
New Divisible Load

Distribution Methods on Tree

and Pyramid Networks

KEQIN LI

SUNY

A divisible load can be arbitrarily divided into independent

small load fractions which are assigned to processors in a parallel

or distributed computing system for simultaneous processing.

The theory and techniques of divisible load distribution have

a wide range of aerospace applications, including satellite

signal and image processing, radar and infrared tracking,

target identification and searching, and data reporting and

aggregation and processing in wireless sensor networks. We

make new progress on divisible load distribution on tree and

pyramid networks. We revisit the classic method for divisible

load distribution on partitionable static interconnection

networks (including complete tree and pyramid networks)

and derive a closed-form expression of the parallel time and

speedup. We propose two new methods which employ pipelined

communication techniques to distribute divisible loads on tree

and pyramid networks. We derive closed-form expressions of

the parallel time and speedup for both methods and show that

the asymptotic speedup of both methods is b¯+1 for a complete

b-ary tree network and 4¯+1 for a pyramid network, where

¯ is the ratio of the time for computing a unit load to the time

for communicating a unit load. The technique of pipelined

communications leads to improved performance of divisible load

distribution on tree and pyramid networks. Compared with the

classic method, the asymptotic speedup of our new methods is

100% faster on a complete binary tree network and 33% faster

on a pyramid network for large ¯.

Manuscript received September 30, 2008; revised April 1 and

September 22, 2009; released for publication October 16, 2009.

IEEE Log No. T-AES/47/1/XXXXX.

Refereeing of this contribution was handled by T. Robertazzi.

Author’s address: Dept. of Computer Science, SUNY, 1 Hawk

Drive, New Paltz, NY 12561, E-mail: (lik@newpaltz.edu).

0018-9251/11/$26.00 c° 2011 IEEE

I. INTRODUCTION

A divisible load (job, task) can be arbitrarily

divided into independent small load fractions which

are assigned to processors in a parallel or distributed

computing system for simultaneous processing.

Given an arbitrarily divisible load without precedence

constraint and a parallel/distributed computing system

with communication delays, the problem of divisible

load distribution is to find the proportions in which

the load is partitioned and distributed among the

processors such that the entire load is processed in

the shortest possible time [11].

The theory and techniques of divisible load

distribution have applications in a wide range of

areas such as computer vision [12], large scale data

file processing [29], data intensive applications [30],

query processing in database systems [31], scientific

computing [32], video and multimedia applications

[38], numerical computing [47], biomedicine and

bioinformatics [51]. Divisible load distribution has

applications in filtering for radio communications,

encryption for secure communications, and coding for

digital communications [27]. Aerospace applications

include satellite signal and image processing

[13], radar and infrared tracking [25], and data

reporting and aggregation and processing in wireless

sensor networks [41]. Other applications include

finite-element and engineering computations, grid

computing, metacomputing, distance learning,

real-time computing such as target identification

and searching, data collection, and processing in

distributed intelligent sensor networks in military

surveillance systems [11].

Divisible load distribution, scheduling, sharing,

and processing has been a very active and fruitful

research field in the last twenty years since the

problem was first proposed in 1988 [2, 19]. Extensive

investigation has been conducted by numerous

researchers for bus systems [6, 45], linear arrays

[40, 43], tree networks [4, 6, 20], 2-dimensional

meshes [15], 2-dimensional toroidal meshes [17],

3-dimensional meshes [21], k-dimensional meshes and

tori [35, 36], hypercubes [14], partitionable networks

[33, 34], arbitrary networks [52, 53], clusters [22, 48],

grids [50], and networks of workstations [5, 39].

Other studies can be found in [7—9, 16, 18, 19, 23,

26, 28, 29, 42, 46, 49]. The reader is also referred

to the web site [1] for more references in this field

and Robertazzi’s recent article [44] on divisible load

theory.

When a divisible load is processed on a

multicomputer system with a static interconnection

network, there is communication overhead for

distributing the load among the processors in the

system. The network topology determines the speed

at which a divisible load is distributed over a network

and has strong impact on performance, i.e., parallel

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 1 JANUARY 2011 1

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [1] (XXX) 11-30-10 05:18 PM

processing time and speedup. It is well known

that due to communication overhead and limited

network connectivity, a load distribution method

for parallel processing of divisible loads on a static

interconnection network with constant node degrees

can only achieve asymptotic speedup bounded from

above by a quantity independent of the network size.

This is consistent with Amdahl’s law which states

that a small fraction of sequential component sets a

constant upper bound for speedup [3].

It has been proven in [34] that on a complete b-ary

tree network, as the network size becomes large, an

asymptotic speedup of approximately (b¡ 1)¯ for
large ¯ can be achieved for processing divisible loads,

where ¯ is the ratio of the time for computing a unit

load to the time for communicating a unit load. It was

also proven in [34] that on a pyramid network, as the

network size becomes large, the asymptotic speedup

for processing divisible loads is approximately 3¯ for

large ¯.

The present paper makes new progress in the

investigation of divisible load distribution on tree and

pyramid networks. Our contributions are summarized

as follows.

1) First, we revisit the classic method for divisible

load distribution on partitionable static interconnection

networks (including complete tree and pyramid

networks) developed in [34]. We derive a closed-form

expression of the parallel time and speedup of the

classic method which is not available before.

2) Second, we propose two methods which

employ pipelined communications to distribute

divisible loads on tree and pyramid networks [37].

Surprisingly, the analyses of these seemingly more

complicated algorithms are easier than that of the

classic method. We derive closed-form expressions

of the parallel time and speedup for both methods and

show that the asymptotic speedup of both methods is

b¯+1 for a complete b-ary tree network and 4¯+1

for a pyramid network.

Compared with the classic method, the asymptotic

speedup of our new methods is 100% faster on

a complete binary tree network and 33% faster

on a pyramid network for large ¯. We would

like to mention that the technique of pipelined

communications has been successfully applied to other

networks such as k-dimensional meshes [36].

