
IEE
E P

ro
of

1 Quantitative Modeling and Analytical Calculation
2 of Elasticity in Cloud Computing
3 Keqin Li, Fellow, IEEE

4 Abstract—Elasticity is a fundamental feature of cloud computing and can be considered as a great advantage and a key benefit of

5 cloud computing. One key challenge in cloud elasticity is lack of consensus on a quantifiable, measurable, observable, and calculable

6 definition of elasticity and systematic approaches to modeling, quantifying, analyzing, and predicting elasticity. Another key challenge

7 in cloud computing is lack of effective ways for prediction and optimization of performance and cost in an elastic cloud platform. The

8 present paper makes the following significant contributions. First, we present a new, quantitative, and formal definition of elasticity in

9 cloud computing, i.e., the probability that the computing resources provided by a cloud platform match the current workload. Our

10 definition is applicable to any cloud platform and can be easily measured and monitored. Furthermore, we develop an analytical model

11 to study elasticity by treating a cloud platform as a queueing system, and use a continuous-time Markov chain (CTMC) model to

12 precisely calculate the elasticity value of a cloud platform by using an analytical and numerical method based on just a few parameters,

13 namely, the task arrival rate, the service rate, the virtual machine start-up and shut-down rates. In addition, we formally define auto-

14 scaling schemes and point out that our model and method can be easily extended to handle arbitrarily sophisticated scaling schemes.

15 Second, we apply our model and method to predict many other important properties of an elastic cloud computing system, such as

16 average task response time, throughput, quality of service, average number of VMs, average number of busy VMs, utilization, cost,

17 cost-performance ratio, productivity, and scalability. In fact, from a cloud consumer’s point of view, these performance and cost metrics

18 are even more important than the elasticity metric. Our study in this paper has two significance. On one hand, a cloud service provider

19 can predict its performance and cost guarantee using the results developed in this paper. On the other hand, a cloud service provider

20 can optimize its elastic scaling scheme to deliver the best cost-performance ratio. To the best of our knowledge, this is the first paper

21 that analytically and comprehensively studies elasticity, performance, and cost in cloud computing. Our model and method significantly

22 contribute to the understanding of cloud elasticity and management of elastic cloud computing systems.

23 Index Terms—Cloud computing, continuous-time Markov chain, cost-performance ratio, elasticity, queueing model

Ç

24 1 INTRODUCTION

25 1.1 Challenges and Motivations

26 1.1.1 Elasticity Characterization

27 CLOUD computing is a paradigm for enabling ubiqui-
28 tous, convenient, and on-demand network accesses to
29 a shared pool of configurable computing resources (e.g.,
30 servers, storage, networks, data, software, applications, and
31 services), that can be rapidly provisioned and released with
32 minimal management effort or service provider interaction
33 [32]. The unique and essential characteristics of cloud com-
34 puting include on-demand self-service, broad and variety
35 of network access, resource pooling and sharing, rapid elas-
36 ticity, measured and metered service. Among these fea-
37 tures, elasticity is a fundamental and key feature of cloud
38 computing, which can be considered as a great advantage
39 and a key benefit of cloud computing, and perhaps what
40 distinguishes this new computing paradigm from other
41 ones, such as cluster and grid computing [14].

42The Merriam-Webster dictionary defines elasticity as the
43capability of a strained body to recover its size and shape after
44deformation. Its synonyms include stretchiness, flexibility,
45pliancy, suppleness, plasticity, resilience, springiness, spongi-
46ness, and adaptability. In physics, elasticity (from Greek
47"�astik�othta, “elastik�otita”) is the tendency of solid materi-
48als to return to their original shape after being deformed. A
49solid object will deform when forces are applied on it. If the
50material is elastic, the object will return to its initial status
51(e.g., shape and size) when these forces are removed. A cloud
52computing platform is like a solid object. The resource (e.g.,
53virtual machines (VMs)) utilization and quality of service
54(QoS, e.g., the average task response time) are properties and
55status of the platform. The dynamic workload (e.g., the num-
56ber of service requests) changes are external forces. When the
57workload increases (decreases, respectively), the resource uti-
58lization increases (decreases, respectively), and the service
59quality decreases (increases, respectively), e.g., the average
60task response time increases (decreases, respectively), i.e., the
61cloud computing platform is deformed. To return to its origi-
62nal status, the platform should have the capability to adjust
63itself, e.g., increasing (decreasing, respectively) the number of
64VMs, so that both resource utilization and quality of service
65can return to their original status. Notice that the above defini-
66tion of elasticity is only qualitative, but not quantitative. The
67most important problem in studying cloud elasticity is the
68apparent lack of a quantifiable, measurable, and observable

� The author is with the Department of Computer Science, State University of
NewYork, New Paltz, New York 12561, USA. E-mail: lik@newpaltz.edu.

Manuscript received 31 Jan. 2016; revised 28 Dec. 2016; accepted 2 Feb. 2017.
Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by M. Parashar, O. Rana, and R.C.H. Hsu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2017.2665549

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2017 1

2168-7161� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:


IEE
E P

ro
of

69 definition of elasticity in cloud computing, and thus no
70 approach to analyzing and predicting elasticity has been well
71 developed so far, although several researchers have
72 attempted to characterize cloud elasticity (see Section 2.1).
73 Such a definition allows for the creation of analytical models
74 and methods that not only calculate elasticity, but also enable
75 deployment, management, improvement, and enhancement
76 of cloud computing platforms.
77 In economics, elasticity is themeasurement of how respon-
78 sive an economic variable is to a change in another. In particu-
79 lar, elasticity can be quantified as the ratio of the percentage
80 change in one variable to the percentage change in another
81 variable. Using this definition, elasticity in cloud computing
82 can be defined as how the amount of computing resource
83 changes as the current workload changes. It seems that the
84 definition is quantitative and measurable; however, such a
85 definition of responsiveness is not entirely adequate, since it
86 only considers how much, not how fast, the computing
87 resource adapts. If a cloud computing platform takes a long
88 time to provide the correct amount of resources to match the
89 workload (whichmight not be current anymore), it is not con-
90 sidered as elastic. The time required to restore the original sta-
91 tus, so that the provided computing resources match the
92 current workload, should be taken into account. Elasticity
93 (i.e., the ability to dynamically acquire or release computing
94 resources in response to variable demand) is meaningful to
95 the cloud users only when the acquired VMs can be provi-
96 sioned in time and ready to use within the user expectation.
97 The long unexpected VM start-up time could result in
98 resource under-provisioning, which will inevitably hurt sys-
99 tem performance [30]. Similarly, the long unexpected VM

100 shut-down time could result in resource over-provisioning,
101 whichwill inevitably hurt resource utilization.

102 1.1.2 Performance and Cost Optimization

103 In addition to the issues mentioned above, existing studies
104 of elasticity mostly focused on characterizing elasticity, but
105 emphasized much less from users’ point of view. Customers
106 of cloud services only care high quality of service and low
107 cost of service, and do not care whether such quality and
108 cost are supported by elasticity. Therefore, the ultimate pur-
109 pose of elasticity is to benefit the users, although such elastic
110 management of a cloud computing platform is transparent
111 to users and applications. All efforts in studying elasticity
112 should be incorporated into performance and cost control,
113 management, prediction, and optimization.
114 Elasticity research should help in the following two
115 ways.

116 � Performance and cost predictability—The analytical
117 models and methods developed for measuring elas-
118 ticity should help to make the performance and cost
119 of a cloud computing platform predictable, manage-
120 able, and improvable.
121 � Auto-scaling scheme optimality—The models and
122 methods should also be able to guide the construc-
123 tion, optimization, and comparison of auto-scaling
124 schemes for the best interest of the users of an elastic
125 cloud computing platform.
126 Unfortunately, the above challenges have not been well
127 investigated in the existing literature.

1281.2 Contributions of the Paper

129As mentioned above, one key challenge in cloud elasticity is
130lack of consensus on a quantifiable, measurable, observable,
131and calculable definition of elasticity and systematic app-
132roaches to modeling, quantifying, analyzing, and predicting
133elasticity. Another key challenge in cloud computing is lack
134of effective ways for prediction and optimization of perfor-
135mance and cost in an elastic cloud platform. The main objec-
136tive of this paper is to address these two pressing issues.
137Our contributions in this paper can be summarized as
138follows.
139First, we present a new, quantitative, and formal definition
140of elasticity in cloud computing, i.e., the probability that the
141computing resources provided by a cloud platformmatch the
142current workload. Our definition is applicable to any cloud
143platform and can be easilymeasured andmonitored. Further-
144more, we develop an analytical model to study elasticity by
145treating a cloud platform as a queueing system, and use a con-
146tinuous-timeMarkov chain (CTMC)model to precisely calcu-
147late the elasticity value of a cloud platform by using an
148analytical and numerical method based on just a few parame-
149ters, namely, the task arrival rate, the service rate, the virtual
150machine start-up and shut-down rates. In addition, we for-
151mally define auto-scaling schemes and point out that our
152model and method can be easily extended to handle arbi-
153trarily sophisticated scaling schemes.
154Second, we apply our model and method to predict
155many other important properties of an elastic cloud com-
156puting system, such as average task response time, through-
157put, quality of service, average number of VMs, average
158number of busy VMs, utilization, cost, cost-performance
159ratio, productivity, and scalability. In fact, from a cloud con-
160sumer’s point of view, these performance and cost metrics
161are even more important than the elasticity metric. Our
162study in this paper has two significance. On one hand, a
163cloud service provider can predict its performance and cost
164guarantee using the results developed in this paper. On the
165other hand, a cloud service provider can optimize its elastic
166scaling scheme to deliver the best cost-performance ratio.
167We also show that an elastic platform can consume less
168resources, achieve shorter average task response time, pro-
169vide the same performance guarantee with higher probabil-
170ity, and have less cost and lower cost-performance ratio
171than an inelastic platform.
172To the best of our knowledge, this is the first paper that
173analytically and comprehensively studies elasticity, perfor-
174mance, and cost in cloud computing. Our model and
175method significantly contribute to the understanding of
176cloud elasticity and management of elastic cloud computing
177systems.

1782 RELATED RESEARCH

179In this section, we review four areas related to our study,
180i.e., cloud elasticity characterization, elastic cloud comput-
181ing system development, cloud platform modeling and
182analysis, and elastic system performance assessment.

