
Scheduling Precedence Constrained
Tasks with Reduced Processor Energy

on Multiprocessor Computers
Keqin Li, Senior Member, IEEE

Abstract—Energy-efficient scheduling of sequential tasks with precedence constraints on multiprocessor computers with dynamically

variable voltage and speed is investigated as combinatorial optimization problems. In particular, the problem of minimizing schedule

length with energy consumption constraint and the problem of minimizing energy consumption with schedule length constraint are

considered. Our scheduling problems contain three nontrivial subproblems, namely, precedence constraining, task scheduling, and

power supplying. Each subproblem should be solved efficiently so that heuristic algorithms with overall good performance can be

developed. Such decomposition of our optimization problems into three subproblems makes design and analysis of heuristic

algorithms tractable. Three types of heuristic power allocation and scheduling algorithms are proposed for precedence constrained

sequential tasks with energy and time constraints, namely, prepower-determination algorithms, postpower-determination algorithms,

and hybrid algorithms. The performance of our algorithms are analyzed and compared with optimal schedules analytically. Such

analysis has not been conducted in the literature for any algorithm. Therefore, our investigation in this paper makes initial contribution

to analytical performance study of heuristic power allocation and scheduling algorithms for precedence constrained sequential tasks.

Our extensive simulation data demonstrate that for wide task graphs, the performance ratios of all our heuristic algorithms approach

one as the number of tasks increases.

Index Terms—Energy consumption, list scheduling, performance analysis, power-aware scheduling, precedence constraint,

simulation, task scheduling

Ç

1 INTRODUCTION

PERFORMANCE-DRIVEN computer development has lasted
for over six decades. Computers have been developed to

achieve higher performance. While performance/hardware-
cost has increased dramatically, power consumption in
computer systems has also increased according to Moore’s
law [3]. To achieve higher computing performance per
processor, microprocessor manufacturers have doubled the
power density at an exponential speed over decades, which
will soon reach that of a nuclear reactor [37]. Such increased
energy consumption causes severe economic, ecological,
and technical problems. Power conservation is critical in
many computation and communication environments and
has attracted extensive research activities. Reducing pro-
cessor energy consumption has been an important and
pressing research issue in recent years. There has been
increasing interest and importance in developing high
performance and energy-efficient computing systems. There
exists a large body of literature on power-aware computing
and communication. The reader is referred to [5], [9], [36],
[37] for comprehensive surveys.

There are two approaches to reducing power consump-
tion in computing systems. The first approach is the method
of thermal-aware hardware design, which can be carried out

at various levels, including device-level power reduction,
circuit and logic-level techniques, architecture-level power
reduction (low-power processor architecture adaptations,
low-power memories and memory hierarchies, and low-
power interconnects). Low-power consumption and high-
system reliability, availability, and usability are main
concerns of modern high-performance computing system
development. In addition to the traditional performance
measure using FLOPS, the Green500 list uses FLOPS per
Watt to rank the performance of computing systems, so that
the awareness of other performance metrics such as energy
efficiency and system reliability can be raised [4]. The second
approach to reducing energy consumption in computing
systems is the method of power-aware software design at
various levels, including operating system-level power
management, compiler-level power management, applica-
tion-level power management, cross-layer (from transistors
to applications) adaptations. The power reduction technique
discussed in this paper belongs to the operating system level.

Software techniques for power reduction are supported
by a mechanism called dynamic voltage scaling [2] (equiva-
lently, dynamic frequency scaling, dynamic speed scaling,
dynamic power scaling). Dynamic power management at
the operating system level refers to supply voltage and clock
frequency adjustment schemes implemented while tasks are
running. These energy conservation techniques explore the
opportunities for tuning the energy-delay tradeoff [35].
Power-aware task scheduling on processors with variable
voltages and speeds has been extensively studied since mid
1990s. In a pioneering paper [38], the Weiser et al. first

1668 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

. The author is with the Department of Computer Science, State University
of New York, New Paltz, New York 12561. E-mail: lik@newpaltz.edu.

Manuscript received 31 Oct. 2011; revised 17 Feb. 2012; accepted 22 Apr.
2012; published online 30 May 2012.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2011-10-0795.
Digital Object Identifier no. 10.1109/TC.2012.120.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

proposed the approach to energy saving by using fine grain
control of CPU speed by an operating system scheduler. The
main idea is to monitor CPU idle time and to reduce energy
consumption by reducing clock speed and idle time to a
minimum. In a subsequent work [40], Yao et al. analyzed
offline and online algorithms for scheduling tasks with
arrival times and deadlines on a uniprocessor computer
with minimum energy consumption. These research have
been extended in [7], [11], [19], [26], [27], [28], and [41] and
inspired substantial further investigation, much of which
focus on real-time applications, namely, adjusting the
supply voltage and clock frequency to minimize CPU
energy consumption while still meeting the deadlines for
task execution. In [6], [15], [16], [18], [21], [29], [30], [31], [33],
[34], [39], [43], [44], [45], and [46] and many other related
work, the authors addressed the problem of scheduling
independent or precedence constrained tasks on uniproces-
sor or multiprocessor computers where the actual execution
time of a task may be less than the estimated worst case
execution time. The main issue is energy reduction by slack
time reclamation.

There are two considerations in dealing with the energy-
delay tradeoff. On the one hand, in high performance
computing systems, power-aware design techniques and
algorithms attempt to maximize performance under certain
energy consumption constraints. On the other hand, low-
power and energy-efficient design techniques and algo-
rithms aim to minimize energy consumption while still
meeting certain performance goals. In [8], Barnett studied
the problems of minimizing the expected execution time
given a hard energy budget and minimizing the expected
energy expenditure given a hard execution deadline for a
single task with randomized execution requirement. In [10],
Bunde considered scheduling jobs with equal requirements
on multiprocessors. In [13], the Cho and Melhem studied
the relationship among parallelization, performance, and
energy consumption, and the problem of minimizing
energy-delay product. In [17] Khan and Ahmad and [20]
Lee and Zomaya, attempted joint minimization of energy
consumption and task execution time. In [32], Rusu et al.
investigated the problem of system value maximization
subject to both time and energy constraints.

In [22], [23], and [25], we addressed energy and time
constrained power allocation and task scheduling on
multiprocessor computers with dynamically variable vol-
tage and frequency and speed and power as combinatorial
optimization problems. In particular, we defined the
problem of minimizing schedule length with energy
consumption constraint and the problem of minimizing
energy consumption with schedule length constraint on
multiprocessor computers. The first problem has applica-
tions in general multiprocessor and multicore processor
computing systems where energy consumption is an
important concern and in mobile computers where energy
conservation is a main concern. The second problem has
applications in real-time multiprocessing systems and
environments such as parallel signal processing, automated
target recognition, and real-time MPEG encoding, where
timing constraint is a major requirement. Our scheduling
problems are defined such that the energy-delay product is
optimized by fixing one factor and minimizing the other. In

[22], and [25], we studied the problems of scheduling
independent sequential tasks. In [23], and [24], we studied
the problems of scheduling independent parallel tasks.

In this paper, we investigate scheduling sequential tasks
with precedence constraints on multiprocessor computers
with dynamically variable voltage and speed as combina-
torial optimization problems. Our scheduling problems
contain three nontrivial subproblems, namely, precedence
constraining, task scheduling, and power supplying.

. Precedence Constraining. Precedence constraints make
design and analysis of heuristic scheduling algo-
rithms more difficult.

. Task Scheduling. It is NP-hard even scheduling
independent sequential tasks without precedence
constraint.

. Power Supplying. Tasks should be supplied with
appropriate powers and execution speeds, such that
the schedule length is minimized by consuming
given amount of energy or the energy consumed is
minimized without missing a given deadline.

Each subproblem should be solved efficiently so that
heuristic algorithms with overall good performance can be
developed.

There are naturally three types of power-aware task
scheduling algorithms, depending on the order of power
supplying and task scheduling.

. Prepower-Determination Algorithms. In this type of
algorithms, we first determine power supplies and
then schedule the tasks.

. Postpower-Determination Algorithms. In this type of
algorithms, we first schedule the tasks and then
determine power supplies.

. Hybrid Algorithms. In this type of algorithms, schedul-
ing tasks and determining power supplies are
interleaved among different stages of an algorithm.

