
Received April 30, 2019, accepted May 21, 2019, date of publication May 27, 2019, date of current version June 10, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919106

How to Stabilize a Competitive Mobile Edge
Computing Environment: A Game
Theoretic Approach
KEQIN LI , (Fellow, IEEE)
College of Information Science and Engineering, Hunan University, Changsha 410082, China
Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

e-mail: lik@newpaltz.edu

This work was supported in part by the National Natural Science Foundation of China under Grant 61876061, in part by the Key
Program of National Natural Science Foundation of China under Grant 61432005, and in part by the National Key Research and
Development Program of China under Grant 2018YFB1003401.

ABSTRACT There are two fundamental purposes in mobile edge computing, i.e., performance enhancement
and cost reduction. By offloading computation tasks to a mobile edge cloud (MEC), a user equipment
(UE), also called mobile user, mobile subscriber, or mobile device, can possibly reduce its average response
time, which is the main performance measure, and can possibly reduce its average power consumption.
Optimizing both performance and cost may be conflicting requirements. In this paper, we optimize the
cost-performance ratio (CPR), i.e., the power-time product, which combines performance (average response
time) and cost (average power consumption) into one quantity. A unique feature in mobile edge computing
is the competitiveness of mobile users, who are selfish in competing for resources in a mobile edge
cloud. We take a game theoretic approach to the stabilization of a competitive mobile edge computing
environment. The main contributions of the paper are summarized as follows. 1) We consider a mobile
edge computing environment with multiple UEs and a single MEC. We establish an M/G/1 queueing model
for the UEs and an M/G/m queueing model for the MEC. The UEs are entirely heterogeneous in terms
of task characteristics, computation and communication speeds, and power consumption models for both
computation and communication. 2) We analytically derive the average response time and the average
power consumption of each UE and the MEC, so that cost-performance ratio optimization can be studied
mathematically and rigorously. 3) We establish a non-cooperative game framework to systematically study
the stabilization of a competitive mobile edge computing environment. Our framework includes a set of
seven non-cooperative games among the UEs and the MEC, each attempts to minimize its payoff function,
i.e., its cost-performance ratio. These games are different in terms of the number of variables to play and
which variables to play. 4) We develop efficient algorithms for each player to find the best response in
each game. All these algorithms are the poly-log time in the length of an initial search interval and the
accuracy requirement. We also develop an iterative algorithm to find the Nash equilibrium of the games.
5) We demonstrate the numerical examples of our algorithms and performance data of our games for the
idle-speed model and the constant-speed model respectively.

INDEX TERMS Average power consumption, average response time, computation offloading,
cost-performance ratio, mobile edge computing, Nash equilibrium, non-cooperative game, queueing model.

I. INTRODUCTION
A. MOTIVATION
There are two fundamental purposes in mobile edge comput-
ing, i.e., performance enhancement and cost reduction [17].

The associate editor coordinating the review of this manuscript and
approving it for publication was Petros Nicopolitidis.

By offloading computation tasks to a mobile edge cloud
(MEC), a user equipment (UE), also called mobile user,
mobile subscriber, or mobile device, can possibly reduce its
average response time, which is a main performance mea-
sure, and can possible reduce its average power consump-
tion, which is a main cost measure. By reducing the average
response time and reducing the average power consumption,

69960
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-5224-4048

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

a UE creates an illusion of a mobile device with stronger
computing power and longer battery lifetime [8], [12], [13].

There are three essential parameters that a UE can control
or choose to enhance its performance and to reduce its cost.
All these three parameters affect the average response time
and the average power consumption, and their impact on
performance and cost is sophisticated and deserves serious
investigation. (1) The first parameter is the amount of task
offloading. It seems that increasing the amount of offloading
will decrease the average response time. However, this is
true only for non-offloaded tasks, since the workload on a
UE is reduced. The average response time of offloaded tasks
may be increased if the communication time is too long
and/or an MEC is overloaded. While increasing the amount
of offloading may decrease the average power consumption
for computation of a UE, it definitely increases the aver-
age power consumption for communication. (2) The second
parameter is the server execution speed. While increasing
the server execution speed of a UE decreases the average
response time of non-offloaded tasks, it increases the average
power consumption for computation. (3) The third parameter
is the data communication speed. While increasing the data
communication speed of a UE decreases the average response
time of offloaded tasks, it increases the transmission power
and the average power consumption for communication.

Similarly, there is one essential parameter, i.e., the server
execution speed, that an MEC can control or choose to
enhance its performance and to reduce its cost. It is clear that
increasing the server execution speed decreases the average
response time, but increases the average power consumption.

Optimizing both performance and cost may be conflict-
ing requirements. There are different ways to deal with the
performance and cost tradeoff, for instances, minimization of
average response time with average power consumption con-
straint, and minimization of average power consumption with
average response time constraint [21], and joint performance
and cost optimization [7]. In this paper, we optimize the
cost-performance ratio (CPR), i.e., the power-time product,
which combines performance (average response time) and
cost (average power consumption) into one quantity. A UE
can optimize its CPR by proper choice of its computation
offloading strategy and computation/communication speeds.
An MEC can optimize its CPR by proper choice of its server
execution speed.

A unique feature in mobile edge computing is competi-
tiveness of mobile users, who are selfish in competing for
resources in a mobile edge cloud. Therefore, collective opti-
mization of the overall performance and/or cost of all mobile
users is not interesting to anyone. Optimization of compu-
tation offloading strategy and computation/communication
speeds should be carried out for each UE individually and
separately, while other UEs are also doing so. In addition,
an MEC can also join such a non-cooperative game. Each
player in the game attempts to find his best response to the
current situation by finding his best choice of the variables
that minimize his CPR. We are interested in how the stable

situation looks like, a situation where no one can reduce his
CPR anymore and no one wants to make further change. The
motivation of our investigation is to conduct a mathematical
study of the above competitive and non-cooperative game and
to show that such a stable situation does exist and can be
found algorithmically, numerically, and efficiently.

B. SUMMARY OF CONTRIBUTIONS
In this paper, we take a game theoretic approach to stabi-
lization of a competitive mobile edge computing environ-
ment. The main contributions of the paper are summarized as
follows.

• We consider a mobile edge computing environment
with multiple UEs and a single MEC. We establish
an M/G/1 queueing model for the UEs and an M/G/m
queueing model for the MEC. The UEs are entirely
heterogeneous in terms of task characteristics, computa-
tion and communication speeds, and power consumption
models for both computation and communication.

• We analytically derive the average response time and the
average power consumption of eachUE and theMEC, so
that cost-performance ratio optimization can be studied
mathematically and rigorously.

• We establish a non-cooperative game framework to sys-
tematically study stabilization of a competitive mobile
edge computing environment. Our framework includes
a set of seven non-cooperative games among the UEs
and the MEC, each attempts to minimize its payoff
function, i.e., its cost-performance ratio. These games
are different in terms of the number of variables to play
and which variables to play.

• We develop efficient algorithms for each player to find
the best response in each game. All these algorithms are
poly-log time in the length of an initial search interval
and the accuracy requirement. We also develop an itera-
tive algorithm to find the Nash equilibrium of the games.

• We demonstrate numerical examples of our algorithms
and performance data of our games for the idle-speed
model and the constant-speed model respectively.

The rest of the paper is organized as follows. In Section 2,
we review related research. In Section 3, we establish math-
ematical models. In Section 4, we present power consump-
tion models for both computation and communication. In
Section 5, we establish a game formulation of a competi-
tive mobile edge computing environment. In Section 6, we
develop our algorithms. In Section 7, we demonstrate numer-
ical examples and performance data. In Section 8, we sum-
marize the paper and mention further research directions.

II. RELATED WORK
In this section, we review related research. Computation
offloading in mobile edge computing has been a hot research
topic in recent years, and extensive investigation has been
conducted. The reader is referred to [2], [15], [17], [24], [27]
for recent comprehensive surveys.

VOLUME 7, 2019 69961

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

Several researchers have considered the important issue
of performance and cost tradeoff in mobile edge computing.
Mao et al. investigated the tradeoff between two critical but
conflicting objectives in multi-user MEC systems, namely,
the power consumption of mobile devices and the execu-
tion delay of computation tasks, by considering a stochas-
tic optimization problem, for which, the CPU frequency,
the transmit power, as well as the bandwidth allocation
should be determined for each device in each time slot [25].
You et al. studied optimal resource allocation for a multi-user
mobile-edge computation offloading system, where each user
has one task, by minimizing the weighted sum of mobile
energy consumption under the constraint on computation
latency, with the assumption of negligible cloud computing
and result downloading time [29]. Zhang et al. proposed a
joint computation offloading and resource allocation opti-
mization scheme, aiming to minimize the total cost (which
includes energy consumption, monetary cost, and execu-
tion latency for both computation and communication) of
all mobile users, where each user has one task [31]. Zhang
et al. studied energy-efficient computation offloading mech-
anisms for MEC in 5G heterogeneous networks by for-
mulating an optimization problem to minimize the energy
consumption of an offloading system with multiple mobile
devices, where each device has a computation task to be
completed within certain delay constraint, and the energy cost
of both task computing and file transmission are taken into
consideration [32].