A number of techniques to overlap communication
and computation have been proposed and developed
in the literature. In cut through switching employed

in a tree network [24, 25]; a node does not need to
completely receive a load fraction from its parent

before the load fraction is divided and forwarded to
its descendants. Instead, a node can simultaneously

receive a load fraction from its parent and transmit
the portion received so far to its children. This
communication mechanism certainly needs additional

hardware support. In a model described in [27], it is
assumed that a processor can start the computation
of a load fraction as soon as it starts to receive the
load fraction, that is, a processor can initiate data
processing while it is still receiving data. However,
this model can only be used for certain applications.
In multi-installment load distribution on single-level
tree networks [10], the load fraction processed by a
processor is sent in multiple installments. However,
analysis of multi-installment load distribution seems
quite sophisticated when processors receive the same
number of installments, and it is not clear how this
method can be extended to multi-level tree networks.
Our pipelined communication algorithms proposed

in this paper still use the traditional easy-to-implement
store-and-forward communication model, namely, a
load fraction should be received in its entirety before
it can be further divided and forwarded. Furthermore,
a load fraction cannot be computed or processed when
it is still being transmitted. One of our algorithms
does share the spirit of multi-installment load
distribution. However, processors on different levels of
a tree or pyramid network receive different numbers
of installments. In particular, processors in lower
levels receive fewer installments. As mentioned
above, our pipelined communication algorithms for
multi-level tree and pyramid networks are easy to
analyze.
The rest of the paper is organized as follows. In

Section II, we describe our model of divisible load
distribution. In Section III, we review the classic
method for divisible load distribution on partitionable
static interconnection networks. In Sections IV and
V, we develop our new methods using pipelined
communications on complete binary tree networks.
In Sections VI and VII, we extend our methods to
complete b-ary tree networks and pyramid networks.
In Section VIII, we compare the performance of
the two new methods and the classic method. We
conclude the paper in Section IX.

II. THE MODEL OF DIVISIBLE LOAD DISTRIBUTION

We consider parallel processing of a divisible
load on a multicomputer system with N processors
P1,P2, : : : ,PN connected by a static interconnection
network. Each processor Pi has ni neighbors.
It is assumed that Pi has ni separate ports for
communication with each of the ni neighbors. That is,
processor Pi can send messages to all its ni neighbors
simultaneously. Once a processor sends a load fraction
to a neighbor, it can proceed without waiting with
other computation and communication activities. This
provides the capability to overlap computation and
communication and enhances the system performance.
However, a neighbor (receiver) must wait until a load
fraction arrives, and then start the processing of the
load fraction. It is this waiting time that limits the
overall system performance.

2 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 1 JANUARY 2011

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [2] (XXX) 11-30-10 05:18 PM

Let Tcm be the time to transmit a unit load along

a link. The time to send a load to a neighbor is

proportional to the size of the load, with a negligible

communication start-up time. Let Tcp be the time

to process a unit load on a processor. Again, the

computation time is proportional to the size of a

load. We use ¯ = Tcp=Tcm to denote the computation

granularity, which is a parameter indicating the nature

of a parallel computation and a parallel architecture.

A large (small) ¯ gives a small (large) communication

overhead. A computation intensive load has a large

¯, and a communication intensive load has a small ¯.

An infinite ¯ implies that the communication cost is

negligible.

Without loss of generality and for notational

convenience, we assume in this paper that a unit load

is defined such that Tcm = 1 and Tcp = ¯.

We use TAN to denote the parallel processing

time of one unit of load by using the load

distribution algorithm A. Since both computation and

communication times are linearly proportional to the

amount of load, the time for processing x units of load

is xTAN for all x¸ 0. The speedup SAN is defined as the
ratio of the sequential processing time to the parallel

processing time, namely,

SAN =
T1
TAN
=
Tcp

TAN
=
¯

TAN
:

We are particularly interested in TA1 = limN!1T
A
N

and SA1 = limN!1S
A
N , that is, the ultimate parallel

processing time and the asymptotic speedup when the

size of a network goes to infinity.

III. THE CLASSIC METHOD

The classic method C was developed in the context
of divisible load distribution on partitionable static

interconnection networks [34]. Let G = (P,E) be
a static network, where P = fP1,P2, : : : ,PNg is a set
of N processors and E is a set of interprocessor
connections. Consider a processor Pi which has ni
neighbors Pj1 ,Pj2 , : : : ,Pjni

. We say that G is partitionable
at processor Pi if the following two conditions are

satisfied.

1) P ¡fPig can be partitioned into ni disjoint
subsets P1,P2, : : : ,Pni , such that Pjk 2 Pk, for all 1·
k · ni.
2) Furthermore, the subnetworks induced by

P1,P2, : : : ,Pni have the same topology (or, belong
to the same family of networks, with a single

processor being the base case) as the original

network G, and each Pk is partitionable at Pjk ,
1· k · ni.
Example partitionable networks are linear arrays,

meshes, hypercubes, and completely connected

networks at any processor, trees at the roots, pyramids

at the apexes, and stars at the centers.

We now consider a general static interconnection

network G = (P,E) with N processors P =
fP1,P2, : : : ,PNg partitionable at processor Pi which
has ni neighbors Pj1 ,Pj2 , : : : ,Pjni

. Since P ¡fPig can be
partitioned into ni disjoint subsets P1,P2, : : : ,Pni , such
that Pjk 2 Pk for all 1· k · ni, we use Nk to represent
the size of Pk, i.e., the number of processors in the
subnetwork induced by Pk, such that N =N1 +N2 +
¢ ¢ ¢+Nni +1. To process a load x, processor Pi sends
a fraction ®k of the load x to the neighbor Pjk for all

1· k · ni, and continues to process the remaining
load (1¡®1¡®2¡¢¢ ¢¡®ni)x. Upon receiving the load
®kx by Pjk , the subnetwork induced by Pk processes
the load using the same strategy.

Let TCN denote the parallel processing time of a

unit load on the above partitionable network with

N processors by using the classic algorithm C. For
simplicity, we assume that ni = d and N1 =N2 = ¢ ¢ ¢=
Nni for all processors. This implies that ®1 = ®2 = ¢ ¢ ¢=
®ni = ®. When N > 1, we have

TCN = (1¡ d®)Tcp = ®(Tcm+TC(N¡1)=d)
which implies that

®=
Tcp

TC
(N¡1)=d +dTcp+Tcm

:

Hence, TCN satisfies the following recurrence relation,

TC1 = Tcp

TCN =

Ã
TC(N¡1)=d +Tcm

TC
(N¡1)=d+ dTcp+Tcm

!
Tcp, N > 1:

A closed-form solution for TCN is given in the

Appendix. To obtain TC1 , we take the limit on both
sides of the last equation,

TC1 =

Ã
TC1 +Tcm

TC1 + dTcp+Tcm

!
Tcp

and get

(TC1)
2 + ((d¡ 1)Tcp+Tcm)TC1 ¡TcpTcm = 0

that is,

(TC1)
2 + ((d¡ 1)¯+1)TC1 ¡¯ = 0:

Solving the above quadratic equation, we obtain the

following theorem.

THEOREM 1 For a partitionable network, we have

TC1 =
1

2

³p
(d¡ 1)2¯2 + 2(d+1)¯+1¡ ((d¡ 1)¯+1)

´
:

LI: NEW DIVISIBLE LOAD DISTRIBUTION METHODS ON TREE AND PYRAMID NETWORKS 3

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [3] (XXX) 11-30-10 05:18 PM

Fig. 1. Complete binary tree with h= 3.