1832.1 Characterizing Cloud Elasticity

184Several researchers have attempted to characterize cloud
185elasticity. These definitions are classified into two

2 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2017



IEE
E P

ro
of

186 categories. The first category includes those definitions
187 which are only qualitative, but not quantitative. In [5], elas-
188 ticity is defined as the ability for customers to quickly
189 request, receive, and later release as many resources as
190 needed. Elastic computing has the feature of dynamic varia-
191 tion in the use of computer resources to meet a varying
192 workload [7]. In [20], elasticity is defined as the degree to
193 which a system is able to adapt to workload changes by pro-
194 visioning and deprovisioning resources in an autonomic
195 manner, such that at each point in time the available resour-
196 ces match the current demand as closely as possible. In [27],
197 elasticity is the feature of automated, dynamic, flexible, and
198 frequent resizing of resources that are provided to an appli-
199 cation by the execution platform. However, all these charac-
200 terizations are not quantified.
201 The second category includes those definitions which are
202 quantitative, but not analytically tractable. Some attempts
203 have been made to propose a quantitative and measurable
204 definition of cloud elasticity. It is mentioned in [27] that a
205 unified (single-valued) metric for elasticity could possibly
206 be achieved by a combination of three characteristics,
207 namely, reconfiguration effect (i.e., the amount of added/
208 removed resources, expressing the granularity of adapta-
209 tion), reconfiguration frequency (i.e., the density of reconfig-
210 uration points over a time period), and reconfiguration time
211 (i.e., the time interval between the instant when a reconfigu-
212 ration has been triggered/requested and the instant when
213 the adaptation has been completed), in such a way that the
214 elasticity metric is in the range of ½0; 1�. Although each of the
215 above three properties can be observed and measured, there
216 is no specific equation or formula given in [27] for such a
217 single-valued elasticity metric. In [20], an elasticity metric
218 for scaling up (down, respectively) is defined in such a way
219 that it is inversely proportional to the product of the average
220 time to switch from an under-provisioned (over-provi-
221 sioned, respectively) state to a normal state, which corre-
222 sponds to the average speed of scaling up (down,
223 respectively), and the average amount of under-provisioned
224 (over-provisioned, respectively) resources during an under-
225 provisioned (over-provisioned, respectively) period. Since
226 theoretically, the speed of scaling can be arbitrarily fast, the
227 above definition can possibly lead to an “infinitely elastic”
228 cloud computing system. Furthermore, although each of the
229 above two properties can be monitored and measured, there
230 is no given method to predict, e.g., the average amount of
231 under-provisioned or over-provisioned resources, and
232 therefore, there is no way to obtain elasticity analytically. In
233 [22], a definition of elasticity was given, which relates elas-
234 ticity with over-provisioning and under-provisioning penal-
235 ties. However, the amounts of over-provisioning and under-
236 provisioning are only observable, but not analytically avail-
237 able and predictable.
238 Some other efforts have also been made to study elastic-
239 ity. In [12], elasticity properties have been considered in
240 terms of cost elasticity (i.e., the responsiveness of resource
241 provision to changes in cost) and quality elasticity (i.e., the
242 responsiveness of quality to changes in resource usage). In
243 [14], elastic systems are classified in terms of four character-
244 istics, i.e., scope (infrastructure, application, platform), pol-
245 icy (manual, reactive, predictive), purpose (performance,
246 capacity, cost, energy), and method (replication, resizing,

247migration). In [37], application elasticity is considered, i.e.,
248making an application automatically adjust to variations in
249load without the need of intervention of a human adminis-
250trator and without the need to change its code.

2512.2 Developing Elastic Computing Systems

252In [8], the authors described a platform for developing scal-
253able applications on the cloud by QoS-driven resource pro-
254visioning from different sources and supporting different
255and elastic applications. In [11], the authors considered elas-
256tic VMs for rapid and optimal virtualized resources alloca-
257tion. In [13], the authors presented an elastic web hosting
258provider, that makes use of the outsourcing technique in
259order to take advantage of cloud computing infrastructures
260for providing scalability and high availability capabilities to
261the web applications. In [18], the authors presented a novel
262predictive elastic resource scaling scheme for cloud systems,
263which unobtrusively extracts fine-grained dynamic patterns
264in application resource demands and adjusts their resource
265allocation automatically. In the context of cloud computing,
266auto-scaling mechanisms hold the promise of assuring QoS
267properties for applications, while simultaneously making
268efficient use of resources and keeping operational costs low
269for the service providers. In [34], the authors developed a
270model-predictive algorithm for workload forecasting that is
271used for resource auto-scaling. In [35], the authors devel-
272oped a cost-aware system that provides efficient support for
273elasticity in the cloud by (i) leveraging multiple mechanisms
274to reduce the time to transition to new configurations, and
275(ii) optimizing the selection of a virtual server configuration
276that minimizes the cost. Elastic resource scaling allows
277cloud systems to meet application service-level agreements
278(SLA) with minimum resource provisioning costs. In [36],
279the authors presented a system that automates fine-grained
280elastic resource scaling for multi-tenant cloud computing
281infrastructures.
282In [1], the authors presented a service-oriented dynamic
283resource management model, which covers the issues of
284resource prediction, customer type-based resource estima-
285tion and reservation, advanced reservation, pricing, refund-
286ing and acquired quality of service-based refunding. In [2],
287the authors provided a holistic brokerage model to manage
288on-demand and advance service reservation, pricing, and
289reimbursement, with dynamic management of customer’s
290characteristics and historical record in evaluating the eco-
291nomics related factors.

2922.3 Modeling Cloud Platforms

2932.4 Assessing Elastic System Performance

294(Due to space limitation, Sections 2.3 and 2.4 are moved to
295the supplementary file, which can be found on the Computer
296Society Digital Library at http://doi.ieeecomputersociety.
297org/10.1109/TCC.2017.2665549.)

2983 DEFINITION OF ELASTICITY

299In this section, we formally define cloud elasticity, and also
300compare the notion with several related concepts. For read-
301er’s convenience, we provide Table 1, which gives a sum-
302mary of notations and their definitions in the order
303introduced in the paper.

LI: QUANTITATIVE MODELING AND ANALYTICAL CALCULATION OF ELASTICITY IN CLOUD COMPUTING 3

http://doi.ieeecomputersociety.org/10.1109/TCC.2017.2665549
http://doi.ieeecomputersociety.org/10.1109/TCC.2017.2665549


IEE
E P

ro
of

304 3.1 A New Definition

305 It has been clear based on our discussion so far that a defini-
306 tion of elasticity in cloud computing should satisfy the fol-
307 lowing two conditions.

308 � Quantitative describability—the definition should be
309 quantifiable, measurable, and observable, which is
310 based on a few parameters and is formally defined
311 based on a rigorous model.
312 � Analytical tractability—the definition should be ana-
313 lytically available, calculable, and predictable, which
314 is easily obtained by using a simple, standard, and
315 straightforward method.
316 We say that a cloud computing system is in (1) a normal
317 state if the provided computing resources match the current
318 workload; (2) an over-provisioning state if the provided
319 computing resources exceed the current workload; (3) an
320 under-provisioning state if the provided computing resour-
321 ces cannot handle the current workload. Our definition of
322 elasticity of a cloud computing platform with dynamically
323 variable workload is the percentage of time (or, the probability)
324 that the system is in the normal state.
325 Formally, assume that a system is operating for a time
326 period of length T . Let Tnormal (Tover, Tunder, respectively) be
327 the total time that the system is in the normal (over-provi-
328 sioning, under-provisioning, respectively) state. It is clear
329 that T ¼ Tnormal þ Tover þ Tunder. Then, the elasticity is calcu-
330 lated as

E ¼ Tnormal

T
¼ 1� Tover þ Tunder

T
: (1)

332332

333 If the system has been operating for a sufficiently long
334 period of time and is in a stable state, then pnormal ¼
335 Tnormal=T is the probability that the system is in the normal
336 state, pover ¼ Tover=T is the probability that the system is in

337the over-provisioning state, and punder ¼ Tunder=T is the
338probability that the system is in the under-provisioning
339state. Hence, we get

E ¼ pnormal ¼ 1� ðpover þ punderÞ: (2) 341341

342

343Notice that our definition of elasticity in Eq. (1) is easily
344measurable and observable by monitoring a cloud comput-
345ing platform. Of course, the notions of normal, over-provi-
346sioning, and under-provisioning states still need to be
347quantified. Since our elasticity metric is defined quantita-
348tively as probability, its value is in the range ½0; 1�. Analyti-
349cal tractability is impossible unless there is a rigorous
350mathematical model. We will present a queueing model for
351cloud platforms, define auto-scaling schemes, employ a
352CTMC model for elastic cloud platforms and quantitatively
353characterize our metric, and develop an analytical and
354numerical method to compute the proposed metric of
355Eq. (2), thus satisfying the two requirements mentioned ear-
356lier. It will also be clear that our elasticity metric depends
357on only a few (five, in particular) parameters.
358It is also noticed that our definition of elasticity captures
359the three characteristics in [27], i.e., reconfiguration effect,
360reconfiguration frequency, and reconfiguration time, and
361the two characteristics in [20], i.e., the average time to switch
362and the average amount of under-provisioned or over-pro-
363visioned resources, where the reconfiguration effect and the
364average amount of under-provisioned or over-provisioned
365resources affect the definition of normal/over-provision-
366ing/under-provisioning states, and the reconfiguration fre-
367quency, the reconfiguration time, and the average time to
368switch are all reflected and summarized in E, i.e., Tover,
369Tunder, pover, and punder.