The game theoretical approach has been employed to
study computation offloading strategies of multiple users.
Cao and Cai investigated the problem of multi-user compu-
tation offloading for cloudlet based mobile cloud comput-
ing in a multi-channel wireless contention environment, by
formulating the multi-user computation offloading decision
making problem as a non-cooperative game, where each
mobile device user has one computation task with the same
number of CPU cycles and attempts to minimize a weighted
sum of execution time and energy consumption [4]. Chen
formulated a decentralized computation offloading decision
making problem among mobile device users as a decen-
tralized computation offloading game, where each mobile
device user has a computationally intensive and delay sen-
sitive task and minimizes a weighted sum of computational
time and energy consumption [9]. Chen et al. studied the
multi-user computation offloading problem for mobile-edge
cloud computing in a multi-channel wireless interference
environment, and showed that it is NP-hard to compute a cen-
tralized optimal solution, and hence adopted a game theoretic
approach to achieving efficient computation offloading in a
distributed manner [10]. Liu et al. built a cooperative game
based framework for quality of service (QoS) guaranteed
offloading in a multiple MECs environment, such that the
number of tasks whose QoS requirements are satisfied is
maximized, where both UEs and MECs are players, and
each UE has one task [22]. Ma et al. researched compu-
tation offloading strategies of multiple users via multiple

wireless access points by taking energy consumption and
delay (including computing and transmission delay) into
account, and presented a game-theoretic analysis of the com-
putation offloading problem while mimicking the selfish
nature of the individuals [23]. However, all the above works
only consider the case of multiple users, where each user has
only a single task.

For multiple users, where each has multiple tasks,
Chen et al. constructed a non-cooperative gamemodel to find
an optimal computation offloading policy for each UE to
minimize a weighted sum of energy consumption and time
consumption [7]. However, the method adopted is discrete
combinatorial optimization, not continuous stochastic opti-
mization. Cardellini et al. considered a usage scenario where
multiple non-cooperative mobile users share the limited com-
puting resources of a close-by cloudlet and can selfishly
decide to send their computations to any of the three tiers,
i.e., a local tier of mobile nodes, a middle tier (cloudlets)
of nearby computing nodes, and a remote tier of distant
cloud servers [5]. However, the above study employed the
M/M/1 queueing model, which is not able to capture the het-
erogeneity of mobile devices. Furthermore, the above study
did not consider multiple heterogeneous MECs. In fact, all
the above studies are for a single MEC.

There has been investigation concerning multiple MECs.
Tran and Pompili studied the problem of joint task offloading
and resource allocation in a multi-cell and multi-server MEC
system in order to maximize users’ task offloading gains,
which are measured by the reduction in task completion time
and energy consumption, by considering task offloading deci-
sion, uplink transmission power of mobile users, and com-
puting resource allocation in theMEC servers [28]. However,
this study did not use the game theoretic approach to dealing
with competitive and selfishmobile users. Li et al. considered
multiple heterogeneous mobile users competing for resources
frommultiple heterogeneous mobile edge clouds, where each
UE and MEC is characterized by an M/G/1 queueing system,
and used the game theoretic approach to finding the optimal
computation offloading strategy for each mobile user when
a mobile computing environment becomes stabilized [20].
However, the cost of energy consumption was not taken into
consideration in the payoff function, but only the average
response time.

Our research in this paper considers multiple heteroge-
neous UEs, each having an endless sequence of computa-
tional tasks, and a powerful multiserver MEC, with the goal
of minimizing a combined metric of performance and cost,
using both queueing theory and game theory.

III. QUEUEING MODELS
To rigorously investigate stabilization of a competitivemobile
edge computing environment, we need to establishmathemat-
ical models. We consider a mobile edge computing environ-
ment with multiple UEs and a single MEC (see Figure 1),
where there are nmobile user equipments, i.e., UE1, UE2,. . . ,
UEn, and a mobile edge cloud MEC.

69962 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

FIGURE 1. A mobile edge computing environment with multiple competitive UEs and a single MEC.

Throughout the paper, we use y to represent the expectation
of a random variable y. Table 1 gives a list of the notations
and their definitions used in this paper. (The main sym-
bols of UEi are: λ̃i, λi, ri, r2i , di, d

2
i , si, ci, ξi, αi,Ps,i,wi, βi;

and xi, xi, x2i , ρi,Wi,Tlocal,i,Tremote,i,Ti,Pd,i,Pcomp,i,Pt,i,
Pcomm,i,Pi,Ri. The main symbols of the MEC are:
m, s, ξ, α,Ps; and λ, x, x2, σ,C, ρ,W , Ŵ ,D,T ,Pd ,P,R.)

A. THE USER MODEL: M/G/1
In this paper, each UEi is treated as an M/G/1 queueing
system. That is, UEi is actually a server. Such a server allows
task inter-arrival times to follow an exponential distribution
and task execution times to follow an arbitrary probability
distribution (a fairly general model without extra assump-
tions). There is a Poisson stream of computation tasks with
arrival rate λ̃i (measured by the number of arrival tasks per
unit of time, e.g., second), i.e., the inter-arrival times are
independent and identically distributed (i.i.d.) exponential
random variables with mean 1/λ̃i. The arrival task stream
is decomposed into two streams, that is, there is a Poisson
stream of computation tasks with arrival rate λi which are
offloaded to the MEC and processed remotely in the MEC,
and there is a Poisson stream of computation taskswith arrival
rate λ̃i−λi which are not offloaded to theMEC and processed
locally in UEi. The variable λi is actually a computation
offloading strategy of UEi, for all 1 ≤ i ≤ n.

Each M/G/1 queueing system maintains a queue with infi-
nite capacity for waiting tasks when UEi is busy in processing
other tasks. The first-come-first-served (FCFS) queueing dis-
cipline is adopted.

The execution requirements (measured by the number of
billion processor cycles or the number of billion instruc-
tions (BI) to be executed) of the computation tasks generated

on UEi are i.i.d. random variables ri with an arbitrary prob-
ability distribution. We assume that its mean ri and second
moment r2i are available, for all 1 ≤ i ≤ n. The amount
of data (measured by the number of million bits (MB)) to be
communicated between UEi and theMEC for offloaded tasks
are i.i.d. random variables di with an arbitrary probability
distribution. We assume that its mean di and second moment
d2i are available, for all 1 ≤ i ≤ n.
UEi has execution speed si (measured by GHz or the num-

ber of billion instructions that can be executed in one second),
where 1 ≤ i ≤ n. The communication speed (measured by the
number of million bits that can be transmitted in one second)
between UEi and the MEC is ci, where 1 ≤ i ≤ n.

B. THE SERVER MODEL: M/G/m
The MEC is treated as an M/G/m queueing system. Thus,
the MEC is actually a multiserver system with mixed classes
of tasks from differentmobile users. There is a Poisson stream
of computation tasks with arrival rate λ to the MEC, where
λ = λ1 + λ2 + · · · + λn, and λi is the arrival rate of the
Poisson stream of computation tasks offloaded from UEi, for
all 1 ≤ i ≤ n. The MEC has m identical servers, where m
is the size of the multiserver system. The M/G/m queueing
system maintains a queue with infinite capacity for waiting
taskswhen all them servers are busy in processing other tasks.
The FCFS queueing discipline is adopted. The execution
speed (measured by GHz or the number of billion instructions
that can be executed in one second) of the m servers is s.

IV. POWER CONSUMPTION MODELS
In this section, we present power consumption models for
both computation and communication in mobile edge com-
puting. All powers are measured by Watts.

VOLUME 7, 2019 69963

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

TABLE 1. Summary of notations and definitions.

A. COMPUTATION
Power dissipation and circuit delay in digital CMOS cir-
cuits can be accurately modeled by simple equations, even

for complex microprocessor circuits. CMOS circuits have
dynamic, static, and short-circuit power dissipation; however,
the dominant component in a well designed circuit is dynamic

69964 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

power consumption Pd,i (i.e., the switching component of
power) of UEi, which is approximately Pd,i = aiCiV 2

i fi,
where ai is an activity factor, Ci is the loading capacitance,
Vi is the supply voltage, and fi is the clock frequency [6]. In
the ideal case, the supply voltage and the clock frequency
are related in such a way that Vi ∝ f φii for some constant
φi > 0 [30]. The processor execution speed si is usually
linearly proportional to the clock frequency, namely, si ∝ fi.
For ease of discussion, we will assume that Vi = bif

φi
i and

si = cifi, where bi and ci are some constants. Hence, we know
that the dynamic power consumption is

Pd,i = aiCiV 2
i fi = aib2i Cif

2φi+1
i = (aib2i Ci/c

2φi+1
i)s2φi+1i ,

which can be simplified as

Pd,i = ξis
αi
i ,

where ξi = aib2i Ci/c
2φi+1
i , and αi = 2φi + 1. For instance,

by setting aiCi = 7.0, bi = 1.16, ci = 1.0, φi = 0.5, αi =
2φi + 1 = 2.0, and ξi = aib2i Ci/c

αi
i = 9.4192, the value

of Pd,i calculated by the equation Pd,i = aiCiV 2
i fi = ξis

αi
i

is reasonably close to that in [14] for the Intel Pentium M
processor.

We will consider two types of server speed and power
consumption models. In the idle-speed model, a server runs
at zero speed when there is no task to perform. Since the
power for speed si is ξis

αi
i , the average amount of energy

consumed by UEi in one second is ρiPd,i = ρiξis
αi
i , where

we notice that the speed of a server is zero when it is idle,
and ρi = (λ̃i − λi)(ri/si) is the utilization of UEi to be
derived in Section 5.2.1. The average amount of energy con-
sumed by UEi in one second, i.e., the power supply to UEi,
is Pcomp,i = ρiξis

αi
i . Since a server still consumes some

amount of base power Ps,i even when it is idle (assume that an
idle server consumes certain base power Ps,i, which includes
static power dissipation, short circuit power dissipation, and
other leakage and wasted power [19]), we will include Ps,i in
Pcomp,i, i.e.,

Pcomp,i = ρiPd,i + Ps,i = ρiξis
αi
i + Ps,i,

In the constant-speed model, a server still runs at the speed
si even if there is no task to perform. Again, we use Pcomp,i
to represent the power allocated to UEi. Since the power for
speed si is Pd,i = ξis

αi
i , the power allocated to UEi is

Pcomp,i = Pd,i + Ps,i = ξis
αi
i + Ps,i.