We will propose heuristic power allocation and scheduling
algorithms of the above three types for precedence con-
strained sequential tasks with energy and time constraints.
We will also analyze their performance and demonstrate
simulation results. Notice that we compare the performance
of our algorithms with optimal schedules analytically. Such
analysis has not been conducted in the literature for any
algorithm. Therefore, our investigation in this paper makes
initial contribution to analytical performance study of
heuristic power allocation and scheduling algorithms for
precedence constrained sequential tasks.

The rest of the paper is organized as follows: In Section 2,
we provide background information, including the power
consumption model, definitions of our problems, lower
bounds for optimal solutions, and performance measures. In
Section 3, we propose and analyze prepower-determination
algorithms. In Section 4, we propose and analyze postpower-
determination algorithms. In Section 5, we propose and
analyze hybrid algorithms. In Section 6, we present simula-
tion data and show that for wide task graphs, the
performance ratios of all our heuristic algorithms approach
one as the number of tasks increases. We conclude the paper
in Section 7.

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS WITH REDUCED PROCESSOR ENERGY ON MULTIPROCESSOR COMPUTERS 1669

2 PRELIMINARIES

Power dissipation and circuit delay in digital CMOS
circuits can be accurately modeled by simple equations,
even for complex microprocessor circuits. CMOS circuits
have dynamic, static, and short-circuit power dissipation;
however, the dominant component in a well designed
circuit is dynamic power consumption p (i.e., the switching
component of power), which is approximately p ¼ aCV 2f ,
where a is an activity factor, C is the loading capacitance, V
is the supply voltage, and f is the clock frequency [12].
Since s / f , where s is the processor speed, and f / V �

with 0 < � � 1 [42], which implies that V / f1=�, we know
that power consumption is p / f� and p / s�, where
� ¼ 1þ 2=� � 3.

It is clear that due to precedence constraints, a processor
may be idle between execution of tasks. It is well known
that an idle processor also consumes certain power, which
includes static power dissipation, short circuit power
dissipation, and other leakage and wasted power [1]. In
this paper, we do not include this part of the power
consumption into consideration. We are only interested in
managing the switching power consumption by dynamic
voltage/frequency/speed/power scaling. Therefore, by
power/energy consumption we mean dynamic power/
energy consumption. We assume that a processor consumes
no dynamic energy when it is idle.

Assume that we are given n precedence constrained
sequential tasks to be executed on m identical processors.
Let ri represent the execution requirement (i.e., the number
of CPU cycles or the number of instructions) of task i,
where 1 � i � n. We use pi to represent the power allocated
to execute task i. For ease of discussion, we will assume that
pi is simply s�i , where si ¼ p1=�

i is the execution speed of
task i. The execution time of task i is ti ¼ ri=si ¼ ri=p1=�

i .
The energy consumed to execute task i is ei ¼ piti ¼
rip

1�1=�
i ¼ ris��1

i .
Given task execution requirements r1; r2,. . . ; rn, the

problem of minimizing schedule length with energy consump-
tion constraint E on a multiprocessor computer with
m processors is to find the power supplies p1; p2; . . . ; pn
and a nonpreemptive schedule of the n tasks on the
m processors such that the schedule length is minimized
and the total energy consumed does not exceed E.

Given task execution requirements r1; r2; . . . ; rn, the
problem of minimizing energy consumption with schedule
length constraint T on a multiprocessor computer with
m processors is to find the power supplies p1; p2; . . . ; pn and
a nonpreemptive schedule of the n tasks on the
m processors such that the total energy consumption is
minimized and the schedule length does not exceed T .

Notice that we assume that the m processors are tightly
coupled with certain highly efficient communication me-
chanisms such as shared memory. Therefore, we will not
include the communication times among the tasks into our
problems. This is because the data produced by a prede-
cessor can be readily accessible by a successor without any
delay. In other words, we focus on computation times and
processor energy consumption, not communication times
and network energy consumption. This is different from [47]
that addresses task scheduling on clusters which contain

significant communication costs. Our computing model
is the class of multiprocessor computers with negligible
communication costs.

To compare the solutions of our algorithms with optimal
solutions, we need lower bounds for the optimal solutions.
Let R ¼ r1 þ r2 þ � � � þ rn be the total execution requirement
of the n tasks.

The following theorem gives a lower bound for the
optimal schedule length T � for the problem of minimizing
schedule length with energy consumption constraint when
tasks are independent [22], and is certainly applicable to
tasks with precedence constraints.

Theorem 1. For the problem of minimizing schedule length with
energy consumption constraint on a multiprocessor computer,
we have the following lower bound,

T � � m

E

R

m

� ��� �1=ð��1Þ
;

for the optimal schedule length T �.

Notice that the above lower bound can be achieved only
when the workload R can be evenly distributed among the
m processors.

The following theorem gives a lower bound for the
minimum energy consumption E� for the problem of
minimizing energy consumption with schedule length
constraint when tasks are independent [22], and is certainly
applicable to tasks with precedence constraints.

Theorem 2. For the problem of minimizing energy consumption
with schedule length constraint on a multiprocessor computer,
we have the following lower bound,

E� � m R

m

� �� 1

T��1
;

for the minimum energy consumption E�.

Again, the above lower bound can be achieved only
when the workload R can be evenly distributed among the
m processors.

We define the performance ratio as � ¼ T=T � and the
asymptotic performance ratio as �1 ¼ limR=r�!1 � (by fixing
m) for heuristic algorithms that solve the problem of
minimizing schedule length with energy consumption
constraint on a multiprocessor computer, where T is the
length of the schedule produced by an algorithm, and
r� ¼ maxðr1; r2; . . . ; rnÞ is the maximum task execution
requirement.

We define the performance ratio as � ¼ E=E� and the
asymptotic performance ratio as �1 ¼ limR=r�!1 � (by fixingm)
for heuristic algorithms that solve the problem of minimiz-
ing energy consumption with schedule length constraint on
a multiprocessor computer, whereE is the amount of energy
consumed by an algorithm, and r� ¼ maxðr1; r2; . . . ; rnÞ is
the maximum task execution requirement.

An algorithm is asymptotically optimal if the asymptotic
performance ratio is �1 ¼ 1.

Notice that the condition R=r� ! 1 can be satisfied
typically when the ri’s are bounded from above and the
number of tasks increases. In this case, each individual ri
becomes smaller and smaller when compared with R.

1670 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

3 PREPOWER-DETERMINATION ALGORITHMS

The prepower-determination algorithms in this section are
called ES-A, where ES stands for equal-speed, and A is a list
scheduling algorithm. The strategies to solve the three
subproblems are described as follows:

. Power Supplying. All tasks are supplied with the
same power and executed with the same speed
(hence the name equal speed).

. Task Scheduling. The list scheduling algorithms are
used to schedule the tasks.

. Precedence Constraining. Precedence constraints are
dealt with by a list scheduling algorithm during task
scheduling.

The class of list scheduling algorithms were originally
designed for scheduling tasks with precedence constraints
[14]. Given a list of precedence constrained tasks, a list
scheduling algorithm works as follows: as soon as a processor
is available, the first ready task whose predecessors have all
been completed is scheduled on that processor and removed
from the list. This process repeats until all tasks in the list are
finished. There are different strategies in the initial ordering
of the tasks. We mention three of them here.

. List Scheduling (LS). The tasks are arranged in a
random order.

. Largest Requirement First (LRF). The tasks are ar-
ranged such that r1 � r2 � � � � � rn.

. Smallest Requirement First (SRF). The tasks are
arranged such that r1 � r2 � � � � � rn.

In this paper, we consider A 2 fLS;LRF; SRFg. Hence, we
have three prepower-determination algorithms, namely,
ES-LS, ES-LRF, and ES-SRF.

3.1 Minimizing Schedule Length

Let Aðt1; t2; . . . ; tnÞ represent the length of the schedule
produced by algorithmA for n precedence constrained tasks
with execution times t1; t2; . . . ; tn, whereA is a list scheduling
algorithm. The following theorem gives the performance
ratio of algorithm ES-A to solve the problem of minimizing
schedule length with energy consumption constraint.

Theorem 3. By using algorithm ES-A to solve the problem of
minimizing schedule length with energy consumption con-
straint on a multiprocessor computer, the schedule length is

T ¼ Aðr1; r2; :::; rnÞ
R

E

� �1=ð��1Þ
;

whereA is a list scheduling algorithm. The performance ratio is

� � Aðr1; r2; . . . ; rnÞ
R=m

:

For independent tasks, as R=r� ! 1, the asymptotic perfor-
mance ratio is �1 ¼ 1.