Furthermore,

SC1 =
¯

TC1

=

p
(d¡ 1)2¯2 +2(d+1)¯+1+ ((d¡ 1)¯+1)

2

¼ (d¡ 1)¯
as ¯!1.
A complete b-ary tree network of height h > 0 is

partitionable at the root. The b children of the root

are roots of b subtrees of height h¡ 1. A processor
that holds a load in the beginning is called an initial

processor. Applying Theorem 1 to a complete b-ary

tree network with d = b, we have the following result.

THEOREM 2 For a complete b-ary tree network with

the root as the initial processor, we have

TC1 =
1

2

³p
(b¡ 1)2¯2 +2(b+1)¯+1¡ ((b¡ 1)¯+1)

´
:

Furthermore,

SC1 =
¯

TC1

=

p
(b¡ 1)2¯2 +2(b+1)¯+1+ ((b¡ 1)¯+1)

2

¼ (b¡ 1)¯
as ¯!1.
A pyramid network is partitionable at the apex.

Applying Theorem 1 to a pyramid network with

d = 4, we have the following result.

THEOREM 3 For a pyramid network with the apex as

the initial processor, we have

TC1 =
1

2

³p
9¯2 +10¯+1¡ (3¯+1)

´
:

Furthermore,

SC1 =
¯

TC1
=

p
9¯2 +10¯+1+ (3¯+1)

2
¼ 3¯

as ¯!1.

IV. PIPELINED COMMUNICATIONS

The main source of overhead that limits the

performance of algorithm C is the long waiting time
in distributing the load fractions. For instance, a

child processor of the root must wait for ® time to

receive the load fraction ® which is the total amount

of load processed by a subtree. This motivates the

technique of pipelined communications to improve

the performance of divisible load distribution.

In this section, we discuss pipelined

communications on complete binary tree networks.

Let h¸ 0 denote the height of a complete binary
tree network, which has levels 0,1,2, : : : ,h, and N =

2h+1¡ 1 processors P1,P2, : : : ,PN (see Fig. 1 for an
example with h= 3 and N = 15).

Our first algorithm P which employs pipelined
communications to distribute divisible loads on

complete binary tree networks is illustrated in Fig. 2

where h= 3. Let x be a load fraction transmitted

among the processors. The meaning of x will be clear

shortly. Load fractions are distributed from level to

level in multiples of x. Whenever a processor on level

l receives a load fraction from its parent on level l¡1,
the processor splits the load fraction and sends half of

the load fraction to each of its two children on level

l+1.

At time 0, the initial processor (i.e., the root

processor P1 on level 0) sends a load fraction 4x to

each of P2 and P3 (i.e., the two processors on level 1).

At time T0 = 4x, processors on level 1 receive the load
fraction 4x. At time T00 = 6x, processors on level 2
receive the load fraction 2x and processors on level 1

receive the second load fraction 2x. At time T000 = 7x,
processors on level 3 receive the load fraction x and

processors on level 2 receive the second load fraction

x and processors on level 1 receive the third load

fraction x. Processor P1 processes 4x=¯, 2x=¯, and

x=¯ amount of load during each of the time intervals

¿1 = [0,T
0), ¿2 = [T

0,T00), and ¿3 = [T
00,T000). During the

time interval ¿4 = [T
000,TP15), all the processors process

x amount of load. Note that the quantities in boldface

in Fig. 2 represent the amount of load communicated

not computed. The value of x is chosen such that the

total amount of load processed by all the N processors

is one.

4 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 1 JANUARY 2011

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [4] (XXX) 11-30-10 05:18 PM

Fig. 2. Illustration of algorithm P (h= 3).

Fig. 3. Algorithm P.

In general, the time interval [0,TPN) is divided into

h+1 slots ¿1,¿2, : : : ,¿h+1, where ¿k has length 2
h¡kx

for all 1· k · h basically used for communicating
load fractions, and ¿h+1 has length x¯ used for

computation. During ¿k, where 1· k · h, the root
processor initiates the pipelined communication of

a load fraction 2h¡kx to each of its two children,
and the load fraction 2h¡kx will be split during
communication and eventually reaches level (h+1¡
k) for computation. During ¿h+1, all the N processors

compute the same amount of load x. Processor P1
also computes 2h¡kx=¯ amount of load during ¿k
for all 1· k · h. Algorithm P is formally described
in Fig. 3, where we specify the computations and

communications performed by each processor during

each time interval.

Let Ll denote the amount of load processed by

a processor on level l, where 0· l · h. Then, we
have

L0 = (2
h¡1 +2h¡2 + ¢ ¢ ¢+20) x

¯
+ x=

μ
N ¡ 1
2

¶
x

¯
+ x

and Ll = x for all 1· l · h. Since

1 =

hX
l=0

2lLl =

μ
N ¡ 1
2

¶
x

¯
+Nx= 1

we get

x=
2¯

(2¯+1)N ¡ 1 :

Therefore, the parallel processing time is

TPN = L0¯ =

μ
N ¡1
2

+¯

¶
x=

(N +2¯¡ 1)¯
(2¯+1)N ¡1 :

The speedup is

SPN =
T1
TPN
=
Tcp

TPN
=
¯

TPN
=
(2¯+1)N ¡ 1
N +2¯¡ 1 :

It is clear that the asymptotic speedup is SP1 = 2¯+1.
The above discussion is summarized as the following

theorem.

THEOREM 4 For a complete binary tree network with

the root as the initial processor, we have

TPN =
(N +2¯¡1)¯
(2¯+1)N ¡ 1 :

Furthermore,

SPN =
¯

TPN
=
(2¯+1)N ¡1
N +2¯¡1

and SP1 = 2¯+1.

LI: NEW DIVISIBLE LOAD DISTRIBUTION METHODS ON TREE AND PYRAMID NETWORKS 5

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [5] (XXX) 11-30-10 05:18 PM

Fig. 4. Illustration of algorithm Q (h= 3).

Fig. 5. Algorithm Q.

V. OVERLAP OF COMMUNICATIONS AND
COMPUTATIONS

In the model of divisible load distribution, a

processor can send a load fraction, receive another

load fraction, and yet compute a third load fraction

at the same time. Our second algorithm Q that
uses pipelined communications and overlaps

communications and computations is illustrated in

Fig. 4. During the time interval ¿1 = [0,T
0), the root

processor sends a load fraction (1=¯+2)2x to each

of the processors on level 1. During the time interval

¿2 = [T
0,T00), a processor on level 1 does not process

the load (1=¯+2)2x by itself nor sends it to level 2.

Instead, it keeps the load fraction (1=¯)(1=¯+2)x

for computing and sends the load fraction (1=¯+2)x

to each of its two children on level 2, and at the

same time, receives the load fraction (1=¯+2)x

from its parent on level 0. During the time interval

¿3 = [T
00,T000), a processor on level 2 keeps the load

fraction x=¯ for computing and sends the load fraction

x to each of its two children on level 3, and at the

same time, receives the load fraction x from its parent

on level 1, which in turn, is receiving the load fraction

x from its parent on level 0. During the time interval

¿4 = [T
000,TQ15), every processor computes a load

fraction x.