Similarly, we use Pd , Ps, and P to represent the dynamic,
static, and average power consumption of the MEC. Then,
we have

Pd = ξsα,

and

P = m(ρPd + Ps) = m(ρξsα + Ps),

for the idle-speed model, and

P = m(Pd + Ps) = m(ξsα + Ps),

for the constant-speed model, where s is the execution speed
of the MEC, and ξ and α are some constants.

B. COMMUNICATION
In addition to power consumption for computation, a UE
also consumes power for communication. Let Pt,i be the
transmission power of UEi, where 1 ≤ i ≤ n. The data
transmission rate ci from UEi to the MEC is

ci = wi log2(1+ βiPt,i),

wherewi is the channel bandwidth and βi is a combined quan-
tity which summarizes various factors such as the channel
gain between UEi and the MEC, the interference on the com-
munication channel caused by other devices’ data transmis-
sion to the sameMEC, and the background noise power. Since
the average communication time for one offloaded task from
UEi to the MEC is di/ci, the average energy consumption to
complete data transmission for one offloaded task from UEi
to the MEC is Pt,i(di/ci), where

Pt,i =
2ci/wi − 1

βi
.

Since there are λi tasks offloaded fromUEi to theMEC in one
second, the average energy consumption of data transmission
for offloaded tasks from UEi to the MEC in one second, i.e.,
the average power consumption for communication of UEi,
is

Pcomm,i = λi
di
ci
Pt,i = λi

di
ci
·
2ci/wi − 1

βi
.

By adding the average power consumption for computa-
tion and communication together, we get the average power
consumption Pi of UEi as

Pi = Pcomp,i + Pcomm,i

= ρiξis
αi
i + Ps,i + λi

di
ci
·
2ci/wi − 1

βi

= (λ̃i − λi)riξis
αi−1
i + Ps,i + λi

di
ci
·
2ci/wi − 1

βi
,

for the idle-speed model, and

Pi = Pcomp,i + Pcomm,i

= ξis
αi
i + Ps,i + λi

di
ci
·
2ci/wi − 1

βi
,

for the constant-speed model.

V. A GAME FORMULATION
We use non-cooperative games to study computation offload-
ing strategy and computation/communication speeds opti-
mization for non-cooperative mobile users competing for
resources from a mobile edge cloud.

VOLUME 7, 2019 69965

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

A. BACKGROUND INFORMATION
In this section, we describe some background information of
non-cooperative game theory. (The material in this section is
adapted from Sections 4.1–4.2 of [20] and included here for
the sake of completeness.)

A set K ⊆ Rm is convex if for any two points x, y ∈ K , the
segment joining them belongs to K , i.e.,

βx+ (1− β)y ∈ K , for all β ∈ [0, 1].

Given a convex set K ⊆ Rm, a function f (x) : K → R is said
to be convex on K if for all x, y ∈ K and β ∈ [0, 1], we have

f (βx+ (1− β)y) ≤ β f (x)+ (1− β) f (y).

It is well known [1] that a continuous and twice differentiable
function f (x) : K → R, where x = (x1, x2, . . . , xm), is
convex on a convex set K if and only if its Hessian matrix

H(f (x)) =
[
∂2f
∂xi∂xj

]
m×m

of second partial derivatives is positive semidefinite on the
interior of K . Let the kth leading principal minor of the
symmetric matrixH(f (x)) be the determinant of its upper-left
k × k submatrix, where 1 ≤ k ≤ m. By the well known
Sylvester’s criterion, H(f (x)) is positive semidefinite if and
only if all the leading principal minors (i.e., all these deter-
minants) are non-negative [11].

Given a closed and convex K ⊆ Rm and an objective
function f (x) : K → R, which is convex and continuously
differentiable on K , the convex optimization (CO) problem,
denoted by CO(K , f), is to

minimize f (x), subject to x ∈ K ,

i.e., to find a solution x∗ ∈ K , such that

f (x∗) ≤ f (x), for all x ∈ K .

Assume that there are n players in a game. The ith player
controls a variable (which represents the strategy of the
player) xi = (xi,1, xi,2, . . . , xi,mi) ∈ Ki ⊆ Rmi , where Ki
(which is the set of strategies of the ith player) is closed and
convex, for all 1 ≤ i ≤ n. LetK = K1×K2×· · ·×Kn be the
set of combinations of all players’ strategies.We use the nota-
tion x = (x1, x2, . . . , xn) ∈ K to denote the overall vector of
all players’ variables, and x−i = (x1, . . . , xi−1, xi+1, . . . , xn)
to denote the vector of all players’ variables except that of
player i. Each player has a payoff function fi(xi, x−i) : K →
R. It is assumed that the payoff function fi is continuously
differentiable in x and convex as a function of xi alone for
every fixed x−i.

A non-cooperative game with n players is specified by
G = (K, f), where K = K1 × K2 × · · · × Kn and f =
(f1(x), f2(x), . . . , fn(x)). The aim of player i, given other play-
ers’ strategies x−i, is to choose an action xi ∈ Ki that
minimizes his payoff function fi(xi, x−i), i.e., to

minimize fi(xi, x−i), subject to xi ∈ Ki.

Therefore, in an n-player non-cooperative game, we have a set
of n coupled convex optimization problems CO(Ki, fi), where
fi : Ki → R is viewed as a function of xi, for all 1 ≤ i ≤ n.
A point (i.e., an action profile) x = (x1, x2, . . . , xn) ∈ K is
feasible if xi ∈ Ki for all 1 ≤ i ≤ n. The purpose of the
game is to find a (pure strategy) Nash equilibrium (NE), i.e.,
a feasible point x∗ = (x∗1, x

∗

2, . . . , x
∗
n) ∈ K, such that

fi(x∗i , x
∗
−i) ≤ fi(xi x

∗
−i), for all xi ∈ Ki,

holds for each player i = 1, 2, . . . , n. In words, a Nash
equilibrium is a feasible strategy profile x∗ with the property
that no single player i can benefit from a unilateral deviation
from x∗i , if all other players act according to it.
It is well known that if fi(xi, x−i) is a convex function of

xi for each fixed x−i, for all 1 ≤ i ≤ n, there is a Nash
equilibrium of G = (K, f) [26].

B. NON-COOPERATIVE GAMES
In this section, we present seven non-cooperative games for
non-cooperative mobile users to play to stabilize a competi-
tive mobile edge computing environment.

1) THE UE PLAYERS
Based on the queueing model for the UEs in Section 3.1,
we know that the execution times of non-offloaded tasks
processed locally in UEi are i.i.d. random variables

xi =
ri
si

with mean xi = ri/si and second moment x2i = r2i /s
2
i . The

utilization of UEi is

ρi = (λ̃i − λi)xi = (λ̃i − λi)
ri
si
.

The average waiting time of the tasks in UEi is ([16], p. 190)

Wi =
(λ̃i − λi)x2i
2(1− ρi)

=
(λ̃i − λi)(r2i /s

2
i)

2(1− (λ̃i − λi)(ri/si))
.

The average response time of non-offloaded tasks processed
locally in UEi is

Tlocal,i = xi +Wi =
ri
si
+

(λ̃i − λi)(r2i /s
2
i)

2(1− (λ̃i − λi)(ri/si))
.

Let W be the average waiting time of all tasks in the MEC,
which will be derived in Section 5.2.2. Then, the aver-
age response time of offloaded tasks from UEi processed
remotely in the MEC is

Tremote,i =
ri
s
+
di
ci
+W =

ri
s
+
di
ci
+
mm−2

2m!
λx2D,

where x2 and D will be defined shortly in Section 5.2.2.
Therefore, the average response time (measured by seconds)
of all non-offloaded and offloaded tasks generated on UEi is

Ti =
λ̃i − λi

λ̃i
Tlocal,i +

λi

λ̃i
Tremote,i

69966 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

=
λ̃i − λi

λ̃i
(xi +Wi)+

λi

λ̃i

(
ri
s
+
di
ci
+W

)
=
λ̃i − λi

λ̃i

(
ri
si
+

(λ̃i − λi)(r2i /s
2
i)

2(1− (λ̃i − λi)(ri/si))

)
+
λi

λ̃i

(
ri
s
+
di
ci
+
mm−2

2m!
λx2D

)
.

Our performance measure is 1/Ti, which is inversely pro-
portional to the average response time Ti, the higher, the bet-
ter. Our cost measure is the average power consumption
Pi, the lower, the better. The cost-performance ratio (CPR)
refers to a UE’s ability to deliver performance for its cost.
Generally speaking, a UE with lower CPR is more desirable,
excluding other factors. In this paper, we define CPR as
cost/performance

Ri = PiTi,

i.e., power-time product (measured by Watts-seconds).

2) THE MEC PLAYER
Based on the queueing model for the MEC in Section 3.2, we
know that the total arrival rate of all offloaded tasks from the
n UEs to the MEC is

λ = λ1 + λ2 + · · · + λn.

The execution times of the tasks in the MEC are i.i.d. random
variables x, which is ri/s+ di/ci with probability λi/λ, with
mean

x =
n∑
i=1

λi

λ

(
ri
s
+
di
ci

)
,

and the second moment

x2 =
n∑
i=1

λi

λ

(
r2i
s2
+ 2

ri
s
·
di
ci
+
d2i
c2i

)
,

and the variance

σ 2
= x2 − x2,

and the coefficient of variation

C =
σ

x
=

√
x2

x2
− 1.

It is well known that the average waiting time of all tasks
in the MEC has very accurate approximation:

W =
(
C2
+ 1
2

)
Ŵ ,

where Ŵ is the average waiting time of all tasks in anM/M/m
queueing system with the same utilization as the M/G/m
queueing system [18]. The utilization of the MEC is

ρ =
λx
m
=

n∑
i=1

λi

m

(
ri
s
+
di
ci

)
.

Then, we have ([16, p. 102])

Ŵ = x ·
pm

m(1− ρ)2
,

where

pm = p0
(mρ)m

m!
,

and

p0 =
(m−1∑
k=0

(mρ)k

k!
+

(mρ)m

m!
·

1
1− ρ

)−1
.

