
Optimal Multiserver Configuration for Profit
Maximization in Cloud Computing

Junwei Cao, Senior Member, IEEE, Kai Hwang, Fellow, IEEE,

Keqin Li, Senior Member, IEEE, and Albert Y. Zomaya, Fellow, IEEE

Abstract—As cloud computing becomes more and more popular, understanding the economics of cloud computing becomes critically

important. To maximize the profit, a service provider should understand both service charges and business costs, and how they are

determined by the characteristics of the applications and the configuration of a multiserver system. The problem of optimal multiserver

configuration for profit maximization in a cloud computing environment is studied. Our pricing model takes such factors into

considerations as the amount of a service, the workload of an application environment, the configuration of a multiserver system, the

service-level agreement, the satisfaction of a consumer, the quality of a service, the penalty of a low-quality service, the cost of renting,

the cost of energy consumption, and a service provider’s margin and profit. Our approach is to treat a multiserver system as an M/M/m

queuing model, such that our optimization problem can be formulated and solved analytically. Two server speed and power consumption

models are considered, namely, the idle-speed model and the constant-speed model. The probability density function of the waiting time

of a newly arrived service request is derived. The expected service charge to a service request is calculated. The expected net business

gain in one unit of time is obtained. Numerical calculations of the optimal server size and the optimal server speed are demonstrated.

Index Terms—Cloud computing, multiserver system, pricing model, profit, queuing model, response time, server configuration,

service charge, service-level agreement, waiting time

Ç

1 INTRODUCTION

CLOUD computing is quickly becoming an effective and
efficient way of computing resources and computing

services consolidation [10]. By centralized management of
resources and services, cloud computing delivers hosted
services over the Internet, such that accesses to shared
hardware, software, databases, information, and all re-
sources are provided to consumers on-demand. Cloud
computing is able to provide the most cost-effective and
energy-efficient way of computing resources management
and computing services provision. Cloud computing turns
information technology into ordinary commodities and
utilities by using the pay-per-use pricing model [3], [5], [18].
However, cloud computing will never be free [8], and
understanding the economics of cloud computing becomes
critically important.

One attractive cloud computing environment is a three-
tier structure [15], which consists of infrastructure vendors,
service providers, and consumers. The three parties are
also called cluster nodes, cluster managers, and consumers

in cluster computing systems [21], and resource providers,
service providers, and clients in grid computing systems
[19]. An infrastructure vendor maintains basic hardware
and software facilities. A service provider rents resources
from the infrastructure vendors, builds appropriate multi-
server systems, and provides various services to users. A
consumer submits a service request to a service provider,
receives the desired result from the service provider with
certain service-level agreement, and pays for the service
based on the amount of the service and the quality of the
service. A service provider can build different multiserver
systems for different application domains, such that service
requests of different nature are sent to different multiserver
systems. Each multiserver system contains multiple ser-
vers, and such a multiserver system can be devoted to
serve one type of service requests and applications. An
application domain is characterized by two basic features,
i.e., the workload of an application environment and the
expected amount of a service. The configuration of a
multiserver system is characterized by two basic features,
i.e., the size of the multiserver system (the number of
servers) and the speed of the multiserver system (execution
speed of the servers).

Like all business, the pricing model of a service provider
in cloud computing is based on two components, namely,
the income and the cost. For a service provider, the income
(i.e., the revenue) is the service charge to users, and the cost
is the renting cost plus the utility cost paid to infrastructure
vendors. A pricing model in cloud computing includes
many considerations, such as the amount of a service (the
requirement of a service), the workload of an application
environment, the configuration (the size and the speed) of a
multiserver system, the service-level agreement, the satisfac-
tion of a consumer (the expected service time), the quality of
a service (the task waiting time and the task response time),

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 6, JUNE 2013 1087

. J. Cao is with the Research Institute of Information Technology, Tsinghua
National Laboratory for Information Science and Technology, Tsinghua
University, Beijing 100084, China. E-mail: jcao@tsinghua.edu.cn.

. K. Hwang is with the Department of Electrical Engineering, University of
Southern California, Los Angeles, CA 90089. E-mail: kaihwang@usc.edu.

. K. Li is with the Department of Computer Science, State University of New
York, New Paltz, New York 12561. E-mail: lik@newpaltz.edu.

. A.Y. Zomaya is with the School of Information Technologies, University of
Sydney, Sydney, NSW 2006, Australia.
E-mail: albert.zomaya@sydney.edu.au.

Manuscript received 23 Feb. 2012; revised 18 June 2012; accepted 28 June
2012; published online 25 June 2012.
Recommended for acceptance by V.B. Misic, R. Buyya, D. Milojicic, and Y.
Cui.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2012-02-0137.
Digital Object Identifier no. 10.1109/TPDS.2012.203.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

the penalty of a low-quality service, the cost of renting, the
cost of energy consumption, and a service provider’s margin
and profit. The profit (i.e., the net business gain) is the
income minus the cost. To maximize the profit, a service
provider should understand both service charges and
business costs, and in particular, how they are determined
by the characteristics of the applications and the configura-
tion of a multiserver system.

The service charge to a service request is determined by
two factors, i.e., the expected length of the service and the
actual length of the service. The expected length of a service
(i.e., the expected service time) is the execution time of an
application on a standard server with a baseline or reference
speed. Once the baseline speed is set, the expected length of
a service is determined by a service request itself, i.e., the
service requirement (amount of service) measured by the
number of instructions to be executed. The longer (shorter,
respectively) the expected length of a service is, the more
(less, respectively) the service charge is. The actual length of
a service (i.e., the actual service time) is the actual execution
time of an application. The actual length of a service
depends on the size of a multiserver system, the speed of
the servers (which may be faster or slower than the baseline
speed), and the workload of the multiserver system. Notice
that the actual service time is a random variable, which is
determined by the task waiting time once a multiserver
system is established.