A complete description of algorithm Q is given
in Fig. 5. It is clear that algorithm Q divides the

6 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 1 JANUARY 2011

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [6] (XXX) 11-30-10 05:18 PM

time interval [0,TQN) into subintervals ¿1,¿2, : : : ,¿h+1,

such that the length of ¿k is (1=¯+2)
h¡kx for all

1· k · h, and the length of ¿h+1 is x¯. During ¿k,
1· k · h, the amount of load communicated from
level l to level l+1 is (1=¯+2)h¡kx for all 0· l
· k¡ 1.
Since a processor on level l, where 0· l · h,

computes (1=¯)(1=¯+2)h¡kx amount of load during
¿k for all l+1· k · h, and x amount of load during
¿h+1, we have

Ll =

ÃÃμ
1

¯
+2

¶h¡l¡1
+

μ
1

¯
+2

¶h¡l¡2

+ ¢ ¢ ¢+
μ
1

¯
+2

¶0!
1

¯
+1

!
x

=

0BBB@
μ
1

¯
+2

¶h¡l
¡ 1μ

1

¯
+2

¶
¡ 1

¢ 1
¯
+1

1CCCAx

=

Ã
1

¯+1

Ãμ
1

¯
+2

¶h¡l
¡ 1
!
+1

!
x:

Since

1 =

hX
l=0

2lLl

=

hX
l=0

2l

Ã
1

¯+1

Ãμ
1

¯
+2

¶h¡l
¡ 1
!
+1

!
x

=

Ã
1

¯+1

hX
l=0

2l
μ
1

¯
+2

¶h¡l
+

¯

¯+1

hX
l=0

2l

!
x

=

Ã
1

¯+1

μ
1

¯
+2

¶h hX
l=0

μ
2¯

2¯+1

¶l
+

¯

¯+1

hX
l=0

2l

!
x

=

μ
(2¯+1)h+1¡ (2¯)h+1

(¯+1)¯h
+

μ
¯

¯+1

¶
(2h+1¡ 1)

¶
x

=

μ
(2¯+1)h+1¡ (2¯)h+1 +¯h+1(2h+1¡ 1)

(¯+1)¯h

¶
x

=

μ
(2¯+1)h+1¡¯h+1

(¯+1)¯h

¶
x

=
¯

¯+1

Ãμ
1

¯
+2

¶h+1
¡ 1
!
x

=
¯

¯+1

Ãμ
1

¯
+2

¶log(N+1)
¡1
!
x

we obtain

x=

Ã
¯

¯+1

Ãμ
1

¯
+2

¶log(N+1)
¡ 1
!!¡1

:

The parallel processing time is

TQN = L0¯

=

1

¯+1

Ãμ
1

¯
+2

¶h
¡ 1
!
+1

¯

¯+1

Ãμ
1

¯
+2

¶log(N+1)
¡ 1
! ¢¯

=

μ
1

¯
+2

¶log(N+1)¡1
+¯μ

1

¯
+2

¶log(N+1)
¡1

:

The speedup is

SQN =
T1

TQN

=
Tcp

TQN

=
¯

TQN

=

¯

Ãμ
1

¯
+2

¶log(N+1)
¡ 1
!

μ
1

¯
+2

¶log(N+1)¡1
+¯

and the asymptotic speedup is

Begineq:SQ1 = ¯
μ
1

¯
+2

¶
= 2¯+1:

The above discussion is summarized as the following

theorem.

THEOREM 5 For a complete binary tree network with

the root as the initial processor, we have

TQN =

μ
1

¯
+2

¶log(N+1)¡1
+¯μ

1

¯
+2

¶log(N+1)
¡ 1

:

Furthermore,

SQN =
¯

TQN
=

¯

Ãμ
1

¯
+2

¶log(N+1)
¡ 1
!

μ
1

¯
+2

¶log(N+1)¡1
+¯

and SQ1 = 2¯+1.

LI: NEW DIVISIBLE LOAD DISTRIBUTION METHODS ON TREE AND PYRAMID NETWORKS 7

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [7] (XXX) 11-30-10 05:18 PM

VI. COMPLETE TREE NETWORKS

The analysis of algorithm P for divisible load
distribution on a general complete b-ary tree network

with height h is a straightforward extension of that

in Section IV. We notice that the length of the time

interval ¿k is b
h¡kx for all 1· k · h. During ¿k, where

1· k · h, the root processor initiates the pipelined
communication of a load fraction bh¡kx to each of its
b children, and the load fraction bh¡kx will be split
during communication and eventually reaches level

(h+1¡ k) for computation. Hence,

L0 = (b
h¡1 + bh¡2 + ¢ ¢ ¢+ b0) x

¯
+ x

=

μ
N ¡ 1
b

¶
x

¯
+ x

and Ll = x for all 1· l · h. This leads to

x=
b¯

(b¯+1)N ¡ 1
and the following theorem.

THEOREM 6 For a complete b-ary tree network with

the root as the initial processor, we have

TPN =
(N + b¯¡ 1)¯
(b¯+1)N ¡ 1 :

Furthermore,

SPN =
¯

TPN
=
(b¯+1)N ¡ 1
N + b¯¡ 1 ,

and SP1 = b¯+1.

For algorithm Q, the length of the time interval
¿k is (1=¯+ b)

h¡kx for all 1· k · h, such that
upon receiving the load fraction (1=¯+ b)h¡kx by a
processor, (1=¯)(1=¯+ b)h¡k¡1x amount of load is
kept for computation, and (1=¯+ b)h¡k¡1x amount of
load is sent to each of its b children. Therefore, for

0· l · h, we get

Ll =

ÃÃμ
1

¯
+ b

¶h¡l¡1
+

μ
1

¯
+ b

¶h¡l¡2
+ ¢ ¢ ¢

+

μ
1

¯
+ b

¶0!
1

¯
+1

!
x

=

Ã
1

(b¡ 1)¯+1

Ãμ
1

¯
+ b

¶h¡l
¡ 1
!
+1

!
x:

The last equation gives rise to

x=

Ã
¯

(b¡1)¯+1

Ãμ
1

¯
+ b

¶logb((b¡1)N+1)
¡ 1
!!¡1

and the following theorem.

THEOREM 7 For a complete b-ary tree network with

the root as the initial processor, we have

TQN =

μ
1

¯
+ b

¶logb((b¡1)N+1)¡1
+ (b¡ 1)¯μ

1

¯
+ b

¶logb((b¡1)N+1)
¡ 1

:

Furthermore,

SQN =
¯

TQN
=

¯

Ãμ
1

¯
+b

¶logb((b¡1)N+1)
¡ 1
!