Since

C2
+ 1 =

x2

x2
,

and

mρ = λx,

we get

W =
x2

2x2
· x · mρ · p0

(mρ)m−1

m!
·

1
m(1− ρ)2

=
mm−2

2m!
λx2D,

where

D = p0
ρm−1

(1− ρ)2
.

The average response time of all tasks in the MEC is

T =
n∑
i=1

λi

λ
Tremote,i

=

n∑
i=1

λi

λ

(
ri
s
+
di
ci
+W

)

=

n∑
i=1

λi

λ

(
ri
s
+
di
ci

)
+W

=

n∑
i=1

λi

λ

(
ri
s
+
di
ci

)
+
mm−2

2m!
λx2D.

The cost-performance ratio of the MEC is

R = PT .

3) THE GAMES
In this paper, we consider seven non-cooperative games with
n+1 players, i.e., UE1, UE2,. . . , UEn, and theMEC, specified
by G = (K, f), where K = K1 × K2 × · · · × Kn × Kn+1 and
f = (f1(x1), f2(x2), . . . , fn(xn), fn+1(xn+1)).

UEi can play with three variables, i.e., λi, si, and ci. It is
clear that all these three variables can affect both Ti and Pi.
Each of these variables must be in some appropriate interval.
For instance, we require

λi ∈ [λ′i, λ
′′
i].

VOLUME 7, 2019 69967

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

To ensure ρi < 1, we need

λ′i = max
(
0, λ̃i −

si
ri

)
.

To ensure ρ < 1, we need

λ′′i = min
(
λ̃i,m

(
1−

∑
j6=i

λj

m

(
rj
s
+
dj
cj

))/(
ri
s
+
di
ci

))
.

We also require

si ∈ [s′i, s
′′
i].

To ensure ρi < 1, we need

s′i = (λ̃i − λi)ri.

We also require

ci ∈ [c′i, c
′′
i],

for some appropriate interval [c′i, c
′′
i].

The strategy sets and payoff functions of the seven games
are specified as follows.
• Game(λi): xi = λi, Ki = [λ′i, λ

′′
i], and fi(xi) = Ri(λi) =

Pi(λi)Ti(λi).
• Game(si): xi = si, Ki = [s′i, s

′′
i], and fi(xi) = Ri(si) =

Pi(si)Ti(si).
• Game(ci): xi = ci, Ki = [c′i, c

′′
i], and fi(xi) = Ri(ci) =

Pi(ci)Ti(ci).
• Game(λi, si): xi = (λi, si), Ki = [λ′i, λ

′′
i] × [s′i, s

′′
i], and

fi(xi) = Ri(λi, si) = Pi(λi, si)Ti(λi, si).
• Game(λi, ci): xi = (λi, ci), Ki = [λ′i, λ

′′
i]× [c′i, c

′′
i], and

fi(xi) = Ri(λi, ci) = Pi(λi, ci)Ti(λi, ci).
• Game(si, ci): xi = (si, ci), Ki = [s′i, s

′′
i] × [c′i, c

′′
i], and

fi(xi) = Ri(si, ci) = Pi(si, ci)Ti(si, ci).
• Game(λi, si, ci): xi = (λi, si, ci), Ki = [λ′i, λ

′′
i] ×

[s′i, s
′′
i] × [c′i, c

′′
i], and fi(xi) = Ri(λi, si, ci) =

Pi(λi, si, ci)Ti(λi, si, ci).
The MEC can play with one variable, i.e., s, which can

affect both T and P. We require

s ∈ [s′, s′′].

To ensure ρ < 1, we need

s′ =
(n∑
i=1

λi

m
ri

)/(
1−

n∑
i=1

λi

m
·
di
ci

)
.

s′′ should be reasonably large. In all the seven games, we
have xn+1 = s, Kn+1 = [s′, s′′], and fn+1(xn+1) = R(s) =
P(s)T (s).

C. EXISTENCE OF THE NASH EQUILIBRIUM
In this section, we show the existence of the Nash equilibrium
of the games. For clarity of presentation, the derivations of
all the first and second order partial derivatives are moved to
Appendices 1 and 2.

For the MEC, we can show that

Ms =
∂2 R
∂s2

> 0,

where

∂2 R
∂s2
= T

∂2 P
∂s2
+ 2

∂P
∂s
∂T
∂s
+ P

∂2 T
∂s2

.

For Game(λi), Game(si), and Game(ci), we can show that

Mλi =
∂2 Ri
∂λ2i

> 0,

Msi =
∂2 Ri
∂s2i

> 0,

and

Mci =
∂2 Ri
∂c2i

> 0,

where

n
∂2 Ri
∂λ2i

= Ti
∂2 Pi
∂λ2i
+ 2

∂Pi
∂λi

∂Ti
∂λi
+ Pi

∂2 Ti
∂λ2i

,

∂2 Ri
∂s2i
= Ti

∂2 Pi
∂s2i
+ 2

∂Pi
∂si

∂Ti
∂si
+ Pi

∂2 Ti
∂s2i

,

and

∂2 Ri
∂c2i
= Ti

∂2 Pi
∂c2i
+ 2

∂Pi
∂ci

∂Ti
∂ci
+ Pi

∂2 Ti
∂c2i

.

For Game(λi, si), Game(λi, ci), and Game(si, ci), we can
show that the determinants of the following three matrices,
i.e.,

∂2Ri
∂λ2i

∂2Ri
∂λi∂si

∂2Ri
∂si∂λi

∂2Ri
∂s2i

 ,

∂2Ri
∂λ2i

∂2Ri
∂λi∂ci

∂2Ri
∂ci∂λi

∂2Ri
∂c2i

 ,
and

∂2Ri
∂s2i

∂2Ri
∂si∂ci

∂2Ri
∂ci∂si

∂2Ri
∂c2i

 ,
where

∂2 Ri
∂λi∂si

= Ti
∂2 Pi
∂λi∂si

+
∂Pi
∂λi

∂Ti
∂si
+
∂Ti
∂λi

∂Pi
∂si
+ Pi

∂2 Ti
∂λi∂si

,

∂2 Ri
∂λi∂ci

= Ti
∂2 Pi
∂λi∂ci

+
∂Pi
∂λi

∂Ti
∂ci
+
∂Ti
∂λi

∂Pi
∂ci
+ Pi

∂2 Ti
∂λi∂ci

,

∂2 Ri
∂si∂λi

= Ti
∂2 Pi
∂si∂λi

+
∂Pi
∂si

∂Ti
∂λi
+
∂Ti
∂si

∂Pi
∂λi
+ Pi

∂2 Ti
∂si∂λi

,

∂2 Ri
∂si∂ci

= Ti
∂2 Pi
∂si∂ci

+
∂Pi
∂si

∂Ti
∂ci
+
∂Ti
∂si

∂Pi
∂ci
+ Pi

∂2 Ti
∂si∂ci

,

69968 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

∂2 Ri
∂ci∂λi

= Ti
∂2 Pi
∂ci∂λi

+
∂Pi
∂ci

∂Ti
∂λi
+
∂Ti
∂ci

∂Pi
∂λi
+ Pi

∂2 Ti
∂ci∂λi

,

∂2 Ri
∂ci∂si

= Ti
∂2 Pi
∂ci∂si

+
∂Pi
∂ci

∂Ti
∂si
+
∂Ti
∂ci

∂Pi
∂si
+ Pi

∂2 Ti
∂ci∂si

,

are all positive, that is,

Mλi,si =
∂2 Ri
∂λ2i
·
∂2 Ri
∂s2i
−
∂2 Ri
∂λi∂si

·
∂2 Ri
∂si∂λi

> 0,

Mλi,ci =
∂2 Ri
∂λ2i
·
∂2 Ri
∂c2i
−
∂2 Ri
∂λi∂ci

·
∂2 Ri
∂ci∂λi

> 0,

and

Msi,ci =
∂2 Ri
∂s2i
·
∂2 Ri
∂c2i
−
∂2 Ri
∂si∂ci

·
∂2 Ri
∂ci∂si

> 0.

For Game(λi, si, ci), the Hessian matrix is

Hi =

∂2Ri
∂λ2i

∂2Ri
∂λi∂si

∂2Ri
∂λi∂ci

∂2Ri
∂si∂λi

∂2Ri
∂s2i

∂2Ri
∂si∂ci

∂2Ri
∂ci∂λi

∂2Ri
∂ci∂si

∂2Ri
∂c2i

,

which is positive definite, since the three leading principal
minors of matrix Hi, i.e.,

Mλi =
∂2 Ri
∂λ2i

,

Mλi,si =
∂2 Ri
∂λ2i
·
∂2 Ri
∂s2i
−
∂2 Ri
∂λi∂si

·
∂2 Ri
∂si∂λi

,

Mλi,si,ci =
∂2 Ri
∂λ2i

(
∂2 Ri
∂s2i
·
∂2 Ri
∂c2i
−
∂2 Ri
∂si∂ci

·
∂2 Ri
∂ci∂si

)
−
∂2 Ri
∂λi∂si

(
∂2 Ri
∂si∂λi

·
∂2 Ri
∂c2i
−
∂2 Ri
∂si∂ci

·
∂2 Ri
∂ci∂λi

)
+
∂2 Ri
∂λi∂ci

(
∂2 Ri
∂si∂λi

·
∂2 Ri
∂ci∂si

−
∂2 Ri
∂s2i
·
∂2 Ri
∂ci∂λi

)
,

are all positive.
Due to the sophistication of the partial derivatives, ana-

lytical proofs of the positiveness of leading principal minors
seem infeasible. However, they can be demonstrated numeri-
cally (see Appendix 3).

VI. SOLUTIONS TO THE GAMES
In this section, we give the solutions to our games by devel-
oping algorithms to find the best responses of all players and
an iterative algorithm to find the Nash equilibrium.