There are many different service performance metrics in
service-level agreements [2]. Our performance metric in this
paper is the task response time (or the turn around time),
i.e., the time taken to complete a task, which includes task
waiting time and task execution time. The service-level
agreement is the promised time to complete a service,
which is a constant times the expected length of a service. If
the actual length of a service is (or, a service request is
completed) within the service-level agreement, the service
will be fully charged. However, if the actual length of a
service exceeds the service-level agreement, the service
charge will be reduced. The longer (shorter, respectively)
the actual length of a service is, the more (less, respectively)
the reduction of the service charge is. In other words, there
is penalty for a service provider to break a service-level
agreement. If the actual service time exceeds certain limit
(which is service request dependent), a service will be
entirely free with no charge. Notice that the service charge
of a service request is a random variable, and we are
interested in its expectation.

The cost of a service provider includes two components,
i.e., the renting cost and the utility cost. The renting cost is
proportional to the size of a multiserver system, i.e., the
number of servers. The utility cost is essentially the cost of
energy consumption and is determined by both the size and
the speed of a multiserver system. The faster (slower,
respectively) the speed is, the more (less, respectively) the
utility cost is. To calculate the cost of energy consumption, we
need to establish certain server speed and power consump-
tion models.

To increase the revenue of business, a service provider can
construct and configure a multiserver system with many
servers of high speed. Since the actual service time (i.e., the
task response time) contains task waiting time and task

execution time, more servers reduce the waiting time and
faster servers reduce both waiting time and execution time.
Hence, a powerful multiserver system reduces the penalty of
breaking a service-level agreement and increases the
revenue. However, more servers (i.e., a larger multiserver
system) increase the cost of facility renting from the
infrastructure vendors and the cost of base power consump-
tion. Furthermore, faster servers increase the cost of energy
consumption. Such increased cost may counterweight the
gain from penalty reduction. Therefore, for an application
environment with specific workload which includes the task
arrival rate and the average task execution requirement, a
service provider needs to decide an optimal multiserver
configuration (i.e., the size and the speed of a multiserver
system), such that the expected profit is maximized.

In this paper, we study the problem of optimal multi-
server configuration for profit maximization in a cloud
computing environment. Our approach is to treat a multi-
server system as an M/M/m queuing model, such that our
optimization problem can be formulated and solved
analytically. We consider two server speed and power
consumption models, namely, the idle-speed model and the
constant-speed model. Our main contributions are as
follows. We derive the probability density function (pdf)
of the waiting time of a newly arrived service request. This
result is significant in its own right and is the base of our
discussion. We calculate the expected service charge to a
service request. Based on these results, we get the expected
net business gain in one unit of time, and obtain the optimal
server size and the optimal server speed numerically. To the
best of our knowledge, there has been no similar investiga-
tion in the literature, although the method of optimal
multicore server processor configuration has been em-
ployed for other purposes, such as managing the power and
performance tradeoff [17].

One related research is user-centric and market-based and
utility-driven resource management and task scheduling,
which have been considered for cluster computing systems
[7], [20], [21] and grid computing systems [4], [12], [19]. To
compete and bid for shared computing resources through
the use of economic mechanisms such as auctions, a user can
specify the value (utility, yield) of a task, i.e., the reward
(price, profit) of completing the task. A utility function,
which measures the value and importance of a task as well as
a user’s tolerance to delay and sensitivity to quality of
service, supports market-based bidding, negotiation, and
admission control. By taking an economic approach to
providing service-oriented and utility computing, a service
provider allocates resources and schedules tasks in such a
way that the total profit earned is maximized. Instead of
traditional system-centric performance optimization such as
minimizing the average task response time, the main concern
in such computational economy is user-centric performance
optimization, i.e., maximizing the total utility delivered to
the users (i.e., the total user-perceived value).

2 A MULTISERVER MODEL

Throughout the paper, we use P½e� to denote the probability
of an event e. For a random variable x, we use fxðtÞ to
represent the probability density function of x, and FxðtÞ to

1088 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 6, JUNE 2013

represent the cumulative distribution function (cdf) of x,
and �x to represent the expectation of x.

A cloud computing service provider serves users’ service
requests by using a multiserver system, which is constructed
and maintained by an infrastructure vendor and rented by
the service provider. The architecture detail of the multi-
server system can be quite flexible. Examples are blade
servers and blade centers where each server is a server blade
[16], clusters of traditional servers where each server is an
ordinary processor [7], [20], [21], and multicore server
processors where each server is a single core [17]. We will
simply call these blades/processors/cores as servers. Users
(i.e., customers of a service provider) submit service requests
(i.e., applications and tasks) to a service provider, and the
service provider serves the requests (i.e., run the applications
and perform the tasks) on a multiserver system.

Assume that a multiserver system S has m identical
servers. In this paper, a multiserver system is treated as an
M/M/m queuing system which is elaborated as follows.
There is a Poisson stream of service requests with arrival
rate �, i.e., the interarrival times are independent and
identically distributed (i.i.d.) exponential random variables
with mean 1=�. A multiserver system S maintains a queue
with infinite capacity for waiting tasks when all the m
servers are busy. The first-come-first-served (FCFS) queuing
discipline is adopted. The task execution requirements
(measured by the number of instructions to be executed) are
i.i.d. exponential random variables r with mean �r. The m
servers (i.e., blades/processors/cores) of S have identical
execution speed s (measured by the number of instructions
that can be executed in one unit of time). Hence, the task
execution times on the servers of S are i.i.d. exponential
random variables x ¼ r=s with mean �x ¼ �r=s.

Notice that although an M/G/m queuing system has been
considered (see, e.g., [13]), the M/M/m queuing model is the
only model that accommodates an analytical and closed-
form expression of the probability density function of the
waiting time of a newly arrived service request.