μ
1

¯
+ b

¶logb((b¡1)N+1)¡1
+ (b¡ 1)¯

and SQ1 = b¯+1.

VII. PYRAMID NETWORKS

A pyramid network contains a complete 4-ary tree

as a subnetwork. Applying Theorems 6 and 7 to a

pyramid network with b = 4, we have the following

results.

THEOREM 8 For a pyramid network with the apex as

the initial processor, we have

TPN =
(N +4¯¡1)¯
(4¯+1)N ¡ 1 :

Furthermore,

SPN =
¯

TPN
=
(4¯+1)N ¡1
N +4¯¡1

and SP1 = 4¯+1.

THEOREM 9 For a pyramid network with the apex as

the initial processor, we have

TQN =

μ
1

¯
+4

¶log4(3N+1)¡1
+3¯μ

1

¯
+4

¶log4(3N+1)
¡ 1

:

Furthermore,

SQN =
¯

TQN
=

¯

Ãμ
1

¯
+4

¶log4(3N+1)
¡ 1
!

μ
1

¯
+4

¶log4(3N+1)¡1
+3¯

and SQ1 = 4¯+1.

VIII. PERFORMANCE COMPARISON

Finally, we prove the following result.

THEOREM 10 For a complete b-ary tree network

with the root as the initial processor and a pyramid

network with the apex as the initial processor, we have

TCN > T
P
N > T

Q
N and SCN < S

P
N < S

Q
N for all b ¸ 2 and

h¸ 2.

8 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 1 JANUARY 2011

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [8] (XXX) 11-30-10 05:18 PM

First, we prove by induction on h¸ 2 that TCN >
TPN , where T

C
N is given by

TC1 = ¯

TCN =

Ã
TC(N¡1)=b+1

TC
(N¡1)=b +b¯+1

!
¯, N > 1

and

TPN =
(b¯+N ¡ 1)¯
bN¯+N ¡1 :

When h= 2 and N = b2 + b+1, it is easy to verify

that

TCN =

μ
¯2 + (b+2)¯+1

(b2 +b+1)¯2 +2(b+1)¯+1

¶
¯

and

TPN =

μ
¯+(b+1)

(b2 + b+1)¯+(b+1)

¶
¯

and TCN > T
P
N . When h > 2, we have

TCN =

Ã
TC(N¡1)=b +1

TC
(N¡1)=b + b¯+1

!
¯

>

Ã
TP(N¡1)=b +1

TP
(N¡1)=b + b¯+1

!
¯

(by the induction hypothesis)

=

0B@
(b¯+(N ¡ 1)=b¡ 1)¯
(N ¡ 1)¯+(N ¡ 1)=b¡ 1 +1
(b¯+(N ¡ 1)=b¡ 1)¯
(N ¡ 1)¯+(N ¡ 1)=b¡ 1 + b¯+1

1CA¯
=

μ
b2¯2 + (bN +N ¡ 2b¡ 1)¯+(N ¡ b¡ 1)

b2N¯2 + (2bN +N ¡ b2¡ 3b¡ 1)¯+(N ¡ b¡ 1)

¶
¯

>

μ
b¯+N ¡ 1
bN¯+N ¡ 1

¶
¯

= TPN :

Next, we show that SPN < S
Q
N , namely,

(b¯+1)N ¡ 1
N + b¯¡ 1 <

¯(X ¡1)
X

1

¯
+b

+(b¡ 1)¯

where

X =

μ
1

¯
+ b

¶h+1
and

N =
bh+1¡ 1
b¡ 1 :

By straightforward algebraic manipulations, the above

inequality can be rewritten as

((b¡ 1)¯+1)N +¯¡1<
μ
b¯2

b¯+1

¶
X:

Substituting X and N, we get

((b¡ 1)¯+1)
μ
bh+1¡ 1
b¡ 1

¶
+¯¡ 1

<

μ
b¯2

b¯+1

¶μ
b¯+1

¯

¶h+1
that is,

((b¡ 1)¯+1)
μ
bh+1¡1
b¡1

¶
+¯¡ 1< b

¯h¡1
(b¯+1)h

which can be simplified as

(b¡ 1)(b¯)h+(bh¡ 1)¯h¡1 < (b¡1)(b¯+1)h:
Since

(b¯+1)h = (b¯)h+ h(b¯)h¡1 + ¢ ¢ ¢
it suffices to show

(b¡ 1)(b¯)h+(bh¡ 1)¯h¡1 < (b¡ 1)((b¯)h+ h(b¯)h¡1)
that is,

bh¡ 1< (b¡ 1)hbh¡1
or

bh¡1 + bh¡2 + ¢ ¢ ¢+1< hbh¡1:
The last inequality is obvious for all b ¸ 2 and h¸ 2.
In Fig. 6, we demonstrate the numerical values

of the speedup of the algorithms considered in this

paper for a complete binary tree network and a

pyramid network. It is assumed that ¯ = 100. SQN
is not displayed since its difference from SPN is not

noticeable in the figure.

In Tables I and II, we demonstrate numerical

values of parallel processing times of the three

algorithms considered in this paper for a complete

binary tree network (b = 2) and a pyramid network

(b = 4). It is assumed that ¯ = 100. Compared with

the classic algorithm C, algorithm P is 97% faster on

a complete binary tree network and 33% faster on a

pyramid network when h= 15. Such performance

improvement is due to the technique of pipelined

communications. These numerical data are consistent

with our analytical results. Algorithm Q is a little
faster than algorithm P. This is due to the technique
of overlap of communications and computations and

consistent with our analytical result in Theorem 10.

IX. CONCLUSIONS

We have proposed two new methods which

employ pipelined communications to distribute

divisible loads on tree and pyramid networks. We

derived closed-form expressions of the parallel time

and speedup for both methods and showed that the

asymptotic speedup of both methods is b¯+1 for a

complete b-ary tree network and 4¯+1 for a pyramid

network. The technique of pipelined communications

leads to improved performance of divisible load

LI: NEW DIVISIBLE LOAD DISTRIBUTION METHODS ON TREE AND PYRAMID NETWORKS 9

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [9] (XXX) 11-30-10 05:18 PM

Fig. 6. Speedup of various algorithms (¯ = 100).

TABLE I

Parallel Processing Times (b = 2, ¯ = 100)

h Algorithm C Algorithm P Algorithm Q

0 100.00000 100.00000 100.00000

1 33.55482 33.55482 33.55482

2 14.73209 14.65149 14.61114

3 7.29242 7.10020 7.05637

4 3.98114 3.69181 3.65701

5 2.43005 2.06918 2.04496

6 1.68611 1.27713 1.26147

7 1.32525 0.88578 0.87615

8 1.14927 0.69127 0.68553

9 1.06321 0.59429 0.59097

10 1.02107 0.54588 0.54399

11 1.00043 0.52169 0.52063

12 0.99031 0.50960 0.50901

13 0.98535 0.50356 0.50323

14 0.98292 0.50053 0.50036

15 0.98173 0.49902 0.49893

distribution on tree and pyramid networks. Compared

with the classic method, the asymptotic speedup of

our new methods is 100% faster on a complete binary

tree network and 33% faster on a pyramid network for

large ¯.

