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Abstract—The technique of workload dependent dynamic4
power management can dynamically and flexibly adjust5
power and speed according to the current workload. It has6
been well recognized that improving server performance7
and reducing energy consumption can be achieved by8
employing the technique of workload dependent dynamic9
power management. It is an effective way to deal with the10
power and performance tradeoff for cloud servers. In this11
study, applications are divided into different classes, which12
have different characteristics. The server speed is different13
in processing tasks from different types. Hence, we explore14
the technique of variable and task type dependent server15
speed management to optimize the server performance and16
to minimize the power consumption of a server with mixed17
applications. This is also a kind of workload-dependent dy-18
namic power and speed management to deal with the power19
and performance tradeoff. We establish an M/G/1 queueing20
model for a server with variable and task type dependent21
speed, so that our investigation can be conducted analyti-22
cally. We formulate the problems of power constrained per-23
formance optimization and performance constrained power24
minimization as multivariable optimization problems, and25
solve the problems by efficient numerical algorithms. We26
provide numerical data to compare the performance of a27
server with the optimal speed setting to that of a server28
with a constant speed, and to compare the power of a server29
with the optimal speed setting to that of a server with a con-30
stant speed. It is shown that the reduction in the average31
response time can be as high as 9.9% and the reduction in32
the average power consumption can be as high as 8.0%.33

Index Terms—Average response time, cloud server,34
mixed applications, optimal speed setting, power consump-35
tion, workload-dependent dynamic power management.36

I. INTRODUCTION37

A. Motivation38

THE technique of workload-dependent dynamic power39

management can dynamically and flexibly adjust power40

and speed according to the current workload, i.e., the number41

of applications in a server and the characteristics of the appli-42

cations. When there are more tasks in a server, we can increase43

the power supply and the server speed to reduce the average re-44

Manuscript received May 2, 2018; revised July 6, 2018; accepted July
12, 2018. Paper no. TII-18-1103. The research is supported in part by
the Key Program of National Natural Science Foundation of China under
Grant No. 61432005.

The author is with the College of Information Science and Engineering,
Hunan University, Hunan 410082, China, and also with the Department of
Computer Science, State University of New York, New Paltz, NY 12561,
USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TII.2018.2856909

sponse time without significant energy increment. On the other 45

hand, when there are less tasks in a server, we can decrease the 46

power supply and the server speed to reduce the average power 47

consumption without significant performance degradation. Dy- 48

namic power and speed adjustment can also be performed when 49

there is substantial change in application characteristics. Such 50

runtime power and speed adjustment can be implemented by the 51

mechanisms of dynamic voltage scaling, dynamic frequency 52

scaling, dynamic speed scaling, and dynamic power scaling 53

[1], [11], [12]. 54

A number of researchers have studied workload-dependent 55

dynamic power management. Typically, the lowest server speed 56

should be chosen for a group of applications, so that the group of 57

applications can be processed with certain required performance 58

constraints [15]. We can carry out dynamic power management 59

with different granularity, i.e., the application level and the phase 60

(of an application) level. At the application (phase, respectively) 61

level, we analyze the overall characteristics of an application 62

(phase, respectively) and determine the server speed based on 63

these properties. For instances, the server speed should be high 64

for CPU-bound applications (phase, respectively) to reduce the 65

execution time; however, the server speed should be low for 66

memory-bound applications (phase, respectively) to save energy 67

without increasing the execution time [3], [20]. Cochran et al. [5] 68

presented an accurate and scalable method that determines the 69

optimal system operating points (i.e., number of threads and dy- 70

namic voltage and frequency settings) and optimizes energy effi- 71

ciency in multicore processors at runtime for parallel workloads 72

with a set of objective functions and constraints. Huang and 73

Feng [9] presented an eco-friendly daemon that reduces energy 74

consumption while maintaining high performance via accurate 75

workload characterization. As an interval-based run-time algo- 76

rithm, the eco-friendly daemon uses workload characterization 77

to dynamically adjust a processor’s voltage and frequency and 78

to reduce energy consumption with little impact on application 79

performance. 80

It has been well recognized that improving server perfor- 81

mance and reducing energy consumption can be achieved by em- 82

ploying the technique of workload-dependent dynamic power 83

management. It is an effective way to deal with the power 84

and performance tradeoff for cloud servers. Furthermore, an- 85

alytical studies can be performed for workload-dependent dy- 86

namic power management. In [16], we established a queue- 87

ing model of multicore server processors with the capability 88

of workload-dependent dynamic power management. We pro- 89

posed several speed schemes and demonstrated that for the same 90
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average power consumption, the average task response time of a91

