
Quantitative Modeling and Analytical Calculation
of Elasticity in Cloud Computing

Keqin Li , Fellow, IEEE

Abstract—Elasticity is a fundamental feature of cloud computing and can be considered as a great advantage and a key benefit of

cloud computing. One key challenge in cloud elasticity is lack of consensus on a quantifiable, measurable, observable, and calculable

definition of elasticity and systematic approaches to modeling, quantifying, analyzing, and predicting elasticity. Another key challenge

in cloud computing is lack of effective ways for prediction and optimization of performance and cost in an elastic cloud platform. The

present paper makes the following significant contributions. First, we present a new, quantitative, and formal definition of elasticity in

cloud computing, i.e., the probability that the computing resources provided by a cloud platform match the current workload. Our

definition is applicable to any cloud platform and can be easily measured and monitored. Furthermore, we develop an analytical model

to study elasticity by treating a cloud platform as a queueing system, and use a continuous-time Markov chain (CTMC) model to

precisely calculate the elasticity value of a cloud platform by using an analytical and numerical method based on just a few parameters,

namely, the task arrival rate, the service rate, the virtual machine start-up and shut-down rates. In addition, we formally define auto-

scaling schemes and point out that our model and method can be easily extended to handle arbitrarily sophisticated scaling schemes.

Second, we apply our model and method to predict many other important properties of an elastic cloud computing system, such as

average task response time, throughput, quality of service, average number of VMs, average number of busy VMs, utilization, cost,

cost-performance ratio, productivity, and scalability. In fact, from a cloud consumer’s point of view, these performance and cost metrics

are even more important than the elasticity metric. Our study in this paper has two significance. On one hand, a cloud service provider

can predict its performance and cost guarantee using the results developed in this paper. On the other hand, a cloud service provider

can optimize its elastic scaling scheme to deliver the best cost-performance ratio. To the best of our knowledge, this is the first paper

that analytically and comprehensively studies elasticity, performance, and cost in cloud computing. Our model and method significantly

contribute to the understanding of cloud elasticity and management of elastic cloud computing systems.

Index Terms—Cloud computing, continuous-time Markov chain, cost-performance ratio, elasticity, queueing model
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1 INTRODUCTION

1.1 Challenges and Motivations

1.1.1 Elasticity Characterization

CLOUD computing is a paradigm for enabling ubiqui-
tous, convenient, and on-demand network accesses to

a shared pool of configurable computing resources (e.g.,
servers, storage, networks, data, software, applications, and
services), that can be rapidly provisioned and released with
minimal management effort or service provider interaction
[32]. The unique and essential characteristics of cloud com-
puting include on-demand self-service, broad and variety
of network access, resource pooling and sharing, rapid elas-
ticity, measured and metered service. Among these fea-
tures, elasticity is a fundamental and key feature of cloud
computing, which can be considered as a great advantage
and a key benefit of cloud computing, and perhaps what
distinguishes this new computing paradigm from other
ones, such as cluster and grid computing [14].

The Merriam-Webster dictionary defines elasticity as the
capability of a strained body to recover its size and shape

after deformation. Its synonyms include stretchiness, flexi-
bility, pliancy, suppleness, plasticity, resilience, springiness,
sponginess, and adaptability. In physics, elasticity (from
Greek "�astik�othta, “elastik�otita”) is the tendency of solid
materials to return to their original shape after being
deformed. A solid object will deform when forces are
applied on it. If the material is elastic, the object will return to
its initial status (e.g., shape and size) when these forces are
removed. A cloud computing platform is like a solid object.
The resource (e.g., virtual machines (VMs)) utilization and
quality of service (QoS, e.g., the average task response time)
are properties and status of the platform. The dynamicwork-
load (e.g., the number of service requests) changes are ex-
ternal forces. When the workload increases (decreases,
respectively), the resource utilization increases (decreases,
respectively), and the service quality decreases (increases,
respectively), e.g., the average task response time increases
(decreases, respectively), i.e., the cloud computing platform
is deformed. To return to its original status, the platform
should have the capability to adjust itself, e.g., increasing
(decreasing, respectively) the number of VMs, so that both
resource utilization and quality of service can return to their
original status. Notice that the above definition of elasticity
is only qualitative, but not quantitative. The most important
problem in studying cloud elasticity is the apparent lack of a
quantifiable, measurable, and observable definition of elas-
ticity in cloud computing, and thus no approach to analyzing
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and predicting elasticity has been well developed so far,
although several researchers have attempted to characterize
cloud elasticity (see Section 2.1). Such a definition allows for
the creation of analytical models and methods that not only
calculate elasticity, but also enable deployment, manage-
ment, improvement, and enhancement of cloud computing
platforms.

In economics, elasticity is the measurement of how res-
ponsive an economic variable is to a change in another. In
particular, elasticity can be quantified as the ratio of the per-
centage change in one variable to the percentage change in
another variable. Using this definition, elasticity in cloud
computing can be defined as how the amount of computing
resource changes as the current workload changes. It seems
that the definition is quantitative and measurable; however,
such a definition of responsiveness is not entirely adequate,
since it only considers how much, not how fast, the comput-
ing resource adapts. If a cloud computing platform takes a
long time to provide the correct amount of resources to
match the workload (which might not be current any more),
it is not considered as elastic. The time required to restore
the original status, so that the provided computing resour-
ces match the current workload, should be taken into
account. Elasticity (i.e., the ability to dynamically acquire or
release computing resources in response to variable
demand) is meaningful to the cloud users only when the
acquired VMs can be provisioned in time and ready to use
within the user expectation. The long unexpected VM start-
up time could result in resource under-provisioning, which
will inevitably hurt system performance [30]. Similarly, the
long unexpected VM shut-down time could result in res-
ource over-provisioning, which will inevitably hurt res-
ource utilization.

1.1.2 Performance and Cost Optimization

In addition to the issues mentioned above, existing studies
of elasticity mostly focused on characterizing elasticity, but
emphasized much less from users’ point of view. Customers
of cloud services only care high quality of service and low
cost of service, and do not care whether such quality and
cost are supported by elasticity. Therefore, the ultimate pur-
pose of elasticity is to benefit the users, although such elastic
management of a cloud computing platform is transparent
to users and applications. All efforts in studying elasticity
should be incorporated into performance and cost control,
management, prediction, and optimization.

Elasticity research should help in the following two
ways.

� Performance and cost predictability—The analytical
models and methods developed for measuring elas-
ticity should help to make the performance and cost
of a cloud computing platform predictable, manage-
able, and improvable.

� Auto-scaling scheme optimality—The models and
methods should also be able to guide the construc-
tion, optimization, and comparison of auto-scaling
schemes for the best interest of the users of an elastic
cloud computing platform.

Unfortunately, the above challenges have not been well
investigated in the existing literature.

1.2 Contributions of the Paper

As mentioned above, one key challenge in cloud elasticity is
lack of consensus on a quantifiable, measurable, observable,
and calculable definition of elasticity and systematic app-
roaches to modeling, quantifying, analyzing, and predicting
elasticity. Another key challenge in cloud computing is lack
of effective ways for prediction and optimization of perfor-
mance and cost in an elastic cloud platform. The main objec-
tive of this paper is to address these two pressing issues.

Our contributions in this paper can be summarized as
follows.

First, we present a new, quantitative, and formal definition
of elasticity in cloud computing, i.e., the probability that the
computing resources provided by a cloud platformmatch the
current workload. Our definition is applicable to any cloud
platform and can be easilymeasured andmonitored. Further-
more, we develop an analytical model to study elasticity by
treating a cloud platform as a queueing system, and use a con-
tinuous-timeMarkov chain (CTMC)model to precisely calcu-
late the elasticity value of a cloud platform by using an
analytical and numerical method based on just a few parame-
ters, namely, the task arrival rate, the service rate, the virtual
machine start-up and shut-down rates. In addition, we for-
mally define auto-scaling schemes and point out that our
model and method can be easily extended to handle arbi-
trarily sophisticated scaling schemes.