APPENDIX. A CLOSED-FORM SOLUTION FOR TCN

We now derive a closed-form solution to the

parallel time of the classic method for processing

divisible loads on partitionable networks. Our

discussion in Section III implies that a partitionable

static interconnection network contains a d-ary

complete tree as a subnetwork which is used for load

distribution. We divide such a network into m+1

layers, where layer m contains the initial processor

(i.e., the root, or level 0, of the d-ary complete tree),

and layer m¡ 1 contains neighbors of the initial
processor (i.e., level 1 of the d-ary complete tree), and

layer 0 contains the leaves of the d-ary complete tree.

TABLE II

Parallel Processing Times (b = 4, ¯ = 100)

h Algorithm C Algorithm P Algorithm Q

0 100.00000 100.00000 100.00000

1 20.15968 20.15968 20.15968

2 5.02415 4.98812 4.97911

3 1.48369 1.42002 1.41508

4 0.61709 0.54117 0.53923

5 0.40265 0.32227 0.32161

6 0.34944 0.26760 0.26739

7 0.33622 0.25393 0.25387

8 0.33294 0.25052 0.25050

9 0.33213 0.24966 0.24966

10 0.33193 0.24945 0.24945

11 0.33188 0.24939 0.24939

12 0.33186 0.24938 0.24938

13 0.33186 0.24938 0.24938

14 0.33186 0.24938 0.24938

15 0.33186 0.24938 0.24938

It is clear that the number of processors is

N = 1+d+ d2 + ¢ ¢ ¢+ dm = dm+1

d¡ 1 :

Let TCm denote the parallel processing time of a unit

load on the above partitionable network with N

processors and layers 0,1,2, : : : ,m, by using the classic

algorithm C. Clearly, we have TCN = TCm and we will

find a closed-form solution to TCm .

Assume that a unit load is processed during the

time interval [0,TCm). Let Lj denote the fraction of this

unit load processed by a processor in layer j, where

0· j ·m. By the definition of Lj , we have

dmL0 +d
m¡1L1 + d

m¡2L2 + ¢ ¢ ¢+ dLm¡1 +Lm = 1:
We illustrate algorithm C in Fig. 7, where m= 3. The
quantities in the figure are load amounts processed by

the processors during various time intervals.

10 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 1 JANUARY 2011

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [10] (XXX) 11-30-10 05:18 PM

Fig. 7. Illustration of algorithm C (m= 3).

A processor in layer 2 receives the load fraction

sent by the initial processor at time T0 = d0L2 +
d1L1 + d

2L0. A processor in layer 1 receives the

load fraction sent by a processor in layer 2 at time

T00 = T0+ d0L1 +d
1L0. A processor in layer 0 receives

the load fraction sent by a processor in layer 1 at

time T000 = T00+L0. During the time interval [0,T
0),

the initial processor computes (d0L2 + d
1L1 + d

2L0)=¯

amount of load, since during the same time interval,

a load fraction d0L2 + d
1L1 + d

2L0 is being sent

from the initial processor to a processor in layer 2.

During the time interval [T0,T00), each processor in
layers 3 and 2 computes (d0L1 +d

1L0)=¯ amount

of load, since during the same time interval, a load

fraction d0L1 + d
1L0 is being sent from a processor

in layer 2 to a processor in layer 1. During the time

interval [T00,T000), each processor in layers 3, 2, and
1 computes L0=¯ amount of load, since during the

same time interval, a load fraction L0 is being sent

from a processor in layer 1 to a processor in layer

0. During the time interval [T000,TC3), each processor
in layers 3, 2, 1, and 0 computes L0 amount of

load.

It is clear that a processor in layer m sends

d0Lm¡1 + d
1Lm¡2 + ¢ ¢ ¢+dm¡1L0 amount of load to a

processor in layer m¡ 1. Before a processor in layer
m¡ 1 receives the above load, a processor in layer m
can process

d0Lm¡1 + d
1Lm¡2 + ¢ ¢ ¢+dm¡1L0

¯

amount of load. After the load fraction d0Lm¡1 +
d1Lm¡2 + ¢ ¢ ¢+dm¡1L0 is received by a processor
in layer m¡ 1, each processor in both layers m and
m¡ 1 processes Lm¡1 amount of load in the remaining
computation. Assume that L0 = x, where x is a value

be defined later. The above discussion suggests the

following recurrence relation,

L0 = x

Lm =
d0Lm¡1 +d

1Lm¡2 + ¢ ¢ ¢+dm¡1L0
¯

+Lm¡1, m¸ 1

where x is chosen such that dmL0 +d
m¡1L1 +

dm¡2L2 + ¢ ¢ ¢+ dLm¡1 +Lm = 1.
To solve the above recurrence relation, we notice

that

Lm¡1 =
d0Lm¡2 + d

1Lm¡3 + ¢ ¢ ¢+ dm¡2L0
¯

+Lm¡2

and

dLm¡1 =
d1Lm¡2 + d

2Lm¡3 + ¢ ¢ ¢+ dm¡1L0
¯

+ dLm¡2:

Therefore, we get

Lm¡ dLm¡1 =
Lm¡1
¯

+Lm¡1¡ dLm¡2:

Hence, we obtain the following homogeneous linear

recurrence relation,

L0 = x

L1 =

μ
1

¯
+1

¶
x

Lm =

μ
1

¯
+ d+1

¶
Lm¡1¡ dLm¡2, m¸ 2:

The characteristic equation of the above linear

recurrence relation is

r2¡
μ
1

¯
+ d+1

¶
r+ d = 0

or

¯r2¡ ((d+1)¯+1)r+ d¯ = 0

LI: NEW DIVISIBLE LOAD DISTRIBUTION METHODS ON TREE AND PYRAMID NETWORKS 11

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [11] (XXX) 11-30-10 05:18 PM

with roots

r1 =
((d+1)¯+1)+

p
((d+1)¯+1)2¡ 4d¯2
2¯

and

r2 =
((d+1)¯+1)¡

p
((d+1)¯+1)2¡ 4d¯2
2¯

:

Consequently, Lm can be represented as

Lm = pr
m
1 + qr

m
2

where p and q satisfy

p+q= L0 = x

and

pr1 + qr2 = L1 =

μ
1

¯
+1

¶
x:

Solving the above equations, we get

p=

μ
¯+1¡¯r2
¯(r1¡ r2)