multicore server processor with workload-dependent dynamic92

power management is shorter than that of a multicore server pro-93

cessor with constant speed (i.e., without workload-dependent94

dynamic power management). We showed that for certain ap-95

plication environment and average power consumption, there is96

an optimal speed scheme that minimizes the average task re-97

sponse time. We also pointed out that power reduction subject98

to performance constraints can be studied in a way similar to99

performance improvement subject to power constraints.100

B. Our Contributions101

In this paper, we adopt a different approach from [16], where102

workload is measured in terms of the number of tasks in a server.103

The server speed increases (decreases, respectively) when the104

number of tasks increases (decreases, respectively). In this study,105

applications are divided into different classes, which have dif-106

ferent characteristics. The server speed is different in processing107

tasks from different types. Hence, we explore the technique of108

variable and task type dependent server speed management to109

optimize the server performance and to minimize the power con-110

sumption of a server with mixed applications. This is also a kind111

of workload-dependent dynamic power and speed management112

to deal with the power and performance tradeoff.113

Our main contributions can be summarized as follows.114

1) We establish an M/G/1 queueing model for a server with115

variable and task type dependent speed, so that our inves-116

tigation can be conducted analytically.117

2) We formulate the problems of power constrained perfor-118

mance optimization and performance constrained power119

minimization as multivariable optimization problems,120

and solve the problems by efficient numerical algorithms.121

3) We provide numerical data to compare the performance122

of a server with the optimal speed setting to that of a123

server with a constant speed, and to compare the power124

of a server with the optimal speed setting to that of a server125

with a constant speed. It is shown that the reduction in126

the average response time can be as high as 9.9% and the127

reduction in the average power consumption can be as128

high as 8.0%.129

To the author’s best knowledge, this is the first work, which130

analytically studies power and performance optimization using131

the technique of variable and task type dependent server speed132

management for a server with mixed applications.133

The organization of this paper is as follows. In Section II, we134

review related research. In Section III, we present the queueing135

model and the power consumption model. In Section IV, we136

formulate and solve the problem of power constrained perfor-137

mance optimization, demonstrate numerical data, and conduct138

performance comparison. In Section V, we formulate and solve139

the problem of performance constrained power minimization.140

We conclude the paper in Section VI.141

II. RELATED RESEARCH142

As one of the fundamental properties of cloud computing,143

elasticity is the capability to scale computing resources up and144

down dynamically with minimal friction. It has been recognized 145

that elasticity will eventually manifest all of the benefits of the 146

cloud [22]. Autoscaling means scaling a multiserver to match 147

changing workload without any human intervention. There are 148

two types of autoscaling schemes for elastic and scalable mul- 149

tiserver management, which are defined as follows [10]. 150

1) Scale-out and scale-in autoscaling schemes—This is 151

also called workload-dependent dynamic multiserver size 152

management. When the workload fluctuates, the number 153

of servers (i.e., the size of a multiserver system) can be dy- 154

namically changed to provide the required performance 155

and cost objectives. These schemes are also called auto 156

size scaling schemes. 157

2) Scale-up and scale-down autoscaling schemes—This is 158

also called workload-dependent dynamic multiserver 159

speed management. When the workload fluctuates, the 160

speed of servers (i.e., the speed of a multiserver system) 161

can be dynamically changed to provide the required per- 162

formance and cost objectives. These schemes are also 163

called auto speed scaling schemes. 164

Essentially, there are two types of cloud resource scaling in 165

an elastic cloud computing system, i.e., horizontal scalability 166

and vertical scalability [8]. Horizontal scaling (i.e., scaling out 167

and scaling in) means allocation and releasing of homogeneous 168

virtual machines or processing nodes of the same type. Verti- 169

cal scaling (i.e., scaling up and scaling down) means upgrade 170

or downgrade of the capability (core speed, memory capacity, 171

network bandwidth, etc.) of a server. 172

Cloud elasticity has also been studied from wider perspec- 173

tives. Dustdar et al. considered elasticity properties such as 174

cost elasticity (i.e., the responsiveness of resource provision 175

to changes in cost) and quality elasticity (i.e., the responsive- 176

ness of quality to changes in resource usage) [6]. Galante and 177

de Bona classified elastic systems in terms of four character- 178

istics, i.e., scope (infrastructure, application, platform), policy 179

(manual, reactive, predictive), purpose (performance, capacity, 180

cost, energy), and method (replication, resizing, migration) [7]. 181

Kuperberg et al. mentioned two kinds of scalability, i.e., appli- 182

cation scalability (i.e., the ability of an application to maintain 183

its performance goals and service-level agreement even when its 184

workload increases) and platform scalability (i.e., the ability of 185

a cloud platform to provide as many resources as needed by an 186

application) [14]. Sobeslavsky considered application elasticity, 187

i.e., making an application to be able to adjust to variations in 188

load without the need of intervention of a human administrator 189

and changing its code [21]. 190

Analytical study of cloud elasticity has recently been con- 191

ducted for both horizontal scalability and vertical scalabil- 192

ity. In [16], by using a queueing model, we investigated the 193

technique of workload-dependent dynamic power management 194

(i.e., dynamic power and speed adjustment according to the 195

current workload, which is essentially vertical scalability), so 196

that the system performance can be improved and energy con- 197

sumption can be reduced. We also studied the auto speed 198

scaling scheme optimization problem to minimize the cost– 199

performance ratio. In [17], we addressed the issue of optimal 200

task dispatching on multiple heterogeneous multiserver systems 201
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TABLE I
NOTATIONS AND DEFINITIONS

with dynamic speed and power management by solving three202

problems, i.e., optimal task dispatching to minimize average203

task response time, average power consumption, and average204

cost–performance ratio, respectively. In [18], we presented a205

new and quantitative definition of elasticity in cloud comput-206

ing, developed an analytical model by treating a cloud platform207

with horizontal scalability as a queueing system, and used a208

continuous-time Markov chain model to rigorously calculate209

the elasticity value of a cloud platform by using an analytical210

and numerical method.211

III. MODEL212

The reader is referred to Table I for a list of the notations and213

definitions used in this paper.214

In this paper, we use y to represent the expectation of a random215

variable y (e.g., y can be x, ri , etc.).216

We consider a server with variable execution speed, which217

is a continuous variable. The server can be treated accurately218

as an M/G/1 server using Kendall’s notation. Such a server219

uses the first-come-first-serve (FCFS) scheduling method and220

allows task interarrival times to follow an exponential distribu-221

tion and task execution times to follow an arbitrary probability222

distribution (a fairly general model without extra assumptions).223

There are n types of applications. (Notice that we use the224

words “tasks” and “applications” interchangeably.) Assume that225

the task arrival rate (measured by the number of arrival tasks per226

second) of the ith type of applications is λi , where 1 ≤ i ≤ n.227

The total task arrival rate is λ = λ1 + λ2 + · · ·+ λn .228

For the ith type of applications, the execution requirements229

(measured by the number of billion instructions to be executed)230

of the tasks are independent and identically distributed (i.i.d.) 231

random variables ri . The execution speed (measured by the 232

number of billion instructions that can be executed in one sec- 233

ond) of the server for the ith type of applications is si , which is 234

to be determined by an optimizing algorithm in Section IV-A or 235

V-A. Hence, the execution times (measured by seconds) of the 236

tasks of the ith type of applications are i.i.d. random variables 237

xi = ri/si . 238

The execution time of a task is a random variable x with mean 239

x =
λ1

λ
x1 +

λ2

λ
x2 + · · ·+ λn

λ
xn .

The utilization of the server is ρ = λx = λ1x1 + λ2x2 + · · ·+ 240

λnxn . It is noticed that the server utilization depends on the ar- 241

rival rates, the execution requirements, and the execution speeds 242

of all the n types of applications. The second moment of x (i.e., 243

the mean of x2) is 244

x2 =
λ1

λ
x2

1 +
λ2

λ
x2

2 + · · ·+ λn

λ
x2

n .

The average waiting time of a task is ([13, p. 190]) 245

W =
λx2

2(1− ρ)
=

σ

2(1− ρ)

where σ = λ1x2
1 + λ2x2

2 + · · ·+ λnx2
n . The average response 246

time of tasks of the ith type of applications is 247

Ti = xi + W = xi +
σ

2(1− ρ)

which can be rewritten as 248

Ti = xi +
λ1x2

1 + λ2x2
2 + · · ·+ λnx2

n

2(1− λ1x1 − λ2x2 − · · · − λnxn )

and 249

Ti =
ri

si
+

λ1r2
1/s2

1 + λ2r2
2/s2

2 + · · ·+ λnr2
n/s2

n

2(1− λ1r1/s1 − λ2r2/s2 − · · · − λnrn/sn )
.

The average task response time of all tasks is 250

T =
n∑

i=1

λi

λ
Ti =

1
λ

n∑

i=1

λiri

si
+

σ

2(1− ρ)

which is actually T = x + W, where 251

ρ = λ1
r1

s1
+ λ2

r2

s2
+ · · ·+ λn

rn

sn

and 252

σ = λ1
r2

1

s2
1

+ λ2
r2

2

s2
2

+ · · ·+ λn
r2
n

s2
n

.

Assume that the server has a base power consumption P ∗, 253

and consumes no dynamic power when it is idle. The average 254

power consumption (measured in Watts) of the server is 255

P =
n∑

i=1

λixis
α
i + P ∗ =

n∑

i=1

λiris
α−1
i + P ∗.

(Note: This is the idle speed model in [16].) 256
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IV. POWER CONSTRAINED PERFORMANCE OPTIMIZATION257

A. Optimal Speed Setting258

Given task arrival rates λ1, λ2, . . . , λn , expected task execu-259

tion requirements r1, r2, . . ., rn , the second moments of task260

execution requirements r2
1, r2

2, . . ., r2
n , base power consumption261

P ∗, and certain power supply P̃ , our problem is to find server262

speeds s1, s2, . . . , sn , such that T is minimized and that P does263

not exceed P̃ .264

We can solve the above-mentioned optimization problem,265

which is a multivariable optimization problem with a constraint,266

by using the method of Lagrange multiplier, namely,267

∇T (s1, s2, . . . , sn ) = φ∇P (s1, s2, . . . , sn )

that is,268

∂T

∂si
= φ

∂P

∂si

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier. Since269

∂T

∂si
= − 1

λ
· λiri

s2
i

+
1
2

(
1

1− ρ

(
−2λir2

i

s3
i

)
+

σ

(1− ρ)2

(
−λiri

s2
i

))

and270

∂P

∂si
= (α− 1)λiris

α−2
i

we have271

− 1
λ
· λiri

s2
i

− 1
1− ρ

· λir2
i

s3
i

− σ

2(1− ρ)2
· λiri

s2
i

= φ(α− 1)λiris
α−2
i

for all 1 ≤ i ≤ n. The last equation can be rewritten as272

1
λ

+
1

1− ρ
· r

2
i

ri
· 1
si

+
σ

2(1− ρ)2
= −φ(α− 1)sα

i

or273

Fi = φ(α− 1)sα
i +

1
1− ρ

· r
2
i

ri
· 1
si

+
σ

2(1− ρ)2
+

1
λ

= 0

for all 1 ≤ i ≤ n. The above-mentioned equation together with274

F0 =
n∑

i=1

λiris
α−1
i + P ∗ − P̃ = 0

constitute a nonlinear system of n + 1 equations with n + 1275

unknowns, i.e., s1, s2, . . . , sn , and φ.276

The following theorem shows that it is very unlikely that an277

optimal server speed setting yields a constant speed.278

Theorem 1: An optimal server speed setting yields a constant279

speed, i.e., s1 = s2 = · · · = sn , if and only if all the r2
i /ri are280

identical.281

Proof: Notice that r2
i /ri is the only unique term in Fi , for282

all 1 ≤ i ≤ n. If all the r2
i /ri are identical, we have s1 = s2 =283

· · · = sn . On the other hand, if r2
i /ri �= r2

j /rj for some i and j, 284

then si �= sj . 285

1) Numerical Algorithm: We are going to solve the following 286

nonlinear system of equations: 287

F0(φ, s1, . . . , sn ) = 0

F1(φ, s1, . . . , sn ) = 0

...