Proof. To solve the problem of minimizing schedule length
with energy consumption constraintE by using algorithm
ES-A, we have p1 ¼ p2 ¼ � � � ¼ pn ¼ p and s1 ¼ s2 ¼ � � �
¼ sn ¼ s. Based on the fact that

E ¼ r1p
1�1=� þ r2p

1�1=� þ � � � þ rnp1�1=� ¼ Rp1�1=�;

we get p ¼ ðE=RÞ�=ð��1Þ, and s ¼ p1=� ¼ ðE=RÞ1=ð��1Þ, and

ti ¼ ri=s ¼ riðR=EÞ1=ð��1Þ. We notice that for all x � 0, we

have Aðt1; t2; . . . ; tnÞ ¼ xAðt01; t02; . . . ; t0nÞ, if ti ¼ xt0i for all

1 � i � n. That is, the schedule length is scaled by a factor

ofx if all the task execution times are scaled by a factor ofx.

When the n tasks with execution times t1; t2; . . . ; tn are

scheduled by using a list scheduling algorithm A, we get

the length of the schedule produced by algorithm ES-A as

T ¼ Aðt1; t2; . . . ; tnÞ ¼ Aðr1; r2; . . . ; rnÞ
R

E

� �1=ð��1Þ
:

Thus, by Theorem 1, we get

� ¼ T

T �
� Aðr1; r2; . . . ; rnÞ

R=m
:

For any list scheduling algorithm A and independent

tasks, we have

Aðr1; r2; . . . ; rnÞ �
R

m
þ r�:

The asymptotic optimality follows the last two

inequalities. tu
The power supply to each task is simply ðE=RÞ�=ð��1Þ.

3.2 Minimizing Energy Consumption

The following theorem gives the performance ratio of

algorithm ES-A to solve the problem of minimizing energy

consumption with schedule length constraint.

Theorem 4. By using algorithm ES-A to solve the problem of

minimizing energy consumption with schedule length con-

straint on a multiprocessor computer, the energy consumed is

E ¼ Aðr1; r2; . . . ; rnÞ
T

� ���1

R;

where A is a list scheduling algorithm. The performance

ratio is

� � Aðr1; r2; . . . ; rnÞ
R=m

� ���1

:

For independent tasks, as R=r� ! 1, the asymptotic perfor-

mance ratio is �1 ¼ 1.

Proof. To solve the problem of minimizing energy

consumption with schedule length constraint T by using

algorithm ES-A, we need E such that

Aðt1; t2; . . . ; tnÞ ¼ Aðr1; r2; . . . ; rnÞ
R

E

� �1=ð��1Þ
¼ T;

which gives rise to

E ¼ Aðr1; r2; . . . ; rnÞ
T

� ���1

R:

By Theorem 2, we get

� ¼ E

E�
� Aðr1; r2; . . . ; rnÞ

R=m

� ���1

:

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS WITH REDUCED PROCESSOR ENERGY ON MULTIPROCESSOR COMPUTERS 1671

The asymptotic optimality for independent tasks follows
the last inequality. tu
The power supply to each task is simply ðE=RÞ�=ð��1Þ ¼

ðAðr1; r2; . . . ; rnÞ=T Þ�.

4 POSTPOWER-DETERMINATION ALGORITHMS

The postpower-determination algorithms in this section are
called LL-A, where LL stands for level by level, and A is a list
scheduling algorithm. In this paper, we assumeA ¼ LS, LRF,
SRF. Hence, we have three postpower-determination algo-
rithms, namely, LL-LS, LL-LRF, and LL-SRF. The strategies to
solve the three subproblems are described as follows:

. Precedence Constraining. We propose to use level-by-
level scheduling algorithms to deal with precedence
constraints.

. Task Scheduling. Since tasks in the same level are
independent of each other, they can be scheduled by
any of the efficient algorithms such as list scheduling
algorithms previously developed for scheduling
independent tasks.

. Power Supplying. We then find the optimal power
supplies for the given schedule. We adopt a two-
level energy/time/power allocation scheme for a
given schedule, namely, optimal energy/time allo-
cation among levels of tasks (Theorems 6 and 8) and
optimal energy allocation among groups of tasks in
the same level and optimal power supplies to tasks
in the same group (Theorems 5 and 7).

The decomposition of scheduling precedence constrained
tasks into scheduling levels of independent tasks makes
analysis of level-by-level scheduling algorithms tractable.

A set of n tasks with precedence constraints can be
represented by a partial order � on the tasks, i.e., for two
tasks i and j, if i � j, then task j cannot start its execution until
task i finishes. It is clear that the n tasks and the partial order
� can be represented by a directed task graph, in which,
there arenvertices for then tasks and ði; jÞ is an arc if and only
if i � j. Furthermore, such a task graph must be a directed
acyclic graph (dag). An arc ði; jÞ is redundant if there exists k
such that ði; kÞ and ðk; jÞ are also arcs in the task graph. We
assume that there is no redundant arc in the task graph.

A dag can be decomposed into levels, with v being the
number of levels. Tasks with no predecessors (called
initial tasks) constitute level 1. Generally, a task i is in
level l if the number of nodes on the longest path from
some initial task to task i is l, where 1 � l � v. Note that
all tasks in the same level are independent of each other,
and hence, they can be scheduled by any of the algorithms
(e.g., list scheduling algorithms) for scheduling indepen-
dent tasks. Algorithm LL-A, standing for level-by-level
scheduling with algorithm A, where A is a list scheduling
algorithm, schedules the n tasks level by level in the order
level 1, level 2, . . . , level v. Tasks in level lþ 1 cannot start
their execution until all tasks in level l are completed. For
each level l, where 1 � l � v, we use algorithm A to
generate its schedule.

In the following, we analyze the performance of
algorithm LL-A, and also specify energy/time allocation

among levels of tasks, energy allocation among groups of

tasks in the same level, and power supplies to tasks in the

same group, thus completing the description of our post-

power-determination algorithms.

4.1 Minimizing Schedule Length

Assume that a set of n independent tasks is partitioned into

m groups, such that all the tasks in group k are executed on

processor k, where 1 � k � m. Let Rk denote the total

execution requirement of the tasks in group k. For a given

partition of the n tasks into m groups, we are seeking power

supplies that minimize the schedule length. Let Ek be the

energy consumed by all the tasks in group k. The following

result characterizes the optimal power supplies [22].

Theorem 5. For a given partition R1; R2; . . . ; Rm of the n tasks

into m groups on a multiprocessor computer, the schedule

length is minimized when all tasks in group k are executed

with the same power ðEk=RkÞ�=ð��1Þ, where

Ek ¼
R�
k

R�
1 þR�

2 þ � � � þR�
m

� �
E;

for all 1 � k � m. The optimal schedule length is

T ¼ R�
1 þR�

2 þ � � � þR�
m

E

� �1=ð��1Þ
;

for the above power supplies.

To use a postpower-determination algorithm to solve the

problem of minimizing schedule length with energy

consumption constraint E, we need to allocate the available

energy E to the v levels. We use E1; E2; . . . ; Ev to represent

an energy allocation to the v levels, where level l consumes

energy El, and E1 þE2 þ � � � þ Ev ¼ E. Let nl be the

number of tasks in level l, and rl;1; rl;2; . . . ; rl;nl be the

execution requirements of the nl tasks in level l, and Rl ¼
rl;1 þ rl;2 þ � � � þ rl;nl be the total execution requirement of

tasks in level l, where 1 � l � v. Theorem 6 provides

optimal energy allocation to the v levels for minimizing

schedule length with energy consumption constraint in

scheduling precedence constrained tasks by using schedul-

ing algorithms LL-A, where A is a list scheduling algorithm.

Theorem 6. For a given partition Rl;1; Rl;2; . . . ; Rl;m of the

nl tasks in level l into m groups produced by a list scheduling

algorithm A, where 1 � l � v, and an energy allocation

E1; E2; . . . ; Ev to the v levels, algorithm LL-A produces

schedule length

T ¼
Xv
l¼1

R�
l;1 þR�

l;2 þ � � � þR�
l;m

El

� �1=ð��1Þ
:

The energy allocation E1; E2; . . . ; Ev which minimizes T is

El ¼
S

1=�
l

S
1=�
1 þ S1=�

2 þ � � � þ S1=�
v

 !
E;

where Sl ¼ R�
l;1 þR�

l;2 þ � � � þR�
l;m, for all 1 � l � v, and the

minimized schedule length is

1672 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

T ¼ ðS
1=�
1 þ S1=�

2 þ � � � þ S1=�
v Þ

�=ð��1Þ

E1=ð��1Þ ;

by using the above energy allocation. The performance ratio is

� � 1þmvr
�

R

� ��=ð��1Þ
;

where r� ¼ maxðr1; r2; . . . ; rnÞ is the maximum task execu-

tion requirement. For a fixed m, the performance ratio � can be

arbitrarily close to 1 as R=ðvr�Þ ! 1.