¶
x

and

q=

μ
¯r1¡¯¡ 1
¯(r1¡ r2)

¶
x:

Based on the condition
mX
j=0

dm¡jLj = 1

we have
mX
j=0

dm¡j(prj1 + qr
j
2) = 1

that is,
mX
j=0

μ
p
³r1
d

´j
+ q

³ r2
d

´j¶
=
1

dm

or Ãμ
¯+1¡¯r2
¯(r1¡ r2)

¶μ
(r1=d)

m+1¡ 1
r1=d¡ 1

¶

+

μ
¯r1¡¯¡ 1
¯(r1¡ r2)

¶μ
(r2=d)

m+1¡ 1
r2=d¡ 1

¶!
x=

1

dm

which implies that

x=

ÃÃμ
¯+1¡¯r2
¯(r1¡ r2)

¶μ
(r1=d)

m+1¡ 1
r1=d¡ 1

¶

+

μ
¯r1¡¯¡ 1
¯(r1¡ r2)

¶Ã
(r2=d)

m+1¡ 1
r2=d¡ 1

!!
dm

!¡1
:

Finally, the parallel processing time of a unit
load on a partitionable network with N processors is
TCN = T

C
m = LmTcp = Lm¯, that is,

TCN =

μμ
¯+1¡¯r2
¯(r1¡ r2)

¶
rm1 +

μ
¯r1¡¯¡ 1
¯(r1¡ r2)

¶
rm2

¶
x¯

where m= logd N(d¡ 1)¡ 1.

REFERENCES

[1] http://www.ece.sunysb.edu/»tom/dlt.html.
[2] Agrawal, R. and Jagadish, H. V.

Partitioning techniques for large grained parallelism.

IEEE Transactions on Computers, 37, 12 (1988),

1627—1634.

[3] Amdahl, G. M.

Validity of the single processor approach to achieving

large scale computing capabilities.

In Proceedings of the AFIPS Spring Joint Computer

Conference, vol. 30, 1967, 483—485.

[4] Barlas, G. D.

Collection-aware optimum sequencing of operations and

closed-form solutions for the distribution of a divisible

load on arbitrary processor trees.

IEEE Transactions on Parallel and Distributed Systems, 9,

5 (1998), 429—441.

[5] Bataineh, S. M.

Towards analytical solution to task allocation, processor

assignment, and performance evaluation of network of

processors.

Journal of Parallel and Distributed Computing, 65 (2005),

29—47.

[6] Bataineh, S., Hsiung, T-Y., and Robertazzi, T. G.

Closed form solutions for bus and tree networks of

processors load sharing a divisible job.

IEEE Transactions on Computers, 43, 10 (1994),

1184—1196.

[7] Bataineh, S. and Robertazzi, T. G.

Ultimate performance limits for networks of load sharing

processors.

In Proceedings of Conference on Information Sciences

and Systems, Princeton University, Princeton, NJ, 1992,

794—799.

[8] Bataineh, S. and Robertazzi, T. G.

Performance limits for processor networks with divisible

jobs.

IEEE Transactions on Aerospace and Electronic Systems,

33, 4 (1997), 1189—1198.

[9] Bharadwaj, V., Ghose, D., and Mani, V.

An efficient load distribution strategy for a distributed

linear network of processors with communication delays.

Computers and Mathematics with Applications, 29, 9

(1995), 95—112.

[10] Bharadwaj, V., Ghose, D., and Mani, V.

Multi-installment load distribution in tree networks with

delays.

IEEE Transactions on Aerospace and Electronic Systems,

31, 2 (1995), 555—567.

[11] Bharadwaj, V., Ghose, D., Mani, V., and Robertazzi, T. G.

Scheduling Divisible Loads in Parallel and Distributed

Systems.

Los Alamitos, CA: IEEE Computer Society Press, 1996.

[12] Bharadwaj, V., Li, X., and Ko, C. C.

Efficient partitioning and scheduling of computer vision

and image processing data on bus networks using

divisible load analysis.

Image and Vision Computing, 18, 11 (2000), 919—938.

[13] Bharadwaj, V. and Ranganath, S.

Theoretical and experimental study of large size image

processing applications using divisible load paradigm on

distributed bus networks.

Image and Vision Computing, 20, 13—14 (2002), 917—936.

[14] Bla_zaewicz, J. and Drozdowski, M.
Scheduling divisible jobs on hypercubes.

Parallel Computing, 21 (1995), 1945—1956.

12 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 1 JANUARY 2011

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [12] (XXX) 11-30-10 05:18 PM

[15] Bla_zewicz, J. and Drozdowski, M.
The performance limits of a two-dimensional network of

load sharing processors.

Foundations of Computing and Decision Sciences, 21, 1

(1996), 3—15.

[16] Bla_zewicz, J. and Drozdowski, M.
Distributed processing of divisible jobs with

communication startup costs.

Discrete Applied Mathematics, 76, 1—3 (1997), 21—41.

[17] Bla_zewicz, J., Drozdowski, M., Guinard, F., and
Trystram, D.

Scheduling a divisible task in a two-dimensional toroidal

mesh.

Discrete Applied Mathematics, 94, 1—3 (1999), 35—50.

[18] Bla_zewicz, J., Drozdowski, M., and Markiewicz, M.
Divisible task scheduling–Concept and verification.

Parallel Computing, 25, 1 (1999), 87—98.

[19] Cheng, Y. C. and Robertazzi, T. G.

Distributed computation with communication delays.

IEEE Transactions on Aerospace and Electronic Systems,

24, 6 (1988), 700—712.

[20] Cheng, Y. C. and Robertazzi, T. G.

Distributed computation for a tree network with

communication delays.

IEEE Transactions on Aerospace and Electronic Systems,

26, 3 (1990), 511—516.

[21] Drozdowski, M. and Glazek, W.
Scheduling divisible loads in a three-dimensional mesh of

processors.

Parallel Computing, 25, 4 (1999), 381—404.

[22] Drozdowski, M. and Wolniewicz, P.

Experiments with scheduling divisible tasks in clusters of

workstations.

Lecture Notes in Computer Science, 1900 (2000), 311—319.

[23] Ghose, D. and Mani, V.

Distributed computation with communication delays:

Asymptotic performance analysis.

Journal of Parallel and Distributed Computing, 23, 3

(1994), 293—305.

[24] Hung, J. T. and Robertazzi, T. G.

Scalable scheduling for clusters and grids using cut

through switching.

International Journal of Computers and Applications, 26, 3

(2004), 147—156.

[25] Hung, J. T. and Robertazzi, T. G.

Divisible load cut through switching in sequential tree

networks.

IEEE Transactions on Aerospace and Electronic Systems,

40, 3 (2004), 968—982.

[26] Hung, J. T. and Robertazzi, T. G.

Scheduling nonlinear computational loads.

