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TABLE 1
Summary of Notations

Notation Definition

S a multicore server processor

number of cores

task arrival rate

task execution requirement

core execution speed

task execution time

the average service rate

core utilization

the probability that there are k tasks in .S
number of tasks waiting or being processed
the probability of queueing

the average number of tasks in S

the average task response time

dynamic power consumption

an activity factor

the loading capacitance

the supply voltage

the clock frequency

an exponent such that P oc s

P static power dissipation

i workload dependent task service rate

Sk workload dependent core execution speed
Pk workload dependent core utilization

an arithmetic-speed scheme s;, = c + kd
a geometric-speed scheme s, = ga”

a two-speed scheme

P power constraint

P =<QE YRZI>T o 8w 3 >3

T performance constraint

1 NOTATIONS

For reader’s convenience, we provide Table 1, which
gives a summary of notations and their definitions in
the order introduced in the paper.
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2 PROOFS OF THEOREMS AND COROLLAR-
IES

Theorem 1: A speed scheme (sq, s2, S3, ...) is valid if
and only if the summation

(o)
Z p1p2 - Pk
k=m

converges.
Proof. 1t is clear that

mk
POy P1P2 " Phs I1<k<m-1
Pr =
mm
Po—r - pip2 Py k= my
m!
where

m—1 k

-1
m mm

po = <1+ > TPzt ZPlpZ"'Pk> .
k=1 k=m

Therefore, for a fixed m, py > 0 if and only if

oo
Zplpz"'Pk

k=m
converges. 1

Corollary 1: If there is some n > 1, such that p, < 1
for all £ > n, then a speed scheme (s1, s2,s3,...) is
valid.

Proof. Without loss of generality, we assume that
n > m. It is clear that

o0
Zp1,02"'Pk

k=m

converges if and only if

(o)
Z p1p2 " Pk
k=n
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converges. Let p = max{p,, pn+1,...}. Then,
OO 0 n
ZP1P2"‘pk < Zﬂk = 1%/)7
k=n k=n

and

oo
Z P1p2 " Pk
k=n

converges. 1

Corollary 2: Any arithmetic-speed scheme with ¢ >
AF/m or d > 0 is valid.
Proof. 1t is clear that

AT

P = m(c+ kd)’

and pr < 1 for all kK > n, where

_ LA
n = d m C .
The result follows Corollary 1. |

Corollary 3: Any geometric-speed scheme with ¢ >
AF/m or a > 1 is valid.
Proof. 1t is clear that

A7

szm7

and py < 1 for all k > n, where
o ]|
n = |log, —|.
mq

The result follows Corollary 1. 1

Corollary 4: Any two-speed scheme with p < 1 is
valid.

Proof. The result follows Corollary 1 immediately by
taking n = b+ 1. 1

3 A NUMERICAL METHOD AND EXAMPLES
OF POWER CONSUMPTION REDUCTION

In Table 2, we show numerical data for an optimal
two-speed scheme, with the same parameter setting
as Table 9 of the main paper. We observe that there
is an optimal choice of (s1, s2), such that a two-speed
scheme with a given b is optimized, in the sense that
the power consumption P is minimized, while the
average task response time is no more than (actually
fixed at) 7.

To minimize P(s;,s2) subject to the constraint
T(s1,82) = T, we need to find s1, s», and ¢ such that