Let � ¼ 1=�x ¼ s=�r be the average service rate, i.e., the
average number of service requests that can be finished by a
server of S in one unit of time. The server utilization is
� ¼ �=m� ¼ ��x=m ¼ �=m � �r=s, which is the average per-
centage of time that a server of S is busy. Let pk denote the
probability that there are k service requests (waiting or
being processed) in the M/M/m queuing system for S.
Then, we have ([14, p. 102])

pk ¼
p0
ðm�Þk

k!
; k � m;

p0
mm�k

m!
; k � m;

8>><
>>:

where

p0 ¼
Xm�1

k¼0

ðm�Þk

k!
þ ðm�Þ

m

m!
� 1

1� �

 !�1

:

The probability of queuing (i.e., the probability that a newly
submitted service request must wait because all servers are
busy) is

Pq ¼
X1
k¼m

pk ¼
pm

1� � ¼ p0
ðm�Þm

m!
� 1

1� � :

The average number of service requests (in waiting or in
execution) in S is

N ¼
X1
k¼0

kpk ¼ m�þ
�

1� �Pq:

Applying Little’s result, we get the average task response
time as

T ¼ N
�
¼ �x 1þ Pq

mð1� �Þ

� �
¼ �x 1þ pm

mð1� �Þ2

 !
:

The average waiting time of a service request is

W ¼ T � �x ¼ pm

mð1� �Þ2
�x:

The waiting time is the source of customer dissatisfaction. A
service provider should keep the waiting time to a low level
by providing enough servers and/or increasing server
speed, and be willing to pay back to a customer in case the
waiting time exceeds certain limit.

3 POWER CONSUMPTION MODELS

Power dissipation and circuit delay in digital CMOS circuits
can be accurately modeled by simple equations, even for
complex microprocessor circuits. CMOS circuits have dy-
namic, static, and short-circuit power dissipation; however,
the dominant component in a well-designed circuit is
dynamic power consumption P (i.e., the switching compo-
nent of power), which is approximately P ¼ aCV 2f , where a
is an activity factor, C is the loading capacitance, V is the
supply voltage, and f is the clock frequency [6]. In the ideal
case, the supply voltage and the clock frequency are related
in such a way that V / f� for some constant � > 0 [22]. The
processor execution speed s is usually linearly proportional
to the clock frequency, namely, s / f . For ease of discussion,
we will assume that V ¼ bf� and s ¼ cf , where b and c are
some constants. Hence, we know that power consumption is
P ¼ aCV 2f ¼ ab2Cf2�þ1 ¼ ðab2C=c2�þ1Þs2�þ1 ¼ �s�, where
� ¼ ab2C=c2�þ1 and � ¼ 2�þ 1. For instance, by setting
b ¼ 1:16, aC ¼ 7:0, c ¼ 1:0, � ¼ 0:5, � ¼ 2�þ 1 ¼ 2:0, and
� ¼ ab2C=c� ¼ 9:4192, the value of P calculated by the
equation P ¼ aCV 2f ¼ �s� is reasonably close to that in
[11] for the Intel Pentium M processor.

We will consider two types of server speed and power
consumption models. In the idle-speed model, a server runs at
zero speed when there is no task to perform. Since the power
for speed s is �s�, the average amount of energy consumed by
a server in one unit of time is ��s� ¼ �

m
�r�s��1, where we

notice that the speed of a server is zero when it is idle. The
average amount of energy consumed by an m-server system
S in one unit of time, i.e., the power supply to the multiserver
system S, is P ¼ m��s� ¼ ��r�s��1, where m� ¼ ��x is the
average number of busy servers in S. Since a server still
consumes some amount of power P � even when it is idle
(assume that an idle server consumes certain base power P �,
which includes static power dissipation, short-circuit power
dissipation, and other leakage and wasted power [1]), we will
include P � in P , i.e., P ¼ mð��s� þ P �Þ ¼ ��r�s��1 þmP �.
Notice that when P � ¼ 0, the above P is independent of m.

CAO ET AL.: OPTIMAL MULTISERVER CONFIGURATION FOR PROFIT MAXIMIZATION IN CLOUD COMPUTING 1089

In the constant-speed model, all servers run at the speed s
even if there is no task to perform. Again, we use P to
represent the power allocated to multiserver system S.
Since the power for speed s is �s�, the power allocated to
multiserver system S is P ¼ mð�s� þ P �Þ.

4 WAITING TIME DISTRIBUTION

Let W denote the waiting time of a new service request that
arrives to a multiserver system. In this section, we find the
pdf fW ðtÞ of W . To this end, we consider W in different
situations, depending on the number of tasks in the queuing
system when a new service request arrives. Let Wk denote
the waiting time of a new task that arrives to an M/M/m
queuing system under the condition that there are k tasks in
the queuing system when the task arrives.

We define a unit impulse function uzðtÞ as follows:

uzðtÞ ¼
z; 0 � t � 1

z
;

0; t >
1

z
:

8><
>:

The function uzðtÞ has the following property:Z 1
0

uzðtÞdt ¼ 1;

namely, uzðtÞ can be treated as a pdf of a random variable
with expectation

Z 1
0

tuzðtÞdt ¼ z
Z 1=z

0

tdt ¼ 1

2z
:

Let z!1 and define uðtÞ ¼ limz!1 uzðtÞ.It is clear that any
random variable whose pdf is uðtÞ has expectation 0.

The following theorem gives the pdf of the waiting time
of a newly arrived service request:

Theorem 1. The pdf of the waiting time W of a newly arrived
service request is

fW ðtÞ ¼ ð1� PqÞuðtÞ þm�pme�ð1��Þm�t;

where Pq ¼ pm=ð1� �Þ and pm ¼ p0ðm�Þm=m!.

Sketch of the Proof. Let Wk be the waiting time of a new
service request if there are k tasks in the queuing system
when the service request arrives. We find the pdf of Wk

for all k � 0. Then, we have

fW ðtÞ ¼
X1
k¼0

pkfWk
ðtÞ:

Actually, Wk can be found for two cases, i.e., when k < m
and when k � m. A complete proof of the theorem is
given in Section 9. tu
Notice that a multiserver system with multiple identical

servers has been configured to serve requests from certain
application domain. Therefore, we will only focus on task
waiting time in a waiting queue and do not consider other
sources of delay, such as resource allocation and provision,
virtual machine instantiation and deployment, and other
overhead in a complex cloud computing environment.

