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TABLE 1
Summary of Notations

Notation Definition
S a multicore server processor
m number of cores
λ task arrival rate
r task execution requirement
s core execution speed
x task execution time
µ the average service rate
ρ core utilization
pk the probability that there are k tasks in S
k number of tasks waiting or being processed
Pq the probability of queueing
N̄ the average number of tasks in S
T the average task response time
P dynamic power consumption
w an activity factor
C the loading capacitance
V the supply voltage
f the clock frequency
α an exponent such that P ∝ sα
P ∗ static power dissipation
µk workload dependent task service rate
sk workload dependent core execution speed
ρk workload dependent core utilization

(c, d) an arithmetic-speed scheme sk = c+ kd
(q, a) a geometric-speed scheme sk = qak

(b, s1, s2) a two-speed scheme
P̃ power constraint
T̃ performance constraint

1 NOTATIONS

For reader’s convenience, we provide Table 1, which
gives a summary of notations and their definitions in
the order introduced in the paper.

• K. Li is with the Department of Computer Science, State University
of New York, New Paltz, New York 12561, USA.
E-mail: lik@newpaltz.edu

2 PROOFS OF THEOREMS AND COROLLAR-
IES

Theorem 1: A speed scheme (s1, s2, s3, ...) is valid if
and only if the summation

∞∑
k=m

ρ1ρ2 · · · ρk

converges.
Proof. It is clear that

pk =


p0
mk

k!
· ρ1ρ2 · · · ρk, 1 ≤ k ≤ m− 1;

p0
mm

m!
· ρ1ρ2 · · · ρk, k ≥ m;

where

p0 =

(
1 +

m−1∑
k=1

mk

k!
· ρ1ρ2 · · · ρk +

mm

m!

∞∑
k=m

ρ1ρ2 · · · ρk

)−1

.

Therefore, for a fixed m, p0 > 0 if and only if

∞∑
k=m

ρ1ρ2 · · · ρk

converges.

Corollary 1: If there is some n ≥ 1, such that ρk < 1
for all k ≥ n, then a speed scheme (s1, s2, s3, ...) is
valid.

Proof. Without loss of generality, we assume that
n ≥ m. It is clear that

∞∑
k=m

ρ1ρ2 · · · ρk

converges if and only if

∞∑
k=n

ρ1ρ2 · · · ρk
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converges. Let ρ = max{ρn, ρn+1, ...}. Then,
∞∑

k=n

ρ1ρ2 · · · ρk <

∞∑
k=n

ρk =
ρn

1− ρ
,

and
∞∑

k=n

ρ1ρ2 · · · ρk

converges.

Corollary 2: Any arithmetic-speed scheme with c >
λr̄/m or d > 0 is valid.

Proof. It is clear that

ρk =
λr̄

m(c+ kd)
,

and ρk < 1 for all k ≥ n, where

n =
⌈

1
d

(
λr̄

m
− c
)⌉

.

The result follows Corollary 1.

Corollary 3: Any geometric-speed scheme with q >
λr̄/m or a > 1 is valid.

Proof. It is clear that

ρk =
λr̄

mqak
,

and ρk < 1 for all k ≥ n, where

n =
⌈

loga

λr̄

mq

⌉
.

The result follows Corollary 1.

Corollary 4: Any two-speed scheme with ρ2 < 1 is
valid.

Proof. The result follows Corollary 1 immediately by
taking n = b+ 1.

3 A NUMERICAL METHOD AND EXAMPLES
OF POWER CONSUMPTION REDUCTION

In Table 2, we show numerical data for an optimal
two-speed scheme, with the same parameter setting
as Table 9 of the main paper. We observe that there
is an optimal choice of (s1, s2), such that a two-speed
scheme with a given b is optimized, in the sense that
the power consumption P is minimized, while the
average task response time is no more than (actually
fixed at) T .

To minimize P (s1, s2) subject to the constraint
T (s1, s2) = T̃ , we need to find s1, s2, and φ such that

∂P

∂si
= φ

∂T

∂si
,

for i = 1, 2, that is,

φ =
s1
M1

=
s2
M2

,

TABLE 2
Numerical Data for Optimal Two-Speed Schemes

Idle-Speed Model Constant-Speed Model
s1 s2 P s2 P

T = 0.80
1.20 4.7123790 90.5475024 4.7123790 91.4555628
1.25 3.5422746 63.1557243 3.5422746 64.2889058
1.30 2.9545801 52.6442432 2.9545801 54.0465778
1.35 2.6021857 47.5959053 2.6021857 49.3174316
1.40 2.3680850 44.9321569 2.3680850 47.0293046
1.45 2.2018070 43.5171008 2.2018070 46.0530438
1.50 2.0780066 42.8445489 2.0780066 45.8895223
1.55 1.9825587 42.6583950 1.9825587 46.2899715
1.60 1.9069675 42.8166746 1.9069675 47.1199978
1.65 1.8458156 43.2350867 1.8458156 48.3030594