3703.2 Related Notions and Properties

371There are several concepts which are related to (and some-
372times considered as similar to or even the same as) elastic-
373ity. In the following, we clarify the difference between these
374concepts and elasticity.
375Resilience. In material science, resilience is the ability of a
376material to absorb energy when it is deformed elastically,
377and release that energy upon unloading. Resiliency is the
378persistence of service delivery that can justifiably be trusted
379when facing changes, which should be considered as differ-
380ent from fault-tolerance, reliability, availability, recoverabil-
381ity, and performability [15]. In [16], the authors quantified
382the resiliency of Infrastructure-as-a-Service (IaaS) clouds
383subject to changes in demand and available capacity, using
384a stochastic reward net based model for provisioning and
385servicing requests, with respect to two key performance
386measures, i.e., job rejection rate and provisioning response
387delay.
388Scalability. Scalability is the ability of a system, network, or
389process to handle a growing amount of work in a capable
390manner or its ability to be enlarged to accommodate that
391growth. A scalable system improves its performance propor-
392tionally to the added capacity. Scalability has been a signifi-
393cant issue in parallel, distributed, cluster, grid, networked,
394and cloud computing systems. In [21], elastic scaling strate-
395gies are divided into three categories: (1) scale-in and scale-
396out-strategies which allow adding more homogeneous

TABLE 1
Summary of Notations and Definitions

Notation Definition

E elasticity
pnormal the probability in a normal state
pover the probability in an over-provisioning state
punder the probability in an under-provisioning state
m the number of active servers (i.e., VMs)
� the task arrival rate
m the service rate
k the number of tasks in the system
ðm; kÞ a state
ðam; bmÞ a pair of integers defining different states
S an elastic cloud management and auto-scaling scheme
a the VM start-up rate
b the VM shut-down rate
pðm; kÞ the equilibrium steady-state probability of state ðm; kÞ
N the average number of tasks
T the average task response time
R the throughput
M the average number of servers
B the average number of busy servers
U the VM utilization
r the server utilization
pk the probability that a queueing system is in state k
t the average response time randomized over k

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2017



IEE
E P

ro
of

397 machine instances or processing nodes of the same type based
398 on the agreed service-level agreement; (2) scale-up and scale-
399 down—strategies which are implemented by using more
400 powerful machine instances or processing nodes with faster
401 processors/cores and more memory and storage; (3) mixed
402 scaling—strategies which allow one to scale up (or scaled
403 own) and scale-out (or scale-in) computing resources in terms
404 of quantity and quality at the same time. In [19], scale-in and
405 scale-out are called horizontal scalability, and scale-up and
406 scale-down are called vertical scalability. In [27], it was men-
407 tioned that scalability includes application scalability (i.e., a
408 property which means that an application maintains its per-
409 formance goals and service-level agreement even when its
410 workload increases) and platform scalability (i.e., the ability
411 of a cloud platform to provide as many resources as needed
412 by an application). In [28], the technique of using workload
413 dependent dynamic power management (i.e., variable power
414 and speed of processor cores according to the current work-
415 load, which is essentially vertical scalability) to improve sys-
416 tem performance and to reduce energy consumption is
417 investigated by using a queueingmodel.

418 4 ANALYTICAL MODEL AND METHOD

419 In this section, we present our analytical model and method
420 to compute the proposed elasticity value.

421 4.1 A Queueing Model

422 A cloud computing platform is a multiserver system which
423 has m identical servers (i.e., VMs). In this paper, a multi-
424 server system is treated as an M/M/m queueing system
425 which is elaborated as follows [26]. There is a Poisson
426 stream of service requests (i.e., tasks) with arrival rate �
427 (measured by the number of service requests that are sub-
428 mitted in one unit of time), i.e., the inter-arrival times are
429 independent and identically distributed (i.i.d.) exponential
430 random variables with mean 1=�. A multiserver system
431 maintains a queue with infinite capacity for waiting tasks
432 when all the m servers are busy. The first-come-first-served
433 (FCFS) queueing discipline is adopted. The task execution
434 times are i.i.d. exponential random variables with mean
435 1=m. The m servers are homogeneous and have identical
436 execution and service rate m (measured by the number of
437 tasks that can be finished in one unit of time).
438 Notice that in an elastic cloud computing platform, the
439 number of servers adapts to the current workload (i.e., the
440 number of tasks in the system). Therefore, we have a multi-
441 server queuing system with a variable number of servers,
442 and an elastic cloud computing platform is no longer an M/
443 M/m queueing system. In [4], the authors dealt with a mul-
444 tiserver retrial queueing model in which the number of
445 active servers depends on the number of customers in the
446 system. The servers are switched on and off according to a
447 multithreshold strategy. For a fixed choice of the threshold
448 levels, the stationary distribution and various performance
449 measures of the system are calculated. In [23], a multiserver
450 Poisson queuing system with losses and a variable number
451 of servers was investigated, and all major characteristics of
452 the system were obtained in an explicit form. Unfortunately,
453 these results are not directly applicable to elastic cloud com-
454 puting systems, because the times to turn on and off the

455servers are not considered. However, as mentioned before,
456these factors are critical in measuring elasticity, and must be
457included into our queueing model.

4584.2 Auto-Scaling Scheme

459We use ðm; kÞ to denote a state, where m � 1 is the number
460of active servers, and k � 0 is the number of tasks in the sys-
461tem. Let ðam; bmÞ, m � 1, be a pair of integers used to deter-
462mine the status of a state, where bm > am � m� 1,
463amþ1 � bm, for all m � 1, and a1 < a2 < a3 < � � �,
464b1 < b2 < b3 < � � �. An elastic cloud platform management
465and auto-scaling scheme can be represented as

S ¼ ðða1; b1Þ; ða2; b2Þ; . . . ; ðam; bmÞ; . . .Þ; (3)
467467

468which decides how a cloud computing platform responds to
469the workload change. States are classified into three types.

470� A state is an over-provisioning state if 0 � k � am.
471� A state is a normal state if am < k � bm.
472� A state is an under-provisioning state if k > bm.
473The number of a servers can be adjusted according to the
474status of the state. In particular, a new server can be added
475(i.e., a cloud server system is scaled-out) if the current state
476is under-provisioning, and an active server can be removed
477(i.e., a cloud server system is scaled-in) if the current state is
478over-provisioning.

4794.3 A Continuous-Time Markov Chain

480To take the virtual machine start-up and shut-down times
481into consideration, we make the following assumptions. (1)
482A new server can be added as an active server at any time,
483and the time to initialize a new server is an exponential ran-
484dom variable with mean 1=a (i.e., the VM start-up rate is a,
485measured by the number of VMs which can be initialized in
486one unit of time). (2) An active server can be removed at
487any time, and the time to finalize an active server is an expo-
488nential random variable with mean 1=b (i.e., the VM shut-
489down rate is b, measured by the number of VMs which can
490be finalized in one unit of time).
491Based on the above assumptions, it is clear that a multi-
492server system with variable and dynamically adjustable
493number of servers can be modeled by a continuous-time
494Markov chain (CTMC).
495Our CTMC is actually a mixture of the birth-death pro-
496cesses similar to those for M/M/m queueing systems, with
497m � 1. The transitions among the states are described as fol-
498lows. (Note: We use the notation ðm1; k1Þ !r ðm2; k2Þ to rep-
499resent a transition from state ðm1; k1Þ to state ðm2; k2Þ with
500transition rate r.)

501� ðm; kÞ !� ðm; kþ 1Þ, m � 1, k � 0. This transition
502happens when a new task arrives.
503� ðm; kÞ !mm ðm; k� 1Þ, m � 1, k > am. This transition
504happens when a task is completed, and the state
505ðm; kÞ is normal or under-provisioning.

506� ðm;kÞ !minðm�1;kÞm ðm;k� 1Þ, m � 1, 1 � k � am. This
507transition happens when a task is completed, and the
508state ðm;kÞ is over-provisioning. (The value m� 1
509means that a server is being shut down and not serv-
510ing, but is still in the system. A deactivated server is
511also a resource until it is removed from the system.)

LI: QUANTITATIVE MODELING AND ANALYTICAL CALCULATION OF ELASTICITY IN CLOUD COMPUTING 5



IEE
E P

ro
of

512 � ðm; kÞ !a ðmþ 1; kÞ, m � 1, k > bm. This transition
513 happens when the state ðm; kÞ is under-provisioning,
514 and a new server is activated to join service.

515 � ðm; kÞ !b ðm� 1; kÞ, m � 2, 1 � k � am. This transi-
516 tion happens when the state ðm; kÞ is over-provision-
517 ing, and an active server is being shut down and
518 removed from further service.
519 Fig. 1 shows a state-transition-rate diagram, assuming
520 that am ¼ m and bm ¼ 3m for all m � 1. The states in the
521 diagram are arranged in a two dimensional way, where
522 each row of states is similar to the state-transition-rate dia-
523 gram of an M/M/m queueing system, with the difference
524 that the number of servers is m� 1 (not m) when
525 m� 1 � k � am due to the VM which is being shut down.
526 Notice that in a state ðm; kÞ where k � bm þ 1, a new VM is
527 activated and initialized, where the start-up time is an expo-
528 nential random variable. It is possible that before the initiali-
529 zation is completed, a task arrives or departs, and the state
530 becomes ðm; k� 1Þ. Since the residual start-up time has the
531 same distribution as the original exponential distribution
532 due to the memoryless property, the transition rate from
533 ðm; k� 1Þ to ðmþ 1; k� 1Þ is still a. Similarly, in a state
534 ðm; kÞ where k � am, one VM is deactivated and finalized,
535 where the shut-down time is an exponential random vari-
536 able. It is possible that before the finalization is completed, a
537 task arrives or departs, and the state becomes ðm; k� 1Þ.
538 Due to the memoryless property, the transition rate from
539 ðm; k� 1Þ to ðm� 1; k� 1Þ is still b.
540 To summarize, our CTMCmodel for an elastic cloud com-
541 puting systemwith variable number of virtualmachines con-
542 tains the following parameters: �, m, a, b, and of course, S. It
543 is worth tomention that the purpose of our research is to cap-
544 ture the most essential parameters for elasticity quantifica-
545 tion and prediction. Our model andmethod are by nomeans
546 perfect, but only some initial attempt towards this direction.
547 In a real cloud platform, things can be much more

548complicated. First, there could be many components in
549resource management, such as physical machines, storage,
550and network resources. Second, there could be many factors
551(other than VM start-up and shut-down times) which affect
552VM creation and termination. However, it is clear that con-
553sidering all these factors and facts might result in infeasible
554modeling and analysis, although they could be included and
555considered in further investigation. For the purpose of feasi-
556ble modeling and analysis, our abstract model and analytical
557method are simplistic andmanageable.

5584.4 An Analytical and Numerical Method

559Let pðm; kÞ denote the equilibrium steady-state probability
560that a multiserver system is in state ðm; kÞ. Unfortunately,
561there is no closed-form expression of pðm; kÞ. However, a
562numerical solution can be easily obtained by solving a linear
563system of equations resulted from our CTMC model using
564any standard method from linear algebra.
565Once the pðm; kÞ’s are available, we can compute the elas-
566ticity metric as follows. The probability that the system is in
567the over-provisioning state is

pover ¼
X1
m¼1

Xam
k¼0

pðm; kÞ: (4)

569569

570The probability that the system is in the under-provisioning
571state is

punder ¼
X1
m¼1

X1
k¼bmþ1

pðm; kÞ: (5)

573573

574The probability that the system is in the normal state is

pnormal ¼
X1
m¼1

Xbm
k¼amþ1

pðm; kÞ: (6)

576576

Fig. 1. A state-transition-rate diagram.