Second, we apply our model and method to predict
many other important properties of an elastic cloud com-
puting system, such as average task response time, through-
put, quality of service, average number of VMs, average
number of busy VMs, utilization, cost, cost-performance
ratio, productivity, and scalability. In fact, from a cloud con-
sumer’s point of view, these performance and cost metrics
are even more important than the elasticity metric. Our
study in this paper has two significance. On one hand, a
cloud service provider can predict its performance and cost
guarantee using the results developed in this paper. On the
other hand, a cloud service provider can optimize its elastic
scaling scheme to deliver the best cost-performance ratio.
We also show that an elastic platform can consume less
resources, achieve shorter average task response time, pro-
vide the same performance guarantee with higher probabil-
ity, and have less cost and lower cost-performance ratio
than an inelastic platform.

To the best of our knowledge, this is the first paper that
analytically and comprehensively studies elasticity, perfor-
mance, and cost in cloud computing. Our model and
method significantly contribute to the understanding of
cloud elasticity and management of elastic cloud computing
systems.

2 RELATED RESEARCH

In this section, we review four areas related to our study,
i.e., cloud elasticity characterization, elastic cloud comput-
ing system development, cloud platform modeling and
analysis, and elastic system performance assessment.

2.1 Characterizing Cloud Elasticity

Several researchers have attempted to characterize cloud
elasticity. These definitions are classified into two
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categories. The first category includes those definitions
which are only qualitative, but not quantitative. In [5], elas-
ticity is defined as the ability for customers to quickly
request, receive, and later release as many resources as
needed. Elastic computing has the feature of dynamic varia-
tion in the use of computer resources to meet a varying
workload [7]. In [20], elasticity is defined as the degree to
which a system is able to adapt to workload changes by pro-
visioning and deprovisioning resources in an autonomic
manner, such that at each point in time the available resour-
ces match the current demand as closely as possible. In [27],
elasticity is the feature of automated, dynamic, flexible, and
frequent resizing of resources that are provided to an appli-
cation by the execution platform. However, all these charac-
terizations are not quantified.

The second category includes those definitions which are
quantitative, but not analytically tractable. Some attempts
have been made to propose a quantitative and measurable
definition of cloud elasticity. It is mentioned in [27] that a
unified (single-valued) metric for elasticity could possibly
be achieved by a combination of three characteristics,
namely, reconfiguration effect (i.e., the amount of added/
removed resources, expressing the granularity of adapta-
tion), reconfiguration frequency (i.e., the density of reconfig-
uration points over a time period), and reconfiguration time
(i.e., the time interval between the instant when a reconfigu-
ration has been triggered/requested and the instant when
the adaptation has been completed), in such a way that the
elasticity metric is in the range of ½0; 1�. Although each of the
above three properties can be observed and measured, there
is no specific equation or formula given in [27] for such a
single-valued elasticity metric. In [20], an elasticity metric
for scaling up (down, respectively) is defined in such a way
that it is inversely proportional to the product of the average
time to switch from an under-provisioned (over-provi-
sioned, respectively) state to a normal state, which corre-
sponds to the average speed of scaling up (down,
respectively), and the average amount of under-provisioned
(over-provisioned, respectively) resources during an under-
provisioned (over-provisioned, respectively) period. Since
theoretically, the speed of scaling can be arbitrarily fast, the
above definition can possibly lead to an “infinitely elastic”
cloud computing system. Furthermore, although each of the
above two properties can be monitored and measured, there
is no given method to predict, e.g., the average amount of
under-provisioned or over-provisioned resources, and
therefore, there is no way to obtain elasticity analytically. In
[22], a definition of elasticity was given, which relates elas-
ticity with over-provisioning and under-provisioning penal-
ties. However, the amounts of over-provisioning and under-
provisioning are only observable, but not analytically avail-
able and predictable.

Some other efforts have also been made to study elastic-
ity. In [12], elasticity properties have been considered in
terms of cost elasticity (i.e., the responsiveness of resource
provision to changes in cost) and quality elasticity (i.e., the
responsiveness of quality to changes in resource usage). In
[14], elastic systems are classified in terms of four character-
istics, i.e., scope (infrastructure, application, platform), pol-
icy (manual, reactive, predictive), purpose (performance,
capacity, cost, energy), and method (replication, resizing,

migration). In [37], application elasticity is considered, i.e.,
making an application automatically adjust to variations in
load without the need of intervention of a human adminis-
trator and without the need to change its code.

2.2 Developing Elastic Computing Systems

In [8], the authors described a platform for developing scal-
able applications on the cloud by QoS-driven resource pro-
visioning from different sources and supporting different
and elastic applications. In [11], the authors considered elas-
tic VMs for rapid and optimal virtualized resources alloca-
tion. In [13], the authors presented an elastic web hosting
provider, that makes use of the outsourcing technique in
order to take advantage of cloud computing infrastructures
for providing scalability and high availability capabilities to
the web applications. In [18], the authors presented a novel
predictive elastic resource scaling scheme for cloud systems,
which unobtrusively extracts fine-grained dynamic patterns
in application resource demands and adjusts their resource
allocation automatically. In the context of cloud computing,
auto-scaling mechanisms hold the promise of assuring QoS
properties for applications, while simultaneously making
efficient use of resources and keeping operational costs low
for the service providers. In [34], the authors developed a
model-predictive algorithm for workload forecasting that is
used for resource auto-scaling. In [35], the authors devel-
oped a cost-aware system that provides efficient support for
elasticity in the cloud by (i) leveraging multiple mechanisms
to reduce the time to transition to new configurations, and
(ii) optimizing the selection of a virtual server configuration
that minimizes the cost. Elastic resource scaling allows
cloud systems to meet application service-level agreements
(SLA) with minimum resource provisioning costs. In [36],
the authors presented a system that automates fine-grained
elastic resource scaling for multi-tenant cloud computing
infrastructures.

In [1], the authors presented a service-oriented dynamic
resource management model, which covers the issues of
resource prediction, customer type-based resource estima-
tion and reservation, advanced reservation, pricing, refund-
ing and acquired quality of service-based refunding. In [2],
the authors provided a holistic brokerage model to manage
on-demand and advance service reservation, pricing, and
reimbursement, with dynamic management of customer’s
characteristics and historical record in evaluating the eco-
nomics related factors.

2.3 Modeling Cloud Platforms

2.4 Assessing Elastic System Performance

(Due to space limitation, Sections 2.3 and 2.4 are moved to
the supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCC.2017.2665549.)

3 DEFINITION OF ELASTICITY

In this section, we formally define cloud elasticity, and also
compare the notion with several related concepts. For read-
er’s convenience, we provide Table 1, which gives a sum-
mary of notations and their definitions in the order
introduced in the paper.
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3.1 A New Definition

It has been clear based on our discussion so far that a defini-
tion of elasticity in cloud computing should satisfy the fol-
lowing two conditions.

� Quantitative describability—the definition should be
quantifiable, measurable, and observable, which is
based on a few parameters and is formally defined
based on a rigorous model.

� Analytical tractability—the definition should be ana-
lytically available, calculable, and predictable, which
is easily obtained by using a simple, standard, and
straightforward method.

We say that a cloud computing system is in (1) a normal
state if the provided computing resources match the current
workload; (2) an over-provisioning state if the provided
computing resources exceed the current workload; (3) an
under-provisioning state if the provided computing resour-
ces cannot handle the current workload. Our definition of
elasticity of a cloud computing platform with dynamically
variable workload is the percentage of time (or, the probability)
that the system is in the normal state.