T = 1.00
1.15 2.0056416 41.8051046 2.0056416 42.2728288
1.20 1.9509196 40.8553629 1.9509196 41.4690733
1.25 1.9022092 40.1691893 1.9022092 40.9637048
1.30 1.8587553 39.7134783 1.8587553 40.7293344
1.35 1.8199114 39.4620199 1.8199114 40.7459277
1.40 1.7851217 39.3939612 1.7851217 40.9992359
1.45 1.7539062 39.4926306 1.7539062 41.4795854
1.50 1.7258491 39.7446313 1.7258491 42.1809280
1.55 1.7005890 40.1391357 1.7005890 43.1000900
1.60 1.6778107 40.6673325 1.6778107 44.2361683

T = 1.20
1.10 1.7580956 38.7306356 1.7580956 38.9891602
1.15 1.7394136 38.3625219 1.7394136 38.7143489
1.20 1.7213085 38.0911069 1.7213085 38.5623417
1.25 1.7038463 37.9193108 1.7038463 38.5412141
1.30 1.6870797 37.8494471 1.6870797 38.6589762
1.35 1.6710477 37.8832801 1.6710477 38.9236095
1.40 1.6557767 38.0220867 1.6557767 39.3430968
1.45 1.6412811 38.2667167 1.6412811 39.9254430
1.50 1.6275646 38.6176489 1.6275646 40.6786837
1.55 1.6146217 39.0750405 1.6146217 41.6108811

TABLE 3

Numerical Data for Two-Speed Scheme Optimization

Idle-Speed Model Constant-Speed Model

T̃ s1 s2 P s1 s2 P

0.80 1.5494532 1.9834831 42.6583747 1.4872276 2.1064988 45.8703958

1.00 1.3946833 1.7886433 39.3930141 1.3214688 1.8415463 40.7066639

1.20 1.3087933 1.6842061 37.8478401 1.2329176 1.7097364 38.5332143

where M1 and M2 are given in Section 5.1 of the main
paper. We use a numerical method similar to that in
Section 5.3 of the main paper, with the following dif-
ferences. First, we can find s2 such that T (s1, s2) = T̃
by using the classic bisection method and the fact that
T (s1, s2) is a decreasing function of s2. Second, we
notice that ∆(s1) = s1/M1 − s2/M2 is a decreasing
function of s1 along the path T (s1, s2) = T̃ .

In Table 3, we display our optimal two-speed
schemes with m = 7, P ∗ = 2, λ = 10, r̄ = 1,
and b = 10, for both idle-speed and constant-speed
models, where T̃ = 0.8, 1.0, 1.2.
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4 FURTHER RESEARCH DIRECTIONS

We would like to point out that our optimal two-
speed scheme problem can be extended to include b
as a variable. However, since b is a discrete variable,
there hardly exists an analytical solution.

Furthermore, two-speed schemes can be general-
ized to d-speed schemes.

Definition. In a d-speed scheme with parameters
(b1, b2, ..., bd−1, s1, s2, ..., sd), where b1 < b2 < · · · <
bd−1, the speed of the m cores is s1 when there are
k ≤ b1 tasks, and s2 when there are b1 + 1 ≤ k ≤ b2
tasks, ..., and sd−1 when there are bd−2 + 1 ≤ k ≤ bd−1

tasks, and sd when there are k ≥ bd−1 + 1 tasks.
Our optimization problem for two-speed schemes

can be generalized to d-speed schemes, i.e., to mini-
mize T by choosing d, b1, b2, ..., bd−1, and s1, s2, ..., sd,
subject to the constraint that the total power consump-
tion does not exceed P . Although closed-form expres-
sions of T and P can be figured out, the numerical
procedures will be more involved.

Of course, our ultimate open problem is to find an
optimal speed scheme (s1, s2, s3, ...) such that the per-
formance is optimized with a power constraint or the
power is minimized with a performance constraint.

Finally, it is of practical importance to incorporate
the technique of workload dependent dynamic power
management into real servers in cloud computing and
data centers to improve server performance and to
reduce energy consumption.