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2017



IEE
E P

ro
of577 Based on the above probabilities, our elasticity metric can be

578 obtained by using Eq. (2).

579 4.5 Impact of the Basic Parameters

580 It is clear that by using the CTMC model to calculate the
581 elasticity value of a cloud platform, our elasticity metric is
582 determined by only a few parameters, namely, the task
583 arrival rate, the service rate, the virtual machine start-up
584 and shut-down rates, and the scaling scheme. In this sec-
585 tion, we present numerical data to demonstrate the impact
586 of these basic parameters on elasticity.
587 In Figs. 2, 3, 4, and 5, we assume that am ¼ m and
588 bm ¼ 3m for allm � 1.
589 Varying the Task Arrival Rate. In Fig. 2, we show pover,
590 pnormal, and punder as functions of the task arrival rate �,
591 where m ¼ 1, a ¼ 2, b ¼ 5, and � ¼ 1:0; 2:0; . . . ; 10:0. It is
592 observed that as � increases, pover decreases (i.e., more ser-
593 vice requests result in less probability of over-provisioning),
594 and punder changes slightly (actually, increases and then
595 decreases, i.e., more service requests result in slight change
596 of the probability of under-provisioning), and pnormal

597 increases (i.e., the elasticity increases).
598 Varying the Service Rate. In Fig. 3, we show pover, pnormal,
599 and punder as functions of the task service rate m, where
600 � ¼ 5, a ¼ 2, b ¼ 5, and m ¼ 1:0; 2:0; . . . ; 10:0. It is observed
601 that as m increases, pover increases significantly (i.e., faster
602 service rate results in greater probability of over-provision-
603 ing), and punder changes noticeably (actually, increases and
604 then decreases, i.e., faster service rate results in noticeable
605 change of the probability of under-provisioning), and pnormal

606 decreases significantly (i.e., the elasticity decreases
607 significantly).

608Varying the Virtual Machine Start-Up Rate. In Fig. 4, we
609show pover, pnormal, and punder as functions of the virtual
610machine start-up rate a, where � ¼ 5, m ¼ 1, b ¼ 5, and
611a ¼ 1:0; 1:5; . . . ; 5:0. It is observed that as a increases, pover
612increases slightly (i.e., faster virtual machine start-up rate
613results in greater probability of over-provisioning), and
614punder decreases noticeably (i.e., faster virtual machine start-
615up rate results in noticeable reduction of the probability of
616under-provisioning), and pnormal increases noticeably (i.e.,
617the elasticity increases noticeably).
618Varying the Virtual Machine Shut-Down Rate. In Fig. 5, we
619show pover, pnormal, and punder as functions of the virtual
620machine shut-down rate b, where � ¼ 5, m ¼ 1, a ¼ 2, and
621b ¼ 5:0; 5:5; . . . ; 10:0. It is observed that the impact of b is
622small. As b increases, pover decreases slightly (i.e., faster vir-
623tual machine shut-down rate results in less probability of
624over-provisioning), and punder increases slightly (i.e., faster
625virtual machine shut-down rate results in greater probabil-
626ity of under-provisioning), and pnormal increases slightly
627(i.e., the elasticity increases slightly).
628Varying the Scaling Scheme. In Fig. 6, we show pover, pnormal,
629and punder as functions of x, where � ¼ 5, m ¼ 1, a ¼ 2, b ¼ 5,
630am ¼ m, and bm ¼ am þ x, for all m � 1. It is observed that
631the impact of the scaling scheme is big. As x increases (i.e.,
632the interval ½am; bm� gets wider), both pover and punder
633decrease noticeably (i.e., wider interval ½am; bm� results in
634less probability of over-provisioning and under-provision-
635ing), and pnormal increases significantly (i.e., the elasticity
636increases significantly).
637It is worth to mention that the purpose of this section is to
638demonstrate the impact of some basic parameters on elastic-
639ity. These data are obtained based on our model and

Fig. 2. pover, pnormal, and punder versus �.

Fig. 3. pover, pnormal, and punder versus m.

Fig. 4. pover, pnormal, and punder versus a.

Fig. 5. pover, pnormal, and punder versus b.

LI: QUANTITATIVE MODELING AND ANALYTICAL CALCULATION OF ELASTICITY IN CLOUD COMPUTING 7



IEE
E P

ro
of640 method, and might not be entirely accurate for any real

641 world use case scenario.

642 4.6 Simulation Results: Accuracy and Robustness

643 To validate the accuracy and robustness of our CTMC
644 model, we have performed extensive simulations and
645 experiments. Our simulation environment is an Intel Xeon
646 CPU E5620 2.40 GHz with the Linux OS version RHEL 6.8.
647 The simulation program is written in C++ supported by the
648 g++ 4.4.7 compiler. We simulate an elastic cloud computing
649 platform with am ¼ m and bm ¼ 3m for all m � 1, and
650 � ¼ 5, a ¼ 2, b ¼ 5, and m ¼ 1:0; 2:0; . . . ; 10:0. We (1) gener-
651 ate a Poisson stream of service requests; (2) run the elastic
652 cloud computing system; (3) record Tover, Tnormal, and Tunder;
653 (4) and report pover ¼ Tover=T , pnormal ¼ Tnormal=T , and
654 punder ¼ Tunder=T , where T ¼ Tnormal þ Tover þ Tunder, until
655 1,000,000 service requests are completed.
656 In addition to the exponential distribution of task execu-
657 tion times, we also consider several other distributions. The
658 six probability distribution functions (pdf), all with the
659 same expectation 1=m, are described as follows.

660 � Exponential distribution (EXP): The pdf is me�mx.
661 � Hyperexponential distribution (HEX): The pdf is
662 w1m1e

�m1x þ w2m2e
�m2x þ w3m3e

�m3x, where w1 ¼ 0:2,
663 w2 ¼ 0:3, w3 ¼ 0:5, m1 ¼ y1m

0, m2 ¼ y2m
0, m3 ¼ y3m

0,
664 y1 ¼ 3, y1 ¼ 2, y1 ¼ 1, with m0 ¼ mðw1=y1 þ w2=y2þ
665 w3=y3Þ.
666 � Erlang distribution (ERL): The pdf is m0e�m0x

667 ðm0xÞg�1=ðg � 1Þ!, where m0 ¼ gm and g ¼ 5.
668 � Hyper-Erlang distribution (HER): The pdf is
669 w1m1e

�m1xðm1xÞg1�1=ðg1 � 1Þ!þ w2m2e
�m2xðm2xÞg2�1=

670 ðg2 � 1Þ!; where w1 ¼ 0:4, w2 ¼ 0:6, g1 ¼ 3, and
671 g2 ¼ 4.
672 � Uniform distribution (UNI): The pdf is ðm=2Þ in the
673 range ½0; 2=mÞ.
674 � Pareto distribution (PAR): The pdf is aba=xaþ1 in the
675 range ½b;1Þ, where a ¼ 2 and b ¼ ða� 1Þ=ðamÞ.
676 In Table 2, we show pover, pnormal, and punder as functions
677 of the task service rate m, for all the above six probability
678 distribution functions of task execution times, as well as
679 the analytical results of our CTMC model. We have the
680 following important observations. (1) Accuracy—The sim-
681 ulation results for the exponential distribution are very
682 close to the analytical results and validate the accuracy of
683 our CTMC model. (2) Robustness—The simulation results
684 for the hyperexponential distribution, Erlang distribution,

685hyper-Erlang distribution, uniform distribution, and Par-
686eto distribution, especially the results of pnormal, show the
687robustness of our CTMC model, i.e., the ability of the
688CTMC model to predict the elasticity E with reasonable
689accuracy even though some assumptions of our model
690are not satisfied.

6914.7 Extension of the CTMC Model

692The CTMC model can be extended to include more compli-
693cated scaling schemes.
694Hot, Warm, and Cold VMs. It is known that physical
695machines (PMs) are categorized into three server pools: hot
696(i.e., with running VMs), warm (i.e., turned on but without
697running VM), and cold (i.e., turned off) [24]. Therefore,
698VMs can also be classified into three categories: hot (cur-
699rently running), warm (to be started up from a warm PM),
700and cold (to be started up from a cold PM). It is clear that a
701warm VM takes much less time to start than a cold VM. Let
702us assume that a cloud platform keeps certain number m	

703of hot and warm VMs and unlimited cold VMs. The warm
704VM and cold VM start-up rates are a1 and a2 respectively,
705where a1 > a2. Then, we should have ðm; kÞ !a1 ðmþ 1; kÞ,
706for 1 � m < m	 and k > bm, and ðm; kÞ !a2 ðmþ 1; kÞ, for
707m � m	 and k > bm. That is, the firstm

	 VMs can be started
708up faster than the remaining VMs.