Formally, assume that a system is operating for a time
period of length T . Let Tnormal (Tover, Tunder, respectively) be
the total time that the system is in the normal (over-provi-
sioning, under-provisioning, respectively) state. It is clear
that T ¼ Tnormal þ Tover þ Tunder. Then, the elasticity is calcu-
lated as

E ¼ Tnormal

T
¼ 1� Tover þ Tunder

T
: (1)

If the system has been operating for a sufficiently long
period of time and is in a stable state, then pnormal ¼
Tnormal=T is the probability that the system is in the normal
state, pover ¼ Tover=T is the probability that the system is in

the over-provisioning state, and punder ¼ Tunder=T is the
probability that the system is in the under-provisioning
state. Hence, we get

E ¼ pnormal ¼ 1� ðpover þ punderÞ: (2)

Notice that our definition of elasticity in Eq. (1) is easily
measurable and observable by monitoring a cloud comput-
ing platform. Of course, the notions of normal, over-provi-
sioning, and under-provisioning states still need to be
quantified. Since our elasticity metric is defined quantita-
tively as probability, its value is in the range ½0; 1�. Analyti-
cal tractability is impossible unless there is a rigorous
mathematical model. We will present a queueing model for
cloud platforms, define auto-scaling schemes, employ a
CTMC model for elastic cloud platforms and quantitatively
characterize our metric, and develop an analytical and
numerical method to compute the proposed metric of
Eq. (2), thus satisfying the two requirements mentioned ear-
lier. It will also be clear that our elasticity metric depends
on only a few (five, in particular) parameters.

It is also noticed that our definition of elasticity captures
the three characteristics in [27], i.e., reconfiguration effect,
reconfiguration frequency, and reconfiguration time, and
the two characteristics in [20], i.e., the average time to switch
and the average amount of under-provisioned or over-pro-
visioned resources, where the reconfiguration effect and the
average amount of under-provisioned or over-provisioned
resources affect the definition of normal/over-provision-
ing/under-provisioning states, and the reconfiguration fre-
quency, the reconfiguration time, and the average time to
switch are all reflected and summarized in E, i.e., Tover,
Tunder, pover, and punder.

3.2 Related Notions and Properties

There are several concepts which are related to (and some-
times considered as similar to or even the same as) elastic-
ity. In the following, we clarify the difference between these
concepts and elasticity.

Resilience. In material science, resilience is the ability of a
material to absorb energy when it is deformed elastically,
and release that energy upon unloading. Resiliency is the
persistence of service delivery that can justifiably be trusted
when facing changes, which should be considered as differ-
ent from fault-tolerance, reliability, availability, recoverabil-
ity, and performability [15]. In [16], the authors quantified
the resiliency of Infrastructure-as-a-Service (IaaS) clouds
subject to changes in demand and available capacity, using
a stochastic reward net based model for provisioning and
servicing requests, with respect to two key performance
measures, i.e., job rejection rate and provisioning response
delay.

Scalability. Scalability is the ability of a system, network, or
process to handle a growing amount of work in a capable
manner or its ability to be enlarged to accommodate that
growth. A scalable system improves its performance propor-
tionally to the added capacity. Scalability has been a signifi-
cant issue in parallel, distributed, cluster, grid, networked,
and cloud computing systems. In [21], elastic scaling strate-
gies are divided into three categories: (1) scale-in and scale-
out-strategies which allow adding more homogeneous

TABLE 1
Summary of Notations and Definitions

Notation Definition

E elasticity
pnormal the probability in a normal state
pover the probability in an over-provisioning state
punder the probability in an under-provisioning state
m the number of active servers (i.e., VMs)
� the task arrival rate
m the service rate
k the number of tasks in the system
ðm; kÞ a state
ðam; bmÞ a pair of integers defining different states
S an elastic cloud management and auto-scaling scheme
a the VM start-up rate
b the VM shut-down rate
pðm; kÞ the equilibrium steady-state probability of state ðm; kÞ
N the average number of tasks
T the average task response time
R the throughput
M the average number of servers
B the average number of busy servers
U the VM utilization
r the server utilization
pk the probability that a queueing system is in state k
t the average response time randomized over k
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machine instances or processing nodes of the same type based
on the agreed service-level agreement; (2) scale-up and scale-
down—strategies which are implemented by using more
powerful machine instances or processing nodes with faster
processors/cores and more memory and storage; (3) mixed
scaling—strategies which allow one to scale up (or scaled
own) and scale-out (or scale-in) computing resources in terms
of quantity and quality at the same time. In [19], scale-in and
scale-out are called horizontal scalability, and scale-up and
scale-down are called vertical scalability. In [27], it was men-
tioned that scalability includes application scalability (i.e., a
property which means that an application maintains its per-
formance goals and service-level agreement even when its
workload increases) and platform scalability (i.e., the ability
of a cloud platform to provide as many resources as needed
by an application). In [28], the technique of using workload
dependent dynamic power management (i.e., variable power
and speed of processor cores according to the current work-
load, which is essentially vertical scalability) to improve sys-
tem performance and to reduce energy consumption is
investigated by using a queueingmodel.

4 ANALYTICAL MODEL AND METHOD

In this section, we present our analytical model and method
to compute the proposed elasticity value.

4.1 A Queueing Model

A cloud computing platform is a multiserver system which
has m identical servers (i.e., VMs). In this paper, a multi-
server system is treated as an M/M/m queueing system
which is elaborated as follows [26]. There is a Poisson
stream of service requests (i.e., tasks) with arrival rate �
(measured by the number of service requests that are sub-
mitted in one unit of time), i.e., the inter-arrival times are
independent and identically distributed (i.i.d.) exponential
random variables with mean 1=�. A multiserver system
maintains a queue with infinite capacity for waiting tasks
when all the m servers are busy. The first-come-first-served
(FCFS) queueing discipline is adopted. The task execution
times are i.i.d. exponential random variables with mean
1=m. The m servers are homogeneous and have identical
execution and service rate m (measured by the number of
tasks that can be finished in one unit of time).

Notice that in an elastic cloud computing platform, the
number of servers adapts to the current workload (i.e., the
number of tasks in the system). Therefore, we have a multi-
server queuing system with a variable number of servers,
and an elastic cloud computing platform is no longer an M/
M/m queueing system. In [4], the authors dealt with a mul-
tiserver retrial queueing model in which the number of
active servers depends on the number of customers in the
system. The servers are switched on and off according to a
multithreshold strategy. For a fixed choice of the threshold
levels, the stationary distribution and various performance
measures of the system are calculated. In [23], a multiserver
Poisson queuing system with losses and a variable number
of servers was investigated, and all major characteristics of
the system were obtained in an explicit form. Unfortunately,
these results are not directly applicable to elastic cloud com-
puting systems, because the times to turn on and off the

servers are not considered. However, as mentioned before,
these factors are critical in measuring elasticity, and must be
included into our queueing model.

4.2 Auto-Scaling Scheme

We use ðm; kÞ to denote a state, where m � 1 is the number
of active servers, and k � 0 is the number of tasks in the sys-
tem. Let ðam; bmÞ, m � 1, be a pair of integers used to deter-
mine the status of a state, where bm > am � m� 1,
amþ1 � bm, for all m � 1, and a1 < a2 < a3 < � � �,
b1 < b2 < b3 < � � �. An elastic cloud platform management
and auto-scaling scheme can be represented as

S ¼ ðða1; b1Þ; ða2; b2Þ; . . . ; ðam; bmÞ; . . .Þ; (3)

which decides how a cloud computing platform responds to
the workload change. States are classified into three types.

� A state is an over-provisioning state if 0 � k � am.
� A state is a normal state if am < k � bm.
� A state is an under-provisioning state if k > bm.

The number of a servers can be adjusted according to the
status of the state. In particular, a new server can be added
(i.e., a cloud server system is scaled-out) if the current state
is under-provisioning, and an active server can be removed
(i.e., a cloud server system is scaled-in) if the current state is
over-provisioning.

4.3 A Continuous-Time Markov Chain

To take the virtual machine start-up and shut-down times
into consideration, we make the following assumptions. (1)
A new server can be added as an active server at any time,
and the time to initialize a new server is an exponential ran-
dom variable with mean 1=a (i.e., the VM start-up rate is a,
measured by the number of VMs which can be initialized in
one unit of time). (2) An active server can be removed at
any time, and the time to finalize an active server is an expo-
nential random variable with mean 1=b (i.e., the VM shut-
down rate is b, measured by the number of VMs which can
be finalized in one unit of time).