A. THE BEST RESPONSE OF A UE
In this section, we develop an algorithm to find the best
response of a mobile user in each game.

1) GAME(λi)
In this game, UEi needs to find λi such that

∂Ri
∂λi
= Ti

∂Pi
∂λi
+ Pi

∂Ti
∂λi
= 0.

Our numerical algorithm to find λi such that ∂Ri/∂λi = 0
is given in Algorithm 1. The algorithm uses the classical
bisection method (lines 2–10) based on the observation that
∂Ri/∂λi is an increasing function of λi (lines 5–9), since
∂2 Ri/∂λ2i > 0. (The standard bisection method is described
in [3], p. 22). Let I denote the maximum length of all initial
search intervals in this paper. Then, the time complexity
of Algorithm 1 is O(log(I/ε)). (We set ε = 10−7 in this
paper.)

Algorithm 1: Find λi

Input: λj, rj, r2j , dj, d
2
j , cj, for all 1 ≤ j 6= i ≤ n, m, s,

and λ̃i, ri, r2i , di, d
2
i , si, ci, ξi, αi,Ps,i,wi, βi.

Output: λi, such that ∂Ri/∂λi = 0.

Initialize the search interval of λi; (1)
while (the length of the search interval is ≥ ε) do (2)
λi← the middle point of the search interval; (3)
Calculate ∂Ri/∂λi; (4)
if (∂Ri/∂λi < 0) then (5)

Change the search interval to the right half; (6)
else (7)

Change the search interval to the left half; (8)
end if (9)
end do; (10)
λi← the middle point of the search interval; (11)
return λi. (12)

2) GAME(si)
In this game, UEi needs to find si such that

∂Ri
∂si
= Ti

∂Pi
∂si
+ Pi

∂Ti
∂si
= 0.

Our numerical algorithm to find si such that ∂Ri/∂si = 0 is
given in Algorithm 2 with s′′i = 5.0, which is similar to Algo-
rithm 1. The time complexity of Algorithm 2 is O(log(I/ε)).

3) GAME(ci)
In this game, UEi needs to find ci such that

∂Ri
∂ci
= Ti

∂Pi
∂ci
+ Pi

∂Ti
∂ci
= 0.

Our numerical algorithm to find ci such that ∂Ri/∂ci = 0
is given in Algorithm 3 with [c′i, c

′′
i] = [1.0, 15.0], which is

similar to Algorithm 1. The time complexity of Algorithm 3 is
O(log(I/ε)).

VOLUME 7, 2019 69969

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

Algorithm 2: Find si

Input: λj, rj, r2j , dj, d
2
j , cj, for all 1 ≤ j 6= i ≤ n, m, s,

and λ̃i, λi, ri, r2i , di, d
2
i , ci, ξi, αi,Ps,i,wi, βi.

Output: si, such that ∂Ri/∂si = 0.

Initialize the search interval of si; (1)
while (the length of the search interval is ≥ ε) do (2)
si← the middle point of the search interval; (3)
Calculate ∂Ri/∂si; (4)
if (∂Ri/∂si < 0) then (5)

Change the search interval to the right half; (6)
else (7)

Change the search interval to the left half; (8)
end if (9)
end do; (10)
si← the middle point of the search interval; (11)
return si. (12)

Algorithm 3: Find ci

Input: λj, rj, r2j , dj, d
2
j , cj, for all 1 ≤ j 6= i ≤ n, m, s,

and λ̃i, λi, ri, r2i , di, d
2
i , si, ξi, αi,Ps,i,wi, βi.

Output: ci, such that ∂Ri/∂ci = 0.

Initialize the search interval of ci; (1)
while (the length of the search interval is ≥ ε) do (2)
ci← the middle point of the search interval; (3)
Calculate ∂Ri/∂ci; (4)
if (∂Ri/∂ci < 0) then (5)

Change the search interval to the right half; (6)
else (7)

Change the search interval to the left half; (8)
end if (9)
end do; (10)
ci← the middle point of the search interval; (11)
return ci. (12)

4) GAME(λi , si)
In this game, UEi needs to find λi and si such that

∂Ri
∂λi
= Ti

∂Pi
∂λi
+ Pi

∂Ti
∂λi
= 0,

and

∂Ri
∂si
= Ti

∂Pi
∂si
+ Pi

∂Ti
∂si
= 0.

Solving these two sophisticated nonlinear equations
simultaneously needs special insight. For a fixed si,
let

R̂i(si) = min
λi

(Ri(λi, si)).

Then, it suffices to minimize R̂i(si). It can be shown that R̂i(si)
is a convex function of si, that is, ∂R̂i/∂si is an increasing
function of si. Unfortunately, R̂i(si) is analytically not avail-
able. Hence, we use a numerical approximation:

∂R̂i
∂si
=
R̂i(si +1)− R̂i(si)

1
,

where 1 is a sufficiently small quantity. (We set 1 = 10−5

in this paper.)
Our numerical algorithm to find λi and si such that

∂Ri/∂λi = 0 and ∂Ri/∂si = 0 is given in Algorithm 4 with
[s′i, s

′′
i] = [1.0, 3.4]. The algorithm uses the classical bisec-

tion method (lines 2–12) to find si such that ∂R̂i/∂si =
0, and Algorithm 1 to find λi (lines 4, 5, 14). In fact, in
lines 4–5, we use Algorithm 1 to find λi, and then calculate
R̂i(si) and R̂i(si + 1). The resulting si minimizes R̂i(si),
and also minimizes Ri(λi, si), thus guaranteeing ∂Ri/∂λi =
0 and ∂Ri/∂si = 0. Due to the use of Algorithm 1 as
a sub-algorithm, the time complexity of Algorithm 4 is
O((log(I/ε))2).

Algorithm 4: Find λi and si

Input: λj, rj, r2j , dj, d
2
j , cj, for all 1 ≤ j 6= i ≤ n, m, s,

and λ̃i, ri, r2i , di, d
2
i , ci, ξi, αi,Ps,i,wi, βi.

Output: λi and si such that ∂Ri/∂λi = 0 and ∂Ri/∂si =
0.

Initialize the search interval of si; (1)
while (the length of the search interval is ≥ ε) do (2)
si← the middle point of the search interval; (3)
Calculate R̂i(si) using Algorithm 1; (4)
Calculate R̂i(si +1) using Algorithm 1; (5)
Calculate ∂R̂i/∂si; (6)
if (∂R̂i/∂si < 0) then (7)

Change the search interval to the right half; (8)
else (9)

Change the search interval to the left half; (10)
end if (11)
end do; (12)
si← the middle point of the search interval; (13)
Find λi using Algorithm 1; (14)
return λi and si. (15)

5) GAME(λi , ci)
In this game, UEi needs to find λi and ci such
that

∂Ri
∂λi
= Ti

∂Pi
∂λi
+ Pi

∂Ti
∂λi
= 0,

and

∂Ri
∂ci
= Ti

∂Pi
∂ci
+ Pi

∂Ti
∂ci
= 0.

69970 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

For a fixed ci, let

R̂i(ci) = min
λi

(Ri(λi, ci)).

Then, it can be shown that R̂i(ci) is a convex func-
tion of ci, that is, ∂R̂i/∂ci is an increasing function of
ci. Our numerical algorithm to find λi and ci such that
∂Ri/∂λi = 0 and ∂Ri/∂ci = 0 is given in Algo-
rithm 5 with [c′i, c

′′
i] = [1.0, 15.0], which is similar

to Algorithm 4. The time complexity of Algorithm 5 is
O((log(I/ε))2).

Algorithm 5: Find λi and ci

Input: λj, rj, r2j , dj, d
2
j , cj, for all 1 ≤ j 6= i ≤ n, m, s,

and λ̃i, ri, r2i , di, d
2
i , si, ξi, αi,Ps,i,wi, βi.

Output: λi and ci such that ∂Ri/∂λi = 0 and
∂Ri/∂ci = 0.

Initialize the search interval of ci; (1)
while (the length of the search interval is ≥ ε) do (2)
ci← the middle point of the search interval; (3)
Calculate R̂i(ci) using Algorithm 1; (4)
Calculate R̂i(ci +1) using Algorithm 1; (5)
Calculate ∂R̂i/∂ci; (6)
if (∂R̂i/∂ci < 0) then (7)

Change the search interval to the right half; (8)
else (9)

Change the search interval to the left half; (10)
end if (11)
end do; (12)
ci← the middle point of the search interval; (13)
Find λi using Algorithm 1; (14)
return λi and ci. (15)

6) GAME(si , ci)
In this game, UEi needs to find si and ci such that

∂Ri
∂si
= Ti

∂Pi
∂si
+ Pi

∂Ti
∂si
= 0,

and
∂Ri
∂ci
= Ti

∂Pi
∂ci
+ Pi

∂Ti
∂ci
= 0.

For a fixed ci, let

R̂i(ci) = min
si

(Ri(si, ci)).

Then, it can be shown that R̂i(ci) is a convex func-
tion of ci, that is, ∂R̂i/∂ci is an increasing function of
ci. Our numerical algorithm to find si and ci such that
∂Ri/∂si = 0 and ∂Ri/∂ci = 0 is given in Algo-
rithm 6 with [c′i, c

′′
i] = [1.0, 15.0], which is similar to

Algorithm 4. However, Algorithm 6 calls Algorithm 2 instead
of Algorithm 1. The time complexity of Algorithm 6 is
O((log(I/ε))2).

Algorithm 6: Find si and ci

Input: λj, rj, r2j , dj, d
2
j , cj, for all 1 ≤ j 6= i ≤ n, m, s,

and λ̃i, λi, ri, r2i , di, d
2
i , ξi, αi,Ps,i,wi, βi.

Output: si and ci such that ∂Ri/∂si = 0 and
∂Ri/∂ci = 0.