Proof. By Theorem 5, for a given partition Rl;1; Rl;2; . . . ; Rl;m

of the nl tasks in level l into m groups, the schedule

length Tl for level l is minimized when all tasks in group

k of level l are executed with the same power

ðEl;k=Rl;kÞ�=ð��1Þ, where

El;k ¼
R�
l;k

R�
l;1 þR�

l;2 þ � � � þR�
l;m

 !
El;

for all 1 � l � v and 1 � k � m. The optimal schedule

length is

Tl ¼
R�
l;1 þR�

l;2 þ � � � þR�
l;m

El

� �1=ð��1Þ
;

for the above power supplies. Since the level-by-

level scheduling algorithm produces schedule length

T ¼ T1 þ T2 þ � � � þ Tv, we have

T ¼
Xv
l¼1

R�
l;1 þR�

l;2 þ � � � þR�
l;m

El

� �1=ð��1Þ
:

By the definition of Sl, we obtain

T ¼ S1

E1

� �1=ð��1Þ
þ S2

E2

� �1=ð��1Þ
þ � � � þ Sv

Ev

� �1=ð��1Þ
:

To minimize T , we use the Lagrange multiplier system

rT ðE1; E2; . . . ; EvÞ ¼ �rF ðE1; E2; . . . ; EvÞ;

where � is the Lagrange multiplier, and F is the

constraint E1 þE2 þ � � � þ Ev �E ¼ 0. Since

@T

@El
¼ � @F

@El
;

that is,

S
1=ð��1Þ
l � 1

�� 1

� �
1

E
1=ð��1Þþ1
l

¼ �;

for all 1 � l � v, we get

El ¼ S1=�
l

1

�ð1� �Þ

� �ð��1Þ=�
;

which implies that

E ¼
�
S

1=�
1 þ S1=�

2 þ � � � þ S1=�
v

� 1

�ð1� �Þ

� �ð��1Þ=�
;

and

El ¼
S

1=�
l

S
1=�
1 þ S1=�

2 þ � � � þ S1=�
v

 !
E;

for all 1 � l � v. By using the above energy allocation,
we have

T ¼
Xv
l¼1

Sl
El

� �1=ð��1Þ

¼
Xv
l¼1

S
1=ð��1Þ
l

S
1=�
l

S
1=�
1 þ S1=�

2 þ � � � þ S1=�
v

 !
E

 !1=ð��1Þ

¼
Xv
l¼1

S
1=�
l

�
S

1=�
1 þ S1=�

2 þ � � � þ S1=�
v

�1=ð��1Þ

E1=ð��1Þ

¼
�
S

1=�
1 þ S1=�

2 þ � � � þ S1=�
v

��=ð��1Þ

E1=ð��1Þ :

For any list scheduling algorithm A, we have

Rl;k �
Rl

m
þ r�;

for all 1 � l � v and 1 � k � m. Therefore,

Sl � m
Rl

m
þ r�

� ��
;

and

S
1=�
l � m1=� Rl

m
þ r�

� �
;

and

S
1=�
1 þ S1=�

2 þ � � � þ S1=�
v � m1=� R

m
þ vr�

� �
;

which implies that

T � m1=ð��1Þ R

m
þ vr�

� ��=ð��1Þ 1

E1=ð��1Þ :

By Theorem 1, we get

� ¼ T

T �
� 1þmvr

�

R

� ��=ð��1Þ
:

It is clear that for a fixed m, � can be arbitrarily close to 1
as R=ðvr�Þ becomes large. tu
Theorems 5 and 6 give the power supply to the tasks in

group k of level l as

El;k

Rl;k

� ��=ð��1Þ
¼

R�
l;k

R�
l;1 þR�

l;2 þ � � � þR�
l;m

 !

S
1=�
l

S
1=�
1 þ S1=�

2 þ � � � þ S1=�
v

 !
E

Rl;k

!�=ð��1Þ

;

for all 1 � l � v and 1 � k � m.

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS WITH REDUCED PROCESSOR ENERGY ON MULTIPROCESSOR COMPUTERS 1673

4.2 Minimizing Energy Consumption

The following result gives the optimal power supplies that

minimize energy consumption for a given partition of a set

of n independent tasks into m groups on a multiprocessor

computer [22].

Theorem 7. For a given partition R1; R2,. . . ; Rm of the n tasks

into m groups on a multiprocessor computer, the total energy

consumption is minimized when all tasks in group k are

executed with the same power ðRk=T Þ�, where 1 � k � m.

The minimum energy consumption is

E ¼ R
�
1 þR�

2 þ � � � þR�
m

T��1
;

for the above power supplies.

To use a postpower-determination algorithm to solve the

problem of minimizing energy consumption with schedule

length constraint T , we need to allocate the time T to the

v levels. We use T1; T2,. . . ; Tv to represent a time allocation to

the v levels, where tasks in level l are executed within

deadline Tl, and T1 þ T2 þ � � � þ Tv ¼ T . Theorem 8 provides

optimal time allocation to the v levels for minimizing energy

consumption with schedule length constraint in scheduling

precedence constrained tasks by using scheduling algo-

rithms LL-A, where A is a list scheduling algorithm.

Theorem 8. For a given partition Rl;1; Rl;2,. . . ; Rl;m of the

nl tasks in level l into m groups produced by a list

scheduling algorithm A, where 1 � l � v, and a time

allocation T1; T2,. . . ; Tv to the v levels, algorithm LL-A

consumes energy

E ¼
Xv
l¼1

R�
l;1 þR�

l;2 þ � � � þR�
l;m

T��1
l

� �
:

The time allocation T1; T2,. . . ; Tv which minimizes E is

Tl ¼
S

1=�
l

S
1=�
1 þ S1=�

2 þ � � � þ S1=�
v

 !
T;

where Sl ¼ R�
l;1 þR�

l;2 þ � � � þR�
l;m, for all 1 � l � v, and the

minimized energy consumption is

E ¼
�
S

1=�
1 þ S1=�

2 þ � � � þ S1=�
v

��
T��1

;

by using the above time allocation. The performance ratio is

� � 1þmvr
�

R

� ��
;

where r� ¼ maxðr1; r2; . . . ; rnÞ is the maximum task execu-

tion requirement. For a fixed m, the performance ratio � can be

arbitrarily close to 1 as R=ðvr�Þ ! 1.

Proof. By Theorem 7, for a given partition Rl;1; Rl;2; . . . ; Rl;m

of the nl tasks in level l into m groups, the total energy El

consumed by level l is minimized when all tasks in

group k are executed with the same power ðRl;k=TlÞ�,

where 1 � l � v and 1 � k � m. The minimum energy

consumption is

El ¼
R�
l;1 þR�

l;2 þ � � � þR�
l;m

T��1
l

;

for the above power supplies. Since the level-by-level

scheduling algorithm consumes energy E ¼ E1 þ E2 þ
� � � þEv, we have

E ¼
Xv
l¼1

R�
l;1 þR�

l;2 þ � � � þR�
l;m

T��1
l

� �
:

By the definition of Sl, we obtain

E ¼ S1

T��1
1

þ S2

T��1
2

þ � � � þ Sv
T��1
v

:

To minimize E, we use the Lagrange multiplier system

rEðT1; T2; . . . ; TvÞ ¼ �rF ðT1; T2; . . . ; TvÞ;

where � is the Lagrange multiplier, and F is the

constraint T1 þ T2 þ � � � þ Tv � T ¼ 0. Since

@E

@Tl
¼ � @F

@Tl
;

that is,

Sl
1� �
T�l

� �
¼ �;

for all 1 � l � v, we get

Tl ¼ S1=�
l

1� �
�

� �1=�

;

which implies that

T ¼ ðS1=�
1 þ S1=�

2 þ � � � þ S1=�
v Þ

1� �
�

� �1=�

;

and

Tl ¼
S

1=�
l

S
1=�
1 þ S1=�

2 þ � � � þ S1=�
v

 !
T;

for all 1 � l � v. By using the above time allocation, we

have

E ¼
Xv
l¼1

Sl
T��1
l

¼
Xv
l¼1

Sl

S
1=�
l

S
1=�
1 þ S1=�

2 þ � � � þ S1=�
v

 !
T

 !��1

¼
Xv
l¼1

S
1=�
l ðS

1=�
1 þ S1=�

2 þ � � � þ S1=�
v Þ

��1

T��1

¼ ðS
1=�
1 þ S1=�

2 þ � � � þ S1=�
v Þ

�

T��1
:

1674 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

Similar to the proof of Theorem 6, we have

S
1=�
1 þ S1=�

2 þ � � � þ S1=�
v � m1=� R

m
þ vr�

� �
;

which implies that

E � m R

m
þ vr�

� �� 1

T��1
:

By Theorem 2, we get

� ¼ E

E�
� 1þmvr

�

R

� ��
:

It is clear that for a fixed m;� can be arbitrarily close to 1

as R=ðvr�Þ becomes large. tu
Theorems 7 and 8 give the power supply to the tasks in

group k of level l as

Rl;k

Tl

� ��
¼ Rl;kðS1=�

1 þ S1=�
2 þ � � � þ S1=�

v Þ
S

1=�
l T

 !�

;

for all 1 � l � v and 1 � k � m.