Fn (φ, s1, . . . , sn ) = 0.

The variables φ, s1, . . . , sn can be represented by using a vector 288

notation as follows: 289

y = (y0, y1, . . . , yn ) = (φ, s1, . . . , sn ).

Hence, we get Fi(φ, s1, . . . , sn ) = Fi(y0, y1, . . . , yn ) = Fi(y), 290

where Fi : Rn+1 → R maps (n + 1)-dimensional space Rn+1 291

into the real line R. Let us define a function F : Rn+1 → Rn+1 292

which maps Rn+1 into Rn+1 293

F(y) = (F0(y0, y1, . . . , yn ), . . . , Fn (y0, y1, . . . , yn ))

namely, 294

F(y) = (F0(y), F1(y), . . . , Fn (y)).

Then, the above-mentioned nonlinear system of equations be- 295

comes F(y) = 0, where 0 = (0, 0, . . . , 0). 296

We can solve the above-mentioned nonlinear system of equa- 297

tions by using Newton’s method. For this purpose, we need the 298

Jacobian matrix J(y) defined as 299

J(y) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F0(y)
∂y0

∂F0(y)
∂y1

· · · ∂F0(y)
∂yn

∂F1(y)
∂y0

∂F1(y)
∂y1

· · · ∂F1(y)
∂yn

...
...

. . .
...

∂Fn (y)
∂y0

∂Fn (y)
∂y1

· · · ∂Fn (y)
∂yn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We can calculate the various components of the above- 300

mentioned matrix as follows. First, we have 301

∂F0(y)
∂y0

=
∂F0(y)

∂φ
= 0

and 302

∂F0(y)
∂yj

=
∂F0(y)

∂sj
= (α− 1)λj rj s

α−2
j

for all 1 ≤ j ≤ n. Next, we have 303

∂Fi(y)
∂y0

=
∂Fi(y)

∂φ
= (α− 1)sα

i
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for all 1 ≤ i ≤ n, and304

∂Fi(y)
∂yi

=
∂Fi(y)

∂si
= φα(α − 1)sα−1

i

+
r2
i

ri

(
1

(1− ρ)2

(
−λiri

s2
i

)
1
si

+
1

1− ρ

(
− 1

s2
i

))

+
1
2

(
1

(1− ρ)2

(
−2λir

2
i

s3
i

)
+

2σ

(1− ρ)3

(
−λiri

s2
i

))

for all 1 ≤ i ≤ n, and305

∂Fi(y)
∂yj

=
∂Fi(y)

∂sj
=

r2
i

ri
· 1
(1− ρ)2

(
−λj rj

s2
j

)
1
si

+
1
2

⎛

⎝ 1
(1− ρ)2

⎛

⎝−2λj r
2
j

s3
j

⎞

⎠+
2σ

(1− ρ)3

(
−λj rj

s2
j

)⎞

⎠

for all 1 ≤ i ≤ n and all 1 ≤ j �= i ≤ n.306

Algorithm 1 formally describes our numerical algorithm to307

find an optimal server speed setting (s1, . . . , sn ) and the La-308

grange multiplier φ, i.e., the vector y = (φ, s1, . . . , sn ), which309

satisfies the nonlinear system of equations F(y) = 0. This is310

basically the classic Newton’s iterative method ([4, p. 451]).311

The initial approximation of y is φ = −1 and sj = s for all312

1 ≤ j ≤ n [line (1)], where s is the constant speed of the server,313

which satisfies314

n∑

i=1

λiris
α−1 + P ∗ = P̃

that is,315

s =

⎛

⎝(P̃ − P ∗)

(
n∑

i=1

λiri

)−1
⎞

⎠
1/(α−1)

.

We repeatedly modify the value of y as y + z (line (6)), where z316

is the solution to the linear system of equations J(y)z = −F(y)317

(line (5)). We repeat the above-mentioned modification until318

‖z‖ ≤ ε [line (7)], where319

‖z‖ =
√

z2
0 + z2

1 + · · ·+ z2
n

and ε is a sufficiently small constant, e.g., 10−10. By using the320

classic Gaussian elimination with backward substitution algo-321

rithm ([4, pp. 268–269]), we can solve the linear system of322

equations in line (5).323

The time complexity of Algorithm 1 is mainly determined324

by the number of repetitions of the loop in lines (2)–(7), which325

depends on the accuracy requirement ε.326

B. Performance Comparison327

In the section, the performance of a server with the optimal328

speed setting is compared with that of a serve with a constant329

speed.330

Algorithm 1: Optimal Server Speed Setting.

Input: Parameters λ1, λ2, ..., λn , r1, r2, ..., rn , r2
1, r2

2, ..., r2
n ,

P ∗, and P̃ .
Output: An optimal server speed setting and φ, i.e.,
y = (φ, s1, ..., sn ), which satisfies F(y) = 0.
————————————————————————
y← (−1, s, ..., s); (1)
repeat (2)

Calculate J(y),
where J(y)i,j = ∂Fi(y)/∂yj for 0≤ i, j≤n; (3)
Calculate F(y) = (F0(y), F1(y), ..., Fn (y)); (4)
Solve the linear system of equations
J(y)z = −F(y); (5)
y← y + z; (6)

until ‖z‖ ≤ ε. (7)

For a constant speed server, i.e., s1 = s2 = · · · = sn = s, we 331

have 332

s =

⎛

⎝(P̃ − P ∗)

(
n∑

i=1

λiri

)−1
⎞

⎠
1/(α−1)

.

The above-mentioned server speed yields 333

ρ =

(
n∑

i=1

λiri

)α/(α−1) (
1

P̃ − P ∗

)1/(α−1)

and 334

σ =

(
n∑

i=1

λ1r2
i

)(
n∑

i=1

λiri

)2/(α−1) (
1

P̃ − P ∗

)2/(α−1)

.

The average task response time of all tasks is 335

T =
ρ

λ
+

σ

2(1− ρ)

which is 336

T =
1
λ

(
n∑

i=1

λiri

)α/(α−1) (
1

P̃ − P ∗

)1/(α−1)

+

(∑n
i=1 λ1r2

i

)
(
∑n

i=1 λiri)
2/(α−1)

(
1

P̃ −P ∗

)2/(α−1)

2

(
1− (

∑n
i=1 λiri)

α/(α−1)
(

1
P̃ −P ∗

)1/(α−1)
) .

We consider a Pareto distribution [2] of ri with pdf 337

βir̃
βi

i

rβi +1
i

in the range ri ∈ [r̃i ,∞), where r̃i ≥ 0 and βi > 2. The expec- 338

tation of ri is 339

ri =
βir̃i

βi − 1
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and the second moment of ri is340

r2
i =

(
βi

βi − 2

)
r̃2
i .

A nice feature of a Pareto distribution is that for any ri > 0 and341

r2
i > ri

2, there are r̃i > 0 and βi > 2, such that the expectation342

of ri is ri and the second moment of ri is r2
i . Notice that343

ci =
r2
i

ri
2 =

(βi − 1)2

βi(βi − 2)
= 1 +

1
βi(βi − 2)

namely,344

1
βi(βi − 2)

= ci − 1 > 0.

Since the left-hand side of the equation is a decreasing function345

of βi in the domain (2,∞) and in the range (0,∞), there is346

always a unique βi > 2 for any ci > 1. Once βi is known, r̃i347

can be determined as348

r̃i =
(

βi − 1
βi

)
ri.

For the purpose of illustration, let us consider n = 6 types of349

applications. The task arrival rates are λi = 0.5 + 0.1(i− 1),350

for all 1 ≤ i ≤ n. The expected task execution requirements are351

ri = 1.2− 0.2(i− 1), for all 1 ≤ i ≤ n. The second moments352

of task execution requirements are r2
i = 1.5 + 0.5(i− 1), for all353

1 ≤ i ≤ n. The base power consumption is P ∗ = 10. To ensure354

ρ < 1, we need355

P̃ > P ∗ +

(
n∑

i=1

λiri

)α

.