TABLE 2
Simulation Results

m ANA EXP HEX ERL HER UNI PAR

pover

1.0 0.05087 0.05191 0.05446 0.04341 0.04496 0.04519 0.04737
2.0 0.11458 0.12285 0.12707 0.10075 0.10337 0.10558 0.11159
3.0 0.20854 0.22145 0.22754 0.18933 0.19552 0.19574 0.21464
4.0 0.31983 0.33381 0.34003 0.30715 0.31158 0.30986 0.33752
5.0 0.43061 0.44184 0.44643 0.43138 0.43428 0.42806 0.46350
6.0 0.52955 0.53843 0.54011 0.54501 0.54548 0.53813 0.56954
7.0 0.61252 0.61893 0.61719 0.64157 0.63837 0.63090 0.65286
8.0 0.67979 0.68557 0.67847 0.71666 0.71034 0.70516 0.71685
9.0 0.73348 0.73698 0.72915 0.77327 0.76561 0.76218 0.76773
10.0 0.77617 0.77958 0.77202 0.81703 0.80887 0.80432 0.80550

pnormal

1.0 0.82503 0.82194 0.81342 0.84834 0.84524 0.84360 0.83649
2.0 0.68546 0.67416 0.66380 0.71782 0.71005 0.70516 0.69784
3.0 0.58055 0.56483 0.55639 0.61378 0.60477 0.60142 0.58623
4.0 0.49450 0.48026 0.47082 0.52304 0.51577 0.51627 0.49342
5.0 0.42053 0.40905 0.40158 0.44179 0.43542 0.43730 0.40807
6.0 0.35708 0.34763 0.34207 0.36755 0.36436 0.36858 0.33649
7.0 0.30332 0.29658 0.29301 0.30213 0.30112 0.30669 0.27723
8.0 0.25830 0.25221 0.25331 0.24687 0.24965 0.25347 0.23043
9.0 0.22091 0.21723 0.21932 0.20324 0.20737 0.21044 0.19283
10.0 0.18997 0.18655 0.18890 0.16780 0.17318 0.17688 0.16356

pnormal

1.0 0.12410 0.12615 0.13212 0.10825 0.10980 0.11120 0.11614
2.0 0.19996 0.20298 0.20912 0.18143 0.18658 0.18926 0.19056
3.0 0.21091 0.21372 0.21607 0.19689 0.19971 0.20284 0.19913
4.0 0.18567 0.18593 0.18916 0.16981 0.17265 0.17387 0.16907
5.0 0.14886 0.14911 0.15199 0.12683 0.13030 0.13464 0.12843
6.0 0.11337 0.11394 0.11781 0.08743 0.09016 0.09329 0.09397
7.0 0.08416 0.08449 0.08980 0.05630 0.06051 0.06241 0.06991
8.0 0.06192 0.06223 0.06822 0.03647 0.04000 0.04137 0.05273
9.0 0.04562 0.04579 0.05152 0.02349 0.02702 0.02738 0.03944
10.0 0.03386 0.03387 0.03907 0.01517 0.01796 0.01880 0.03095

Fig. 6. pover, pnormal, and punder versus x (bm ¼ am þ x).

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2017



IEE
E P

ro
of

709 Multiple Start-Up and Shut-Down. In our CTMC model in
710 Section 4.3, it is assumed that VM start-up’s take place
711 sequentially, i.e., one after another. In state ðm; kÞ where
712 k > bm, there is only one VM being started up, no matter
713 how big k is. Actually, when a platform detects that k is suf-
714 ficiently large (say, k	), i.e., a VM takes too long to start up,
715 another VM can be started up simultaneously to handle
716 increasing workload. Therefore, we should have
717 ðm; kÞ !a ðmþ 1; kÞ, for m � 1 and bm < k < k	, and
718 ðm; kÞ !2a ðmþ 1; kÞ, form � 1 and k � k	. Notice that due to
719 the memoryless property, the residual start-up time of the
720 first VM has the same distribution as the original exponen-
721 tial distribution. Thus, the combined transition rate from
722 ðm; kÞ to ðmþ 1; kÞ is now 2a. It is clear that this method can
723 be extended to arbitrary simultaneous start-up’s. Also, it
724 can be applied to multiple shut-down’s when k is suffi-
725 ciently small.
726 Minimum Number of Active VMs. In our CTMC model in
727 Section 4.3, it is assumed that the number of active VMs can
728 be as small as one. To ensure certain guaranteed perfor-
729 mance, a platform can maintain a minimum number (say,
730 m	) of active VMs (which is one in Fig. 1). One can simply
731 assume that am ¼ �1 for this purpose, where 1 � m � m	,
732 i.e., there is no over-provisioning state and thus no VM shut-
733 downwhen the number of active VMs is nomore thanm	.
734 Heterogeneous VMs. Assume that there are n types of VMs
735 with service rates m1;m2; . . . ;mn, start-up rates a1;a2; . . . ;an,
736 and shut-down rates b1;b2; . . . ;bn. A state can be described

737 as ðm1;m2; . . . ;mn; kÞ, wheremi is the number of VMs of type

738 i, 1 � i � n. Hence, we will typically have a transition like

739 ðm1;m2; . . . ;mn; kÞ !m1m1þm2m2þ���þmnmn ðm1;m2; . . . ;mn; k� 1Þ. For
740 an under-provisioning state, if a VM of type i is to be acti-

741 vated, we have ðm1; . . . ;mi; . . . ;mn; kÞ !ai ðm1; . . . ;mi þ 1; . . . ;

742 mn; kÞ. For an over-provisioning state, if a VM of type i is to

743 be deactivated, we have ðm1; . . . ;mi; . . . ;mn; kÞ !bi ðm1; . . . ;

744 mi � 1; . . . ;mn; kÞ.

745 5 PERFORMANCE AND COST METRICS

746 Several important performance and cost metrics can be eas-
747 ily obtained as by-products from our model and method.

748 5.1 Performance Metrics

749 The main performance metrics are average task response
750 time, throughput, and quality of service.
751 Average Number of Requests. The average number N of
752 tasks in a multiserver system, including tasks being served
753 and tasks in the waiting queue, can be calculated by

N ¼
X1
m¼1

X1
k¼1

kpðm; kÞ ¼
X1
k¼1

k
X1
m¼1

pðm; kÞ
 !

: (7)
755755

756

757 Average Task Response Time. The response time of a task
758 includes its waiting time and service time. By Little’s result,
759 the average task response time is

T ¼ N

�
: (8)761761

762

763Throughput. Throughput is the average number of tasks
764completed per unit of time. It is clear that in any stable ser-
765vice system, the throughput R, i.e., the output, should be
766the same as the input, i.e., �, the average number of tasks
767submitted per unit of time. Thus, we have

R ¼ �: (9) 769769

770

771Quality of Service (QoS). QoS metrics for cloud computing
772can be focused on various aspects of cloud services, such as
773performance, economics, security, and general features [3],
774[6]. Therefore, QoS can be defined in many different ways.
775In this paper, we will mainly focus on performance metrics,
776and in particular, we use the reciprocal of the average task
777response time 1=T as the QoS index

QoS ¼ 1

T
; (10)

779779

780which is readily available from our model and method.
781It is worth to mention that in a real cloud platform, there
782could be many factors which affect performance metrics,
783such as the impact of network resources on the average task
784response time. Again, considering all these factors is beyond
785the scope of this paper.

7865.2 Cost Metrics

787The main cost metric is the average number of VMs, which
788is directly related to the amount of charge to a customer.
789Average Number of VMs. The number m of servers is a
790random variable in an elastic cloud computing platform.
791The average number M ¼ �m (i.e., the expectation of m) of
792servers, including busy servers, idle servers, and the one
793being shut down, is given by

M ¼
X1
m¼1

m
X1
k¼0

pðm; kÞ
 !

: (11)
795795

796

797Average Number of Busy VMs. The average number B of
798busy servers only includes servers in service, not idle serv-
799ers and the one being shut down, and is given by

B ¼
X1
m¼1

Xam
k¼0

minðm� 1; kÞpðm; kÞ þ
X1

k¼amþ1

mpðm; kÞ
 !

:

(12)
801801

802From another point of view, B is actually the total amount
803of work finished in one unit of time, i.e., �=m. To see this, let
804bðtÞ be the number of busy servers at time t. During a time

805interval ½t1; t2�, the amount of completed work (measured in

806time) is
R t2
t1
bðxÞdx:On the other hand, the amount of submit-

807ted work is ðt2 � t1Þ �
m
: In a stable service system, we must

808have
R t2
t1
bðxÞdx ¼ ðt2 � t1Þ �

m
: Furthermore, it is clear that the

809average number of busy servers is B ¼ 1
t2�t1

R t2
t1
bðxÞdx:

810Thus, we have

B ¼ �

m
: (13)

811Utilization. The VM utilization U is the ratio of the average
812number of busy VMs to the average number of VMs, i.e.,

LI: QUANTITATIVE MODELING AND ANALYTICAL CALCULATION OF ELASTICITY IN CLOUD COMPUTING 9



IEE
E P

ro
of

U ¼ B

M
¼ �

Mm
: (14)814814

815

816 Cost. There are many different factors which determine
817 the cost of cloud computing. It is clear that the cost of a
818 cloud platform is linearly proportional to the average num-
819 ber M of VMs. For each VM, the cost includes the renting
820 cost and energy consumption cost [9]. Therefore, in this
821 paper, we simply use the following equation to calculate the
822 cost of a cloud computing platform

cost ¼ Mðfþ cmdÞ; (15)
824824

825 where f includes the renting cost and static power con-
826 sumption, and cmd is the dynamic power consumption that
827 is linearly proportional to a polynomial of the VM speed. In
828 this paper, we assume that f ¼ 10, c ¼ 1, and d ¼ 3, unless
829 otherwise stated. Since these constants only give scaling
830 effect, sometimes we just useM as the cost.

831 5.3 Combined Performance and Cost Metrics

832 The main combined metric is the cost-performance ratio,
833 which can be applied to define other combined metrics.
834 Cost-Performance Ratio. The cost-performance (or price-
835 performance) ratio (CPR) refers to a product’s ability to
836 deliver performance for its price. Generally speaking, prod-
837 ucts with a lower CPR are more desirable, excluding other
838 factors. It is clear that the cost of a cloud platform is linearly
839 proportional to the average number M of VMs, and that the
840 performance is inversely proportional to the average task
841 response time T . Hence, we can define CPR as

CPR ¼ cost=performance ¼ MT ðfþ cmdÞ: (16)843843

844

845 Productivity. In [21], productivity is defined in such a way
846 that it is proportional to performance andQoS, and inversely
847 proportional to cost. If we use throughput R as the perfor-
848 mance index, the reciprocal of the average task response
849 time T as the QoS index, and the average numberM of VMs
850 as the cost index, thenwewill have productivity as

Productivity ¼ performance
QoS=cost ¼ R

MT
: (17)852852

853

854 Production-Driven Scalability. Recall that a cloud platform
855 management and scaling scheme can be represented as
856 S ¼ ðða1; b1Þ; ða2; b2Þ; . . . ; ðam; bmÞ; . . .Þ: For given �, m, a, b,
857 the scaling scheme S will decide all the cost and perfor-
858 mance metrics mentioned above, e.g., the productivity. In
859 production-driven scalability [21], a scaling scheme S is
860 more desirable than another scaling scheme S0 ¼ ðða01; b01Þ;
861 ða02; b02Þ; . . . ; ða0m; b0mÞ; . . .Þ; if the productivity of S is higher
862 than that of S0. Therefore, the production-driven scalability
863 is

ScalabilityðS; S0Þ ¼ ProductivityðSÞ
ProductivityðS0Þ ; (18)

865865

866 which can also be represented as

ScalabilityðS; S0Þ ¼ CPRðS0Þ
CPRðSÞ : (19)

868868

869

8706 PERFORMANCE AND COST GUARANTEE

871All rigorous metrics, quantified measures, accurate models,
872and analytical methods for elasticity should be applied to
873provide and predict the required service quality and cost to
874the users. The purposes of this section are two-fold. First,
875we show how to provide service quality and service cost
876guarantee to the users. Second, we show that with certain
877cost, an elastic platform delivers certain performance guar-
878antee with higher probability than an inelastic platform
879with the same cost for the same performance guarantee.