5 HYBRID ALGORITHMS

The hybrid algorithms in this section are called LL-ES-A,

where LL stands for level by level, ES stands for equal speed,

and A is a list scheduling algorithm. In this paper, we

consider A 2 fLS;LRF; SRFg. Hence, we have three hybrid

algorithms, namely, LL-ES-LS, LL-ES-LRF, and LL-ES-SRF.

The strategies to solve the three subproblems are described

as follows:

. Precedence Constraining. The level-by-level schedul-
ing algorithms are employed to deal with prece-
dence constraints.

. Task Scheduling. Independent tasks in the same level
are supplied with the same power and executed
with the same speed and scheduled by using list
scheduling algorithms.

. Power Supplying. We then determine optimal en-
ergy/time allocation among levels of tasks for the
given schedule (Theorems 9 and 10).

Notice that power allocation and task scheduling are mixed.

The equal-speed strategy implies prepower-determination

for tasks in the same level. The level-by-level scheduling

method implies postpower-determination for tasks of

different levels.

5.1 Minimizing Schedule Length

Theorem 9 provides optimal energy allocation to the v levels

for minimizing schedule length with energy consumption

constraint in scheduling precedence constrained tasks by

using hybrid scheduling algorithms LL-ES-A, where A is a

list scheduling algorithm.

Theorem 9. For a given energy allocation E1; E2; . . . ; Ev to the

v levels, the scheduling algorithm LL-ES-A, where A is a list

scheduling algorithm, produces schedule length

T ¼ A1
R1

E1

� �1=ð��1Þ
þA2

R2

E2

� �1=ð��1Þ
þ � � � þAv

Rv

Ev

� �1=ð��1Þ
;

where Al ¼ Aðrl;1; rl;2; . . . ; rl;nlÞ is the length of the schedule

produced by algorithm A for nl tasks with execution times

rl;1; rl;2; . . . ; rl;nl . The en\textbackslash ergy allocation

E1; E2; . . . ; Ev which minimizes T is

El ¼
A

1�1=�
l R

1=�
l

A
1�1=�
1 R

1=�
1 þA1�1=�

2 R
1=�
2 þ � � � þA1�1=�

v R
1=�
v

 !
E;

for all 1 � l � v, and the minimized schedule length is

T ¼ ðA
1�1=�
1 R

1=�
1 þA1�1=�

2 R
1=�
2 þ � � � þA1�1=�

v R1=�
v Þ

�=ð��1Þ

E1=ð��1Þ ;

by using the above energy allocation. The performance ratio is

� � 1þmvr
�

R

� ��=ð��1Þ
;

where r� ¼ maxðr1; r2; . . . ; rnÞ is the maximum task execu-

tion requirement. For a fixed m, the performance ratio � can be

arbitrarily close to 1 as R=ðvr�Þ ! 1.

Proof. From Theorem 3, we know that the schedule length

for the nl tasks in level l is

Tl ¼ Aðrl;1; rl;2; . . . ; rl;nlÞ
Rl

El

� �1=ð��1Þ
¼ Al

Rl

El

� �1=ð��1Þ
;

by using algorithm ES-A, where A is a list scheduling

algorithm. Since the level-by-level scheduling algorithm

produces schedule length T ¼ T1 þ T2 þ � � � þ Tv, we

have

T ¼ A1
R1

E1

� �1=ð��1Þ

þA2
R2

E2

� �1=ð��1Þ
þ � � � þAv

Rv

Ev

� �1=ð��1Þ
:

To minimize T , we use the Lagrange multiplier system

rT ðE1; E2; . . . ; EvÞ ¼ �rF ðE1; E2; . . . ; EvÞ;

where � is the Lagrange multiplier, and F is the constraint

E1 þ E2 þ � � � þ Ev � E ¼ 0. Since

@T

@El
¼ � @F

@El
;

that is,

AlR
1=ð��1Þ
l � 1

�� 1

� �
1

E
1=ð��1Þþ1
l

¼ �;

for all 1 � l � v, we get

El ¼ A1�1=�
l R

1=�
l

1

�ð1� �Þ

� �ð��1Þ=�
;

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS WITH REDUCED PROCESSOR ENERGY ON MULTIPROCESSOR COMPUTERS 1675

which implies that

E ¼
�
A

1�1=�
1 R

1=�
1 þ � � � þA1�1=�

v R1=�
v

� 1

�ð1� �Þ

� �ð��1Þ=�
;

and

El ¼
A

1�1=�
l R

1=�
l

A
1�1=�
1 R

1=�
1 þ � � � þA1�1=�

v R
1=�
v

 !
E;

for all 1 � l � v. By using the above energy allocation, we

have

T ¼
Xv
l¼1

Al
Rl

El

� �1=ð��1Þ

¼
Xv
l¼1

AlR
1=ð��1Þ
l

A
1�1=�
l R

1=�
l

A
1�1=�
1 R

1=�
1 þ � � � þA1�1=�

v R
1=�
v

 !
E

 !1=ð��1Þ

¼
�
A

1�1=�
1 R

1=�
1 þ � � � þA1�1=�

v R1=�
v

�1=ð��1Þ

Xv
l¼1

A
1�1=�
l R

1=�
l

E1=ð��1Þ

¼
�
A

1�1=�
1 R

1=�
1 þ � � � þA1�1=�

v R1=�
v

��=ð��1Þ

E1=ð��1Þ :

Since

Al �
Rl

m
þ r�;

we obtain

A
1�1=�
l R

1=�
l � Rl

m
þ r�

� �1�1=�

R
1=�
l

¼ Rl þmr�
m

� �1�1=�

R
1=�
l

� Rl þmr�
m

� �1�1=�

ðRl þmr�Þ1=�

¼ Rl þmr�
m1�1=�

;

and

A
1�1=�
1 R

1=�
1 þA1�1=�

2 R
1=�
2 þ � � � þA1�1=�

v R1=�
v � Rþmvr

�

m1�1=�
;

and

T � ðRþmvr
�Þ�=ð��1Þ

mE1=ð��1Þ :

By Theorem 1, we get

� ¼ T

T �
� 1þmvr

�

R

� ��=ð��1Þ
:

It is clear that for a fixed m;� can be arbitrarily close to 1
as R=ðvr�Þ becomes large. tu
Theorems 3 and 9 give the power supply to the tasks

in level l as

El
Rl

� ��=ð��1Þ
¼

A
1�1=�
l R

1=�
l

A
1�1=�
1 R

1=�
1 þ � � � þA1�1=�

v R
1=�
v

 !
E

Rl

 !�=ð��1Þ

;

for all 1 � l � v.

5.2 Minimizing Energy Consumption

Theorem 10 provides optimal time allocation to the v levels
for minimizing energy consumption with schedule length
constraint in scheduling precedence constrained tasks by
using hybrid scheduling algorithms LL-ES-A, where A is a
list scheduling algorithm.