Based on the above assumptions, it is clear that a multi-
server system with variable and dynamically adjustable
number of servers can be modeled by a continuous-time
Markov chain (CTMC).

Our CTMC is actually a mixture of the birth-death pro-
cesses similar to those for M/M/m queueing systems, with
m � 1. The transitions among the states are described as fol-
lows. (Note: We use the notation ðm1; k1Þ !r ðm2; k2Þ to rep-
resent a transition from state ðm1; k1Þ to state ðm2; k2Þ with
transition rate r.)

� ðm; kÞ !� ðm; kþ 1Þ, m � 1, k � 0. This transition
happens when a new task arrives.

� ðm; kÞ !mm ðm; k� 1Þ, m � 1, k > am. This transition
happens when a task is completed, and the state
ðm; kÞ is normal or under-provisioning.

� ðm;kÞ !minðm�1;kÞm ðm;k� 1Þ, m � 1, 1 � k � am. This
transition happens when a task is completed, and the
state ðm;kÞ is over-provisioning. (The value m� 1
means that a server is being shut down and not serv-
ing, but is still in the system. A deactivated server is
also a resource until it is removed from the system.)
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� ðm; kÞ !a ðmþ 1; kÞ, m � 1, k > bm. This transition
happens when the state ðm; kÞ is under-provisioning,
and a new server is activated to join service.

� ðm; kÞ !b ðm� 1; kÞ, m � 2, 1 � k � am. This transi-
tion happens when the state ðm; kÞ is over-provision-
ing, and an active server is being shut down and
removed from further service.

Fig. 1 shows a state-transition-rate diagram, assuming
that am ¼ m and bm ¼ 3m for all m � 1. The states in the
diagram are arranged in a two dimensional way, where
each row of states is similar to the state-transition-rate dia-
gram of an M/M/m queueing system, with the difference
that the number of servers is m� 1 (not m) when
m� 1 � k � am due to the VM which is being shut down.
Notice that in a state ðm; kÞ where k � bm þ 1, a new VM is
activated and initialized, where the start-up time is an expo-
nential random variable. It is possible that before the initiali-
zation is completed, a task arrives or departs, and the state
becomes ðm; k� 1Þ. Since the residual start-up time has the
same distribution as the original exponential distribution
due to the memoryless property, the transition rate from
ðm; k� 1Þ to ðmþ 1; k� 1Þ is still a. Similarly, in a state
ðm; kÞ where k � am, one VM is deactivated and finalized,
where the shut-down time is an exponential random vari-
able. It is possible that before the finalization is completed, a
task arrives or departs, and the state becomes ðm; k� 1Þ.
Due to the memoryless property, the transition rate from
ðm; k� 1Þ to ðm� 1; k� 1Þ is still b.

To summarize, our CTMCmodel for an elastic cloud com-
puting systemwith variable number of virtualmachines con-
tains the following parameters: �, m, a, b, and of course, S. It
is worth tomention that the purpose of our research is to cap-
ture the most essential parameters for elasticity quantifica-
tion and prediction. Our model andmethod are by nomeans
perfect, but only some initial attempt towards this direction.
In a real cloud platform, things can be much more

complicated. First, there could be many components in
resource management, such as physical machines, storage,
and network resources. Second, there could be many factors
(other than VM start-up and shut-down times) which affect
VM creation and termination. However, it is clear that con-
sidering all these factors and facts might result in infeasible
modeling and analysis, although they could be included and
considered in further investigation. For the purpose of feasi-
ble modeling and analysis, our abstract model and analytical
method are simplistic andmanageable.

4.4 An Analytical and Numerical Method

Let pðm; kÞ denote the equilibrium steady-state probability
that a multiserver system is in state ðm; kÞ. Unfortunately,
there is no closed-form expression of pðm; kÞ. However, a
numerical solution can be easily obtained by solving a linear
system of equations resulted from our CTMC model using
any standard method from linear algebra.

Once the pðm; kÞ’s are available, we can compute the elas-
ticity metric as follows. The probability that the system is in
the over-provisioning state is

pover ¼
X1
m¼1

Xam
k¼0

pðm; kÞ: (4)

The probability that the system is in the under-provisioning
state is

punder ¼
X1
m¼1

X1
k¼bmþ1

pðm; kÞ: (5)

The probability that the system is in the normal state is

pnormal ¼
X1
m¼1

Xbm
k¼amþ1

pðm; kÞ: (6)

Fig. 1. A state-transition-rate diagram.
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Based on the above probabilities, our elasticity metric can be
obtained by using Eq. (2).

4.5 Impact of the Basic Parameters

It is clear that by using the CTMC model to calculate the
elasticity value of a cloud platform, our elasticity metric is
determined by only a few parameters, namely, the task
arrival rate, the service rate, the virtual machine start-up
and shut-down rates, and the scaling scheme. In this sec-
tion, we present numerical data to demonstrate the impact
of these basic parameters on elasticity.

In Figs. 2, 3, 4, and 5, we assume that am ¼ m and
bm ¼ 3m for allm � 1.

Varying the Task Arrival Rate. In Fig. 2, we show pover,
pnormal, and punder as functions of the task arrival rate �,
where m ¼ 1, a ¼ 2, b ¼ 5, and � ¼ 1:0; 2:0; . . . ; 10:0. It is
observed that as � increases, pover decreases (i.e., more ser-
vice requests result in less probability of over-provisioning),
and punder changes slightly (actually, increases and then
decreases, i.e., more service requests result in slight change
of the probability of under-provisioning), and pnormal

increases (i.e., the elasticity increases).
Varying the Service Rate. In Fig. 3, we show pover, pnormal,

and punder as functions of the task service rate m, where
� ¼ 5, a ¼ 2, b ¼ 5, and m ¼ 1:0; 2:0; . . . ; 10:0. It is observed
that as m increases, pover increases significantly (i.e., faster
service rate results in greater probability of over-provision-
ing), and punder changes noticeably (actually, increases and
then decreases, i.e., faster service rate results in noticeable
change of the probability of under-provisioning), and pnormal

decreases significantly (i.e., the elasticity decreases
significantly).

Varying the Virtual Machine Start-Up Rate. In Fig. 4, we
show pover, pnormal, and punder as functions of the virtual
machine start-up rate a, where � ¼ 5, m ¼ 1, b ¼ 5, and
a ¼ 1:0; 1:5; . . . ; 5:0. It is observed that as a increases, pover
increases slightly (i.e., faster virtual machine start-up rate
results in greater probability of over-provisioning), and
punder decreases noticeably (i.e., faster virtual machine start-
up rate results in noticeable reduction of the probability of
under-provisioning), and pnormal increases noticeably (i.e.,
the elasticity increases noticeably).

Varying the Virtual Machine Shut-Down Rate. In Fig. 5, we
show pover, pnormal, and punder as functions of the virtual
machine shut-down rate b, where � ¼ 5, m ¼ 1, a ¼ 2, and
b ¼ 5:0; 5:5; . . . ; 10:0. It is observed that the impact of b is
small. As b increases, pover decreases slightly (i.e., faster vir-
tual machine shut-down rate results in less probability of
over-provisioning), and punder increases slightly (i.e., faster
virtual machine shut-down rate results in greater probabil-
ity of under-provisioning), and pnormal increases slightly
(i.e., the elasticity increases slightly).

Varying the Scaling Scheme. In Fig. 6, we show pover, pnormal,
and punder as functions of x, where � ¼ 5, m ¼ 1, a ¼ 2, b ¼ 5,
am ¼ m, and bm ¼ am þ x, for all m � 1. It is observed that
the impact of the scaling scheme is big. As x increases (i.e.,
the interval ½am; bm� gets wider), both pover and punder
decrease noticeably (i.e., wider interval ½am; bm� results in
less probability of over-provisioning and under-provision-
ing), and pnormal increases significantly (i.e., the elasticity
increases significantly).