5 SERVICE CHARGE

If all the servers have a fixed speed s, the execution time of a
service request with execution requirement r is known as
x ¼ r=s. The response time to the service request is T ¼
W þ x ¼W þ r=s. The response time T is related to the
service charge to a customer of a service provider in cloud
computing.

To study the expected service charge to a customer, we
need a complete specification of a service charge based on
the amount of a service, the service-level agreement, the
satisfaction of a consumer, the quality of a service, the
penalty of a low-quality service, and a service provider’s
margin and profit.

Let s0 be the baseline speed of a server. We define the
service charge function for a service request with execution
requirement r and response time T to be

Cðr; T Þ ¼

ar; if 0 � T � c

s0
r;

ar� d T � c

s0
r

� �
;

if
c

s0
r < T � a

d
þ c

s0

� �
r;

0; if T >
a

d
þ c

s0

� �
r:

8>>>>>>>>>><
>>>>>>>>>>:

The above function is defined with the following rationals:

. If the response time T to process a service request is
no longer than ðc=s0Þr ¼ cðr=s0Þ(i.e., a constant c
times the task execution time with speed s0), where
the constant c is a parameter indicating the service-
level agreement, and the constant s0 is a parameter
indicating the expectation and satisfaction of a
consumer, then a service provider considers that
the service request is processed successfully with
high quality of service and charges a customer ar,
which is linearly proportional to the task execution
requirement r(i.e., the amount of service), where a is
the service charge per unit amount of service (i.e., a
service provider’s margin and profit).

. If the response time T to process a service request is
longer than ðc=s0Þr but no longer than ða=dþ c=s0Þr,
then a service provider considers that the service
request is processed with low quality of service and
the charge to a customer should decrease linearly as
T increases. The parameter d indicates the degree of
penalty of breaking the service-level agreement.

. If the response time T to process a service request is
longer than ða=dþ c=s0Þr, then a service provider
considers that the service request has been waiting
too long, so there is no charge and the service is free.

Notice that the task response time T is compared with
the task execution time on a server with speed s0 (i.e., the
baseline or reference speed). The actual speed s of a server
can be decided by a service provider, which can be either
lower or higher than s0, depending on the workload (i.e., �
and �r) and system parameters (e.g., m, �, and P �) and the
service charge function (i.e., a, c, and d), such that the net
business gain to be defined below is maximized.

1090 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 6, JUNE 2013

To build our discussion upon our earlier result on task

waiting time, we notice that the service charge function can

be rewritten equivalently in terms of r and W as

Cðr;W Þ ¼

ar; if 0 �W � c

s0
� 1

s

� �
r;

aþ cd
s0
� d
s

� �
r� dW;

if
c

s0
� 1

s

� �
r < W � a

d
þ c

s0
� 1

s

� �
r;

0; if W >
a

d
þ c

s0
� 1

s

� �
r:

8>>>>>>>>>><
>>>>>>>>>>:

The following theorem gives the expected charge to a

service request:

Theorem 2. The expected charge to a service request is

C ¼ a�r

�
1� Pq
ððms� ��rÞðc=s0 � 1=sÞ þ 1Þ

� 1

ððms� ��rÞða=dþ c=s0 � 1=sÞ þ 1Þ

�
;

where Pq ¼ pm=ð1� �Þ and pm ¼ p0ðm�Þm=m!.

Sketch of the Proof. The proof is actually a detailed

calculation of C, which contains two steps. In the first

step, we calculate CðrÞ, i.e., the expected charge to a

service request with execution requirement r, based on

the pdf of W obtained from Theorem 1. In the second

step, we calculate C based on the pdf of r. A complete

proof of the theorem is given in Section 9. tu

In Fig. 1, we consider the expected charge to a service

request with execution requirement r, i.e.,

CðrÞ ¼ ar� dPq
ð1� �Þm��

e�ð1��Þm�ðc=s0�1=sÞr � e�ð1��Þm�ða=dþc=s0�1=sÞr�:
We assume that �r ¼ 1 billion instructions, m ¼ 7 servers,

s0 ¼ 1 billion instructions per second, s ¼ 1 billion instruc-

tions per second, a ¼ 10 cents per one billion instructions

(Note: The monetary unit “cent” in this paper may not be

identical but should be linearly proportional to the real cent

in US dollars.), c ¼ 3, and d ¼ 1 cents per second. (Note:

These parameters are chosen only for illustration and should

be scaled to any values.) For � ¼ 6:15; 6:35; 6:55; 6:75; 6:95

service requests per second, we show CðrÞ for 0 � r � 3. It
can be seen that the service charge is a decreasing function of
�, since the waiting time and lateness penalty increase as �
increases. It can also be seen that the service charge is an
increasing function of r, i.e., large service requests generate
more revenue than small service requests.

In Fig. 2, we further display CðrÞ=ar using the same
parameters in Fig. 1. Since ar is the ideal (maximum) charge
to a service request with execution requirement r, CðrÞ=ar is
considered as the normalized service charge. For � ¼
6:15; 6:35; 6:55; 6:75; 6:95 service requests per second, we
show CðrÞ=ar for 0 � r � 3. It can be seen that the
normalized service charge is a decreasing function of �,
since the waiting time and lateness penalty increase as �
increases. It can also be seen that the normalized service
charge is an increasing function of r, i.e., the percentage of
lost service charge due to waiting time decreases as service
requirement r increases. In other words, it is more likely to
make profit from large service requests and it is more likely
to give free services to small service requests. It can be
verified that as r approaches 0, the normalized service
charge is limr!0

CðrÞ
ar ¼ 1� Pq, where Pq increases (and 1� Pq

decreases) as � increases. It can also be verified that as r
approaches infinity, the normalized service charge is
limr!1

CðrÞ
ar ¼ 1, for all �.