Theorem 10. For a given time allocation T1; T2,. . . ; Tv to the

v levels, the scheduling algorithm LL-ES-A, where A is a list
scheduling algorithm, consumes energy

E ¼ A1

T1

� ���1

R1 þ
A2

T2

� ���1

R2 þ � � � þ
Av

Tv

� ���1

Rv;

where Al ¼ Aðrl;1; rl;2; . . . ; rl;nlÞ is the length of the schedule
produced by algorithm A for nl tasks with execution times
rl;1; rl;2; . . . ; rl;nl . The time allocation T1; T2; . . . ; Tv which
minimizes E is

Tl ¼
A

1�1=�
l R

1=�
l

A
1�1=�
1 R

1=�
1 þA1�1=�

2 R
1=�
2 þ � � � þA1�1=�

v R
1=�
v

 !
T;

for all 1 � l � v, and the minimized energy consumption is

E ¼ ðA
1�1=�
1 R

1=�
1 þA1�1=�

2 R
1=�
2 þ � � � þA1�1=�

v R1=�
v Þ

�

T��1
;

by using the above time allocation. The performance ratio is

� � 1þmvr
�

R

� ��
;

where r� ¼ maxðr1; r2; . . . ; rnÞ is the maximum task execu-
tion requirement. For a fixed m, the performance ratio � can be
arbitrarily close to 1 as R=ðvr�Þ ! 1.

Proof. From Theorem 4, we know that the energy consumed
by the nl tasks in level l is

El ¼
Aðrl;1; rl;2; . . . ; rl;nlÞ

Tl

� ���1

Rl ¼
Al

Tl

� ���1

Rl;

by using algorithm ES-A, where A is a list scheduling
algorithm. Since the level-by-level scheduling algorithm
consumes energy E ¼ E1 þ E2 þ � � � þ Ev, we have

E ¼ A1

T1

� ���1

R1 þ
A2

T2

� ���1

R2 þ � � � þ
Av

Tv

� ���1

Rv:

1676 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

To minimize E, we use the Lagrange multiplier system

rEðT1; T2; . . . ; TvÞ ¼ �rF ðT1; T2; . . . ; TvÞ;

where � is the Lagrange multiplier, and F is the
constraint T1 þ T2 þ � � � þ Tv � T ¼ 0. Since

@E

@Tl
¼ � @F

@Tl
;

that is,

A��1
l Rl

1� �
T�l

� �
¼ �;

for all 1 � l � v, we get

Tl ¼ A1�1=�
l R

1=�
l

1� �
�

� �1=�

;

which implies that

T ¼ ðA1�1=�
1 R

1=�
1 þA1�1=�

2 R
1=�
2 þ � � � þA1�1=�

v R1=�
v Þ

1� �
�

� �1=�

;

and

Tl ¼
A

1�1=�
l R

1=�
l

A
1�1=�
1 R

1=�
1 þA1�1=�

2 R
1=�
2 þ � � � þA1�1=�

v R
1=�
v

 !
T;

for all 1 � l � v. By using the above time allocation, we
have

E ¼
Xv
l¼1

Al

Tl

� ���1

Rl

¼
Xv
l¼1

A��1
l Rl

A
1�1=�
l R

1=�
l

A
1�1=�
1 R

1=�
1 þ � � � þA1�1=�

v R
1=�
v

 !
T

 !��1

¼ ðA
1�1=�
1 R

1=�
1 þ � � � þA1�1=�

v R1=�
v Þ

��1

T��1 Xv
l¼1

A
1�1=�
l R

1=�
l

¼ ðA
1�1=�
1 R

1=�
1 þ � � � þA1�1=�

v R1=�
v Þ

�

T��1
:

Similar to the proof of Theorem 9, we have

A
1�1=�
1 R

1=�
1 þA1�1=�

2 R
1=�
2 þ � � � þA1�1=�

v R1=�
v � Rþmvr

�

m1�1=�
;

and

E � ðRþmvr
�Þ�

m��1T��1
:

By Theorem 2, we get

� ¼ E

E�
� 1þmvr

�

R

� ��
:

It is clear that for a fixed m;� can be arbitrarily close to 1

as R=ðvr�Þ becomes large. tu
Theorems 4 and 10 give the power supply to the tasks

in level l as

Al

Tl

� ��
¼

AlðA1�1=�
1 R

1=�
1 þA1�1=�

2 R
1=�
2 þ � � � þA1�1=�

v R1=�
v Þ

A
1�1=�
l R

1=�
l T

 !�

;

for all 1 � l � v.

6 SIMULATION RESULTS

In this section, we present simulation data for several typical
task graphs in parallel and distributed computing. The
following task graphs are considered in our experiments.

1. Tree-Structured Computations. Many computations are
tree-structured, including backtracking search,
branch-and-bound computations, game-tree evalua-
tion, functional and logical programming, and
various numeric computations. For simplicity, we
consider CTðb; hÞ, i.e., complete b-ary trees of height h
(see Fig. 1 with b ¼ 2 and h ¼ 4). It is easy to see that
there are v ¼ hþ 1 levels numbered as 0; 1; 2; . . . ; h,
and nl ¼ bl for 0 � l � h, and n ¼ ðbhþ1 � 1Þ=ðb� 1Þ.

2. Partitioning Algorithms. A partitioning algorithm
PAðb; hÞ represents a divide-and-conquer computa-
tion with branching factor b and height (i.e., depth of
recursion) h (see Fig. 2 with b ¼ 2 and h ¼ 3). The dag
of PAðb; hÞ has v ¼ 2hþ 1 levels numbered as
0; 1; 2; . . . ; 2h. A partitioning algorithm proceeds in
three stages. In levels 0; 1; . . . ; h� 1, each task is
divided into b subtasks. Then, in level h, subproblems

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS WITH REDUCED PROCESSOR ENERGY ON MULTIPROCESSOR COMPUTERS 1677

Fig. 1. CTðb; hÞ: a complete binary tree with b ¼ 2 and height h ¼ 4.

Fig. 2. PAðb; hÞ: a partitioning algorithm with b ¼ 2 and h ¼ 3.

of small sizes are solved directly. Finally, in levels
hþ 1; hþ 2; . . . ; 2h, solutions to subproblems are
combined to form the solution to the original
problem. Clearly, nl ¼ n2h�l ¼ bl, for all 0 � l �
h� 1; nh ¼ bh, and n ¼ ðbhþ1 þ bh � 2Þ=ðb� 1Þ.

3. Linear Algebra Task Graphs. A linear algebra task graph
LAðvÞ with v levels (see Fig. 3 where v ¼ 5) has nl ¼
v� lþ 1 for l ¼ 1; 2; . . . ; v, and n ¼ vðvþ 1Þ=2.

4. Diamond Dags. A diamond dag DDðdÞ (see Fig. 4
with d ¼ 4) contains v ¼ 2d� 1 levels numbered as
1; 2; . . . ; 2d� 1. It is clear that nl ¼ n2d�l ¼ l, for all
1 � l � d� 1; nd ¼ d, and n ¼ d2.

Since each task graph has at least one parameter, we are
actually dealing with classes of task graphs.

We define the normalized schedule length (NSL) as

NSL ¼ T

m

E

R

m

� ��� �1=ð��1Þ ;

where T is the schedule length produced by a heuristic
algorithm. NSL is an upper bound for the performance
ratio � ¼ T=T � for the problem of minimizing schedule
length with energy consumption constraint on a multi-
processor computer. When the ri’s are random variables,
T; T �; �, and NSL all become random variables. It is clear
that for the problem of minimizing schedule length with
energy consumption constraint, we have �� � NSL, i.e., the
expected performance ratio is no larger than the expected
normalized schedule length. (We use �x to represent the
expectation of a random variable x.)

We define the normalized energy consumption (NEC) as

NEC ¼ E

m
R

m

� �� 1

T��1

;

where E is the energy consumed by a heuristic algorithm.
NEC is an upper bound for the performance ratio � ¼ E=E�
for the problem of minimizing energy consumption with
schedule length constraint on a multiprocessor computer.
For the problem of minimizing energy consumption with
schedule length constraint, we have �� � NEC.

Notice that for a given algorithm and a given class of task
graphs, the expected normalized schedule length NSL and
the expected normalized energy consumption NEC are
determined by m;n; �, and the probability distribution of
the ri’s. In our simulations, the number of processors is set
as m ¼ 10 and the parameter � is set as 3. For convenience,
the ri’s are treated as independent and identically dis-
tributed (i.i.d.) continuous random variables uniformly
distributed in ½0; 1Þ.

Tables 1, 2, 3, and 4, show our simulation data of the
expected NSL and the expected NEC for the four classes of
task graphs. For each combination of n and algorithm A 2 f
LL-ES-SRF, LL-ES-LS, LL-ES-LRF, LL-SRF, LL-LS, LL-LRF,
ES-SRF, ES-LS, ES-LRF g, we generate 1,000 sets of n tasks,
produce their schedules by using Algorithm A, calculate
their NSL (or NEC), and report the average of NSL (or
NEC), which is the experimental value of NSL (or NEC).
The 99 percent confidence interval of all the data in the
same table is also given.

