Furthermore, while the expected service charge
drops significantly for FCFS when λ is close to
the saturation point and the average waiting time
becomes very long, the expected service charge of
STF is still close to ar̄ when λ is large.

• LTF performs worse than FCFS when λ is not
very large. However, when λ is close to the
saturation point, LTF performs better than FCFS
in the sense that the expected service charge of
LTF does not drop significantly when λ is large.
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Table 1: Simulation Results on the Expected Service Charge.

λ Analytical FCFS STF LTF
6.05 9.8245499 9.8185300 9.9792709 9.5841297
6.15 9.7798220 9.7762701 9.9651989 9.5239829
6.25 9.7193304 9.7151778 9.9565597 9.4591742
6.35 9.6351404 9.6384268 9.9514632 9.3984495
6.45 9.5136508 9.5015511 9.9015669 9.3375343
6.55 9.3298719 9.3432460 9.8674891 9.2532065
6.65 9.0334251 9.0317035 9.8038810 9.1751988
6.75 8.5084481 8.4933564 9.7186839 9.0780185
6.85 7.4277447 7.4383065 9.5750764 8.9842690
6.95 4.4400583 4.4744746 9.3974538 8.8743559

Unfortunately, due to lack of an analytical result on
waiting time distribution similar to Theorem 1 for STF
and LTF, the analytical work conducted in this paper
for FCFS cannot be duplicated for STF and LTF. This
can be an interesting subject for further investigation.

2 PROOFS OF THEOREMS 1 AND 2
Proof of Theorem 1. If there are k < m tasks in the
queueing system when a new service request arrives,
the waiting time of the service request is Wk = 0. The
pdf of Wk can be represented as

fWk
(t) = u(t),

for all 0 ≤ k ≤ m− 1. Furthermore, we have

W k = lim
z→∞

1

2z
= 0,

for all 0 ≤ k ≤ m− 1.
If there are k ≥ m tasks in the queueing system

when a new service request arrives, then the service
request must wait until a server is available. Notice
that due to the memoryless property of an exponential
distribution, the remaining execution time of a task
is always the same random variable as before, i.e.,
the original task execution time x with pdf fx(t) =
μe−μt, no matter how long the task has been executed.
Let x1, x2, ..., xm be the remaining execution times of
the m tasks in execution when a new service request
arrives. Then, we have fxj

(t) = μe−μt, for all 1 ≤ j ≤
m.

It is clear that y = min{x1, x2, ..., xm} is the time
until the next completion of a task. Since

P[y ≥ t] =

m∏
j=1

P[xj ≥ t] =
m∏
j=1

e−μt = e−mμt,

we get

Fy(t) = P[y ≤ t] = 1− P[y ≥ t] = 1− e−mμt,

and fy(t) = mμe−mμt, that is, y is also an exponential
random variable with mean 1/mμ. The time until the
next completion of a task is always the same random
variable y, i.e., the minimum value of m i.i.d. expo-
nential random variables with pdf fy(t) = mμe−mμt.

Notice that due to multiple servers, a task does not
need to wait until all tasks in front of it are completed.
Actually, the waiting time Wk of a task (under the
condition that there are k ≥ m tasks in the queueing
system when the task arrives) is Wk = y1 + y2 + · · ·+
yk−m+1, where y1, y2, ..., yk−m+1 are i.i.d. exponential
random variables with the same pdf fy(t) = mμe−mμt.
The reason is that after k−m+1 completions of task
executions, a task is at the front of the waiting queue
and there is an available server, and the task will be
scheduled to be executed. It is well known that y1 +
y2 + · · ·+ yk has an Erlang distribution whose pdf is

mμ(mμt)k−1

(k − 1)!
e−mμt.

Hence, we get the pdf of Wk

fWk
(t) =

mμ(mμt)k−m

(k −m)!
e−mμt,

for all k ≥ m. Notice that ȳ = 1/mμ and

W k = (k −m+ 1)ȳ =
k −m+ 1

mμ
= (k −m+ 1)

x̄

m
,

for all k ≥ m.
Summarizing the above discussion, we obtain the

pdf of the waiting time W of a service request as
follows:

fW (t)

=

∞∑
k=0

pkfWk
(t)

=

(
m−1∑
k=0

pk

)
u(t) +

∞∑
k=m

pk
mμ(mμt)k−m

(k −m)!
e−mμt

= (1− Pq)u(t) +

∞∑
k=m

p0
mmρk

m!
· mμ(mμt)k−m

(k −m)!
e−mμt

= (1− Pq)u(t)

+p0
mmρm

m!
mμe−mμt

∞∑
k=m

ρk−m(mμt)k−m

(k −m)!

= (1− Pq)u(t) + p0
(mρ)m

m!
mμe−mμt

∞∑
k=0

(ρmμt)k

k!

= (1− Pq)u(t) + pmmμe−mμteρmμt

= (1− Pq)u(t) +mμpme−(1−ρ)mμt.

This proves the theorem.