The given power supply is356

P̃ = P ∗ + (1 + 0.2b)

(
n∑

i=1

λiri

)α

.

Let Tvar denote the average task response time with the opti-357

mal variable server speed setting, Tcon denote the average task358

response time with the constant server speed setting. The relative359

difference between Tvar and Tcon is360

ΔT =
(

Tcon − Tvar

Tcon

)
× 100%.

In Table II, for b = 4, 8, 12, 16, 20, where b decides P̃ , we361

display the power constraint P̃ , the optimal server speed setting362

s1, s2, s3, s4, s5, s6, server utilization ρ, and the optimal average363

task response time Tvar . As comparison, we also show the con-364

stant speed s and the resulted server utilization ρ and average365

task response time Tcon . Finally, we give the relative difference366

ΔT between Tvar and Tcon .367

In Fig. 1, we demonstrate Tvar and Tcon for b =368

1, 2, 3, . . . , 20.369

In Fig. 2, we show the relative difference ΔT between Tvar370

and Tcon for b = 1, 2, 3, . . . , 20.371

The following observations are made.372

1) The differences among the si s can be very significant,373

especially when P̃ is large. In particular, the server speed374

TABLE II
NUMERICAL DATA FOR POWER CONSTRAINED OPTIMIZATION

Fig. 1. Average task response time versus power supply.

Fig. 2. Relative difference ΔT between Tvar and Tcon .
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can be increased for a type of applications with greater375

task arrival rate and greater coefficient of variation of task376

execution requirement.377

2) The optimal variable speed setting yields higher server378

utilization than the constant speed setting.379

3) There is noticeable difference between Tvar and Tcon ,380

which can be as high as 9.9%.381

4) The number of repetitions of the loop in Algorithm 1 is382

between 8 and 9. All the data in Table II and Figs. 1 and383

2 can be produced in less than one second.384

V. PERFORMANCE CONSTRAINED POWER MINIMIZATION385

A. Optimal Speed Setting386

Given task arrival rates λ1, λ2, . . . , λn , expected task execu-387

tion requirements r1, r2,. . ., rn , the second moments of task388

execution requirements r2
1, r2

2,. . ., r2
n , base power consumption389

P ∗, and certain quality of service T̃ , our problem is to find server390

speeds s1, s2, . . . , sn , such that T = T̃ , and that P is minimized.391

1) Numerical Algorithm: We can solve the above-mentioned392

optimization problem by using the bisection method ([4, p. 22])393

to search P in an appropriately chosen interval [Plb, Pub], where394

Plb and Pub are the lower and upper bounds of the interval, such395

that when a server is given power supply P , the average task396

response time is T̃ . The value Plb is chosen in such a way that397

when the server is given power supply Plb, the average task398

response time is greater than T̃ . The value Pub is chosen in399

such a way that when the server is given power supply Pub, the400

average task response time is less than T̃ . The time complexity401

of this algorithm is determined the number of times Algorithm 1402

is called by the bisection method.403

B. Performance Comparison404

In this section, we compare the power consumption of a server405

with the optimal speed setting with that of a serve with a constant406

speed.407

For a constant speed server, i.e., s1 = s2 = · · · = sn = s, we408

have409

1
λs

n∑

i=1

λiri +
1

2s

(
s−

n∑

i=1

λiri

)
∑n

i=1
λir2

i = T̃ .

The above-mentioned equation is actually a quadratic equation410

2T̃ s2 − 2bs− c = 0, where411

b =
(

T̃ +
1
λ

)( n∑

i=1

λiri

)

and412

c =
n∑

i=1

λir2
i −

2
λ

(
n∑

i=1

λiri

)2

.

It is clear that413

s =
2b +

√
4b2 + 8T̃ c

4T̃
=

b +
√

b2 + 2T̃ c

2T̃

TABLE III
NUMERICAL DATA FOR PERFORMANCE CONSTRAINED OPTIMIZATION

where 414

b2 + 2T̃ c =
(

T̃ − 1
λ

)2
(

n∑

i=1

λiri

)2

+ 2T̃

(
n∑

i=1

λir2
i

)
.

Therefore, we obtain 415

s =
1

2T̃

((
T̃ +

1
λ

)( n∑

i=1

λiri

)

+

√√√√
(

T̃ − 1
λ

)2
(

n∑

i=1

λiri

)2

+ 2T̃

(
n∑

i=1

λir2
i

) )
.

The average power consumption of the server is 416

P =

(
n∑

i=1

λiri

)
sα−1 + P ∗

which is actually 417

P =

(
n∑

i=1

λiri

)(
1

2T̃

((
T̃ +

1
λ

)( n∑

i=1

λiri

)

+

√√√√
(

T̃ − 1
λ

)2
(

n∑

i=1

λiri

)2

+ 2T̃

(
n∑

i=1

λir2
i

)))α−1

+ P ∗.

Let Pvar denote the average power consumption with the 418

optimal variable server speed setting, Pcon denote the average 419

power consumption with the constant server speed setting. The 420

relative difference between Pvar and Pcon is 421

ΔP =
(

Pcon − Pvar

Pcon

)
× 100%.

Let us consider the same types of applications in Section IV.B. 422

The given quality of service is T̃ = 0.3b. 423

In Table III, for b = 4, 8, 12, 16, 20, where b decides T̃ , we 424

display the time constraint T̃ , the optimal server speed setting 425

s1, s2, s3, s4, s5, s6, server utilization ρ, and the minimum av- 426

erage power consumption Pvar . As comparison, we also show 427
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Fig. 3. Average power consumption versus quality of service.

Fig. 4. Relative difference ΔP between Pvar and Pcon.