It is worth to mention that the purpose of this section is to
demonstrate the impact of some basic parameters on elastic-
ity. These data are obtained based on our model and

Fig. 2. pover, pnormal, and punder versus �.

Fig. 3. pover, pnormal, and punder versus m.

Fig. 4. pover, pnormal, and punder versus a.

Fig. 5. pover, pnormal, and punder versus b.
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method, and might not be entirely accurate for any real
world use case scenario.

4.6 Simulation Results: Accuracy and Robustness

To validate the accuracy and robustness of our CTMC
model, we have performed extensive simulations and
experiments. Our simulation environment is an Intel Xeon
CPU E5620 2.40 GHz with the Linux OS version RHEL 6.8.
The simulation program is written in C++ supported by the
g++ 4.4.7 compiler. We simulate an elastic cloud computing
platform with am ¼ m and bm ¼ 3m for all m � 1, and
� ¼ 5, a ¼ 2, b ¼ 5, and m ¼ 1:0; 2:0; . . . ; 10:0. We (1) gener-
ate a Poisson stream of service requests; (2) run the elastic
cloud computing system; (3) record Tover, Tnormal, and Tunder;
(4) and report pover ¼ Tover=T , pnormal ¼ Tnormal=T , and
punder ¼ Tunder=T , where T ¼ Tnormal þ Tover þ Tunder, until
1,000,000 service requests are completed.

In addition to the exponential distribution of task execu-
tion times, we also consider several other distributions. The
six probability distribution functions (pdf), all with the
same expectation 1=m, are described as follows.

� Exponential distribution (EXP): The pdf is me�mx.
� Hyperexponential distribution (HEX): The pdf is

w1m1e
�m1x þ w2m2e

�m2x þ w3m3e
�m3x, where w1 ¼ 0:2,

w2 ¼ 0:3, w3 ¼ 0:5, m1 ¼ y1m
0, m2 ¼ y2m

0, m3 ¼ y3m
0,

y1 ¼ 3, y1 ¼ 2, y1 ¼ 1, with m0 ¼ mðw1=y1 þ w2=y2þ
w3=y3Þ.

� Erlang distribution (ERL): The pdf is m0e�m0x

ðm0xÞg�1=ðg � 1Þ!, where m0 ¼ gm and g ¼ 5.
� Hyper-Erlang distribution (HER): The pdf is

w1m1e
�m1xðm1xÞg1�1=ðg1 � 1Þ!þ w2m2e

�m2xðm2xÞg2�1=
ðg2 � 1Þ!; where w1 ¼ 0:4, w2 ¼ 0:6, g1 ¼ 3, and
g2 ¼ 4.

� Uniform distribution (UNI): The pdf is ðm=2Þ in the
range ½0; 2=mÞ.

� Pareto distribution (PAR): The pdf is aba=xaþ1 in the
range ½b;1Þ, where a ¼ 2 and b ¼ ða� 1Þ=ðamÞ.

In Table 2, we show pover, pnormal, and punder as functions
of the task service rate m, for all the above six probability
distribution functions of task execution times, as well as
the analytical results of our CTMC model. We have the
following important observations. (1) Accuracy—The sim-
ulation results for the exponential distribution are very
close to the analytical results and validate the accuracy of
our CTMC model. (2) Robustness—The simulation results
for the hyperexponential distribution, Erlang distribution,

hyper-Erlang distribution, uniform distribution, and Par-
eto distribution, especially the results of pnormal, show the
robustness of our CTMC model, i.e., the ability of the
CTMC model to predict the elasticity E with reasonable
accuracy even though some assumptions of our model
are not satisfied.

4.7 Extension of the CTMC Model

The CTMC model can be extended to include more compli-
cated scaling schemes.

Hot, Warm, and Cold VMs. It is known that physical
machines (PMs) are categorized into three server pools: hot
(i.e., with running VMs), warm (i.e., turned on but without
running VM), and cold (i.e., turned off) [24]. Therefore,
VMs can also be classified into three categories: hot (cur-
rently running), warm (to be started up from a warm PM),
and cold (to be started up from a cold PM). It is clear that a
warm VM takes much less time to start than a cold VM. Let
us assume that a cloud platform keeps certain number m	

of hot and warm VMs and unlimited cold VMs. The warm
VM and cold VM start-up rates are a1 and a2 respectively,
where a1 > a2. Then, we should have ðm; kÞ !a1 ðmþ 1; kÞ,
for 1 � m < m	 and k > bm, and ðm; kÞ !a2 ðmþ 1; kÞ, for
m � m	 and k > bm. That is, the firstm

	 VMs can be started
up faster than the remaining VMs.

TABLE 2
Simulation Results

m ANA EXP HEX ERL HER UNI PAR

pover

1.0 0.05087 0.05191 0.05446 0.04341 0.04496 0.04519 0.04737
2.0 0.11458 0.12285 0.12707 0.10075 0.10337 0.10558 0.11159
3.0 0.20854 0.22145 0.22754 0.18933 0.19552 0.19574 0.21464
4.0 0.31983 0.33381 0.34003 0.30715 0.31158 0.30986 0.33752
5.0 0.43061 0.44184 0.44643 0.43138 0.43428 0.42806 0.46350
6.0 0.52955 0.53843 0.54011 0.54501 0.54548 0.53813 0.56954
7.0 0.61252 0.61893 0.61719 0.64157 0.63837 0.63090 0.65286
8.0 0.67979 0.68557 0.67847 0.71666 0.71034 0.70516 0.71685
9.0 0.73348 0.73698 0.72915 0.77327 0.76561 0.76218 0.76773
10.0 0.77617 0.77958 0.77202 0.81703 0.80887 0.80432 0.80550

pnormal

1.0 0.82503 0.82194 0.81342 0.84834 0.84524 0.84360 0.83649
2.0 0.68546 0.67416 0.66380 0.71782 0.71005 0.70516 0.69784
3.0 0.58055 0.56483 0.55639 0.61378 0.60477 0.60142 0.58623
4.0 0.49450 0.48026 0.47082 0.52304 0.51577 0.51627 0.49342
5.0 0.42053 0.40905 0.40158 0.44179 0.43542 0.43730 0.40807
6.0 0.35708 0.34763 0.34207 0.36755 0.36436 0.36858 0.33649
7.0 0.30332 0.29658 0.29301 0.30213 0.30112 0.30669 0.27723
8.0 0.25830 0.25221 0.25331 0.24687 0.24965 0.25347 0.23043
9.0 0.22091 0.21723 0.21932 0.20324 0.20737 0.21044 0.19283
10.0 0.18997 0.18655 0.18890 0.16780 0.17318 0.17688 0.16356

pnormal

1.0 0.12410 0.12615 0.13212 0.10825 0.10980 0.11120 0.11614
2.0 0.19996 0.20298 0.20912 0.18143 0.18658 0.18926 0.19056
3.0 0.21091 0.21372 0.21607 0.19689 0.19971 0.20284 0.19913
4.0 0.18567 0.18593 0.18916 0.16981 0.17265 0.17387 0.16907
5.0 0.14886 0.14911 0.15199 0.12683 0.13030 0.13464 0.12843
6.0 0.11337 0.11394 0.11781 0.08743 0.09016 0.09329 0.09397
7.0 0.08416 0.08449 0.08980 0.05630 0.06051 0.06241 0.06991
8.0 0.06192 0.06223 0.06822 0.03647 0.04000 0.04137 0.05273
9.0 0.04562 0.04579 0.05152 0.02349 0.02702 0.02738 0.03944
10.0 0.03386 0.03387 0.03907 0.01517 0.01796 0.01880 0.03095

Fig. 6. pover, pnormal, and punder versus x (bm ¼ am þ x).
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Multiple Start-Up and Shut-Down. In our CTMC model in
Section 4.3, it is assumed that VM start-up’s take place
sequentially, i.e., one after another. In state ðm; kÞ where
k > bm, there is only one VM being started up, no matter
how big k is. Actually, when a platform detects that k is suf-
ficiently large (say, k	), i.e., a VM takes too long to start up,
another VM can be started up simultaneously to handle
increasing workload. Therefore, we should have
ðm; kÞ !a ðmþ 1; kÞ, for m � 1 and bm < k < k	, and
ðm; kÞ !2a ðmþ 1; kÞ, form � 1 and k � k	. Notice that due to
the memoryless property, the residual start-up time of the
first VM has the same distribution as the original exponen-
tial distribution. Thus, the combined transition rate from
ðm; kÞ to ðmþ 1; kÞ is now 2a. It is clear that this method can
be extended to arbitrary simultaneous start-up’s. Also, it
can be applied to multiple shut-down’s when k is suffi-
ciently small.