It is observed that in all cases, NSL and NEC (and �� as
well) quickly approach one as n increases. This is explained
as follows:

A class of task graphs are called wide task graphs if v=n!
0 as n!1. It is easily verified that all the four classes of
task graphs are wide task graphs. Since wide task graphs
exhibit large parallelism due to increasing number of
independent tasks as v increases, the performance of
algorithm ES-A in scheduling precedence constrained tasks
is dominated by the performance of algorithm ES-A in
scheduling levels of independent tasks, where A is a list

1678 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

Fig. 4. DDðdÞ: a diamond dag with d ¼ 4.

Fig. 3. LAðvÞ: a linear algebra task graph with v ¼ 5.

TABLE 1
Simulation Data for Expected (a) NSL
on CTð2; hÞ and (b) NEC on CTð2; hÞ

scheduling algorithm. By Theorems 3 and 4, the asymptotic
performance ratio is �1 ¼ 1 as R=r� ! 1.

It is clear that for a class of wide task graphs, a uniform
distribution of the ri’s in ½0; 1Þ, and any small � > 0, there
exists sufficiently large n�, such that ðvr�Þ=R � � with high
probability (w.h.p.) if n � n�. By Theorems 6 and 9, the
performance ratio is � � ð1þm�Þ�=ð��1Þ w.h.p. for the
problem of minimizing schedule length with energy
consumption constraint, for all LL-A and LL-ES-A, where
A is a list scheduling algorithm. By Theorems 8 and 10, the

performance ratio is � � ð1þm�Þ� w.h.p. for the problem of
minimizing energy consumption with schedule length
constraint, for all LL-A and LL-ES-A, where A is a list
scheduling algorithm.

It is also observed that the postpower-determination
algorithm LL-LRF performs better than all other algorithms.

7 CONCLUDING REMARKS

We have addressed power-aware scheduling of sequential
tasks with precedence constraints on multiprocessor com-
puters with dynamically variable voltage and speed as
combinatorial optimization problems. We have investigated
two problems, namely, the problem of minimizing schedule
length with energy consumption constraint and the problem
of minimizing energy consumption with schedule length
constraint. We identified three nontrivial subproblems in
our scheduling problems, i.e., precedence constraining, task
scheduling, and power supplying. Such decomposition of
our optimization problems into three subproblems makes
design and analysis of heuristic algorithms tractable. We
have proposed three types of heuristic power allocation and
scheduling algorithms for precedence constrained sequen-
tial tasks with energy and time constraints, namely, pre-
power-determination algorithms, postpower-determination
algorithms, and hybrid algorithms. We have analyzed the
performance of our algorithms and compared their solutions
with optimal schedules analytically. We also presented
extensive simulation data and demonstrated that for wide
task graphs, the performance ratios of all our heuristic
algorithms approach one as the number of tasks increases.
Our algorithms are applicable to energy-efficient task
scheduling in general multiprocessor and multicore proces-
sor computing systems and large scale parallel computing
systems, real-time multiprocessing systems and environ-
ments, and mobile computing and communication environ-
ments.

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS WITH REDUCED PROCESSOR ENERGY ON MULTIPROCESSOR COMPUTERS 1679

TABLE 3
Simulation Data for Expected (a) NSL

on LA(v) and (b) NEC on LA(v)

TABLE 4
Simulation Data for Expected (a) NSL

on DDðdÞ and (b) NEC on DDðdÞ

TABLE 2
Simulation Data for Expected (a) NSL
on PAð2; hÞ and (b) NEC on PAð2; hÞ

We would like to mention the following further research

directions. 1) The lower bounds in Theorems 1 and 2 should

be refined for precedence constrained tasks. 2) We con-

jecture that for any class of wide task graphs, any

probability distribution of the ri’s with finite mean and

variance, and any small � > 0, there exists sufficiently large

n�, such that Aðr1; r2; . . . ; rnÞ=ðR=mÞ � 1þ � w.h.p. if

n � n�, where A is a list scheduling algorithm, and hence,

the performance ratio is � � 1þ � w.h.p. for the problem of

minimizing schedule length with energy consumption

constraint and � � ð1þ �Þ��1 w.h.p. for the problem of

minimizing energy consumption with schedule length

constraint, for all ES-A, where A is a list scheduling

algorithm. A proof of the above conjecture would be of

great interest. 3) We conjecture that for any class of wide

task graphs, any probability distribution of the ri’s with

finite mean and variance, and any small � > 0, there exists

sufficiently large n�, such that ðvr�Þ=R � � w.h.p. if n � n�,
and hence, the performance ratio is � � ð1þm�Þ�=ð��1Þ

w.h.p. for the problem of minimizing schedule length with

energy consumption constraint and � � ð1þm�Þ� w.h.p.

for the problem of minimizing energy consumption with

schedule length constraint, for all LL-A and LL-ES-A, where

A is a list scheduling algorithm. A proof of the above

conjecture would be of great interest.

ACKNOWLEDGMENTS

Thanks are due to the reviewers for their comments. A
preliminary version of the paper was presented on the
seventh Workshop on High-Performance, Power-Aware
Computing, Anchorage, Alaska, May 16-20, 2011.

REFERENCES

[1] http://en.wikipedia.org/wiki/CMOS, 2012.
[2] http://en.wikipedia.org/wiki/Dynamic_voltage_scaling, 2012.
[3] http://en.wikipedia.org/wiki/Moore’s_law, 2012.
[4] http://www.green500.org/, 2012.
[5] S. Albers, “Energy-Efficient Algorithms,” Comm. of the ACM,

vol. 53, no. 5, pp. 86-96, 2010.
[6] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez, “Power-

Aware Scheduling for Periodic Real-Time Tasks,” IEEE Trans.
Computers, vol. 53, no. 5, pp. 584-600, May 2004.

[7] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic Speed Scaling to
Manage Energy and Temperature,” Proc. IEEE 45th Symp.
Foundation of Computer Science, pp. 520-529, 2004.

[8] J.A. Barnett, “Dynamic Task-Level Voltage Scheduling Optimiza-
tions,” IEEE Trans. Computers, vol. 54, no. 5, pp. 508-520, May 2005.

[9] L. Benini, A. Bogliolo, and G. De Micheli, “A Survey of Design
Techniques for System-Level Dynamic Power Management,”
IEEE Trans. Very Large Scale Integration Systems, vol. 8, no. 3,
pp. 299-316, June 2000.

[10] D.P. Bunde, “Power-Aware Scheduling for Makespan and Flow,”
Proc. 18th ACM Symp. Parallelism in Algorithms and Architectures,
pp. 190-196, 2006.

[11] H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, and
P.W.H. Wong, “Energy Efficient Online Deadline Scheduling,”
Proc. 18th ACM-SIAM Symp. Discrete Algorithms, pp. 795-804, 2007.

[12] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power
CMOS Digital Design,” IEEE J. Solid-State Circuits, vol. 27, no. 4,
pp. 473-484, Apr. 1992.

[13] S. Cho and R.G. Melhem, “On the Interplay of Parallelization,
Program Performance, and Energy Consumption,” IEEE Trans.
Parallel and Distributed Systems, vol. 21, no. 3, pp. 342-353, Mar. 2010.

[14] R.L. Graham, “Bounds on Multiprocessing Timing Anomalies,”
SIAM J. Applied Math., vol. 2, pp. 416-429, 1969.

[15] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.B. Srivastava,
“Power Optimization of Variable-Voltage Core-Based Systems,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 12, pp. 1702-1714, Dec. 1999.

[16] C. Im, S. Ha, and H. Kim, “Dynamic Voltage Scheduling with
Buffers in Low-Power Multimedia Applications,” ACM Trans.
Embedded Computing Systems, vol. 3, no. 4, pp. 686-705, 2004.

[17] S.U. Khan and I. Ahmad, “A Cooperative Game Theoretical
Technique for Joint Optimization of Energy Consumption and
Response Time in Computational Grids,” IEEE Trans. Parallel and
Distributed Systems, vol. 20, no. 3, pp. 346-360, Mar. 2009.

[18] C.M. Krishna and Y.-H. Lee, “Voltage-Clock-Scaling Adaptive
Scheduling Techniques for Low Power in Hard Real-Time
Systems,” IEEE Trans. Computers, vol. 52, no. 12, pp. 1586-1593,
Dec. 2003.