8806.1 Inelastic Platforms with Fixed Servers

881Recall that all task execution times are i.i.d. random varia-
882bles x. We use �x to denote the expectation of a random
883variable x. For an M/M/m queueing system modeling an
884inelastic cloud computing platform with a fixed number of
885servers, the server utilization is r ¼ �=mm ¼ ��x=m; which
886is the average percentage of time that a server is busy. A
887state of M/M/m is specified by k, the number of service
888requests (i.e., tasks, waiting or being processed) in the
889queueing system. Let pk denote the probability that the
890M/M/m queueing system is in state k. Then, we have
891([26], p. 102)

pk ¼
p0

ðmrÞk
k!

; k � m;

p0
mmrk

m!
; k � m;

8>><
>>:

893893

894where

p0 ¼
Xm�1

k¼0

ðmrÞk
k!

þ ðmrÞm
m!

� 1

1� r

 !�1

:

896896

897The probability of queueing (i.e., the probability that a
898newly submitted service request must wait because all serv-
899ers are busy) is

Pq ¼
X1
k¼m

pk ¼ pm
1� r

¼ p0
ðmrÞm
m!

� 1

1� r
:

901901

902The average number of service requests (in waiting or in
903execution) is

N ¼
X1
k¼0

kpk ¼ mrþ r

1� r
Pq:

905905

906Applying Little’s result, we get the average task response
907time as

T ¼ N

�
¼ �x 1þ Pq

mð1� rÞ
� �

¼ �x 1þ pm

mð1� rÞ2
 !

:

909909

910Therefore, we get the following result.

911Theorem 1. An inelastic cloud computing platform with fixed
912numberm of servers can guarantee average task response time

T ¼ �x 1þ pm

mð1� rÞ2
 !

;

914914

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2017



IEE
E P

ro
of

915 with costm, and cost-performance ratio

CPR ¼ m�x 1þ pm

mð1� rÞ2
 !

:917917

918

919 Let Tk be the average response time under the condition
920 that a new service request arrives when the system is in state
921 k. In other words, we can consider T as a function t of k and t

922 is randomized over the states k. When a task arrives to the
923 system which is in state k, the average response time t of the
924 task takes the value Tk, and the probability to take this value
925 is pk. Therefore, T is actually the expectation of t, i.e.,

T ¼ �t ¼
X1
k¼0

pkTk:927927

928

929 The following theorem gives a performance guarantee in
930 a stronger way for customers on an inelastic cloud comput-
931 ing platform.

932 Theorem 2. For an inelastic cloud computing platform with
933 fixed numberm of servers, we have t � c�x; with probability

Xbcm�1c

k¼0

pk;

935935

936 where c > 1.

937 Proof. Let Wk be the waiting time of a new service request
938 which arrives when the system is in state k. Then, it is
939 already known from [9] thatWk ¼ 0 if 0 � k � m� 1, and

Wk ¼ k�mþ 1

m

� �
�x;

941941

942 if k � m. Since Tk ¼ Wk þ �x, we get Tk ¼ �x if
943 0 � k � m� 1, and

Tk ¼ kþ 1

m

� �
�x;

945945

946 if k � m. To have Tk � c�x, we need k � cm� 1. Since
947 t ¼ Tk with probability pk, the theorem is proven. tu
948 An immediate consequence of Theorem 2 is that t > c�x
949 with probability

P1
k¼bcmc pk: One significance of Theorem 2

950 is that a cloud service provider can claim to its users that
951 the average task response time is bounded by a constant
952 times the expected task execution time with certain proba-
953 bility. Notice that for a random variable x, a claim such as
954 “x is less than c with high probability” is stronger than “�x is
955 less than d”, even if c is reasonably greater than d.

956 6.2 Elastic Platforms with Variable Servers

957 Now we consider an elastic cloud computing platform with
958 variable number of servers. By combining Eqs. (7), (8), and
959 (11), we get the following result.

960 Theorem 3. An elastic cloud computing platform with variable
961 number of servers can guarantee average task response time

T ¼ 1

�

X1
m¼1

X1
k¼1

kpðm; kÞ;
963963

964and expected cost

M ¼
X1
m¼1

m
X1
k¼0

pðm; kÞ
 !

;

966966

967and cost-performance ratio

CPR ¼ 1

�

X1
m¼1

X1
k¼1

kpðm; kÞ
 ! X1

m¼1

m
X1
k¼0

pðm; kÞ
 ! !

:
969969

970

971Again, let T ðm; kÞ be the average response time under the
972condition that a new service request arrives when the sys-
973tem is in state ðm; kÞ. We treat T as a function t of ðm; kÞ and
974t is randomized over the states ðm; kÞ.
975The following theorem gives a performance guarantee in
976a stronger way for customers on an elastic cloud computing
977platform.

978Theorem 4. For an elastic cloud computing platform with vari-
979able number of servers, we have t � c�x; where c > 1, with
980probability at least

pnormal þ pover ¼
X1
m¼1

Xbcm�1c

k¼0

pðm; kÞ;
982982

983by setting am ¼ m� 1 and bm ¼ bcm� 1c.
984Proof. Consider a task submitted to a cloud platform with
985m servers and k tasks in the system. We notice that the
986variable number of servers makes the analysis of waiting
987time much more complicated. First, it is possible that after
988a task x arrives, future arrival tasks may cause the system
989entering an under-provisioning state and creating more
990servers. Fortunately, such change will simply reduce the
991waiting time of x, which does no affect the upper bound
992c�x in the theorem, that is derived based on the assump-
993tion that the number of servers does not increase as in M/
994M/m. Second, it is also possible that after a task x arrives,
995completed tasks may cause the system entering an over-
996provisioning state and removing servers. Fortunately, the
997assumption that am ¼ m� 1 means that a server is
998removed only when there is no more task in waiting, i.e.,
999x is already in execution and its waiting time is not
1000affected. Therefore, we will simply ignore the possible
1001changes in the number of servers.
1002We follow an argument similar to that in the proof of
1003Theorem 2. When m ¼ 1, the number of active servers is
1004always one. Thus, we get T ð1; kÞ ¼ ðkþ 1Þ�x for all k � 0.
1005When m > 1, the number of active servers is m� 1 if
10060 � k � am, and m if am < k � bm. Thus, we have
1007T ðm; kÞ ¼ �x if 0 � k � m� 1, and

T ðm; kÞ ¼ kþ 1

m

� �
�x � bm þ 1

m

� �
�x;

10091009

1010if m � k � bm. Hence, the above cases of T ðm; kÞ can be
1011combined into

T ðm; kÞ � bm þ 1

m

� �
�x;

10131013

LI: QUANTITATIVE MODELING AND ANALYTICAL CALCULATION OF ELASTICITY IN CLOUD COMPUTING 11



IEE
E P

ro
of

1014 for all m � 1 and 0 � k � bm. To have T ðm; kÞ � c�x, we
1015 need bm ¼ cm� 1 (actually bm ¼ bcm� 1c to have an
1016 integer). Since t ¼ T ðm; kÞ with probability pðm; kÞ, the
1017 theorem is proven. tu
1018 One significant implication of Theorem 4 is that the aver-
1019 age task response time is well bounded as long as a cloud
1020 computing platform is not in the under-provisioning state.
1021 In particular, the inequality of the theorem holds with prob-
1022 ability at least 1� punder, which is greater than E.
1023 By using Theorem 4, a cloud service provider can claim
1024 to a customer that the expected task response time is no
1025 more than c�x for some small constant c > 1 with probabil-
1026 ity higher than E, by appropriate design of the elastic scal-
1027 ing scheme. Furthermore, the cloud service provider can
1028 tell the customer the estimated cost based on Eq. (15).

1029 6.3 Comparison

1030 In this section, we show that with certain cost, an elastic
1031 platform delivers certain performance guarantee with
1032 higher probability than an inelastic platform with the same
1033 cost for the same performance guarantee. Furthermore, an
1034 elastic platform is able to achieve higher QoS by consuming
1035 less resources than an inelastic platform, and thus achieving
1036 lower CPR, higher productivity, and dual improvement of
1037 both performance and cost.
1038 Let us assume that � ¼ 10:5, m ¼ 1, a ¼ 2, b ¼ 5,
1039 am ¼ m� 1, and bm ¼ bcm� 1c, for all m � 1. For
1040 c ¼ 1:25; 1:50; . . . ; 3:00, we show pover, pnormal, punder, the
1041 probability in Theorem 4, T , M, cost, and CPR for an elastic
1042 platform in Table 3. It is observed that as c increases, both
1043 pover and punder decrease significantly, and pnormal (i.e., elastic-
1044 ity E) increases significantly. Furthermore, the probability
1045 pnormal þ pover in Theorem 4 increases significantly. How-
1046 ever, such increased elasticity is due to the increased bm,
1047 which actually degrades system performance, since the
1048 platform is less responsive to the increased workload. As
1049 expected, the average task response time increases notice-
1050 ably, and the average number of VMs and the cost reduce

1051slightly. However, the cost-performance ratio increases
1052significantly.
1053By letting m ¼ 11, � ¼ 10:5, m ¼ 1, and for
1054c ¼ 1:25; 1:50; . . . ; 3:00, we also show the probability in The-
1055orem 2, T , M, cost, and CPR for an inelastic platform in
1056Table 3. It is observed that for the same c, the elastic plat-
1057form with M less than that of m of the inelastic platform,
1058achieves significantly shorter average task response time,
1059provides the same performance guarantee with noticeably
1060higher probability, and has less cost and much lower cost-
1061performance ratio.

10627 COST-PERFORMANCE RATIO OPTIMIZATION

1063As mentioned earlier, the ultimate purpose of studying elas-
1064ticity is not just to measure elasticity quantitatively and ana-
1065lytically, but for a cloud service provider to construct and
1066manage an elastic cloud computing platform to serve users
1067better in terms of higher performance and lower cost. The
1068purposes of this section are three-fold. First, we discuss one
1069important issue, i.e., comparison of scaling schemes and
1070optimal design of an elastic scaling scheme to minimize the
1071CPR. Second, we show how to optimize a cloud computing
1072platform, such that the CPR is minimized. Third, we men-
1073tion how to compare different platforms from different ser-
1074vice providers.