Minimum Number of Active VMs. In our CTMC model in
Section 4.3, it is assumed that the number of active VMs can
be as small as one. To ensure certain guaranteed perfor-
mance, a platform can maintain a minimum number (say,
m	) of active VMs (which is one in Fig. 1). One can simply
assume that am ¼ �1 for this purpose, where 1 � m � m	,
i.e., there is no over-provisioning state and thus no VM shut-
downwhen the number of active VMs is nomore thanm	.

Heterogeneous VMs. Assume that there are n types of VMs
with service rates m1;m2; . . . ;mn, start-up rates a1;a2; . . . ;an,
and shut-down rates b1;b2; . . . ;bn. A state can be described

as ðm1;m2; . . . ;mn; kÞ, wheremi is the number of VMs of type

i, 1 � i � n. Hence, we will typically have a transition like

ðm1;m2; . . . ;mn; kÞ !m1m1þm2m2þ���þmnmn ðm1;m2; . . . ;mn; k� 1Þ. For
an under-provisioning state, if a VM of type i is to be acti-

vated, we have ðm1; . . . ;mi; . . . ;mn; kÞ !ai ðm1; . . . ;mi þ 1; . . . ;

mn; kÞ. For an over-provisioning state, if a VM of type i is to

be deactivated, we have ðm1; . . . ;mi; . . . ;mn; kÞ !bi ðm1; . . . ;

mi � 1; . . . ;mn; kÞ.

5 PERFORMANCE AND COST METRICS

Several important performance and cost metrics can be eas-
ily obtained as by-products from our model and method.

5.1 Performance Metrics

The main performance metrics are average task response
time, throughput, and quality of service.

Average Number of Requests. The average number N of
tasks in a multiserver system, including tasks being served
and tasks in the waiting queue, can be calculated by

N ¼
X1
m¼1

X1
k¼1

kpðm; kÞ ¼
X1
k¼1

k
X1
m¼1

pðm; kÞ
 !

: (7)

Average Task Response Time. The response time of a task
includes its waiting time and service time. By Little’s result,
the average task response time is

T ¼ N

�
: (8)

Throughput. Throughput is the average number of tasks
completed per unit of time. It is clear that in any stable ser-
vice system, the throughput R, i.e., the output, should be
the same as the input, i.e., �, the average number of tasks
submitted per unit of time. Thus, we have

R ¼ �: (9)

Quality of Service (QoS). QoS metrics for cloud computing
can be focused on various aspects of cloud services, such as
performance, economics, security, and general features [3],
[6]. Therefore, QoS can be defined in many different ways.
In this paper, we will mainly focus on performance metrics,
and in particular, we use the reciprocal of the average task
response time 1=T as the QoS index

QoS ¼ 1

T
; (10)

which is readily available from our model and method.
It is worth to mention that in a real cloud platform, there

could be many factors which affect performance metrics,
such as the impact of network resources on the average task
response time. Again, considering all these factors is beyond
the scope of this paper.

5.2 Cost Metrics

The main cost metric is the average number of VMs, which
is directly related to the amount of charge to a customer.

Average Number of VMs. The number m of servers is a
random variable in an elastic cloud computing platform.
The average number M ¼ �m (i.e., the expectation of m) of
servers, including busy servers, idle servers, and the one
being shut down, is given by

M ¼
X1
m¼1

m
X1
k¼0

pðm; kÞ
 !

: (11)

Average Number of Busy VMs. The average number B of
busy servers only includes servers in service, not idle serv-
ers and the one being shut down, and is given by

B ¼
X1
m¼1

Xam
k¼0

minðm� 1; kÞpðm; kÞ þ
X1

k¼amþ1

mpðm; kÞ
 !

:

(12)

From another point of view, B is actually the total amount
of work finished in one unit of time, i.e., �=m. To see this, let
bðtÞ be the number of busy servers at time t. During a time

interval ½t1; t2�, the amount of completed work (measured in

time) is
R t2
t1
bðxÞdx:On the other hand, the amount of submit-

ted work is ðt2 � t1Þ �
m
: In a stable service system, we must

have
R t2
t1
bðxÞdx ¼ ðt2 � t1Þ �

m
: Furthermore, it is clear that the

average number of busy servers is B ¼ 1
t2�t1

R t2
t1
bðxÞdx:

Thus, we have

B ¼ �

m
: (13)

Utilization. The VM utilization U is the ratio of the average
number of busy VMs to the average number of VMs, i.e.,
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U ¼ B

M
¼ �

Mm
: (14)

Cost. There are many different factors which determine
the cost of cloud computing. It is clear that the cost of a
cloud platform is linearly proportional to the average num-
ber M of VMs. For each VM, the cost includes the renting
cost and energy consumption cost [9]. Therefore, in this
paper, we simply use the following equation to calculate the
cost of a cloud computing platform

cost ¼ Mðfþ cmdÞ; (15)

where f includes the renting cost and static power con-
sumption, and cmd is the dynamic power consumption that
is linearly proportional to a polynomial of the VM speed. In
this paper, we assume that f ¼ 10, c ¼ 1, and d ¼ 3, unless
otherwise stated. Since these constants only give scaling
effect, sometimes we just useM as the cost.

5.3 Combined Performance and Cost Metrics

The main combined metric is the cost-performance ratio,
which can be applied to define other combined metrics.

Cost-Performance Ratio. The cost-performance (or price-
performance) ratio (CPR) refers to a product’s ability to
deliver performance for its price. Generally speaking, prod-
ucts with a lower CPR are more desirable, excluding other
factors. It is clear that the cost of a cloud platform is linearly
proportional to the average number M of VMs, and that the
performance is inversely proportional to the average task
response time T . Hence, we can define CPR as

CPR ¼ cost=performance ¼ MT ðfþ cmdÞ: (16)

Productivity. In [21], productivity is defined in such a way
that it is proportional to performance andQoS, and inversely
proportional to cost. If we use throughput R as the perfor-
mance index, the reciprocal of the average task response
time T as the QoS index, and the average numberM of VMs
as the cost index, thenwewill have productivity as

Productivity ¼ performance
QoS=cost ¼ R

MT
: (17)

Production-Driven Scalability. Recall that a cloud platform
management and scaling scheme can be represented as
S ¼ ðða1; b1Þ; ða2; b2Þ; . . . ; ðam; bmÞ; . . .Þ: For given �, m, a, b,
the scaling scheme S will decide all the cost and perfor-
mance metrics mentioned above, e.g., the productivity. In
production-driven scalability [21], a scaling scheme S is
more desirable than another scaling scheme S0 ¼ ðða01; b01Þ;
ða02; b02Þ; . . . ; ða0m; b0mÞ; . . .Þ; if the productivity of S is higher
than that of S0. Therefore, the production-driven scalability
is

ScalabilityðS; S0Þ ¼ ProductivityðSÞ
ProductivityðS0Þ ; (18)

which can also be represented as

ScalabilityðS; S0Þ ¼ CPRðS0Þ
CPRðSÞ : (19)

6 PERFORMANCE AND COST GUARANTEE

All rigorous metrics, quantified measures, accurate models,
and analytical methods for elasticity should be applied to
provide and predict the required service quality and cost to
the users. The purposes of this section are two-fold. First,
we show how to provide service quality and service cost
guarantee to the users. Second, we show that with certain
cost, an elastic platform delivers certain performance guar-
antee with higher probability than an inelastic platform
with the same cost for the same performance guarantee.