the constant speed s and the resulted server utilization ρ and428

average power consumption Pcon . Finally, we give the relative429

difference ΔP between Pvar and Pcon .430

In Fig. 3, we demonstrate Pvar and Pcon for b = 1, 2,431

3, . . . , 20.432

In Fig. 4, we show the relative difference ΔP between Pvar433

and Pcon for b = 1, 2, 3, . . . , 20.434

The following observations are made.435

1) The differences among the si s can be very significant,436

especially when T̃ is small. In particular, the server speed437

can be increased for a type of applications with greater438

task arrival rate and greater coefficient of variation of task439

execution requirement.440

2) The optimal variable speed setting yields higher server441

utilization than the constant speed setting.442

3) There is noticeable difference between Pvar and Pcon , 443

which can be as high as 8.0%. In fact, it is unbounded as 444

T̃ → 0. 445

4) Algorithm 1 is called 44 times by the bisection method 446

in Section V-A. All the data in Table III and Figs. 3 and 447

4 can be produced in less than one second. 448

VI. CONCLUSION 449

A new kind of workload-dependent dynamic power and the 450

speed management (i.e., variable and task type dependent server 451

speed management) method to deal with the power and perfor- 452

mance tradeoff for cloud servers is introduced in this paper. Both 453

power constrained performance optimization and performance 454

constrained power minimization are investigated as optimiza- 455

tion problems solved by efficient numerical algorithms. Our 456

main conclusions are two fold. First, it is shown that compared 457

with a server with a constant speed, a server with the optimal 458

speed setting can noticeably reduce the average task response 459

time and the average power consumption. Second, it is also 460

shown that our numerical algorithms are very fast. The research 461

in this paper has made significant contribution to analytical study 462

of power and performance optimization using the technique of 463

variable and task type dependent server speed management for 464

a server with mixed applications. 465

The research in this paper can be extended in a number of 466

ways. First, an M/G/1 server can be extended to an M/G/m 467

server. Due to lack of an analytical expression of the average 468

task response, such a study is very challenging. Second, mul- 469

tiple M/G/1 and/or M/G/m servers can be investigated. When 470

there are multiple heterogeneous servers with variable and task 471

type dependent server speed management, we are facing the 472

challenges of both optimal load distribution and optimal server 473

speed setting for multiple classes of applications. It is con- 474

ceivable that such a problem requires extra effort to deal with. 475

Although some attempt has been made toward this direction 476

[19], deeper investigation is required. Third, more sophisticated 477

scheduling strategies other than FCFS can be considered. 478
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Abstract—The technique of workload dependent dynamic4
power management can dynamically and flexibly adjust5
power and speed according to the current workload. It has6
been well recognized that improving server performance7
and reducing energy consumption can be achieved by8
employing the technique of workload dependent dynamic9
power management. It is an effective way to deal with the10
power and performance tradeoff for cloud servers. In this11
study, applications are divided into different classes, which12
have different characteristics. The server speed is different13
in processing tasks from different types. Hence, we explore14
the technique of variable and task type dependent server15
speed management to optimize the server performance and16
to minimize the power consumption of a server with mixed17
applications. This is also a kind of workload-dependent dy-18
namic power and speed management to deal with the power19
and performance tradeoff. We establish an M/G/1 queueing20
model for a server with variable and task type dependent21
speed, so that our investigation can be conducted analyti-22
cally. We formulate the problems of power constrained per-23
formance optimization and performance constrained power24
minimization as multivariable optimization problems, and25
solve the problems by efficient numerical algorithms. We26
provide numerical data to compare the performance of a27
server with the optimal speed setting to that of a server28
with a constant speed, and to compare the power of a server29
with the optimal speed setting to that of a server with a con-30
stant speed. It is shown that the reduction in the average31
response time can be as high as 9.9% and the reduction in32
the average power consumption can be as high as 8.0%.33

Index Terms—Average response time, cloud server,34
mixed applications, optimal speed setting, power consump-35
tion, workload-dependent dynamic power management.36

I. INTRODUCTION37

A. Motivation38

THE technique of workload-dependent dynamic power39

management can dynamically and flexibly adjust power40

and speed according to the current workload, i.e., the number41

of applications in a server and the characteristics of the appli-42

cations. When there are more tasks in a server, we can increase43

the power supply and the server speed to reduce the average re-44
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sponse time without significant energy increment. On the other 45

hand, when there are less tasks in a server, we can decrease the 46

power supply and the server speed to reduce the average power 47

consumption without significant performance degradation. Dy- 48

namic power and speed adjustment can also be performed when 49

there is substantial change in application characteristics. Such 50

runtime power and speed adjustment can be implemented by the 51

mechanisms of dynamic voltage scaling, dynamic frequency 52

scaling, dynamic speed scaling, and dynamic power scaling 53

[1], [11], [12]. 54

A number of researchers have studied workload-dependent 55

dynamic power management. Typically, the lowest server speed 56

should be chosen for a group of applications, so that the group of 57

applications can be processed with certain required performance 58

constraints [15]. We can carry out dynamic power management 59

with different granularity, i.e., the application level and the phase 60

(of an application) level. At the application (phase, respectively) 61

level, we analyze the overall characteristics of an application 62

(phase, respectively) and determine the server speed based on 63

these properties. For instances, the server speed should be high 64

for CPU-bound applications (phase, respectively) to reduce the 65

execution time; however, the server speed should be low for 66

memory-bound applications (phase, respectively) to save energy 67

without increasing the execution time [3], [20]. Cochran et al. [5] 68

presented an accurate and scalable method that determines the 69

optimal system operating points (i.e., number of threads and dy- 70

namic voltage and frequency settings) and optimizes energy effi- 71

ciency in multicore processors at runtime for parallel workloads 72

with a set of objective functions and constraints. Huang and 73

Feng [9] presented an eco-friendly daemon that reduces energy 74

consumption while maintaining high performance via accurate 75

workload characterization. As an interval-based run-time algo- 76

rithm, the eco-friendly daemon uses workload characterization 77

to dynamically adjust a processor’s voltage and frequency and 78

to reduce energy consumption with little impact on application 79

performance. 80

It has been well recognized that improving server perfor- 81

mance and reducing energy consumption can be achieved by em- 82

ploying the technique of workload-dependent dynamic power 83

management. It is an effective way to deal with the power 84

and performance tradeoff for cloud servers. Furthermore, an- 85

alytical studies can be performed for workload-dependent dy- 86

namic power management. In [16], we established a queue- 87

ing model of multicore server processors with the capability 88

of workload-dependent dynamic power management. We pro- 89

posed several speed schemes and demonstrated that for the same 90

1551-3203 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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average power consumption, the average task response time of a91