Initialize the search interval of ci; (1)
while (the length of the search interval is ≥ ε) do (2)
ci← the middle point of the search interval; (3)
Calculate R̂i(ci) using Algorithm 2; (4)
Calculate R̂i(ci +1) using Algorithm 2; (5)
Calculate ∂R̂i/∂ci; (6)
if (∂R̂i/∂ci < 0) then (7)

Change the search interval to the right half; (8)
else (9)

Change the search interval to the left half; (10)
end if (11)
end do; (12)
ci← the middle point of the search interval; (13)
Find si using Algorithm 2; (14)
return si and ci. (15)

7) GAME(λi , si , ci)
In this game, UEi needs to find λi, si, and ci such
that

∂Ri
∂λi
= Ti

∂Pi
∂λi
+ Pi

∂Ti
∂λi
= 0,

∂Ri
∂si
= Ti

∂Pi
∂si
+ Pi

∂Ti
∂si
= 0,

and
∂Ri
∂ci
= Ti

∂Pi
∂ci
+ Pi

∂Ti
∂ci
= 0.

For a fixed ci, let

R̂i(ci) = min
λi,si

(Ri(λi, si, ci)).

Then, it can be shown that R̂i(ci) is a convex function of ci,
that is, ∂R̂i/∂ci is an increasing function of ci. Our numer-
ical algorithm to find λi, si, and ci such that ∂Ri/∂λi =
0, ∂Ri/∂si = 0, and ∂Ri/∂ci = 0 is given in Algo-
rithm 7 with [c′i, c

′′
i] = [1.0, 15.0], which is similar to

Algorithm 6. However, Algorithm 7 calls Algorithm 4 instead
of Algorithm 2. Due to the use of Algorithm 4 as a
sub-algorithm, the time complexity of Algorithm 7 is
O((log(I/ε))3).

B. THE BEST RESPONSE OF AN MEC
In this section, we develop an algorithm to find the best
response of the mobile edge cloud. The MEC needs to find
s such that

∂R
∂s
= T

∂P
∂s
+ P

∂T
∂s
= 0.

VOLUME 7, 2019 69971

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

Our numerical algorithm to find s such that ∂R/∂s = 0 is
given in Algorithm 8 with s′′ = 5.0, which is similar to Algo-
rithm 1. The time complexity of Algorithm 8 is O(log(I/ε)).

Algorithm 7: Find λi, si, and ci

Input: λj, rj, r2j , dj, d
2
j , cj, for all 1 ≤ j 6= i ≤ n, m, s,

and λ̃i, ri, r2i , di, d
2
i , ξi, αi,Ps,i,wi, βi.

Output: λi, si, and ci such that ∂Ri/∂λi = 0, ∂Ri/∂si =
0, and ∂Ri/∂ci = 0.

Initialize the search interval of ci; (1)
while (the length of the search interval is ≥ ε) do (2)
ci← the middle point of the search interval; (3)
Calculate R̂i(ci) using Algorithm 4; (4)
Calculate R̂i(ci +1) using Algorithm 4; (5)
Calculate ∂R̂i/∂ci; (6)
if (∂R̂i/∂ci < 0) then (7)

Change the search interval to the right half; (8)
else (9)

Change the search interval to the left half; (10)
end if (11)
end do; (12)
ci← the middle point of the search interval; (13)
Find λi and si using Algorithm 4; (14)
return λi, si, and ci. (15)

Algorithm 8: Find s

Input: λi, ri, r2i , di, d
2
i , ci, for all 1 ≤ i ≤ n, and

m, ξ, α,Ps.
Output: s, such that ∂R/∂s = 0.

Initialize the search interval of s; (1)
while (the length of the search interval is ≥ ε) do (2)
s← the middle point of the search interval; (3)
Calculate ∂R/∂s; (4)
if (∂R/∂s < 0) then (5)

Change the search interval to the right half; (6)
else (7)

Change the search interval to the left half; (8)
end if (9)
end do; (10)
s← the middle point of the search interval; (11)
return s. (12)

C. AN ITERATIVE ALGORITHM FOR NASH EQUILIBRIUM
In this section, we develop an iterative algorithm to find the
Nash equilibrium.

Algorithm 9 runs in rounds (lines 2–14). In each round,
every mobile user finds his best response to the current
situation by using Algorithms 1–7 (lines 3–5). The mobile
edge server also finds its best response to the current situation

by using Algorithm 8 (line 6). The algorithm terminates
when the action profiles of two successive rounds are close
enough (lines 8–13). The final converged action profile x∗ =
(x∗1, x

∗

2, . . . , x
∗
n, x
∗

n+1) is returned as the Nash equilibrium,
i.e., a strategy profile with the property that no player can
benefit from a unilateral deviation from x∗i , if all the other
players act according to it.

Algorithm 9: Calculate the Nash Equilibrium

Input: λ̃i, λi, ri, r2i , di, d
2
i , si, ci, ξi, αi,Ps,i,wi, βi, for

all 1 ≤ i ≤ n, and m, s, ξ, α,Ps.
Output: The Nash equilibrium x∗ =

(x∗1, x
∗

2, . . . , x
∗
n, s
∗).

Initialize x; (1)
repeat (2)
for i← 1 to n do (3)

Obtain x′i by using Algorithms 1–7; (4)
end do; (5)
Obtain s′ by using Algorithm 8; (6)
x′← (x′1, x

′

2, . . . , x
′
n, s
′); (7)

if (‖x′ − x‖ ≥ δ) then (8)
x← x′; (9)

else (10)
x∗← x′; (11)
return x∗; (12)

end if (13)
forever. (14)

The termination detection condition in line 8 is

‖x′ − x‖

=

√√√√ n∑
i=1

(|λ′i − λi|
2 + |s′i − si|

2 + |c′i − ci|
2)+ |s′ − s|2

< δ.

Since Algorithm j (1 ≤ j ≤ 7) is invoked n times
in each round, the time complexity of each round is
O(n(log(I/ε))3), and the overall time complexity of Algo-
rithm 9 is O(Nn(log(I/ε))3), where N is the number of
rounds, which is mainly determined by the accuracy require-
ment δ in line 8. (We set δ = 10−5 in this paper.)

VII. NUMERICAL EXAMPLES AND PERFORMANCE DATA
In this section, we present numerical examples and perfor-
mance data.

A. NUMERICAL EXAMPLES
In this section, we demonstrate numerical examples of our
algorithms.

Throughout this section, we consider a mobile edge com-
puting environment with n = 10 UEs and a single MEC. The
parameters of UEi are set as follows: λ̃i = 1.5+ 0.05(i− 1)
tasks/second, λi = 0.41λ̃i tasks/second, ri = 1.5+0.05(i−1)

69972 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

TABLE 2. Parameters of a mobile edge computing environment (idle-speed model).

BI, r2i = 1.3ri2 BI2, di = 1.0+ 0.1(i− 1) MB, d2i = 1.5di
2

MB2, si = 1.5+ 0.1(i− 1) BI/second, ci = 2.0+ 0.25(i− 1)
MB/second, ξi = 1.0−0.05(i−1), αi = 2.0,Ps,i = 1.0Watts,
wi = 3.0 + 0.1(i − 1) MB/second, βi = 2.0 − 0.1(i − 1)
Watts−1, for all 1 ≤ i ≤ n. The parameters of the MEC
are set as follows: m = 7, s = 3.5 BI/second, ξ = 0.5,
α = 2.0, Ps = 1.5Watts. Table 2 shows the above parameters
of a mobile edge computing environment, and the resulting
performance data for the idle-speed model. The data for
the constant-speed model are similar, with slightly increased
Pcomp,i, Pi, and Ri.
In the following, we illustrate the best responses of the

players by using Algorithm 1–8. Let us consider UE5.
Using Algorithm 1, UE5 sets λ5 = 0.75861, which results

in T5 = 4.46716, P5 = 3.61915, and R5 = 16.16733.
It is clear that compared with the original parameter set-
ting in Table 2, UE5 increases the amount of computation
offloading, which gives rise to reduced average response
time, reduced average power consumption, and reduced
cost-performance ratio.

Using Algorithm 2, UE5 sets s5 = 2.76593, which results
in T5 = 2.26622, P5 = 4.94440, and R5 = 11.20509.
It is clear that compared with the original parameter

setting in Table 2, UE5 increases the server execution speed,
which gives rise to significantly reduced average response
time, increased average power consumption, and signifi-
cantly reduced cost-performance ratio.

Using Algorithm 3, UE5 sets c5 = 7.28516, which results
in T5 = 4.31685, P5 = 3.87771, and R5 = 16.73950.
It is clear that compared with the original parameter set-
ting in Table 2, UE5 increases the data communication
speed, which gives rise to reduced average response time,
slightly increased average power consumption, and reduced
cost-performance ratio.

Using Algorithm 4, UE5 sets λ5 = 0.47826 and s5 =
3.40000, which result in T5 = 1.33269, P5 = 6.76697,
and R5 = 9.01830. It is clear that compared with the orig-
inal parameter setting in Table 2, UE5 reduces the amount
of computation offloading and increases the server execu-
tion speed, which gives rise to significantly reduced average
response time, increased average power consumption, and
significantly reduced cost-performance ratio.

Using Algorithm 5, UE5 sets λ5 = 0.96903 and c5 =
11.06776, which result in T5 = 2.28860, P5 = 3.54369, and
R5 = 8.11010. It is clear that compared with the original
parameter setting in Table 2, UE5 increases the amount of

VOLUME 7, 2019 69973

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

TABLE 3. Numerical demonstration of positiveness of leading principal minors (idle-speed model).

TABLE 4. Numerical demonstration of positiveness of leading principal minors (constant-speed model).

TABLE 5. Performance data of game(λi) (idle-speed model, N = 48).

computation offloading and increases the data communica-
tion speed, which gives rise to significantly reduced average
response time, reduced average power consumption, and sig-
nificantly reduced cost-performance ratio.