IEEE Transactions on Aerospace and Electronic Systems,

44, 3 (2008), 1169—1182.

[27] Kim, H-J.

A novel optimal load distribution algorithm for divisible

loads.

Cluster Computing, 6 (2003), 41—46.

[28] Kim, H. J., Jee, G-I., and Lee, J. G.

Optimal load distribution for tree network processors.

IEEE Transactions on Aerospace and Electronic Systems,

32, 2 (1996), 607—612.

[29] Ko, K.

Scheduling data intensive parallel processing in

distributed and networked environments.

Ph.D. dissertation, Dept. of Electrical and Computer

Engineering, State University of New York, Stony Brook,

NY, 2000.

[30] Ko, K. and Robertazzi, T. G.

Equal allocation scheduling for data intensive

applications.

IEEE Transactions on Aerospace and Electronic Systems,

40, 2 (2004), 695—705.

[31] Ko, K. and Robertazzi, T. G.

Signature search time evaluation in flat file databases.

IEEE Transactions on Aerospace and Electronic Systems,

44, 2 (2008), 493—502.

[32] Kong, C. S., Bharadwaj, V., and Ghose, D.

Large matrix-vector products on distributed bus networks

with communication delays using the divisible load

paradigm: Performance and simulation.

Computers and Mathematics in Simulation, 58 (2001),

71—92.

[33] Li, K.

Managing divisible load on partitionable networks.

In J. Schaeffer (Ed.), High Performance Computing

Systems and Applications, Boston, MA: Kluwer Academic

Publishers, 1998, 217—228.

[34] Li, K.

Parallel processing of divisible loads on partitionable

static interconnection networks.

Cluster Computing, 6, 1 (2003), 47—55.

[35] Li, K.

Speedup of parallel processing of divisible loads on

k-dimensional meshes and tori.

The Computer Journal, 46, 6 (2003), 625—631.

[36] Li, K.

Improved methods for divisible load distribution on

k-dimensional meshes using pipelined communications.

IEEE Transactions on Parallel and Distributed Systems, 14,

12 (2003), 1250—1261.

[37] Li, K.

Accelerating divisible load distribution on tree and

pyramid networks using pipelined communications.

In Proceedings of the International Workshop on Parallel

and Distributed Scientific and Engineering Computing with

Applications, Santa Fe, NM, Apr. 30, 2004.

[38] Li, P., Veeravalli, B., and Kassim, A. A.

Design and implementation of parallel video encoding

strategies using divisible load analysis.

IEEE Transactions on Circuits and Systems for Video

Technology, 15, 9 (2005), 1098—1112.

[39] Li, X., Veeravalli, B., and Ko, C. C.

Distributed image processing on a network of

workstations.

International Journal of Computers and Applications, 25, 2

(2003), 1—10.

[40] Mani, V. and Ghose, D.

Distributed computation in linear networks: Closed-form

solutions.

IEEE Transactions on Aerospace and Electronic Systems,

30, 2 (1994), 471—483.

[41] Moges, M. and Robertazzi, T. G.

Wireless sensor networks: Scheduling for measurement

and data reporting.

IEEE Transactions on Aerospace and Electronic Systems,

42, 1 (2006), 327—340.

[42] Piriyakumar, D. A. L. and Murthy, C. S. R.

Distributed computation for a hypercube network of

sensor-driven processors with communication delays

including setup time.

IEEE Transactions on Systems, Man and Cybernetics, Part

A, Systems and Humans, 28, 2 (1998), 245—251.

LI: NEW DIVISIBLE LOAD DISTRIBUTION METHODS ON TREE AND PYRAMID NETWORKS 13

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [13] (XXX) 11-30-10 05:18 PM

[43] Robertazzi, T. G.

Processor equivalence for daisy chain load sharing

processors.

IEEE Transactions on Aerospace and Electronic Systems,

29, 4 (1993), 1216—1221.

[44] Robertazzi, T. G.

Ten reasons to use divisible load theory.

IEEE Computer, 36, 5 (2003), 63—68.

[45] Sohn, J. and Robertazzi, T. G.

Optimal divisible job load sharing for bus networks.

IEEE Transactions on Aerospace and Electronic Systems,

32, 1 (1996), 34—40.

[46] Sohn, J., Robertazzi, T. G., and Luryi, S.

Optimizing computing costs using divisible load analysis.

IEEE Transactions on Parallel and Distributed Systems, 9,

3 (1998), 225—234.

[47] Suresh, S., Omkar, S. N., and Mani, V.

Parallel implementation of back-propagation algorithm in

network of workstations.

IEEE Transactions on Parallel and Distributed Systems, 16,

1 (2005), 23—34.

[48] Veeravalli, B.

Design and performance analysis of heuristic load

balancing strategies for processing divisible loads on

Ethernet clusters.

International Journal of Computers and Applications, 27, 2

(2005), 97—107.

Keqin Li is a SUNY Distinguished Professor of computer science. His research
interests are mainly in the areas of design and analysis of algorithms, parallel and

distributed computing, and computer networking. He has contributed extensively

to approximation algorithms, parallel algorithms, job scheduling, task dispatching,

load balancing, performance evaluation, dynamic tree embedding, scalability

analysis, parallel computing using optical interconnects, wireless networks, and

optical networks. His current research interests include power-aware computing,

location management in wireless communication networks, lifetime maximization

in sensor networks, and file sharing in peer-to-peer systems.

Dr. Li has published over 215 journal articles, book chapters, and research

papers in refereed international conference proceedings.

[49] Veeravalli, B., Li, X., and Ko, C. C.

On the influence of start-up costs in scheduling divisible

loads on bus networks.

IEEE Transactions on Parallel and Distributed Systems, 11,

12 (2000), 1288—1305.

[50] Viswanathan, S., Veeravalli, B., and Robertazzi, T. G.

Resource aware distributed scheduling strategies for

large-scale computational cluster/grid systems.

IEEE Transactions on Parallel and Distributed Systems, 18,

10 (2007), 1450—1461.

[51] Wong, H. M. and Veeravalli, B.

Aligning biological sequences on distributed bus

networks: A divisible load scheduling approach.

IEEE Transactions on Information Technology in

BioMedicine, 9, 4 (2005), 489—501.

[52] Yao, J. and Veeravalli, B.

Design and performance analysis of divisible load

scheduling strategies on arbitrary graphs.

Cluster Computing, 7, 2 (2004), 841—865.

[53] Zeng, Z. and Veeravalli, B.

Distributed scheduling strategy for divisible loads on

arbitrarily configured distributed networks using load

balancing via virtual routing.

Journal of Parallel and Distributed Computing, 66 (2006),

1404—1418.

14 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 1 JANUARY 2011

Mt2 job no. 2148 ieee aerospace and electronic systems 2148D50 [14] (XXX) 11-30-10 05:18 PM