Proof of Theorem 2. Since W is a random variable,
C(r,W ), which is viewed as a function of W for a
fixed r, is also a random variable. The expected charge
to a service request with execution requirement r is
(in the following, dt in parenthesis is the product of
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the penalty factor and the time variable)

C(r)

= C(r,W )

=

∫ ∞

0

fW (t)C(r, t)dt

=

∫ (a/d+c/s0−1/s)r

0

fW (t)C(r, t)dt

=

∫ (a/d+c/s0−1/s)r

0

((1− Pq)u(t)

+mμpme−(1−ρ)mμt)C(r, t)dt

=

∫ (a/d+c/s0−1/s)r

0

(1− Pq)u(t)C(r, t)dt

+

∫ (a/d+c/s0−1/s)r

0

mμpme−(1−ρ)mμtC(r, t)dt

= (1− Pq)ar +

∫ (c/s0−1/s)r

0

mμpme−(1−ρ)mμtC(r, t)dt

+

∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

mμpme−(1−ρ)mμtC(r, t)dt

= (1− Pq)ar +

∫ (c/s0−1/s)r

0

mμpme−(1−ρ)mμtardt

+

∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

mμpme−(1−ρ)mμt

((
a+

cd

s0
− d

s

)
r − dt

)
dt

= (1− Pq)ar +mμpmar

∫ (c/s0−1/s)r

0

e−(1−ρ)mμtdt

+mμpm

∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

e−(1−ρ)mμt

((
a+

cd

s0
− d

s

)
r − dt

)
dt

= (1− Pq)ar +mμpmar

∫ (c/s0−1/s)r

0

e−(1−ρ)mμtdt

+mμpm

(
a+

cd

s0
− d

s

)
r

∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

e−(1−ρ)mμtdt

−dmμpm

∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

te−(1−ρ)mμtdt.

To continue the calculation, we notice that∫
ebtdt =

ebt

b
,

and ∫
tebt =

1

b

(
t− 1

b

)
ebt.

Hence, we have

∫ (c/s0−1/s)r

0

e−(1−ρ)mμtdt = −e−(1−ρ)mμt

(1− ρ)mμ

∣∣∣∣∣
(c/s0−1/s)r

0

=
1− e−(1−ρ)mμ(c/s0−1/s)r

(1− ρ)mμ
,

and ∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

e−(1−ρ)mμtdt

= −e−(1−ρ)mμt

(1− ρ)mμ

∣∣∣∣∣
(a/d+c/s0−1/s)r

(c/s0−1/s)r

=
e−(1−ρ)mμ(c/s0−1/s)r − e−(1−ρ)mμ(a/d+c/s0−1/s)r

(1− ρ)mμ
,

and ∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

te−(1−ρ)mμtdt

= − 1

(1− ρ)mμ

(
t+

1

(1− ρ)mμ

)

e−(1−ρ)mμt

∣∣∣∣∣
(a/d+c/s0−1/s)r

(c/s0−1/s)r

=
1

(1− ρ)mμ

(((
c

s0
− 1

s

)
r +

1

(1− ρ)mμ

)

e−(1−ρ)mμ(c/s0−1/s)r

−
((

a

d
+

c

s0
− 1

s

)
r +

1

(1− ρ)mμ

)

e−(1−ρ)mμ(a/d+c/s0−1/s)r

)
.

Based on the above results, we get

C(r)

= (1− Pq)ar +mμpmar
1− e−(1−ρ)mμ(c/s0−1/s)r

(1− ρ)mμ

+mμpm

(
a+

cd

s0
− d

s

)
r

e−(1−ρ)mμ(c/s0−1/s)r − e−(1−ρ)mμ(a/d+c/s0−1/s)r

(1− ρ)mμ

−dmμpm
1

(1− ρ)mμ(((
c

s0
− 1

s

)
r +

1

(1− ρ)mμ

)
e−(1−ρ)mμ(c/s0−1/s)r

−
((

a

d
+

c

s0
− 1

s

)
r +

1

(1− ρ)mμ

)

e−(1−ρ)mμ(a/d+c/s0−1/s)r

)

= (1− Pq)ar +
apm
1− ρ

(
r − re−(1−ρ)mμ(c/s0−1/s)r

)
+

pm
1− ρ

(
a+

cd

s0
− d

s

)
(
re−(1−ρ)mμ(c/s0−1/s)r − re−(1−ρ)mμ(a/d+c/s0−1/s)r

)

− dpm
1− ρ

((
c

s0
− 1

s

)
re−(1−ρ)mμ(c/s0−1/s)r

+
1

(1− ρ)mμ
e−(1−ρ)mμ(c/s0−1/s)r
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−
(
a

d
+

c

s0
− 1

s

)
re−(1−ρ)mμ(a/d+c/s0−1/s)r

− 1

(1− ρ)mμ
e−(1−ρ)mμ(a/d+c/s0−1/s)r

)

= (1− Pq)ar + aPq

(
r − re−(1−ρ)mμ(c/s0−1/s)r

)
+Pq

(
a+

cd

s0
− d

s

)
(
re−(1−ρ)mμ(c/s0−1/s)r − re−(1−ρ)mμ(a/d+c/s0−1/s)r

)

−dPq

((
c

s0
− 1

s

)
re−(1−ρ)mμ(c/s0−1/s)r

+
1

(1− ρ)mμ
e−(1−ρ)mμ(c/s0−1/s)r

−
(
a

d
+

c

s0
− 1

s

)
re−(1−ρ)mμ(a/d+c/s0−1/s)r

− 1

(1− ρ)mμ
e−(1−ρ)mμ(a/d+c/s0−1/s)r

)

= ar − dPq

(1− ρ)mμ(
e−(1−ρ)mμ(c/s0−1/s)r − e−(1−ρ)mμ(a/d+c/s0−1/s)r

)
.