[19] W.-C. Kwon and T. Kim, “Optimal Voltage Allocation Techniques
for Dynamically Variable Voltage Processors,” ACM Trans.
Embedded Computing Systems, vol. 4, no. 1, pp. 211-230, 2005.

[20] Y.C. Lee and A.Y. Zomaya, “Energy Conscious Scheduling for
Distributed Computing Systems Under Different Operating
Conditions,” IEEE Trans. Parallel and Distributed Systems, vol. 22,
no. 8, pp. 1374-1381, Aug. 2011.

[21] Y.-H. Lee and C.M. Krishna, “Voltage-Clock Scaling for Low
Energy Consumption in Fixed-Priority Real-Time Systems,” Real-
Time Systems, vol. 24, no. 3, pp. 303-317, 2003.

[22] K. Li, “Performance Analysis of Power-Aware Task Scheduling
Algorithms on Multiprocessor Computers with Dynamic Voltage
and Speed,” IEEE Trans. Parallel and Distributed Systems, vol. 19,
no. 11, pp. 1484-1497, Nov. 2008.

[23] K. Li, “Energy Efficient Scheduling of Parallel Tasks on Multi-
processor Computers,” J. Supercomputing, vol. 60, no. 2, pp. 223-
247, 2012.

[24] K. Li, “Algorithms and Analysis of Energy-Efficient Scheduling of
Parallel Tasks,” Handbook of Energy-Aware and Green Computing,
I. Ahmad and S. Ranka, eds., vol. 1, ch. 15, pp. 331-360,
CRC Press/Taylor & Francis Group, 2012.

[25] K. Li, “Power Allocation and Task Scheduling on Multiprocessor
Computers with Energy and Time Constraints,” Energy Aware
Distributed Computing Systems, A. Zomaya and Y.-C. Lee, eds.,
ch. 1, John Wiley & Sons, July 2012.

[26] M. Li, B.J. Liu, and F.F. Yao, “Min-Energy Voltage Allocation for
Tree-Structured Tasks,” J. Combinatorial Optimization, vol. 11,
pp. 305-319, 2006.

[27] M. Li, A.C. Yao, and F.F. Yao, “Discrete and Continuous Min-
Energy Schedules for Variable Voltage Processors,” Proc. Nat’l
Academy of Sciences of USA, vol. 103, no. 11, pp. 3983-3987, 2006.

[28] M. Li and F.F. Yao, “An Efficient Algorithm for Computing
Optimal Discrete Voltage Schedules,” SIAM J. Computing, vol. 35,
no. 3, pp. 658-671, 2006.

[29] J.R. Lorch and A.J. Smith, “PACE: A New Approach to Dynamic
Voltage Scaling,” IEEE Trans. Computers, vol. 53, no. 7, pp. 856-869,
July 2004.

[30] R.N. Mahapatra and W. Zhao, “An Energy-Efficient Slack
Distribution Technique for Multimode Distributed Real-Time
Embedded Systems,” IEEE Trans. Parallel and Distributed Systems,
vol. 16, no. 7, pp. 650-662, July 2005.

[31] G. Quan and X.S. Hu, “Energy Efficient DVS Schedule for Fixed-
Priority Real-Time Systems,” ACM Trans. Embedded Computing
Systems, vol. 6, no. 4, article 29, 2007.

[32] C. Rusu, R. Melhem, and D. Mossé, “Maximizing the System
Value While Satisfying Time and Energy Constraints,” Proc. IEEE
23rd Real-Time Systems Symp., pp. 256-265, 2002.

[33] D. Shin and J. Kim, “Power-Aware Scheduling of Conditional
Task Graphs in Real-Time Multiprocessor Systems,” Proc. Int’l
Symp. Low Power Electronics and Design, pp. 408-413, 2003.

[34] D. Shin, J. Kim, and S. Lee, “Intra-Task Voltage Scheduling for
Low-Energy Hard Real-Time Applications,” IEEE Design & Test of
Computers, vol. 18, no. 2, pp. 20-30, Mar./Apr. 2001.

[35] M.R. Stan and K. Skadron, “Guest Editors’ Introduction: Power-
Aware Computing,” Computer, vol. 36, no. 12, pp. 35-38, Dec. 2003.

[36] O.S. Unsal and I. Koren, “System-Level Power-Aware Design
Techniques in Real-Time Systems,” Proc. IEEE, vol. 91, no. 7,
pp. 1055-1069, July 2003.

[37] V. Venkatachalam and M. Franz, “Power Reduction Techniques
for Microprocessor Systems,” ACM Computing Surveys, vol. 37,
no. 3, pp. 195-237, 2005.

1680 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 12, DECEMBER 2012

[38] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy,” Proc. First USENIX Symp. Operating
Systems Design and Implementation, pp. 13-23, 1994.

[39] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest,
and R. Lauwereins, “Energy-Aware Runtime Scheduling for
Embedded-Multiprocessor SOCs,” IEEE Design & Test of Compu-
ters, vol. 18, no. 5, pp. 46-58, Sept./Oct. 2001.

[40] F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for
Reduced CPU Energy,” Proc. IEEE 36th Symp. Foundations of
Computer Science, pp. 374-382, 1995.

[41] H.-S. Yun and J. Kim, “On Energy-Optimal Voltage Scheduling for
Fixed-Priority Hard Real-Time Systems,” ACM Trans. Embedded
Computing Systems, vol. 2, no. 3, pp. 393-430, 2003.

[42] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical and
Practical Limits of Dynamic Voltage Scaling,” Proc. 41st Design
Automation Conf., pp. 868-873, 2004.

[43] X. Zhong and C.-Z. Xu, “Energy-Aware Modeling and Scheduling
for Dynamic Voltage Scaling with Statistical Real-Time Guaran-
tee,” IEEE Trans. Computers, vol. 56, no. 3, pp. 358-372, Mar. 2007.

[44] D. Zhu, R. Melhem, and B.R. Childers, “Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-
processor Real-Time Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 14, no. 7, pp. 686-700, July 2003.

[45] D. Zhu, D. Mossé, and R. Melhem, “Power-Aware Scheduling for
AND/OR Graphs in Real-Time Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 15, no. 9, pp. 849-864, Sept. 2004.

[46] J. Zhuo and C. Chakrabarti, “Energy-Efficient Dynamic Task
Scheduling Algorithms for DVS Systems,” ACM Trans. Embedded
Computing Systems, vol. 7, no. 2, article 17, 2008.

[47] Z. Zong, A. Manzanares, X. Ruan, and X. Qin, “EAD and PEBD:
Two Energy-Aware Duplication Scheduling Algorithms for
Parallel Tasks on Homogeneous Clusters,” IEEE Trans. Computers,
vol. 60, no. 3, pp. 360-374, Mar. 2011.

Keqin Li is a SUNY distinguished professor of
computer science in the State University of New
York at New Paltz. He is also an intellectual
ventures endowed visiting chair professor at the
National Laboratory for Information Science and
Technology, Tsinghua University, Beijing, Chi-
na. His research interests include design and
analysis of algorithms, parallel and distributed
computing, and computer networking. He has
contributed extensively to processor allocation

and resource management; design and analysis of sequential/parallel,
deterministic/probabilistic, and approximation algorithms; parallel and
distributed computing systems performance analysis, prediction, and
evaluation; job scheduling, task dispatching, and load balancing in
heterogeneous distributed systems; dynamic tree embedding and
randomized load distribution in static networks; parallel computing using
optical interconnections; dynamic location management in wireless
communication networks; routing and wavelength assignment in optical
networks; energy-efficient computing and communication. His current
research interests include lifetime maximization in sensor networks, file
sharing in peer-to-peer systems, power management and performance
optimization, and cloud computing. He has published more than 240
journal articles, book chapters, and research papers in refereed
international conference proceedings. He has received several Best
Paper Awards for his highest quality work. He has served in various
capacities for numerous international conferences as general chair,
program chair, workshop chair, track chair, and steering/advisory/award/
program committee member. Currently, he is on the editorial board of
IEEE Transactions on Parallel and Distributed Systems, IEEE Transac-
tions on Computers, Journal of Parallel and Distributed Computing,
International Journal of Parallel, Emergent and Distributed Systems,
International Journal of High Performance Computing and Networking,
and Optimization Letters. He is a senior member of the IEEE and the
IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS WITH REDUCED PROCESSOR ENERGY ON MULTIPROCESSOR COMPUTERS 1681

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