10757.1 Optimization of Scaling Schemes

1076In this section, we first consider the following problem.
1077For a given application and system environment speci-
1078fied by �, m, a, b, how to compare two different elastic
1079scaling schemes S and S0. Our approach is to compare
1080the CPRðSÞ and CPRðS0Þ of the two schemes. If CPRðSÞ
1081is less than CPRðS0Þ, then S is better than S0, since the
1082production-driven scalability is CPRðS0Þ/CPRðSÞ > 1
1083(see Eq. (19)).
1084An elastic cloud platform management and auto-scaling
1085scheme S ¼ ðða1; b1Þ; ða2; b2Þ; . . . ; ðam; bmÞ; . . .Þ can be manip-
1086ulated. For instance, one can decrease am or increase bm to
1087increase the value of elasticity. However, doing so increases
1088the number of VMs, or increases the task response time and
1089reduces the quality of service. On the other hand, increasing
1090am or decreasing bm not only reduces the value of elasticity,
1091but also increases the task response time, or increases the
1092number of VMs and the cost of service. It is clear that for the
1093minimized T and the best QoS, both am and bm should be
1094minimized, e.g., am ¼ m� 1 and bm ¼ m. However, the
1095average numberM of VMs is maximized.
1096It is clear that there is trade-off between performance and
1097cost. It is a challenge on how to balance the two conflicting
1098requirements of maximizing quality of service and minimiz-
1099ing cost of service. In this section, we consider the following
1100optimization problem. For a given application and system
1101environment specified by �, m, a, b, find an optimal auto-
1102scaling scheme S, such that the cost-performance ratio CPR
1103is minimized.
1104Let us assume that � ¼ 7, m ¼ 1, a ¼ 2, b ¼ 5, am ¼ m,
1105and bm ¼ am þ x, for allm � 1. For x ¼ 1; 2; . . . ; 20, we show
1106pover, pnormal, punder, T , M, cost, and CPR for an elastic plat-
1107form in Table 4. It is observed that as x increases, both pover
1108and punder decrease significantly, and pnormal (i.e., elasticity

TABLE 3
Comparison of Elastic and Inelastic Platforms

c pover pnormal punder probability T M cost CPR

elastic platform

1.25 0.18542 0.26410 0.55048 0.44952 1.37467 10.89474 119.842 164.743

1.50 0.13794 0.46373 0.39833 0.60167 1.44754 10.78981 118.688 171.806

1.75 0.10992 0.58292 0.30716 0.69284 1.52815 10.72906 118.020 180.352

2.00 0.08648 0.67675 0.23678 0.76322 1.64230 10.67876 117.466 192.915

2.25 0.07316 0.72918 0.19766 0.80234 1.73454 10.65005 117.151 203.203

2.50 0.06103 0.77702 0.16195 0.83805 1.85590 10.62435 116.868 216.895

2.75 0.05233 0.81112 0.13655 0.86345 1.97080 10.60592 116.665 229.924

3.00 0.04447 0.84061 0.11492 0.88508 2.11404 10.58911 116.480 246.244

inelastic platform

1.25 – – – 0.24109 2.66581 11.00000 121.000 322.563

1.50 – – – 0.33995 2.66581 11.00000 121.000 322.563

1.75 – – – 0.42592 2.66581 11.00000 121.000 322.563

2.00 – – – 0.50070 2.66581 11.00000 121.000 322.563

2.25 – – – 0.54506 2.66581 11.00000 121.000 322.563

2.50 – – – 0.60432 2.66581 11.00000 121.000 322.563

2.75 – – – 0.65586 2.66581 11.00000 121.000 322.563

3.00 – – – 0.70069 2.66581 11.00000 121.000 322.563

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2017



IEE
E P

ro
of

1109 E) increases significantly, due to the increased bm. Conse-
1110 quently, the average task response time increases notice-
1111 ably, while the average number of VMs and the cost reduce
1112 slightly, and the cost-performance ratio increases signifi-
1113 cantly. Therefore, the best auto-scaling scheme is the one
1114 with x ¼ 1, a surprising result.

1115 7.2 Optimization of Platforms

1116 In addition to S, the service rate m is also an important
1117 parameter that a service provider can decide. One
1118 should notice that changing m does not mean scale-up or
1119 scale-down, since m is pre-set and once set, does not
1120 change with the current workload. Intuitively, increasing
1121 m reduces T and M. However, the cost might increase
1122 due to the increased dynamic energy consumption.
1123 Thus, it is an interesting problem to find the optimal m

1124 that minimizes CPR.
1125 Let us consider a ¼ 2, b ¼ 5, am ¼ m, and bm ¼ 2m, for
1126 all m � 1. For � ¼ 7 and m ¼ 1:0; 1:5; . . . ; 5:0, we show pover,
1127 pnormal, punder, T , M, cost, and CPR for an elastic platform in
1128 Table 5. It is observed that as m increases, both T and M
1129 reduce significantly, and both cost and CPR decrease and
1130 then increase. Hence, there is an optimal choice of m which
1131 minimizes CPR.

11327.3 Comparison of Service Providers

1133In this section, we consider the following problem. For a
1134given application environment specified by � and m, how to
1135compare two different cloud service providers specified by
1136P ¼ ða;b; SÞ and P 0 ¼ ða0;b0; S0Þ. Our approach is to com-
1137pare the CPRðP Þ and CPRðP 0Þ provided by the two cloud
1138computing platforms.
1139Assume that � ¼ 10 and m ¼ 1. Platform P is specified by
1140a ¼ 2, b ¼ 5, am ¼ m, and bm ¼ 2m, for allm � 1. Platform P 0

1141is specified by a0 ¼ 3, b0 ¼ 5, a0m ¼ m, and b0m ¼ 3m, for all
1142m � 1. It is clear that Platform P 0 is less responsive, but has
1143faster virtual machine start-up rate. For both platforms, we
1144show pover, pnormal, punder, T , M, cost, and CPR in Table 6. It is
1145observed that Platform P 0 has greater elasticity, longer task
1146response time, less VMs, lower cost, and higher cost-perfor-
1147mance ratio. Thus, PlatformP is preferred to PlatformP 0.

11488 CONCLUDING REMARKS

1149We have emphasized two significant issues in elastic cloud
1150computing, i.e., the need of a quantifiable, measurable,
1151observable, and calculable metric of elasticity and a system-
1152atic approach to modeling, quantifying, analyzing, and pre-
1153dicting elasticity, and the need of an effective way for
1154prediction, comparison, and optimization of performance
1155and cost in an elastic cloud platform. This paper has contrib-
1156uted significantly to address these two pressing issues. We
1157have not only developed analytical model and method to
1158precisely calculate the elasticity value of a cloud platform,
1159but also applied our model and method to predict many
1160important properties of an elastic cloud computing system
1161and to optimize an elastic scaling scheme and a cloud com-
1162puting platform to deliver the best cost-performance ratio.
1163The main challenge of our CTMCmodel is lack of closed-
1164form expressions for its major elasticity, performance, and
1165cost metrics, e.g., pover, pnormal, punder, T , M, cost, and CPR.
1166This makes analytical study of an elastic cloud computing
1167platform very difficult. Future research efforts should be
1168directed towards this direction.

1169ACKNOWLEDGMENTS

1170The author would like to express his gratitude to four anon-
1171ymous reviewers for their criticism and comments on
1172improving the quality of the manuscript.

1173REFERENCES

1174[1] M. Aazam and E.-N. Huh, “Cloud broker service-oriented
1175resource management model,” Trans. Emerging Telecommun.
1176Technol., vol. 28, no. 2, pp. 1–17, 2017.
1177[2] M.Aazam, E.-N.Huh,M. St-Hilaire , C.-H. Lung, and I. Lambadaris,
1178“Cloud customer’s historical record based resource pricing,” IEEE
1179Trans. Parallel Distrib. Syst., vol. 27, no. 7, pp. 1929–1940, Jul. 2016.
1180[3] D. Ardagna, G. Casale, M. Ciavotta, J. F. P�erez, and W. Wang,
1181“Quality-of-service in cloud computing: Modeling techniques
1182and their applications,” J. Internet Services Appl., vol. 5, no. 11,
1183pp. 1–17, 2014.

TABLE 4
Optimal Scaling Scheme

x pover pnormal punder T M cost CPR

1 0.23368 0.17882 0.58750 1.48578 7.36402 81.0042 120.354
2 0.19827 0.30318 0.49854 1.52808 7.30819 80.3901 122.843
3 0.17221 0.39476 0.43303 1.57738 7.26731 79.9404 126.097
4 0.15222 0.46501 0.38277 1.63141 7.23605 79.5966 129.855
5 0.13639 0.52063 0.34298 1.68878 7.21137 79.3251 133.962
6 0.12355 0.56576 0.31069 1.74858 7.19138 79.1052 138.322
7 0.11292 0.60311 0.28397 1.81023 7.17486 78.9234 142.870
8 0.10398 0.63454 0.26148 1.87330 7.16097 78.7706 147.561
9 0.09635 0.66135 0.24230 1.93749 7.14912 78.6403 152.365
10 0.08977 0.68449 0.22574 2.00257 7.13890 78.5279 157.258
11 0.08403 0.70467 0.21130 2.06840 7.13000 78.4300 162.224
12 0.07898 0.72242 0.19860 2.13483 7.12216 78.3438 167.251
13 0.07450 0.73816 0.18734 2.20177 7.11522 78.2674 172.327
14 0.07050 0.75221 0.17729 2.26914 7.10901 78.1992 177.445
15 0.06691 0.76482 0.16826 2.33687 7.10344 78.1379 182.598
16 0.06367 0.77622 0.16011 2.40492 7.09840 78.0824 187.782
17 0.06073 0.78656 0.15271 2.47324 7.09383 78.0321 192.992
18 0.05805 0.79599 0.14596 2.54179 7.08965 77.9861 198.225
19 0.05559 0.80462 0.13979 2.61055 7.08582 77.9440 203.477
20 0.05334 0.81255 0.13411 2.67949 7.08228 77.9051 208.746