Since r is a random variable, C(r), which is viewed
as a function of r, is also a random variable. Let the
pdf of task execution requirement r to be

fr(z) =
1

r̄
e−z/r̄.

The expected charge to a service request is

C

= C(r)

=

∫ ∞

0

fr(z)C(z)dz

=

∫ ∞

0

1

r̄
e−z/r̄C(z)dz

=
1

r̄

∫ ∞

0

e−z/r̄

(
az − dPq

(1− ρ)mμ(
e−(1−ρ)mμ(c/s0−1/s)z

−e−(1−ρ)mμ(a/d+c/s0−1/s)z
))

dz

=
1

r̄

(
a

∫ ∞

0

ze−z/r̄dz

− dPq

(1− ρ)mμ

(∫ ∞

0

e−((1−ρ)mμ(c/s0−1/s)+1/r̄)zdz

−
∫ ∞

0

e−((1−ρ)mμ(a/d+c/s0−1/s)+1/r̄)zdz

))
.

Since ∫ ∞

0

ze−bzdz = −1

b

(
z +

1

b

)
e−bz

∣∣∣∣∣
∞

0

=
1

b2
,

and ∫ ∞

0

e−bzdz = −e−bz

b

∣∣∣∣∣
∞

0

=
1

b
,

we get

C

=
1

r̄

(
ar̄2 − dPq

(1− ρ)mμ

(
1

(1− ρ)mμ(c/s0 − 1/s) + 1/r̄

− 1

(1− ρ)mμ(a/d+ c/s0 − 1/s) + 1/r̄

))

= ar̄ − dPq

(1− ρ)mμ

(
1

r̄(1− ρ)mμ(c/s0 − 1/s) + 1

− 1

r̄(1− ρ)mμ(a/d+ c/s0 − 1/s) + 1

)

= ar̄ − dPq

(1− ρ)mμ
· r̄(1− ρ)mμ(a/d)

(r̄(1− ρ)mμ(c/s0 − 1/s) + 1)

× 1

(r̄(1− ρ)mμ(a/d+ c/s0 − 1/s) + 1)

= ar̄ − ar̄Pq

(r̄(1− ρ)mμ(c/s0 − 1/s) + 1)

× 1

(r̄(1− ρ)mμ(a/d+ c/s0 − 1/s) + 1)

= ar̄

(
1− Pq

((ms− λr̄)(c/s0 − 1/s) + 1)

× 1

((ms− λr̄)(a/d+ c/s0 − 1/s) + 1)

)
.

The theorem is proven.

3 FURTHER RESEARCH DIRECTIONS

Our investigation in this paper is only an initial
attempt in this area. We would like to mention several
further research directions.

• First, in a cloud computing environment, a mul-
tiserver system can be dynamically configured
as a virtual cluster from a physical cluster, or a
virtual multicore server from a physical multi-
core processor, or a virtual multiserver system
from any elastic and dynamic resources. Our
profit maximization problem can be extended to
such virtual multiserver systems. To this end, a
queueing model that accurately describes such a
virtual multiserver system is required and needs
to be developed. Such a model should be able
to characterize a virtual multiserver system from
a partially available physical system with deter-
ministic or randomized availability.

• Second, our profit maximization problem can be
extended to multiple heterogeneous multiserver
systems of different sizes and speeds and applica-
tion environments with total power consumption
constraint. This is a multi-variable optimization
problem, which is much more complicated than
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the optimization performed for a single multi-
server system in this paper. Such optimization
has significant and practical applications in de-
signing energy-efficient data centers.

• Third, when a multicore server processor is spa-
tially divided into several multicore servers, our
profit maximization problem can be defined for
multiple multiserver systems. When the cores
have a fixed speed, the optimization problem has
a total server size constraint. When the cores have
variable speeds, the optimization problem has a
total server size constraint as well as a power
consumption constraint.

• Fourth, when a physical machine is temporally
partitioned into several virtual machines, i.e.,
when we are facing a dynamic cloud configura-
tion with multi-tenant utilization, our profit max-
imization problem might be defined for multiple
multiserver systems with total server speed con-
straint. Again, this part of the research relies on
an accurate queueing model for virtual machines
which is currently not available, although some
effort has been made [9].

We believe that the effort made in this paper should
inspire significant subsequent studies in profit maxi-
mization for cloud computing.
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