6.1 Inelastic Platforms with Fixed Servers

Recall that all task execution times are i.i.d. random varia-
bles x. We use �x to denote the expectation of a random
variable x. For an M/M/m queueing system modeling an
inelastic cloud computing platform with a fixed number of
servers, the server utilization is r ¼ �=mm ¼ ��x=m; which
is the average percentage of time that a server is busy. A
state of M/M/m is specified by k, the number of service
requests (i.e., tasks, waiting or being processed) in the
queueing system. Let pk denote the probability that the
M/M/m queueing system is in state k. Then, we have
([26], p. 102)

pk ¼
p0

ðmrÞk
k!

; k � m;

p0
mmrk

m!
; k � m;

8>><
>>:

where

p0 ¼
Xm�1

k¼0

ðmrÞk
k!

þ ðmrÞm
m!

� 1

1� r

 !�1

:

The probability of queueing (i.e., the probability that a
newly submitted service request must wait because all serv-
ers are busy) is

Pq ¼
X1
k¼m

pk ¼ pm
1� r

¼ p0
ðmrÞm
m!

� 1

1� r
:

The average number of service requests (in waiting or in
execution) is

N ¼
X1
k¼0

kpk ¼ mrþ r

1� r
Pq:

Applying Little’s result, we get the average task response
time as

T ¼ N

�
¼ �x 1þ Pq

mð1� rÞ
� �

¼ �x 1þ pm

mð1� rÞ2
 !

:

Therefore, we get the following result.

Theorem 1. An inelastic cloud computing platform with fixed
numberm of servers can guarantee average task response time

T ¼ �x 1þ pm

mð1� rÞ2
 !

;

1144 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 4, OCTOBER-DECEMBER 2020



with costm, and cost-performance ratio

CPR ¼ m�x 1þ pm

mð1� rÞ2
 !

:

Let Tk be the average response time under the condition
that a new service request arrives when the system is in state
k. In other words, we can consider T as a function t of k and t

is randomized over the states k. When a task arrives to the
system which is in state k, the average response time t of the
task takes the value Tk, and the probability to take this value
is pk. Therefore, T is actually the expectation of t, i.e.,

T ¼ �t ¼
X1
k¼0

pkTk:

The following theorem gives a performance guarantee in
a stronger way for customers on an inelastic cloud comput-
ing platform.

Theorem 2. For an inelastic cloud computing platform with
fixed numberm of servers, we have t � c�x; with probability

Xbcm�1c

k¼0

pk;

where c > 1.

Proof. Let Wk be the waiting time of a new service request
which arrives when the system is in state k. Then, it is
already known from [9] thatWk ¼ 0 if 0 � k � m� 1, and

Wk ¼ k�mþ 1

m

� �
�x;

if k � m. Since Tk ¼ Wk þ �x, we get Tk ¼ �x if
0 � k � m� 1, and

Tk ¼ kþ 1

m

� �
�x;

if k � m. To have Tk � c�x, we need k � cm� 1. Since
t ¼ Tk with probability pk, the theorem is proven. tu
An immediate consequence of Theorem 2 is that t > c�x

with probability
P1

k¼bcmc pk: One significance of Theorem 2
is that a cloud service provider can claim to its users that
the average task response time is bounded by a constant
times the expected task execution time with certain proba-
bility. Notice that for a random variable x, a claim such as
“x is less than c with high probability” is stronger than “�x is
less than d”, even if c is reasonably greater than d.

6.2 Elastic Platforms with Variable Servers

Now we consider an elastic cloud computing platform with
variable number of servers. By combining Eqs. (7), (8), and
(11), we get the following result.

Theorem 3. An elastic cloud computing platform with variable
number of servers can guarantee average task response time

T ¼ 1

�

X1
m¼1

X1
k¼1

kpðm; kÞ;

and expected cost

M ¼
X1
m¼1

m
X1
k¼0

pðm; kÞ
 !

;

and cost-performance ratio

CPR ¼ 1

�

X1
m¼1

X1
k¼1

kpðm; kÞ
 ! X1

m¼1

m
X1
k¼0

pðm; kÞ
 ! !

:

Again, let T ðm; kÞ be the average response time under the
condition that a new service request arrives when the sys-
tem is in state ðm; kÞ. We treat T as a function t of ðm; kÞ and
t is randomized over the states ðm; kÞ.

The following theorem gives a performance guarantee in
a stronger way for customers on an elastic cloud computing
platform.

Theorem 4. For an elastic cloud computing platform with vari-
able number of servers, we have t � c�x; where c > 1, with
probability at least

pnormal þ pover ¼
X1
m¼1

Xbcm�1c

k¼0

pðm; kÞ;

by setting am ¼ m� 1 and bm ¼ bcm� 1c.
Proof. Consider a task submitted to a cloud platform with

m servers and k tasks in the system. We notice that the
variable number of servers makes the analysis of waiting
time much more complicated. First, it is possible that after
a task x arrives, future arrival tasks may cause the system
entering an under-provisioning state and creating more
servers. Fortunately, such change will simply reduce the
waiting time of x, which does no affect the upper bound
c�x in the theorem, that is derived based on the assump-
tion that the number of servers does not increase as in M/
M/m. Second, it is also possible that after a task x arrives,
completed tasks may cause the system entering an over-
provisioning state and removing servers. Fortunately, the
assumption that am ¼ m� 1 means that a server is
removed only when there is no more task in waiting, i.e.,
x is already in execution and its waiting time is not
affected. Therefore, we will simply ignore the possible
changes in the number of servers.

We follow an argument similar to that in the proof of
Theorem 2. When m ¼ 1, the number of active servers is
always one. Thus, we get T ð1; kÞ ¼ ðkþ 1Þ�x for all k � 0.
When m > 1, the number of active servers is m� 1 if
0 � k � am, and m if am < k � bm. Thus, we have
T ðm; kÞ ¼ �x if 0 � k � m� 1, and

T ðm; kÞ ¼ kþ 1

m

� �
�x � bm þ 1

m

� �
�x;

if m � k � bm. Hence, the above cases of T ðm; kÞ can be
combined into

T ðm; kÞ � bm þ 1

m

� �
�x;
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for all m � 1 and 0 � k � bm. To have T ðm; kÞ � c�x, we
need bm ¼ cm� 1 (actually bm ¼ bcm� 1c to have an
integer). Since t ¼ T ðm; kÞ with probability pðm; kÞ, the
theorem is proven. tu
One significant implication of Theorem 4 is that the aver-

age task response time is well bounded as long as a cloud
computing platform is not in the under-provisioning state.
In particular, the inequality of the theorem holds with prob-
ability at least 1� punder, which is greater than E.

By using Theorem 4, a cloud service provider can claim
to a customer that the expected task response time is no
more than c�x for some small constant c > 1 with probabil-
ity higher than E, by appropriate design of the elastic scal-
ing scheme. Furthermore, the cloud service provider can
tell the customer the estimated cost based on Eq. (15).

6.3 Comparison

In this section, we show that with certain cost, an elastic
platform delivers certain performance guarantee with
higher probability than an inelastic platform with the same
cost for the same performance guarantee. Furthermore, an
elastic platform is able to achieve higher QoS by consuming
less resources than an inelastic platform, and thus achieving
lower CPR, higher productivity, and dual improvement of
both performance and cost.

Let us assume that � ¼ 10:5, m ¼ 1, a ¼ 2, b ¼ 5,
am ¼ m� 1, and bm ¼ bcm� 1c, for all m � 1. For
c ¼ 1:25; 1:50; . . . ; 3:00, we show pover, pnormal, punder, the
probability in Theorem 4, T , M, cost, and CPR for an elastic
platform in Table 3. It is observed that as c increases, both
pover and punder decrease significantly, and pnormal (i.e., elastic-
ity E) increases significantly. Furthermore, the probability
pnormal þ pover in Theorem 4 increases significantly. How-
ever, such increased elasticity is due to the increased bm,
which actually degrades system performance, since the
platform is less responsive to the increased workload. As
expected, the average task response time increases notice-
ably, and the average number of VMs and the cost reduce

slightly. However, the cost-performance ratio increases
significantly.