oP _ oT
Bsi o asi,
for i = 1,2, that is,
S1 S92
¢ — —_

TS

TABLE 2
Numerical Data for Optimal Two-Speed Schemes

Idle-Speed Model Constant-Speed Model
81 So [ P So | P
T =0.80
1.20 | 4.7123790 | 90.5475024 | 4.7123790 | 91.4555628
1.25 | 3.5422746 | 63.1557243 | 3.5422746 | 64.2889058
1.30 | 2.9545801 | 52.6442432 | 2.9545801 | 54.0465778
1.35 | 2.6021857 | 47.5959053 | 2.6021857 | 49.3174316
1.40 | 2.3680850 | 44.9321569 | 2.3680850 | 47.0293046
1.45 | 2.2018070 | 43.5171008 | 2.2018070 | 46.0530438
1.50 | 2.0780066 | 42.8445489 | 2.0780066 | 45.8895223
1.55 | 1.9825587 | 42.6583950 | 1.9825587 | 46.2899715
1.60 | 1.9069675 | 42.8166746 | 1.9069675 | 47.1199978
1.65 | 1.8458156 | 43.2350867 | 1.8458156 | 48.3030594
T =T1.00
1.15 T 2.0056416 | 41.8051046 | 2.0056416 | 42.2728288
1.20 | 1.9509196 | 40.8553629 | 1.9509196 | 41.4690733
1.25 | 1.9022092 | 40.1691893 | 1.9022092 | 40.9637048
1.30 | 1.8587553 | 39.7134783 | 1.8587553 | 40.7293344
1.35 | 1.8199114 | 39.4620199 | 1.8199114 | 40.7459277
1.40 | 1.7851217 | 39.3939612 | 1.7851217 | 40.9992359
1.45 | 1.7539062 | 39.4926306 | 1.7539062 | 41.4795854
1.50 | 1.7258491 | 39.7446313 | 1.7258491 | 42.1809280
1.55 | 1.7005890 | 40.1391357 | 1.7005890 | 43.1000900
1.60 | 1.6778107 | 40.6673325 | 1.6778107 | 44.2361683
T=1.20
I.10 [ 1.7580956 [ 38.7306356 | 1.7580956 | 38.9891602
1.15 | 1.7394136 | 38.3625219 | 1.7394136 | 38.7143489
1.20 | 1.7213085 | 38.0911069 | 1.7213085 | 38.5623417
1.25 | 1.7038463 | 37.9193108 | 1.7038463 | 38.5412141
1.30 | 1.6870797 | 37.8494471 | 1.6870797 | 38.6589762
1.35 | 1.6710477 | 37.8832801 | 1.6710477 | 38.9236095
1.40 | 1.6557767 | 38.0220867 | 1.6557767 | 39.3430968
1.45 | 1.6412811 | 38.2667167 | 1.6412811 | 39.9254430
1.50 | 1.6275646 | 38.6176489 | 1.6275646 | 40.6786837
1.55 | 1.6146217 | 39.0750405 | 1.6146217 | 41.6108811
TABLE 3

Numerical Data for Two-Speed Scheme Optimization

Idle-Speed Model Constant-Speed Model

T S1 S92 P S1 S92 P

0.80(1.5494532(1.9834831(42.6583747|1.4872276|2.1064988|45.8703958
1.00|1.3946833|1.7886433|39.3930141|1.3214688|1.8415463|40.7066639
1.20|1.3087933|1.6842061|37.8478401|1.2329176|1.7097364|38.5332143

where M; and M; are given in Section 5.1 of the main
paper. We use a numerical method similar to that in
Section 5.3 of the main paper, with the following dif-
ferences. First, we can find ss such that T'(sy, s2) = T
by using the classic bisection method and the fact that
T(s1,s2) is a decreasing function of s,. Second, we
notice that A(s1) = s1/M; — s2/M> is a decreasing
function of s; along the path T'(s1,s2) = T.

In Table 3, we display our optimal two-speed
schemes with m = 7, P* = 2, A = 10, 7 = 1,
and b = 10, for both idle-speed and constant-speed
models, where T = 0.8,1.0,1.2.
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4 FURTHER RESEARCH DIRECTIONS

We would like to point out that our optimal two-
speed scheme problem can be extended to include b
as a variable. However, since b is a discrete variable,
there hardly exists an analytical solution.

Furthermore, two-speed schemes can be general-
ized to d-speed schemes.

Definition. In a d-speed scheme with parameters
(bl, bo,...,bg_1, 81,52, ..., Sd), where by < by < -+ <
bi—1, the speed of the m cores is s; when there are
k < b; tasks, and sy when there are b; +1 < k < by
tasks, ..., and sq_1 when there are by_o+1 < k < bg_1
tasks, and s4; when there are k > b;_1 + 1 tasks.

Our optimization problem for two-speed schemes
can be generalized to d-speed schemes, i.e., to mini-
mize T by choosing d, b1, bz, ...,bq—1, and s1, s2, ..., 4,
subject to the constraint that the total power consump-
tion does not exceed P. Although closed-form expres-
sions of T' and P can be figured out, the numerical
procedures will be more involved.

Of course, our ultimate open problem is to find an
optimal speed scheme (s1, s2, 3, ...) such that the per-
formance is optimized with a power constraint or the
power is minimized with a performance constraint.

Finally, it is of practical importance to incorporate
the technique of workload dependent dynamic power
management into real servers in cloud computing and
data centers to improve server performance and to
reduce energy consumption.