TABLE 5
Optimal Service Rate

m pover pnormal punder T M cost CPR

1.0 0.09672 0.66179 0.24148 1.75809 7.13653 78.5018 138.0129
1.5 0.12684 0.56279 0.31037 1.27455 4.83683 64.6925 82.4540
2.0 0.15291 0.49222 0.35487 1.03154 3.69250 66.4649 68.5613
2.5 0.17865 0.44112 0.38023 0.87816 3.00810 77.0826 67.6905
3.0 0.20587 0.40288 0.39125 0.76730 2.55354 94.4809 72.4955
3.5 0.23523 0.37308 0.39169 0.68031 2.23095 117.9612 80.2501
4.0 0.26672 0.34887 0.38440 0.60849 1.99165 147.3819 89.6805
4.5 0.30002 0.32842 0.37156 0.54732 1.80863 182.8975 100.1033
5.0 0.33461 0.31054 0.35485 0.49422 1.66560 224.8560 111.1278

TABLE 6
Comparison of Platforms

Platform pover pnormal punder T M cost CPR

P 0.09103 0.66913 0.23984 1.73563 10.14662 111.6128 193.7182

P 0 0.04720 0.87296 0.07984 2.15966 10.07341 110.8075 239.3071

LI: QUANTITATIVE MODELING AND ANALYTICAL CALCULATION OF ELASTICITY IN CLOUD COMPUTING 13



IEE
E P

ro
of

1184 [4] J. R. Artalejo, D. S. Orlovsky, and A. N. Dudin, “Multi-server
1185 retrial model with variable number of active servers,” Comput.
1186 Ind. Eng., vol. 48, no. 2, pp. 273–288, 2005.
1187 [5] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, Cloud Computing
1188 Synopsis and Recommendations, IEEE Standard 800–146, National
1189 Institute of Standards and Technology, U.S. Department of Com-
1190 merce, 5/29/2012.
1191 [6] A. K. Bardsiri and S. M. Hashemi, “QoS metrics for cloud comput-
1192 ing services evaluation,” I.J. Intell. Syst. Appl., vol. 12, pp. 27–33,
1193 2014.
1194 [7] R. Buyya, J. Broberg, and A. Goscinski, Eds., Cloud Computing
1195 Principles and Paradigms. Hoboken, NJ, USA: Wiley, 2011.
1196 [8] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya,
1197 “The Aneka platform and QoS-driven resource provisioning for
1198 elastic applications on hybrid clouds,” Future Generation Comput.
1199 Syst., vol. 28, pp. 861–870, 2012.
1200 [9] J. Cao, K. Hwang, K. Li, and A. Zomaya, “Optimal multiserver
1201 configuration for profit maximization in cloud computing,” IEEE
1202 Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1087–1096, Jun. 2013.
1203 [10] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation and
1204 load distribution for multiple heterogeneous multicore server pro-
1205 cessors across clouds and data centers,” IEEE Trans. Comput.,
1206 vol. 63, no. 1, pp. 45–58, Jan. 2014.
1207 [11] W. Dawoud, I. Takouna, and C. Meinel, “Elastic VM for cloud
1208 resources provisioning optimization,” Adv. Comput. Commun.,
1209 vol. 190, pp. 431–445, 2011.
1210 [12] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of
1211 elastic processes,” IEEE Internet Comput., vol. 15, no. 5, pp. 66–71,
1212 Sep./Oct. 2011.
1213 [13] J. O. Fit�o, I. Goiri, and J. Guitart, “SLA-driven elastic cloud hosting
1214 provider,” in Proc. 16th Euromicro Conf. Parallel Distrib. Netw.-Based
1215 Process., 2010, pp. 111–118.
1216 [14] G. Galante and L. C. E. de Bona, “A survey on cloud computing
1217 elasticity,” in Proc. IEEE/ACM 5th Int. Conf. Utility Cloud Comput.,
1218 2012, pp. 263–270.
1219 [15] R. Ghosh, D. Kim, and K. S. Trivedi, “System resiliency quantifica-
1220 tion using non-state-space and state-space analytic models,” Rel.
1221 Eng. Syst. Safety, vol. 116, pp. 109–125, 2013.
1222 [16] R. Ghosh, F. Longoy, V. K. Naikz, and K. S. Trivedi, “Quantifying
1223 resiliency of IaaS cloud,” in Proc. 29th IEEE Int. Symp. Reliable Dis-
1224 trib. Syst., 2010, pp. 343–347.
1225 [17] R. Ghosh, V. K. Naik, and K. S. Trivedi, “Power-performance
1226 trade-offs in IaaS cloud: A scalable analytic approach,” in Proc.
1227 IEEE/IFIP 41st Int. Conf. Dependable Syst. Netw. Workshops, 2011,
1228 pp. 152–157.
1229 [18] Z. Gong, X. Gu, and J. Wilkes, “PRESS: Predictive elastic resource
1230 scaling for cloud systems,” in Proc. Int. Conf. Netw. Service Manage.,
1231 2010, pp. 9–16.
1232 [19] N. R. Herbst, Quantifying the Impact of Platform Configuration
1233 Space for Elasticity Benchmarking, Study Thesis, Department of
1234 Informatics, Karlsruhe Institute of Technology, Karlsruhe, Baden-
1235 Wrttemberg, 2011.
1236 [20] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud
1237 computing: What it is, and what it is not,” in Proc. 10th Int. Conf.
1238 Autonomic Comput., 2013, pp. 23–27.
1239 [21] K. Hwang, X. Bai, Y. Shi, M. Li, W.-G. Chen, and Y. Wu, “Cloud
1240 performance modeling with benchmark evaluation of elastic scal-
1241 ing strategies,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 1,
1242 pp. 130–143, Jan. 2016.
1243 [22] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a consumer can mea-
1244 sure elasticity for cloud platforms,” School Inf. Technol., Univ.
1245 Sydney, Camperdown, NSW, Australia Tech. Rep. 680, 2011.
1246 [23] A. I. Ivaneshkin, “Optimizing a multiserver queuing system with
1247 a variable number of servers,” Cybern. Syst. Anal., vol. 43, no. 4,
1248 pp. 542–548, 2007.
1249 [24] H. Khazaei, J. Mi�si�c, and V. B. Mi�si�c, “A fine-grained performance
1250 model of cloud computing centers,” IEEE Trans. Parallel Distrib.
1251 Syst., vol. 24, no. 11, pp. 2138–2147, Nov. 2013.
1252 [25] H. Khazaei, J. Mi�si�c, V. B. Mi�si�c, and S. Rashwand, “Analysis of a
1253 pool management scheme for cloud computing centers,” IEEE
1254 Trans. Parallel Distrib. Syst., vol. 24, no. 5, pp. 849–861, May 2013.
1255 [26] L. Kleinrock, Queueing Systems, Volume 1: Theory. Hoboken, NJ,
1256 USA: Wiley, 1975.
1257 [27] M. Kuperberg, N. Herbst, J. von Kistowski, and R. Reussner,
1258 “Defining and quantifying elasticity of resources in cloud comput-
1259 ing and scalable platforms,” Karlsruhe Institute of Technology,
1260 Karlsruhe, Karlsruhe Reports in Informatics, Tech. Rep. 16, 2011.

1261[28] K. Li, “Improving multicore server performance and reducing
1262energy consumption by workload dependent dynamic power
1263management,” IEEE Trans. Cloud Comput., vol. 4, no. 2, pp. 122–
1264137, Apr.-Jun. 2016.
1265[29] C. Liu, K. Li, C.-Z. Xu, and K. Li, “Strategy configurations of mul-
1266tiple users competition for cloud service reservation,” IEEE Trans.
1267Parallel Distrib. Syst., vol. 27, no. 2, pp. 508–520, Feb. 2016.
1268[30] M. Mao and M. Humphrey, “A performance study on the VM
1269startup time in the cloud,” in Proc. IEEE 5th Int. Conf. Cloud Com-
1270put., 2012, pp. 423–430.
1271[31] J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization
1272scheme with guaranteed quality of service in cloud computing,”
1273IEEE Trans. Computers, vol. 64, no. 11, pp. 3064–3078, Nov. 2015.
1274[32] P. Mell and T. Grance, “The NIST definition of cloud computing,”
1275U.S. Department of Commerce, National Institute of Standards
1276and Technology, Gaithersburg, MD, Tech. Rep. 800–145, Sep. 2011.
1277[33] S. Pacheco-Sanchez , G. Casale, B. Scotney, S. McClean, G. Parr,
1278and S. Dawson, “Markovian workload characterization for QoS
1279prediction in the cloud,” in Proc. IEEE 4th Int. Conf. Cloud Comput.,
12802011, pp. 147–154.
1281[34] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the
1282cloud using predictive models for workload forecasting,” in Proc.
1283IEEE 4th Int. Conf. Cloud Comput., 2011, pp. 500–507.
1284[35] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elas-
1285ticity provisioning system for the cloud,” in Proc. 31st Int. Conf.
1286Distrib. Comput. Syst., 2011, pp. 559–570.
1287[36] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: Elastic
1288resource scaling for multi-tenant cloud systems,” in Proc. 2nd
1289ACM Symp. Cloud Comput., 2011, Article No. 5.
1290[37] P. Sobeslavsky, “Elasticity in Cloud Computing,” Master Thesis in
1291Informatics, Joseph Fourier Univ., Grenoble, France, 2011.

1292Keqin Li is a SUNY distinguished professor of
1293computer science. He is also a distinguished pro-
1294fessor of Chinese National Recruitment Program
1295of Global Experts (1000 Plan) with the Hunan
1296University, China. His current research interests
1297include parallel computing and high-performance
1298computing, distributed computing, energy-
1299efficient computing and communication, hetero-
1300geneous computing systems, cloud computing,
1301big data computing, CPU-GPU hybrid and coop-
1302erative computing, multicore computing, storage
1303and file systems, wireless communication networks, sensor networks,
1304peer-to-peer file sharing systems, mobile computing, service computing,
1305Internet of things and cyber-physical systems. He has published more
1306than 480 journal articles, book chapters, and refereed conference
1307papers, and has received several best paper awards. He is currently or
1308has served on the editorial boards of the IEEE Transactions on Parallel
1309and Distributed Systems, the IEEE Transactions on Computers, the
1310IEEE Transactions on Cloud Computing, the IEEE Transactions on
1311Services Computing, and the IEEE Transactions on Sustainable Com-
1312puting. He is a fellow of the IEEE.

1313" For more information on this or any other computing topic,
1314please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2017