multicore server processor with workload-dependent dynamic92

power management is shorter than that of a multicore server pro-93

cessor with constant speed (i.e., without workload-dependent94

dynamic power management). We showed that for certain ap-95

plication environment and average power consumption, there is96

an optimal speed scheme that minimizes the average task re-97

sponse time. We also pointed out that power reduction subject98

to performance constraints can be studied in a way similar to99

performance improvement subject to power constraints.100

B. Our Contributions101

In this paper, we adopt a different approach from [16], where102

workload is measured in terms of the number of tasks in a server.103

The server speed increases (decreases, respectively) when the104

number of tasks increases (decreases, respectively). In this study,105

applications are divided into different classes, which have dif-106

ferent characteristics. The server speed is different in processing107

tasks from different types. Hence, we explore the technique of108

variable and task type dependent server speed management to109

optimize the server performance and to minimize the power con-110

sumption of a server with mixed applications. This is also a kind111

of workload-dependent dynamic power and speed management112

to deal with the power and performance tradeoff.113

Our main contributions can be summarized as follows.114

1) We establish an M/G/1 queueing model for a server with115

variable and task type dependent speed, so that our inves-116

tigation can be conducted analytically.117

2) We formulate the problems of power constrained perfor-118

mance optimization and performance constrained power119

minimization as multivariable optimization problems,120

and solve the problems by efficient numerical algorithms.121

3) We provide numerical data to compare the performance122

of a server with the optimal speed setting to that of a123

server with a constant speed, and to compare the power124

of a server with the optimal speed setting to that of a server125

with a constant speed. It is shown that the reduction in126

the average response time can be as high as 9.9% and the127

reduction in the average power consumption can be as128

high as 8.0%.129

To the author’s best knowledge, this is the first work, which130

analytically studies power and performance optimization using131

the technique of variable and task type dependent server speed132

management for a server with mixed applications.133

The organization of this paper is as follows. In Section II, we134

review related research. In Section III, we present the queueing135

model and the power consumption model. In Section IV, we136

formulate and solve the problem of power constrained perfor-137

mance optimization, demonstrate numerical data, and conduct138

performance comparison. In Section V, we formulate and solve139

the problem of performance constrained power minimization.140

We conclude the paper in Section VI.141

II. RELATED RESEARCH142

As one of the fundamental properties of cloud computing,143

elasticity is the capability to scale computing resources up and144

down dynamically with minimal friction. It has been recognized 145

that elasticity will eventually manifest all of the benefits of the 146

cloud [22]. Autoscaling means scaling a multiserver to match 147

changing workload without any human intervention. There are 148

two types of autoscaling schemes for elastic and scalable mul- 149

tiserver management, which are defined as follows [10]. 150

1) Scale-out and scale-in autoscaling schemes—This is 151

also called workload-dependent dynamic multiserver size 152

management. When the workload fluctuates, the number 153

of servers (i.e., the size of a multiserver system) can be dy- 154

namically changed to provide the required performance 155

and cost objectives. These schemes are also called auto 156

size scaling schemes. 157

2) Scale-up and scale-down autoscaling schemes—This is 158

also called workload-dependent dynamic multiserver 159

speed management. When the workload fluctuates, the 160

speed of servers (i.e., the speed of a multiserver system) 161

can be dynamically changed to provide the required per- 162

formance and cost objectives. These schemes are also 163

called auto speed scaling schemes. 164

Essentially, there are two types of cloud resource scaling in 165

an elastic cloud computing system, i.e., horizontal scalability 166

and vertical scalability [8]. Horizontal scaling (i.e., scaling out 167

and scaling in) means allocation and releasing of homogeneous 168

virtual machines or processing nodes of the same type. Verti- 169

cal scaling (i.e., scaling up and scaling down) means upgrade 170

or downgrade of the capability (core speed, memory capacity, 171

network bandwidth, etc.) of a server. 172

Cloud elasticity has also been studied from wider perspec- 173

tives. Dustdar et al. considered elasticity properties such as 174

cost elasticity (i.e., the responsiveness of resource provision 175

to changes in cost) and quality elasticity (i.e., the responsive- 176

ness of quality to changes in resource usage) [6]. Galante and 177

de Bona classified elastic systems in terms of four character- 178

istics, i.e., scope (infrastructure, application, platform), policy 179

(manual, reactive, predictive), purpose (performance, capacity, 180

cost, energy), and method (replication, resizing, migration) [7]. 181

Kuperberg et al. mentioned two kinds of scalability, i.e., appli- 182

cation scalability (i.e., the ability of an application to maintain 183

its performance goals and service-level agreement even when its 184

workload increases) and platform scalability (i.e., the ability of 185

a cloud platform to provide as many resources as needed by an 186

application) [14]. Sobeslavsky considered application elasticity, 187

i.e., making an application to be able to adjust to variations in 188

load without the need of intervention of a human administrator 189

and changing its code [21]. 190

Analytical study of cloud elasticity has recently been con- 191

ducted for both horizontal scalability and vertical scalabil- 192

ity. In [16], by using a queueing model, we investigated the 193

technique of workload-dependent dynamic power management 194

(i.e., dynamic power and speed adjustment according to the 195

current workload, which is essentially vertical scalability), so 196

that the system performance can be improved and energy con- 197

sumption can be reduced. We also studied the auto speed 198

scaling scheme optimization problem to minimize the cost– 199

performance ratio. In [17], we addressed the issue of optimal 200

task dispatching on multiple heterogeneous multiserver systems 201
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TABLE I
NOTATIONS AND DEFINITIONS

with dynamic speed and power management by solving three202

problems, i.e., optimal task dispatching to minimize average203

task response time, average power consumption, and average204

cost–performance ratio, respectively. In [18], we presented a205

new and quantitative definition of elasticity in cloud comput-206

ing, developed an analytical model by treating a cloud platform207

with horizontal scalability as a queueing system, and used a208

continuous-time Markov chain model to rigorously calculate209

the elasticity value of a cloud platform by using an analytical210

and numerical method.211

III. MODEL212

The reader is referred to Table I for a list of the notations and213

definitions used in this paper.214

In this paper, we use y to represent the expectation of a random215

variable y (e.g., y can be x, ri , etc.).216

We consider a server with variable execution speed, which217

is a continuous variable. The server can be treated accurately218

as an M/G/1 server using Kendall’s notation. Such a server219

uses the first-come-first-serve (FCFS) scheduling method and220

allows task interarrival times to follow an exponential distribu-221

tion and task execution times to follow an arbitrary probability222

distribution (a fairly general model without extra assumptions).223

There are n types of applications. (Notice that we use the224

words “tasks” and “applications” interchangeably.) Assume that225

the task arrival rate (measured by the number of arrival tasks per226

second) of the ith type of applications is λi , where 1 ≤ i ≤ n.227

The total task arrival rate is λ = λ1 + λ2 + · · ·+ λn .228

For the ith type of applications, the execution requirements229

(measured by the number of billion instructions to be executed)230

of the tasks are independent and identically distributed (i.i.d.) 231

random variables ri . The execution speed (measured by the 232

number of billion instructions that can be executed in one sec- 233

ond) of the server for the ith type of applications is si , which is 234

to be determined by an optimizing algorithm in Section IV-A or 235

V-A. Hence, the execution times (measured by seconds) of the 236

tasks of the ith type of applications are i.i.d. random variables 237

xi = ri/si . 238

The execution time of a task is a random variable x with mean 239

x =
λ1

λ
x1 +

λ2

λ
x2 + · · ·+ λn

λ
xn .

The utilization of the server is ρ = λx = λ1x1 + λ2x2 + · · ·+ 240

λnxn . It is noticed that the server utilization depends on the ar- 241

rival rates, the execution requirements, and the execution speeds 242

of all the n types of applications. The second moment of x (i.e., 243

the mean of x2) is 244

x2 =
λ1

λ
x2

1 +
λ2

λ
x2

2 + · · ·+ λn

λ
x2

n .

The average waiting time of a task is ([13, p. 190]) 245

W =
λx2

2(1− ρ)
=

σ

2(1− ρ)

where σ = λ1x2
1 + λ2x2

2 + · · ·+ λnx2
n . The average response 246

time of tasks of the ith type of applications is 247

Ti = xi + W = xi +
σ

2(1− ρ)

which can be rewritten as 248

Ti = xi +
λ1x2

1 + λ2x2
2 + · · ·+ λnx2

n

2(1− λ1x1 − λ2x2 − · · · − λnxn )

and 249

Ti =
ri

si
+

λ1r2
1/s2

1 + λ2r2
2/s2

2 + · · ·+ λnr2
n/s2

n

2(1− λ1r1/s1 − λ2r2/s2 − · · · − λnrn/sn )
.

The average task response time of all tasks is 250

T =
n∑

i=1

λi

λ
Ti =

1
λ

n∑

i=1

λiri

si
+

σ

2(1− ρ)

which is actually T = x + W, where 251

ρ = λ1
r1

s1
+ λ2

r2

s2
+ · · ·+ λn

rn

sn

and 252

σ = λ1
r2

1

s2
1

+ λ2
r2

2

s2
2

+ · · ·+ λn
r2
n

s2
n

.

Assume that the server has a base power consumption P ∗, 253

and consumes no dynamic power when it is idle. The average 254

power consumption (measured in Watts) of the server is 255

P =
n∑

i=1

λixis
α
i + P ∗ =

n∑

i=1

λiris
α−1
i + P ∗.

(Note: This is the idle speed model in [16].) 256
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IV. POWER CONSTRAINED PERFORMANCE OPTIMIZATION257

A. Optimal Speed Setting258

Given task arrival rates λ1, λ2, . . . , λn , expected task execu-259

tion requirements r1, r2, . . ., rn , the second moments of task260

execution requirements r2
1, r2

2, . . ., r2
n , base power consumption261

P ∗, and certain power supply P̃ , our problem is to find server262

speeds s1, s2, . . . , sn , such that T is minimized and that P does263

not exceed P̃ .264

We can solve the above-mentioned optimization problem,265

which is a multivariable optimization problem with a constraint,266

by using the method of Lagrange multiplier, namely,267

∇T (s1, s2, . . . , sn ) = φ∇P (s1, s2, . . . , sn )

that is,268

∂T

∂si
= φ

∂P

∂si

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier. Since269

∂T

∂si
= − 1

λ
· λiri

s2
i

+
1
2

(
1

1− ρ

(
−2λir2

i

s3
i

)
+

σ

(1− ρ)2

(
−λiri

s2
i

))

and270

∂P

∂si
= (α− 1)λiris

α−2
i

we have271

− 1
λ
· λiri

s2
i

− 1
1− ρ

· λir2
i

s3
i

− σ

2(1− ρ)2
· λiri

s2
i

= φ(α− 1)λiris
α−2
i

for all 1 ≤ i ≤ n. The last equation can be rewritten as272

1
λ

+
1

1− ρ
· r

2
i

ri
· 1
si

+
σ

2(1− ρ)2
= −φ(α− 1)sα

i

or273

Fi = φ(α− 1)sα
i +

1
1− ρ

· r
2
i

ri
· 1
si

+
σ

2(1− ρ)2
+

1
λ

= 0

for all 1 ≤ i ≤ n. The above-mentioned equation together with274

F0 =
n∑

i=1

λiris
α−1
i + P ∗ − P̃ = 0

constitute a nonlinear system of n + 1 equations with n + 1275

unknowns, i.e., s1, s2, . . . , sn , and φ.276

The following theorem shows that it is very unlikely that an277

optimal server speed setting yields a constant speed.278

Theorem 1: An optimal server speed setting yields a constant279

speed, i.e., s1 = s2 = · · · = sn , if and only if all the r2
i /ri are280

identical.281

Proof: Notice that r2
i /ri is the only unique term in Fi , for282

all 1 ≤ i ≤ n. If all the r2
i /ri are identical, we have s1 = s2 =283

· · · = sn . On the other hand, if r2
i /ri �= r2

j /rj for some i and j, 284

then si �= sj . 285

1) Numerical Algorithm: We are going to solve the following 286

nonlinear system of equations: 287

F0(φ, s1, . . . , sn ) = 0

F1(φ, s1, . . . , sn ) = 0

...