By letting m ¼ 11, � ¼ 10:5, m ¼ 1, and for
c ¼ 1:25; 1:50; . . . ; 3:00, we also show the probability in The-
orem 2, T , M, cost, and CPR for an inelastic platform in
Table 3. It is observed that for the same c, the elastic plat-
form with M less than that of m of the inelastic platform,
achieves significantly shorter average task response time,
provides the same performance guarantee with noticeably
higher probability, and has less cost and much lower cost-
performance ratio.

7 COST-PERFORMANCE RATIO OPTIMIZATION

As mentioned earlier, the ultimate purpose of studying elas-
ticity is not just to measure elasticity quantitatively and ana-
lytically, but for a cloud service provider to construct and
manage an elastic cloud computing platform to serve users
better in terms of higher performance and lower cost. The
purposes of this section are three-fold. First, we discuss one
important issue, i.e., comparison of scaling schemes and
optimal design of an elastic scaling scheme to minimize the
CPR. Second, we show how to optimize a cloud computing
platform, such that the CPR is minimized. Third, we men-
tion how to compare different platforms from different ser-
vice providers.

7.1 Optimization of Scaling Schemes

In this section, we first consider the following problem.
For a given application and system environment speci-
fied by �, m, a, b, how to compare two different elastic
scaling schemes S and S0. Our approach is to compare
the CPRðSÞ and CPRðS0Þ of the two schemes. If CPRðSÞ
is less than CPRðS0Þ, then S is better than S0, since the
production-driven scalability is CPRðS0Þ/CPRðSÞ > 1
(see Eq. (19)).

An elastic cloud platform management and auto-scaling
scheme S ¼ ðða1; b1Þ; ða2; b2Þ; . . . ; ðam; bmÞ; . . .Þ can be manip-
ulated. For instance, one can decrease am or increase bm to
increase the value of elasticity. However, doing so increases
the number of VMs, or increases the task response time and
reduces the quality of service. On the other hand, increasing
am or decreasing bm not only reduces the value of elasticity,
but also increases the task response time, or increases the
number of VMs and the cost of service. It is clear that for the
minimized T and the best QoS, both am and bm should be
minimized, e.g., am ¼ m� 1 and bm ¼ m. However, the
average numberM of VMs is maximized.

It is clear that there is trade-off between performance and
cost. It is a challenge on how to balance the two conflicting
requirements of maximizing quality of service and minimiz-
ing cost of service. In this section, we consider the following
optimization problem. For a given application and system
environment specified by �, m, a, b, find an optimal auto-
scaling scheme S, such that the cost-performance ratio CPR
is minimized.

Let us assume that � ¼ 7, m ¼ 1, a ¼ 2, b ¼ 5, am ¼ m,
and bm ¼ am þ x, for allm � 1. For x ¼ 1; 2; . . . ; 20, we show
pover, pnormal, punder, T , M, cost, and CPR for an elastic plat-
form in Table 4. It is observed that as x increases, both pover
and punder decrease significantly, and pnormal (i.e., elasticity

TABLE 3
Comparison of Elastic and Inelastic Platforms

c pover pnormal punder probability T M cost CPR

elastic platform

1.25 0.18542 0.26410 0.55048 0.44952 1.37467 10.89474 119.842 164.743

1.50 0.13794 0.46373 0.39833 0.60167 1.44754 10.78981 118.688 171.806

1.75 0.10992 0.58292 0.30716 0.69284 1.52815 10.72906 118.020 180.352

2.00 0.08648 0.67675 0.23678 0.76322 1.64230 10.67876 117.466 192.915

2.25 0.07316 0.72918 0.19766 0.80234 1.73454 10.65005 117.151 203.203

2.50 0.06103 0.77702 0.16195 0.83805 1.85590 10.62435 116.868 216.895

2.75 0.05233 0.81112 0.13655 0.86345 1.97080 10.60592 116.665 229.924

3.00 0.04447 0.84061 0.11492 0.88508 2.11404 10.58911 116.480 246.244

inelastic platform

1.25 – – – 0.24109 2.66581 11.00000 121.000 322.563

1.50 – – – 0.33995 2.66581 11.00000 121.000 322.563

1.75 – – – 0.42592 2.66581 11.00000 121.000 322.563

2.00 – – – 0.50070 2.66581 11.00000 121.000 322.563

2.25 – – – 0.54506 2.66581 11.00000 121.000 322.563

2.50 – – – 0.60432 2.66581 11.00000 121.000 322.563

2.75 – – – 0.65586 2.66581 11.00000 121.000 322.563

3.00 – – – 0.70069 2.66581 11.00000 121.000 322.563
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E) increases significantly, due to the increased bm. Conse-
quently, the average task response time increases notice-
ably, while the average number of VMs and the cost reduce
slightly, and the cost-performance ratio increases signifi-
cantly. Therefore, the best auto-scaling scheme is the one
with x ¼ 1, a surprising result.

7.2 Optimization of Platforms

In addition to S, the service rate m is also an important
parameter that a service provider can decide. One
should notice that changing m does not mean scale-up or
scale-down, since m is pre-set and once set, does not
change with the current workload. Intuitively, increasing
m reduces T and M. However, the cost might increase
due to the increased dynamic energy consumption.
Thus, it is an interesting problem to find the optimal m

that minimizes CPR.
Let us consider a ¼ 2, b ¼ 5, am ¼ m, and bm ¼ 2m, for

all m � 1. For � ¼ 7 and m ¼ 1:0; 1:5; . . . ; 5:0, we show pover,
pnormal, punder, T , M, cost, and CPR for an elastic platform in
Table 5. It is observed that as m increases, both T and M
reduce significantly, and both cost and CPR decrease and
then increase. Hence, there is an optimal choice of m which
minimizes CPR.

7.3 Comparison of Service Providers

In this section, we consider the following problem. For a
given application environment specified by � and m, how to
compare two different cloud service providers specified by
P ¼ ða;b; SÞ and P 0 ¼ ða0;b0; S0Þ. Our approach is to com-
pare the CPRðP Þ and CPRðP 0Þ provided by the two cloud
computing platforms.

Assume that � ¼ 10 and m ¼ 1. Platform P is specified by
a ¼ 2, b ¼ 5, am ¼ m, and bm ¼ 2m, for allm � 1. Platform P 0

is specified by a0 ¼ 3, b0 ¼ 5, a0m ¼ m, and b0m ¼ 3m, for all
m � 1. It is clear that Platform P 0 is less responsive, but has
faster virtual machine start-up rate. For both platforms, we
show pover, pnormal, punder, T , M, cost, and CPR in Table 6. It is
observed that Platform P 0 has greater elasticity, longer task
response time, less VMs, lower cost, and higher cost-perfor-
mance ratio. Thus, PlatformP is preferred to PlatformP 0.

8 CONCLUDING REMARKS

We have emphasized two significant issues in elastic cloud
computing, i.e., the need of a quantifiable, measurable,
observable, and calculable metric of elasticity and a system-
atic approach to modeling, quantifying, analyzing, and pre-
dicting elasticity, and the need of an effective way for
prediction, comparison, and optimization of performance
and cost in an elastic cloud platform. This paper has contrib-
uted significantly to address these two pressing issues. We
have not only developed analytical model and method to
precisely calculate the elasticity value of a cloud platform,
but also applied our model and method to predict many
important properties of an elastic cloud computing system
and to optimize an elastic scaling scheme and a cloud com-
puting platform to deliver the best cost-performance ratio.

The main challenge of our CTMCmodel is lack of closed-
form expressions for its major elasticity, performance, and
cost metrics, e.g., pover, pnormal, punder, T , M, cost, and CPR.
This makes analytical study of an elastic cloud computing
platform very difficult. Future research efforts should be
directed towards this direction.
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