Using Algorithm 6, UE5 sets s5 = 3.37633 and c5 =
11.51681, which result in T5 = 1.18285, P5 = 6.10672,
and R5 = 7.22335. It is clear that compared with the orig-
inal parameter setting in Table 2, UE5 increases the server

69974 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

TABLE 6. Performance data of game(λi) (constant-speed model, N = 35).

TABLE 7. Performance data of game(si) (idle-speed model, N = 2).

execution speed and increases the data communication speed,
which gives rise to significantly reduced average response
time, increased average power consumption, and signifi-
cantly reduced cost-performance ratio.

Using Algorithm 7, UE5 sets λ5 = 0.67529, s5 =
3.40000, and c5 = 11.45013, which result in T5 =
1.16043, P5 = 6.21933, and R5 = 7.21709. It is

clear that compared with the original parameter setting
in Table 2, UE5 reduces the amount of computation offload-
ing, increases the server execution speed, and increases the
data communication speed, which gives rise to significantly
reduced average response time, increased average power
consumption, and significantly reduced cost-performance
ratio.

VOLUME 7, 2019 69975

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

TABLE 8. Performance data of game(si) (constant-speed model, N = 2).

TABLE 9. Performance data of game(ci) (idle-speed model, N = 6).

Now, let us consider the MEC. The MEC uses Algo-
rithm 8 to set s = 4.73544, which results in T =

1.09753, P = 76.56974, and R = 84.03735. It is
clear that compared with the original parameter setting
in Table 2, the MEC increases the server execution speed,
which gives rise to significantly reduced average response
time, increased average power consumption, and signifi-
cantly reduced cost-performance ratio.

B. PERFORMANCE DATA
In this section, we demonstrate performance data of our
games. For clarity of presentation, all performance data are
moved to Appendix 4.

1) GAME(λi)
Tables 5 and 6 demonstrate performance data of Game(λi)
for the idle-speed model and the constant-speed model

69976 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

TABLE 10. Performance data of game(ci) (constant-speed model, N = 7).

TABLE 11. Performance data of game(λi , si) (idle-speed model, N = 53).

respectively. It is clear that in the stable situation, com-
pared with the original parameter setting in Table 2, all
UEs increase their amount of computation offloading and
get reduced average response time, reduced average power
consumption, and reduced cost-performance ratio. The MEC
sets its server execution speed to the maximum avail-
able, and gets reduced average response time, increased

average power consumption, and increased cost-performance
ratio.

2) GAME(si)
Tables 7 and 8 demonstrate performance data of Game(si) for
the idle-speed model and the constant-speed model respec-
tively. It is clear that in the stable situation, compared with

VOLUME 7, 2019 69977

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

TABLE 12. Performance data of game(λi , si) (constant-speed model, N = 73).

TABLE 13. Performance data of game(λi , ci) (idle-speed model, N = 64).

the original parameter setting in Table 2, all UEs and theMEC
choose high server execution speeds, and all get significantly
reduced average response time, increased average power
consumption, and significantly reduced cost-performance
ratio.

3) GAME(ci)
Tables 9 and 10 demonstrate performance data of Game(ci)
for the idle-speed model and the constant-speed model
respectively. It is clear that in the stable situation, compared
with the original parameter setting in Table 2, all UEs increase

69978 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

TABLE 14. Performance data of game(λi , ci) (constant-speed model, N = 21).

TABLE 15. Performance data of game(si , ci) (idle-speed model, N = 6).

the data communication speed, and get reduced average
response time, slightly increased average power consump-
tion, and reduced cost-performance ratio. TheMEC increases
its server execution speed and gets significantly reduced aver-
age response time, reduced average power consumption, and
significantly reduced cost-performance ratio.

4) GAME(λi , si)
Tables 11 and 12 demonstrate performance data of
Game(λi, si) for the idle-speed model and the constant-speed
model respectively. It is clear that for the idle-speed mode,
in the stable situation, compared with the original parameter
setting in Table 2, UE1 and UE2 increase their amount of

VOLUME 7, 2019 69979

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

TABLE 16. performance data of game(si , ci) (constant-speed model, N = 6).

TABLE 17. Performance data of game(λi , si , ci) (idle-speed model, N = 85).

computation offloading and choose the lowest available
server execution speed, and get significantly reduced aver-
age response time, reduced average power consumption,
and significantly reduced cost-performance ratio. UE3,

UE4,. . . , UE10 decrease/increase their amount of compu-
tation offloading and choose the highest available server
execution speed, and get significantly reduced average
response time, increased average power consumption,

69980 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

TABLE 18. Performance data of game(λi , si , ci) (constant-speed model, N = 55).

and significantly reduced cost-performance ratio. For the
constant-speed mode, compared with the original param-
eter setting in Table 2, UE1, UE2,. . . , UE5 increase their
amount of computation offloading and choose low server
execution speeds, and get significantly reduced average
response time, reduced average power consumption, and
significantly reduced cost-performance ratio. UE6, UE7,. . . ,
UE10 decrease their amount of computation offloading and
choose the highest available server execution speed, and
get significantly reduced average response time, increased
average power consumption, and significantly reduced
cost-performance ratio. The MEC sets its server execution
speed to the maximum available, and gets reduced average
response time, increased average power consumption, and
reduced cost-performance ratio.

5) GAME(λi , ci)
Tables 13 and 14 demonstrate performance data of
Game(λi, ci) for the idle-speed model and the constant-speed
model respectively. It is clear that in the stable situation, com-
pared with the original parameter setting in Table 2, all UEs
increase their amount of computation offloading and increase
the data communication speed, and get significantly reduced
average response time, significantly reduced average power
consumption, and significantly reduced cost-performance
ratio. The MEC sets its server execution speed to the
maximum available, and gets significantly reduced average
response time, increased average power consumption, and
reduced cost-performance ratio.

6) GAME(si , ci)
Tables 15 and 16 demonstrate performance data of
Game(si, ci) for the idle-speed model and the constant-speed
model respectively. It is clear that in the stable situation,
compared with the original parameter setting in Table 2,
all UEs choose high server execution and data commu-
nication speeds, and get significantly reduced average
response time, increased average power consumption, and
significantly reduced cost-performance ratio. The MEC
increases its server execution speed and gets significantly
reduced average response time, reduced average power
consumption, and significantly reduced cost-performance
ratio.

7) GAME(λi , si , ci)
Tables 17 and 18 demonstrate performance data of
Game(λi, si, ci) for the idle-speed model and the constant-
speedmodel respectively. It is clear that in the stable situation,
compared with the original parameter setting in Table 2,
all UEs increase their amount of computation offload-
ing, choose low server execution speeds (except UE9 and
UE10), and choose high data communication speeds, and
get significantly reduced average response time, reduced
average power consumption (except UE9 and UE10), and
significantly reduced cost-performance ratio. The MEC
sets its server execution speed to the maximum avail-
able, and gets reduced average response time, increased
average power consumption, and reduced cost-performance
ratio.

VOLUME 7, 2019 69981

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

VIII. CONCLUDING REMARKS
We have established a non-cooperative game framework
to study stabilization of a competitive mobile edge com-
puting environment. Our framework includes a set of
non-cooperative games for multiple heterogeneous mobile
users and a mobile edge cloud to play. All players can opti-
mize their cost-performance ratios by using the algorithms
developed in this paper. Furthermore, we are able to obtain
the Nash equilibrium of the games, so that we can examine
the stable situation of a competitive mobile edge computing
environment. Our investigation in this paper can help eachUE
and MEC to optimize a combined quantity of performance
and cost, and can provide an environment in which everyone’s
benefit is optimized and no one wants to change.

The research in this paper can be extended to multiple
heterogeneous MECs. In this case, there is a load distri-
bution problem for each UE, i.e., how the offloaded tasks
are distributed to the multiple MECs. In addition, each UE
should also decide the data transmission rate to each MEC.
Therefore, eachUE has 2k+1 parameters to determine, where
k is the number of MECs. Hence, the convex optimization
problem for each UE is significantly more complicated than
the situation of a single MEC. The stability problem for such
a competitive mobile edge computing environment is much
more challenging to solve, and certainly, more interesting.
As mentioned earlier, one special case of the above problem
has been solved in [20], where only the load distribution (i.e.,
computation offloading strategy optimization) problem was
solved; however, there was no consideration on computa-
tion/communication speeds optimization.

APPENDIX 1. DERIVATION OF FIRST ORDER PARTIAL
DERIVATIVES
(1) ∂Ti/∂λi:

∂Ti
∂λi
= −

1

λ̃i

(
ri
si
+Wi

)
+
λ̃i − λi

λ̃i
·
∂Wi

∂λi

+
1

λ̃i

(
ri
s
+
di
ci
+W

)
+
λi

λ̃i
·
∂W
∂λi

,

where

∂Wi

∂λi
= −

r2i /s
2
i

2

×

(
1

1− (λ̃i − λi)(ri/si)
+

(λ̃i − λi)(ri/si)

(1− (λ̃i − λi)(ri/si))2

)
,

∂W
∂λi

=
mm−2

2m!

(
∂(λx2)
∂λi

D+λx2 ·
∂D
∂ρ
·
∂ρ

∂λi

)
,

∂(λx2)
∂λi

=
r2i
s2
+ 2

ri
s
·
di
ci
+
d2i
c2i
,

∂D
∂ρ

=
∂p0
∂ρ
·
ρm−1

(1− ρ)2
+ p0

ρm−2((m− 1)− (m− 3)ρ)
(1− ρ)3

,

∂p0
∂ρ
= −p20

(m−1∑
k=1

mkρk−1

(k − 1)!
+
mm

m!
·
ρm−1(m− (m− 1)ρ)

(1− ρ)2

)
,

∂ρ

∂λi
=

1
m

(
ri
s
+
di
ci

)
.