Fn (φ, s1, . . . , sn ) = 0.

The variables φ, s1, . . . , sn can be represented by using a vector 288

notation as follows: 289

y = (y0, y1, . . . , yn ) = (φ, s1, . . . , sn ).

Hence, we get Fi(φ, s1, . . . , sn ) = Fi(y0, y1, . . . , yn ) = Fi(y), 290

where Fi : Rn+1 → R maps (n + 1)-dimensional space Rn+1 291

into the real line R. Let us define a function F : Rn+1 → Rn+1 292

which maps Rn+1 into Rn+1 293

F(y) = (F0(y0, y1, . . . , yn ), . . . , Fn (y0, y1, . . . , yn ))

namely, 294

F(y) = (F0(y), F1(y), . . . , Fn (y)).

Then, the above-mentioned nonlinear system of equations be- 295

comes F(y) = 0, where 0 = (0, 0, . . . , 0). 296

We can solve the above-mentioned nonlinear system of equa- 297

tions by using Newton’s method. For this purpose, we need the 298

Jacobian matrix J(y) defined as 299

J(y) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F0(y)
∂y0

∂F0(y)
∂y1

· · · ∂F0(y)
∂yn

∂F1(y)
∂y0

∂F1(y)
∂y1

· · · ∂F1(y)
∂yn

...
...

. . .
...

∂Fn (y)
∂y0

∂Fn (y)
∂y1

· · · ∂Fn (y)
∂yn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We can calculate the various components of the above- 300

mentioned matrix as follows. First, we have 301

∂F0(y)
∂y0

=
∂F0(y)

∂φ
= 0

and 302

∂F0(y)
∂yj

=
∂F0(y)

∂sj
= (α− 1)λj rj s

α−2
j

for all 1 ≤ j ≤ n. Next, we have 303

∂Fi(y)
∂y0

=
∂Fi(y)

∂φ
= (α− 1)sα

i
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for all 1 ≤ i ≤ n, and304

∂Fi(y)
∂yi

=
∂Fi(y)

∂si
= φα(α − 1)sα−1

i

+
r2
i

ri

(
1

(1− ρ)2

(
−λiri

s2
i

)
1
si

+
1

1− ρ

(
− 1

s2
i

))

+
1
2

(
1

(1− ρ)2

(
−2λir

2
i

s3
i

)
+

2σ

(1− ρ)3

(
−λiri

s2
i

))

for all 1 ≤ i ≤ n, and305

∂Fi(y)
∂yj

=
∂Fi(y)

∂sj
=

r2
i

ri
· 1
(1− ρ)2

(
−λj rj

s2
j

)
1
si

+
1
2

⎛

⎝ 1
(1− ρ)2

⎛

⎝−2λj r
2
j

s3
j

⎞

⎠+
2σ

(1− ρ)3

(
−λj rj

s2
j

)⎞

⎠

for all 1 ≤ i ≤ n and all 1 ≤ j �= i ≤ n.306

Algorithm 1 formally describes our numerical algorithm to307

find an optimal server speed setting (s1, . . . , sn ) and the La-308

grange multiplier φ, i.e., the vector y = (φ, s1, . . . , sn ), which309

satisfies the nonlinear system of equations F(y) = 0. This is310

basically the classic Newton’s iterative method ([4, p. 451]).311

The initial approximation of y is φ = −1 and sj = s for all312

1 ≤ j ≤ n [line (1)], where s is the constant speed of the server,313

which satisfies314

n∑

i=1

λiris
α−1 + P ∗ = P̃

that is,315

s =

⎛

⎝(P̃ − P ∗)

(
n∑

i=1

λiri

)−1
⎞

⎠
1/(α−1)

.

We repeatedly modify the value of y as y + z (line (6)), where z316

is the solution to the linear system of equations J(y)z = −F(y)317

(line (5)). We repeat the above-mentioned modification until318

‖z‖ ≤ ε [line (7)], where319

‖z‖ =
√

z2
0 + z2

1 + · · ·+ z2
n

and ε is a sufficiently small constant, e.g., 10−10. By using the320

classic Gaussian elimination with backward substitution algo-321

rithm ([4, pp. 268–269]), we can solve the linear system of322

equations in line (5).323

The time complexity of Algorithm 1 is mainly determined324

by the number of repetitions of the loop in lines (2)–(7), which325

depends on the accuracy requirement ε.326

B. Performance Comparison327

In the section, the performance of a server with the optimal328

speed setting is compared with that of a serve with a constant329

speed.330

Algorithm 1: Optimal Server Speed Setting.

Input: Parameters λ1, λ2, ..., λn , r1, r2, ..., rn , r2
1, r2

2, ..., r2
n ,

P ∗, and P̃ .
Output: An optimal server speed setting and φ, i.e.,
y = (φ, s1, ..., sn ), which satisfies F(y) = 0.
————————————————————————
y← (−1, s, ..., s); (1)
repeat (2)

Calculate J(y),
where J(y)i,j = ∂Fi(y)/∂yj for 0≤ i, j≤n; (3)
Calculate F(y) = (F0(y), F1(y), ..., Fn (y)); (4)
Solve the linear system of equations
J(y)z = −F(y); (5)
y← y + z; (6)

until ‖z‖ ≤ ε. (7)

For a constant speed server, i.e., s1 = s2 = · · · = sn = s, we 331

have 332

s =

⎛

⎝(P̃ − P ∗)

(
n∑

i=1

λiri

)−1
⎞

⎠
1/(α−1)

.

The above-mentioned server speed yields 333

ρ =

(
n∑

i=1

λiri

)α/(α−1) (
1

P̃ − P ∗

)1/(α−1)

and 334

σ =

(
n∑

i=1

λ1r2
i

)(
n∑

i=1

λiri

)2/(α−1) (
1

P̃ − P ∗

)2/(α−1)

.

The average task response time of all tasks is 335

T =
ρ

λ
+

σ

2(1− ρ)

which is 336

T =
1
λ

(
n∑

i=1

λiri

)α/(α−1) (
1

P̃ − P ∗

)1/(α−1)

+

(∑n
i=1 λ1r2

i

)
(
∑n

i=1 λiri)
2/(α−1)

(
1

P̃ −P ∗

)2/(α−1)

2

(
1− (

∑n
i=1 λiri)

α/(α−1)
(

1
P̃ −P ∗

)1/(α−1)
) .

We consider a Pareto distribution [2] of ri with pdf 337

βir̃
βi

i

rβi +1
i

in the range ri ∈ [r̃i ,∞), where r̃i ≥ 0 and βi > 2. The expec- 338

tation of ri is 339

ri =
βir̃i

βi − 1
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and the second moment of ri is340

r2
i =

(
βi

βi − 2

)
r̃2
i .

A nice feature of a Pareto distribution is that for any ri > 0 and341

r2
i > ri

2, there are r̃i > 0 and βi > 2, such that the expectation342

of ri is ri and the second moment of ri is r2
i . Notice that343

ci =
r2
i

ri
2 =

(βi − 1)2

βi(βi − 2)
= 1 +

1
βi(βi − 2)

namely,344

1
βi(βi − 2)

= ci − 1 > 0.

Since the left-hand side of the equation is a decreasing function345

of βi in the domain (2,∞) and in the range (0,∞), there is346

always a unique βi > 2 for any ci > 1. Once βi is known, r̃i347

can be determined as348

r̃i =
(

βi − 1
βi

)
ri.

For the purpose of illustration, let us consider n = 6 types of349

applications. The task arrival rates are λi = 0.5 + 0.1(i− 1),350

for all 1 ≤ i ≤ n. The expected task execution requirements are351

ri = 1.2− 0.2(i− 1), for all 1 ≤ i ≤ n. The second moments352

of task execution requirements are r2
i = 1.5 + 0.5(i− 1), for all353

1 ≤ i ≤ n. The base power consumption is P ∗ = 10. To ensure354

ρ < 1, we need355

P̃ > P ∗ +

(
n∑

i=1

λiri

)α

.