6 NET BUSINESS GAIN

Since the number of service requests processed in one unit
of time is � in a stable M/M/m queuing system, the
expected service charge in one unit of time is �C, which is
actually the expected revenue of a service provider. Assume
that the rental cost of one server for unit of time is �. Also,
assume that the cost of energy is 	 per Watt. The cost of a
service provider is the sum of the cost of infrastructure
renting and the cost of energy consumption, i.e., �mþ 	P .
Then, the expected net business gain (i.e., the net profit) of a
service provider in one unit of time is G ¼ �C � ð�mþ 	P Þ,
which is defined as the revenue minus the cost. The above
equation is G ¼ �C � ð�mþ 	ð��r�s��1 þmP �ÞÞ, for the
idle-speed model, and G ¼ �C � ð�mþ 	mð�s� þ P �ÞÞ, for
the constant-speed model.

In Figs. 3 and 4, we demonstrate the revenue �C and the
net business gain G in one unit of time as a function of � for
the two power consumption models, respectively, using the
same parameters in Figs. 1 and 2. Furthermore, we assume

CAO ET AL.: OPTIMAL MULTISERVER CONFIGURATION FOR PROFIT MAXIMIZATION IN CLOUD COMPUTING 1091

Fig. 1. Service charge CðrÞ versus r and �. Fig. 2. Normalized service charge CðrÞ=ar versus r and �.

that P � ¼ 2 Watts, � ¼ 2:0, � ¼ 9:4192, � ¼ 1:5 cents per
second, and 	 ¼ 0:1 cents per Watt. For 0 � � � 7, we show
�C and G. The cost of infrastructure renting is �m ¼ 14
cents per second, and the cost of energy consumption is
0:5�þ 7 cents per second for the idle-speed model and
10.5 cents per second for the constant-speed model. We
observe that both �C and G increase with � almost linearly
and drop sharply after certain point. In other words, more
service requests bring more revenue and net business gain;
however, after the number of service requests per unit of
time reaches certain point, the excessive waiting time causes
increased lateness penalty, so that there is no revenue and
negative business gain.

There are two situations that cause negative business
gain. In the first case, there is no enough business (i.e.,
service requests). In this case, a service provider should
consider reducing the number of servers m and/or server
speed s, so that the cost of infrastructure renting and the
cost of energy consumption can be reduced. In the second
case, there is too much business (i.e., service requests). In
this case, a service provider should consider increasing the
number of servers and/or server speed, so that the waiting
time can be reduced and the revenue can be increased.
However, increasing the number of servers and/or server
speed also increases the cost of infrastructure renting and
the cost of energy consumption. Therefore, we have the
problem of selecting the optimal server size and/or server
speed so that the profit is maximized.

7 PROFIT MAXIMIZATION

To formulate and solve our optimization problems analy-
tically, we need a closed-form expression of C. To this end,
let us use the following closed-form approximation,Pm�1

k¼0
ðm�Þk
k! 	 em�, which is very accurate when m is not

too small and � is not too large [17]. We also need Stirling’s
approximation of m!, i.e., m! 	

ffiffiffiffiffiffiffiffiffiffi
2
m
p

ðme Þ
m. Therefore, we

get the following closed-form approximation of pm:

pm 	
1� �ffiffiffiffiffiffiffiffiffiffi

2
m
p

ð1� �Þðe�=e�Þm þ 1
;

and the following closed-form approximation of Pq:

Pq 	
1ffiffiffiffiffiffiffiffiffiffi

2
m
p

ð1� �Þðe�=e�Þm þ 1
:

By using the above-closed-form expression of Pq, we get a

closed-form approximation of the expected service charge

to a service request as

C 	 a�r

1� 1

ð
ffiffiffiffiffiffiffiffiffiffi
2
m
p

ð1� �Þðe�=e�Þm þ 1Þ

� 1

ððms� ��rÞðc=s0 � 1=sÞ þ 1Þ

� 1

ððms� ��rÞða=dþ c=s0 � 1=sÞ þ 1Þ

!
:

For convenience, we rewrite C as C ¼ a�rð1� 1
D1D2D3

Þ, where

D1 ¼
ffiffiffiffiffiffiffiffiffiffi
2
m
p

ð1� �Þðe�=e�Þm þ 1;

D2 ¼ ðms� ��rÞðc=s0 � 1=sÞ þ 1;

D3 ¼ ðms� ��rÞða=dþ c=s0 � 1=sÞ þ 1:

Our discussion in this section is based on the above-closed-

form expression of C.

7.1 Optimal Size

Given �, �r, s, P �, �, �, 	, a, c, and d, our first problem is to

find m such that G is maximized. To maximize G, we need

to find m such that

@G

@m
¼ � @C

@m
� ð� þ 	P �Þ ¼ 0;

for the idle-speed model, and

@G

@m
¼ � @C

@m
� ð� þ 	ð�s� þ P �ÞÞ ¼ 0;

for the constant-speed model, where

@C

@m
¼ a�r

ðD1D2D3Þ2

� D2D3
@D1

@m
þD1D3

@D2

@m
þD1D2

@D3

@m

� �
:

To continue the calculation, we rewrite D1 as D1 ¼ffiffiffiffiffiffiffiffiffiffi
2
m
p

ð1� �ÞRþ 1, where R ¼ ðe�=e�Þm. Notice that lnR ¼
m lnðe�=e�Þ ¼ mð�� ln �� 1Þ. Since

@�

@m
¼ � ��r

m2s
¼ � �

m
;

1092 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 6, JUNE 2013

Fig. 3. Revenue and net business gain versus � (idle-speed model). Fig. 4. Revenue and net business gain versus � (constant-speed
model).

we get

1

R

@R

@m
¼ ð�� ln �� 1Þ þm 1� 1

�

� �
@�

@m
¼ � ln �;

and

@R

@m
¼ �R ln �:

Now, we have

@D1

@m
¼

ffiffiffiffiffiffi
2

p �

1

2
ffiffiffiffiffi
m
p ð1� �ÞRþ

ffiffiffiffiffi
m
p

� @�

@m

� �
R

þ
ffiffiffiffiffi
m
p
ð1� �Þ @R

@m

�

¼
ffiffiffiffiffiffi
2

p �

1

2
ffiffiffiffiffi
m
p ð1� �ÞRþ

ffiffiffiffiffi
m
p �

m
R�

ffiffiffiffiffi
m
p
ð1� �ÞR ln �

�

¼
ffiffiffiffiffiffi
2

p �

1

2
ffiffiffiffiffi
m
p ð1� �ÞRþ 1ffiffiffiffiffi

m
p �R�

ffiffiffiffiffi
m
p
ð1� �Þðln �ÞR

�

¼
ffiffiffiffiffiffi
2

p 1

2
ffiffiffiffiffi
m
p ð1þ �ÞR�

ffiffiffiffiffi
m
p
ð1� �Þðln �ÞR

� �
:

Furthermore, we have

@D2

@m
¼ cs=s0 � 1;

and

@D3

@m
¼ as=dþ cs=s0 � 1:

Although there is no closed-form solution to m, we

notice that @G=@m is a decreasing function of m. Therefore,

m can be found numerically by using the standard bisection

method.
In Figs. 5 and 6, we demonstrate the net business gain G

in one unit of time as a function of m and � for the two

power consumption models, respectively, using the same

parameters in Figs. 1, 2, 3, and 4. For � ¼ 2:9; 3:9; 4:9; 5:9; 6:9,

we display G for m large enough such that � < 1. We notice

that there is an optimal choice of m such that G is

maximized. Using our analytical results, we can find m

such that @G=@m ¼ 0. The optimal value of m is 3.67479,

4.79218, 5.89396, 6.98457, 8.06655, respectively, for the idle-

speed model, and 3.54842, 4.64834, 5.73478, 6.81160, 7.88104,

respectively, for the constant-speed model.

Such server size optimization has clear physical inter-
pretation. When m is small such that � is close to 1, the
waiting times of service requests are excessively long, and
the service charges and the net business gain are low. As m
increases, the waiting times are significantly reduced, and
the service charges and the net business gain are increased.
However, as m further increases, there will be no more
increase in the expected services charge which has an
upper bound a�r; on the other hand, the cost of a service
provider (i.e., the rental cost and base power consumption)
increases, so that the net business gain is actually reduced.
Hence, there is an optimal choice of m which maximizes
the profit.

7.2 Optimal Speed

Given �, �r, m, P �, �, �, 	, a, c, and d, our second problem is
to find s such that G is maximized. To maximize G, we need
to find s such that

@G

@s
¼ � @C

@s
� 	��r�ð�� 1Þs��2 ¼ 0;

for the idle-speed model, and

@G

@s
¼ � @C

@s
� 	m��s��1 ¼ 0;

for the constant-speed model, where

@C

@s
¼ a�r

ðD1D2D3Þ2

� D2D3
@D1

@s
þD1D3

@D2

@s
þD1D2

@D3

@s

� �
:

Similar to the calculation in the last section, we have

@�

@s
¼ � ��r

ms2
¼ � �

s
;

and

1

R

@R

@s
¼ m 1� 1

�

� �
@�

@s
¼ m
s
ð1� �Þ;

and

@R

@s
¼ m
s
ð1� �ÞR:

CAO ET AL.: OPTIMAL MULTISERVER CONFIGURATION FOR PROFIT MAXIMIZATION IN CLOUD COMPUTING 1093

Fig. 5. Net business gain G versus m and � (idle-speed model). Fig. 6. Net business gain G versus m and � (constant-speed model).

Now, we have

@D1

@s
¼

ffiffiffiffiffiffiffiffiffiffi
2
m
p ��

� @�
@s

�
Rþ ð1� �Þ @R

@s

�

¼
ffiffiffiffiffiffiffiffiffiffi
2
m
p �

�

s
Rþm

s
ð1� �Þ2R

�

¼
ffiffiffiffiffiffiffiffiffiffi
2
m
p

ð�þmð1� �Þ2ÞR
s
:

Furthermore, we have

@D2

@s
¼ m c

s0
� 1

s

� �
þ ðms� ��rÞ 1

s2

¼ mc
s0
� ��r

s2
;

and

@D3

@s
¼ m a

d
þ c

s0
� 1

s

� �
þ ðms� ��rÞ 1

s2

¼ m a

d
þ c

s0

� �
� ��r

s2
:

Although there is no closed-form solution to s, we notice
that @G=@s is a decreasing function of s. Therefore, s can be
found numerically by using the standard bisection method.

In Figs. 7 and 8, we demonstrate the net business gainG in
one unit of time as a function of s and � for the two power
consumption models, respectively, using the same para-
meters in Figs. 1, 2, 3, 4, 5, and 6. For � ¼ 2:9; 3:9; 4:9; 5:9; 6:9,
we display G for s large enough such that � < 1. We notice
that there is an optimal choice of s such thatG is maximized.
Using our analytical results, we can find s such that

@G=@s ¼ 0. The optimal value of s is 0.63215, 0.76982,
0.90888, 1.04911, 1.19011, respectively, for the idle-speed
model, and 0.57015, 0.71009, 0.85145, 0.99348, 1.13584,
respectively, for the constant-speed model.

Such server speed optimization also has clear physical
interpretation. When s is small such that � is close to 1, the
waiting times of service requests are excessively long, and
the service charges and the net business gain are low. As s
increases, the waiting times are significantly reduced, and
the service charges and the net business gain are increased.
However, as s further increases, there will be no more
increase in the expected services charge which has an upper
bound a�r; on the other hand, the cost of a service provider
(i.e., the cost of energy consumption) increases, so that the
net business gain is actually reduced. Hence, there is an
optimal choice of s which maximizes the profit.

7.3 Optimal Size and Speed

Given �, �r, P �, �, �, 	, a, c, and d, our third problem is to
find m and s such that G is maximized. To maximize G, we
need to find m and s such that @G=@m ¼ 0 and @G=@s ¼ 0,
where @G=@m and @G=@s have been derived in the last two
sections. The two equations can be solved by a nested
bisection search procedure.

In Figs. 9 and 10, we demonstrate the net business gain G
in one unit of time as a function of s and m for the two
power consumption models, respectively, using the same
parameters in Figs. 1, 2, 3, 4, 5, 6, 7, and 8, where � ¼ 6:9.
For m ¼ 4; 5; 6; 7; 8, we display G for s large enough such
that � < 1. Using our analytical results, we can find m and s

such that @G=@m ¼ 0 and @G=@s ¼ 0. For the idle-speed

1094 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 6, JUNE 2013

Fig. 7. Net business gain G versus s and � (idle-speed model).

Fig. 8. Net business gain G versus s and � (constant-speed model).

Fig. 9. Net business gain G versus s and m (idle-speed model).

Fig. 10. Net business gain G versus s and m (constant-speed model).

model, the theoretically optimal values are m ¼ 5:56827 and
s ¼ 1:46819, which result in the maximum G ¼ 49:25361 by
using the closed-form approximation of C. Practically, m
can be either 5 or 6. When m ¼ 5, the optimal value of s is
1.62236, which results in the maximum G ¼ 49:16510. When
m ¼ 6, the optimal value of s is 1.37044, which results in the
maximum G ¼ 49:18888. Hence, the practically optimal
setting is m ¼ 6 and s ¼ 1:37044, and the maximum net
business gain in one unit of time is G ¼ 49:29273 by using
the exact expression of C. For the constant-speed model, the
theoretically optimal values are m ¼ 5:79074 and s ¼
1:35667, which result in the maximum G ¼ 47:80769 by
using the closed-form approximation of C. Practically, m
can be either 5 or 6. When m ¼ 5, the optimal value of s is
1.55839, which results in the maximum G ¼ 47:63979. When
m ¼ 6, the optimal value of s is 1.31213, which results in the
maximum G ¼ 47:78640. Hence, the practically optimal
setting is m ¼ 6 and s ¼ 1:31213, and the maximum net
business gain in one unit of time is G ¼ 47:91830 by using
the exact expression of C.

8 SIMULATION SETTINGS AND RESULTS

See Section 1 of the supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2012.203.

9 PROOFS OF THEOREMS 1 AND 2

See Section 2 of the supplementary material, available online.

10 CONCLUDING REMARKS

We have proposed a pricing model for cloud computing
which takes many factors into considerations, such as the
requirement r of a service, the workload � of an application
environment, the configuration (m and s) of a multiserver
system, the service level agreement c, the satisfaction (r and
s0) of a consumer, the quality (W and T) of a service, the
penalty d of a low-quality service, the cost (� and m) of
renting, the cost (�, 	,P �, andP) of energy consumption, and
a service provider’s margin and profit a. By using an M/M/
m queuing model, we formulated and solved the problem of
optimal multiserver configuration for profit maximization in
a cloud computing environment. Our discussion can be
easily extended to other service charge functions. Our
methodology can be applied to other pricing models.

ACKNOWLEDGMENTS

The authors are grateful to three anonymous reviewers for
their constructive comments. Part of the work were
performed while K. Hwang, K. Li, and A.Y. Zomaya were
visiting Tsinghua National Laboratory for Information
Science and Technology, Tsinghua University, in the winter
of 2011 and the summer of 2012 as Intellectual Ventures
endowed visiting chair professors. This work is partially
supported by Ministry of Science and Technology of China
under National 973 Basic Research Grants No.
2011CB302805 and No. 2011CB302505, and National 863
High-tech Program Grant No. 2011AA040501; Ministry of

Industry and Information Technology of China under the
Internet of Things program; the Innovation R/D Team
Program of Guangdong Province, China, under contract
No. 201001D0104726115; Australian Research Grant
DP1097110.

REFERENCES

[1] http://en.wikipedia.org/wiki/CMOS, 2012.
[2] http://en.wikipedia.org/wiki/Service_level_agreement, 2012.
[3] M. Armbrust et al., “Above the Clouds: A Berkeley View of Cloud

Computing,” Technical Report No. UCB/EECS-2009-28, Feb. 2009.
[4] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic

Models for Resource Management and Scheduling in Grid
Computing,” Concurrency and Computation: Practice and Experience,
vol. 14, pp. 1507-1542, 2007.

[5] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud Computing and Emerging IT Platforms: Vision, Hype, and
Reality for Delivering Computing as the Fifth Utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599-616, 2009.

[6] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power
CMOS Digital Design,” IEEE J. Solid-State Circuits, vol. 27, no. 4,
pp. 473-484, Apr. 1992.

[7] B.N. Chun and D.E. Culler, “User-Centric Performance Analysis
of Market-Based Cluster Batch Schedulers,” Proc. Second IEEE/
ACM Int’l Symp. Cluster Computing and the Grid, 2002.

[8] D. Durkee, “Why Cloud Computing Will Never be Free,” Comm.
ACM, vol. 53, no. 5, pp. 62-69, 2010.

[9] R. Ghosh, K.S. Trivedi, V.K. Naik, and D.S. Kim, “End-to-End
Performability Analysis for Infrastructure-as-a-Service Cloud: An
Interacting Stochastic Models Approach,” Proc. 16th IEEE Pacific
Rim Int’l Symp. Dependable Computing, pp. 125-132, 2010.

[10] K. Hwang, G.C. Fox, and J.J. Dongarra, Distributed and Cloud
Computing. Morgan Kaufmann, 2012.

[11] “Enhanced Intel SpeedStep Technology for the Intel Pentium M
Processor,”White Paper, Intel, Mar. 2004.

[12] D.E. Irwin, L.E. Grit, and J.S. Chase, “Balancing Risk and Reward
in a Market-Based Task Service,” Proc. 13th IEEE Int’l Symp. High
Performance Distributed Computing, pp. 160-169, 2004.

[13] H. Khazaei, J. Misic, and V.B. Misic, “Performance Analysis of
Cloud Computing Centers Using M/G/m/m+r Queuing Sys-
tems,” IEEE Trans. Parallel and Distributed Systems, vol. 23, no. 5,
pp. 936-943, May 2012.

[14] L. Kleinrock, Queueing Systems: Theory, vol. 1. John Wiley and
Sons, 1975.

[15] Y.C. Lee, C. Wang, A.Y. Zomaya, and B.B. Zhou, “Profit-Driven
Service Request Scheduling in Clouds,” Proc. 10th IEEE/ACM Int’l
Conf. Cluster, Cloud and Grid Computing, pp. 15-24, 2010.