The given power supply is356

P̃ = P ∗ + (1 + 0.2b)

(
n∑

i=1

λiri

)α

.

Let Tvar denote the average task response time with the opti-357

mal variable server speed setting, Tcon denote the average task358

response time with the constant server speed setting. The relative359

difference between Tvar and Tcon is360

ΔT =
(

Tcon − Tvar

Tcon

)
× 100%.

In Table II, for b = 4, 8, 12, 16, 20, where b decides P̃ , we361

display the power constraint P̃ , the optimal server speed setting362

s1, s2, s3, s4, s5, s6, server utilization ρ, and the optimal average363

task response time Tvar . As comparison, we also show the con-364

stant speed s and the resulted server utilization ρ and average365

task response time Tcon . Finally, we give the relative difference366

ΔT between Tvar and Tcon .367

In Fig. 1, we demonstrate Tvar and Tcon for b =368

1, 2, 3, . . . , 20.369

In Fig. 2, we show the relative difference ΔT between Tvar370

and Tcon for b = 1, 2, 3, . . . , 20.371

The following observations are made.372

1) The differences among the si s can be very significant,373

especially when P̃ is large. In particular, the server speed374

TABLE II
NUMERICAL DATA FOR POWER CONSTRAINED OPTIMIZATION

Fig. 1. Average task response time versus power supply.

Fig. 2. Relative difference ΔT between Tvar and Tcon .
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can be increased for a type of applications with greater375

task arrival rate and greater coefficient of variation of task376

execution requirement.377

2) The optimal variable speed setting yields higher server378

utilization than the constant speed setting.379

3) There is noticeable difference between Tvar and Tcon ,380

which can be as high as 9.9%.381

4) The number of repetitions of the loop in Algorithm 1 is382

between 8 and 9. All the data in Table II and Figs. 1 and383

2 can be produced in less than one second.384

V. PERFORMANCE CONSTRAINED POWER MINIMIZATION385

A. Optimal Speed Setting386

Given task arrival rates λ1, λ2, . . . , λn , expected task execu-387

tion requirements r1, r2,. . ., rn , the second moments of task388

execution requirements r2
1, r2

2,. . ., r2
n , base power consumption389

P ∗, and certain quality of service T̃ , our problem is to find server390

speeds s1, s2, . . . , sn , such that T = T̃ , and that P is minimized.391

1) Numerical Algorithm: We can solve the above-mentioned392

optimization problem by using the bisection method ([4, p. 22])393

to search P in an appropriately chosen interval [Plb, Pub], where394

Plb and Pub are the lower and upper bounds of the interval, such395

that when a server is given power supply P , the average task396

response time is T̃ . The value Plb is chosen in such a way that397

when the server is given power supply Plb, the average task398

response time is greater than T̃ . The value Pub is chosen in399

such a way that when the server is given power supply Pub, the400

average task response time is less than T̃ . The time complexity401

of this algorithm is determined the number of times Algorithm 1402

is called by the bisection method.403

B. Performance Comparison404

In this section, we compare the power consumption of a server405

with the optimal speed setting with that of a serve with a constant406

speed.407

For a constant speed server, i.e., s1 = s2 = · · · = sn = s, we408

have409

1
λs

n∑

i=1

λiri +
1

2s

(
s−

n∑

i=1

λiri

)
∑n

i=1
λir2

i = T̃ .

The above-mentioned equation is actually a quadratic equation410

2T̃ s2 − 2bs− c = 0, where411

b =
(

T̃ +
1
λ

)( n∑

i=1

λiri

)

and412

c =
n∑

i=1

λir2
i −

2
λ

(
n∑

i=1

λiri

)2

.

It is clear that413

s =
2b +

√
4b2 + 8T̃ c

4T̃
=

b +
√

b2 + 2T̃ c

2T̃

TABLE III
NUMERICAL DATA FOR PERFORMANCE CONSTRAINED OPTIMIZATION

where 414

b2 + 2T̃ c =
(

T̃ − 1
λ

)2
(

n∑

i=1

λiri

)2

+ 2T̃

(
n∑

i=1

λir2
i

)
.

Therefore, we obtain 415

s =
1

2T̃

((
T̃ +

1
λ

)( n∑

i=1

λiri

)

+

√√√√
(

T̃ − 1
λ

)2
(

n∑

i=1

λiri

)2

+ 2T̃

(
n∑

i=1

λir2
i

) )
.

The average power consumption of the server is 416

P =

(
n∑

i=1

λiri

)
sα−1 + P ∗

which is actually 417

P =

(
n∑

i=1

λiri

)(
1

2T̃

((
T̃ +

1
λ

)( n∑

i=1

λiri

)

+

√√√√
(

T̃ − 1
λ

)2
(

n∑

i=1

λiri

)2

+ 2T̃

(
n∑

i=1

λir2
i

)))α−1

+ P ∗.

Let Pvar denote the average power consumption with the 418

optimal variable server speed setting, Pcon denote the average 419

power consumption with the constant server speed setting. The 420

relative difference between Pvar and Pcon is 421

ΔP =
(

Pcon − Pvar

Pcon

)
× 100%.

Let us consider the same types of applications in Section IV.B. 422

The given quality of service is T̃ = 0.3b. 423

In Table III, for b = 4, 8, 12, 16, 20, where b decides T̃ , we 424

display the time constraint T̃ , the optimal server speed setting 425

s1, s2, s3, s4, s5, s6, server utilization ρ, and the minimum av- 426

erage power consumption Pvar . As comparison, we also show 427
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Fig. 3. Average power consumption versus quality of service.

Fig. 4. Relative difference ΔP between Pvar and Pcon.

the constant speed s and the resulted server utilization ρ and428

average power consumption Pcon . Finally, we give the relative429

difference ΔP between Pvar and Pcon .430

In Fig. 3, we demonstrate Pvar and Pcon for b = 1, 2,431

3, . . . , 20.432

In Fig. 4, we show the relative difference ΔP between Pvar433

and Pcon for b = 1, 2, 3, . . . , 20.434

The following observations are made.435

1) The differences among the si s can be very significant,436

especially when T̃ is small. In particular, the server speed437

can be increased for a type of applications with greater438

task arrival rate and greater coefficient of variation of task439

execution requirement.440

2) The optimal variable speed setting yields higher server441

utilization than the constant speed setting.442

3) There is noticeable difference between Pvar and Pcon , 443

which can be as high as 8.0%. In fact, it is unbounded as 444

T̃ → 0. 445

4) Algorithm 1 is called 44 times by the bisection method 446

in Section V-A. All the data in Table III and Figs. 3 and 447

4 can be produced in less than one second. 448

VI. CONCLUSION 449

A new kind of workload-dependent dynamic power and the 450

speed management (i.e., variable and task type dependent server 451

speed management) method to deal with the power and perfor- 452

mance tradeoff for cloud servers is introduced in this paper. Both 453

power constrained performance optimization and performance 454

constrained power minimization are investigated as optimiza- 455

tion problems solved by efficient numerical algorithms. Our 456

main conclusions are two fold. First, it is shown that compared 457

with a server with a constant speed, a server with the optimal 458

speed setting can noticeably reduce the average task response 459

time and the average power consumption. Second, it is also 460

shown that our numerical algorithms are very fast. The research 461

in this paper has made significant contribution to analytical study 462

of power and performance optimization using the technique of 463

variable and task type dependent server speed management for 464

a server with mixed applications. 465

The research in this paper can be extended in a number of 466

ways. First, an M/G/1 server can be extended to an M/G/m 467

server. Due to lack of an analytical expression of the average 468

task response, such a study is very challenging. Second, mul- 469

tiple M/G/1 and/or M/G/m servers can be investigated. When 470

there are multiple heterogeneous servers with variable and task 471

type dependent server speed management, we are facing the 472

challenges of both optimal load distribution and optimal server 473

speed setting for multiple classes of applications. It is con- 474

ceivable that such a problem requires extra effort to deal with. 475

Although some attempt has been made toward this direction 476

[19], deeper investigation is required. Third, more sophisticated 477

scheduling strategies other than FCFS can be considered. 478
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