[16] K. Li, “Optimal Load Distribution for Multiple Heterogeneous
Blade Servers in a Cloud Computing Environment,” Proc. 25th
IEEE Int’l Parallel and Distributed Processing Symp. Workshops,
pp. 943-952, May 2011.

[17] K. Li, “Optimal Configuration of a Multicore Server Processor for
Managing the Power and Performance Tradeoff,” J. Supercomput-
ing, vol. 61, no. 1, pp. 189-214, 2012.

[18] P. Mell and T. Grance, “The NIST Definition of Cloud Comput-
ing,” Nat’l Inst. of Standards and Technology, http://csrc.nist.
gov/groups/SNS/cloud-computing/, 2009.

[19] F.I. Popovici and J. Wilkes, “Profitable Services in an Uncertain
World,” Proc. ACM/IEEE Conf. Supercomputing, 2005.

[20] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya, “Libra: A
Computational Economy-Based Job Scheduling System for Clus-
ters,” Software - Practice and Experience, vol. 34, pp. 573-590, 2004.

[21] C.S. Yeo and R. Buyya, “A Taxonomy of Market-Based Resource
Management Systems for Utility-Driven Cluster Computing,”
Software - Practice and Experience, vol. 36, pp. 1381-1419, 2006.

[22] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and
Practical Limits of Dynamic Voltage Scaling,” Proc. 41st Design
Automation Conf., pp. 868-873, 2004.

CAO ET AL.: OPTIMAL MULTISERVER CONFIGURATION FOR PROFIT MAXIMIZATION IN CLOUD COMPUTING 1095

Junwei Cao received the bachelor’s and mas-
ter’s degrees in control theories and engineering
in 1996 and 1998, respectively, both from
Tsinghua University, Beijing, China. He received
the PhD degree in computer science from the
University of Warwick, Coventry, United King-
dom, in 2001. He is currently a professor and
vice director, Research Institute of Information
Technology, Tsinghua University, Beijing, Chi-
na. He is also the director of Common Platform

and Technology Division, Tsinghua National Laboratory for Information
Science and Technology. Before joining Tsinghua University in 2006, he
was a research scientist at MIT LIGO Laboratory and NEC Laboratories
Europe for about five years. He has published more than 130 papers
and cited by international scholars for over 3,000 times. He is the book
editor of Cyberinfrastructure Technologies and Applications, published
by Nova Science in 2009. His research is focused on advanced
computing technologies and applications. He is a senior member of the
IEEE and IEEE Computer Society, and a member of the ACM and CCF.

Kai Hwang received the PhD degree from the
University of California, Berkeley in 1972. He is a
professor of EE/CS at the University of Southern
California. He also chairs the IV-endowed
visiting chair professor group at Tsinghua Uni-
versity in China. He has published eight books
and more than 218 scientific papers in computer
architecture, parallel processing, distributed
systems, cloud computing, network security,
and Internet applications. His popular books

have been adopted worldwide and translated into four foreign
languages. His published papers have been cited more than 11,000
times by early 2012. His latest book Distributed and Cloud Computing:
from Parallel Processing to the Internet of Things (with G. Fox and J.
Dongarra) was just published by Kaufmann in 2011. He received the
2004 CFC Outstanding Achievement Award, and the Founders Award
for his pioneering work in parallel processing from IEEE IPDPS in 2011.
He has served as a founding editor-in-chief of the Journal of Parallel and
Distributed Computing for 28 years. He has delivered 34 keynote
addresses on advanced computing systems and cutting-edge informa-
tion technologies in major IEEE/ACM Conferences. He has performed
advisory, consulting and collaborative work for IBM, Intel, MIT Lincoln
Lab, JPL at Caltech, ETL in Japan, ITRI in Taiwan, GMD in Germany,
INRIA in France, and Chinese Academy of Sciences. He is a fellow of
the IEEE (1986).

Keqin Li is a SUNY distinguished professor in
computer science and an Intellectual Ventures
endowed visiting chair professor at Tsinghua
University, China. His research interests are
mainly in design and analysis of algorithms,
parallel and distributed computing, and computer
networking. He has contributed extensively to
processor allocation and resource management;
design and analysis of sequential/parallel, deter-
ministic/probabilistic, and approximation algo-

rithms; parallel and distributed computing systems performance
analysis, prediction, and evaluation; job scheduling, task dispatching,
and load balancing in heterogeneous distributed systems; dynamic tree
embedding and randomized load distribution in static networks; parallel
computing using optical interconnections; dynamic location management
in wireless communication networks; routing and wavelength assignment
in optical networks; energy-efficient power management and perfor-
mance optimization. He has published more than 240 research
publications and has received several Best Paper Awards for his highest
quality work. He is currently on the editorial board of IEEE Transactions
on Parallel and Distributed Systems, IEEE Transactions on Computers,
International Journal of Parallel, Emergent and Distributed Systems,
International Journal of High Performance Computing and Networking,
and Optimization Letters. He is a senior member of the IEEE.

Albert Y. Zomaya is currently the chair professor
of high performance computing and networking
and Australian Research Council Professorial
fellow in the School of Information Technologies,
The University of Sydney. He is also the director
of the Centre for Distributed and High Perfor-
mance Computing which was established in late
2009. He is the author/coauthor of seven books,
more than 400 papers, and the editor of nine
books and 11 conference proceedings. He is the

editor-in-chief of the IEEE Transactions on Computers and serves as an
associate editor for 19 leading journals, such as, the IEEE Transactions
on Parallel and Distributed Systems and Journal of Parallel and
Distributed Computing. He is the recipient of the Meritorious Service
Award (in 2000) and the Golden Core Recognition (in 2006), both from
the IEEE Computer Society. Also, he received the IEEE Technical
Committee on Parallel Processing Outstanding Service Award and the
IEEE Technical Committee on Scalable Computing Medal for Excellence
in Scalable Computing, both in 2011. He is a chartered engineer, a fellow
of AAAS, IEEE, and IET (United Kingdom).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1096 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 6, JUNE 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