(2) ∂Ti/∂si:

∂Ti
∂si
=
λ̃i − λi

λ̃i

(
−
ri
s2i
+
∂Wi

∂si

)
,

where

∂Wi

∂si
=−

(
(λ̃i − λi)(r2i /s

3
i)

1− (λ̃i − λi)(ri/si)
+
(λ̃i − λi)2(r2i /s

2
i)(ri/s

2
i)

2(1− (λ̃i − λi)(ri/si))2

)
.

(3) ∂Ti/∂ci:

∂Ti
∂ci
=
λi

λ̃i

(
−
di
c2i
+
∂W
∂ci

)
,

where

∂W
∂ci
=

mm−2

2m!

(
∂(λx2)
∂ci

D+ λx2 ·
∂D
∂ρ
·
∂ρ

∂ci

)
,

∂(λx2)
∂ci

= −2λi

(
ri
s
·
di
c2i
+
d2i
c3i

)
,

∂ρ

∂ci
= −

λi

m
·
di
c2i
.

(4) ∂Pi/∂λi:

∂Pi
∂λi
= −riξis

αi−1
i +

di
ci
·
2ci/wi − 1

βi
,

for the idle-speed model, and

∂Pi
∂λi
=
di
ci
·
2ci/wi − 1

βi
,

for the constant-speed model.
(5) ∂Pi/∂si:

∂Pi
∂si
= (λ̃i − λi)riξi(αi − 1)sαi−2i ,

for the idle-speed model, and

∂Pi
∂si
= ξiαis

αi−1
i ,

for the constant-speed model.
(6) ∂Pi/∂ci:

∂Pi
∂ci
= λi

di
βi

(
2ci/wi ln 2
ciwi

−
2ci/wi − 1

c2i

)
,

for both idle-speed and constant-speed models.
(7) ∂T/∂s:

∂T
∂s
= −

n∑
i=1

λi

λ
·
ri
s2
+
∂W
∂s
,

where

∂W
∂s
=

mm−2

2m!

(
∂(λx2)
∂s

D+ λx2 ·
∂D
∂ρ
·
∂ρ

∂s

)
,

69982 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

∂(λx2)
∂s

= −2
n∑
i=1

λi

(
r2i
s3
+
ri
s2
·
di
ci

)
,

∂ρ

∂s
= −

n∑
i=1

λi

m
·
ri
s2
.

(8) ∂P/∂s:
∂P
∂s
= mξ

(
∂ρ

∂s
sα + ραsα−1

)
,

for the idle-speed model, and
∂P
∂s
= mξαsα−1,

for the constant-speed model.

APPENDIX 2. DERIVATION OF SECOND ORDER PARTIAL
DERIVATIVES
(1) ∂2 Ti/∂λ2i :

∂2 Ti
∂λ2i

= −
2

λ̃i
·
∂Wi

∂λi
+
λ̃i − λi

λ̃i
·
∂2 Wi

∂λ2i

+
2

λ̃i
·
∂W
∂λi
+
λi

λ̃i
·
∂2 W

∂λ2i
,

where
∂2 Wi

∂λ2i
= (r2i /s

2
i)
(

ri/si
(1− (λ̃i − λi)(ri/si))2

+
(λ̃i − λi)(ri/si)2

(1− (λ̃i − λi)(ri/si))3

)
,

∂2 W

∂λ2i
=

mm−2

2m!

(
2 ·
∂(λx2)
∂λi

·
∂D
∂ρ
·
∂ρ

∂λi

+ λx2 ·
∂2 D
∂ρ2

(
∂ρ

∂λi

)2)
,

∂2 D
∂ρ2
=
∂2 p0
∂ρ2
·
ρm−1

(1− ρ)2

+ 2 ·
∂p0
∂ρ
·
ρm−2((m− 1)− (m− 3)ρ)

(1− ρ)3

+ p0

(
ρm−3(m− 1)((m− 2)− (m− 3)ρ)

(1− ρ)3

+
3ρm−2((m− 1)− (m− 3)ρ)

(1− ρ)4

)
,

∂2 p0
∂ρ2

= −2p0
∂p0
∂ρ

(m−1∑
k=1

mkρk−1

(k − 1)!

+
mm

m!
·
ρm−1(m− (m− 1)ρ)

(1− ρ)2

)
− p20

(m−1∑
k=2

mkρk−2

(k − 2)!
+
mm

m!

(
m(m− 1)ρm−2(1− ρ)

(1− ρ)2

+
2ρm−1(m− (m− 1)ρ)

(1− ρ)3

))
.

(2) ∂2 Ti/∂λi∂si:

∂2 Ti
∂λi∂si

= −
1

λ̃i

(
−
ri
s2i
+
∂Wi

∂si

)
+
λ̃i − λi

λ̃i
·
∂2 Wi

∂λi∂si
,

where

∂2 Wi

∂λi∂si

= (r2i /s
3
i)
(

1

1− (λ̃i − λi)(ri/si)
+

(λ̃i − λi)(ri/si)

(1− (λ̃i − λi)(ri/si))2

)
+ (r2i /s

2
i)
(

(λ̃i − λi)(ri/s2i)

(1− (λ̃i − λi)(ri/si))2

+
(λ̃i − λi)2(ri2/s3i)

(1− (λ̃i − λi)(ri/si))3

)
.

(3) ∂2 Ti/∂λi∂ci:

∂2 Ti
∂λi∂ci

=
1

λ̃i

(
−
di
c2i
+
∂W
∂ci

)
+
λi

λ̃i
·
∂2 W
∂λi∂ci

,

where

∂2 W
∂λi∂ci

=
mm−2

2m!

(
∂2(λx2)
∂λi∂ci

D+
∂(λx2)
∂λi

·
∂D
∂ρ
·
∂ρ

∂ci

+
∂(λx2)
∂ci

·
∂D
∂ρ
·
∂ρ

∂λi
+ λx2 ·

∂2 D
∂ρ2
·
∂ρ

∂ci
·
∂ρ

∂λi

+ λx2 ·
∂D
∂ρ
·
∂2ρ

∂λi∂ci

)
,

∂2(λx2)
∂λi∂ci

= −2
(
ri
s
·
di
c2i
+
d2i
c3i

)
,

∂2ρ

∂λi∂ci
= −

1
m
·
di
c2i
.

(4) ∂2 Ti/∂si∂λi = ∂2 Ti/∂λi∂si:

∂2 Ti
∂si∂λi

= −
1

λ̃i

(
−
ri
s2i
+
∂Wi

∂si

)
+
λ̃i − λi

λ̃i
·
∂2 Wi

∂si∂λi
,

where

∂2 Wi

∂si∂λi
=

r2i /s
3
i

1− (λ̃i − λi)(ri/si)

+
2(λ̃i − λi)(r2i ri/s

4
i)

(1− (λ̃i − λi)(ri/si))2

+
(λ̃i − λi)2(r2i ri

2/s5i)

(1− (λ̃i − λi)(ri/si))3
.

(5) ∂2 Ti/∂s2i :

∂2 Ti
∂s2i
=
λ̃i − λi

λ̃i

(
2ri
s3i
+
∂2 Wi

∂s2i

)
,

where

∂2 Wi

∂s2i

=
3(λ̃i − λi)(r2i /s

4
i)

1− (λ̃i − λi)(ri/si)
+

3(λ̃i − λi)2(r2i ri/s
5
i)

(1− (λ̃i − λi)(ri/si))2

+
(λ̃i − λi)3(r2i ri

2/s6i)

(1− (λ̃i − λi)(ri/si))3
.

VOLUME 7, 2019 69983

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

(6) ∂2 Ti/∂si∂ci:
∂2 Ti
∂si∂ci

= 0.

(7) ∂2 Ti/∂ci∂λi = ∂2 Ti/∂λi∂ci:
∂2 Ti
∂ci∂λi

=
1

λ̃i

(
−
di
c2i
+
∂W
∂ci

)
+
λi

λ̃i
·
∂2 W
∂ci∂λi

,

where

∂2 W
∂ci∂λi

=
mm−2

2m!

(
∂2(λx2)
∂ci∂λi

D+
∂(λx2)
∂ci

·
∂D
∂ρ
·
∂ρ

∂λi

+
∂(λx2)
∂λi

·
∂D
∂ρ
·
∂ρ

∂ci
+ λx2 ·

∂2 D
∂ρ2
·
∂ρ

∂λi
·
∂ρ

∂ci

+ λx2 ·
∂D
∂ρ
·
∂2ρ

∂ci∂λi

)
,

∂2(λx2)
∂ci∂λi

= −2
(
ri
s
·
di
c2i
+
d2i
c3i

)
,

∂2ρ

∂ci∂λi
= −

1
m
·
di
c2i
.

(8) ∂2 Ti/∂ci∂si = ∂2 Ti/∂si∂ci:
∂2 Ti
∂ci∂si

= 0.

(9) ∂2 Ti/∂c2i :

∂2 Ti
∂c2i
=
λi

λ̃i

(
2
di
c3i
+
∂2 W

∂c2i

)
,

where

∂2 W

∂c2i
=

mm−2

2m!

(
∂2(λx2)

∂c2i
D+ 2 ·

∂(λx2)
∂ci

·
∂D
∂ρ
·
∂ρ

∂ci

+ λx2 ·
∂2 D
∂ρ2

(
∂ρ

∂ci

)2

+ λx2 ·
∂D
∂ρ
·
∂2ρ

∂c2i

)
,

∂2(λx2)

∂c2i
= 2λi

(
ri
s
·
2di
c3i
+

3d2i
c4i

)
,

∂2ρ

∂c2i
= 2

λi

m
·
di
c3i
.

(10) ∂2 Pi/∂λ2i :

∂2 Pi
∂λ2i

= 0,

for both idle-speed and constant-speed models.
(11) ∂2 Pi/∂λi∂si:

∂2 Pi
∂λi∂si

= −riξi(αi − 1)sαi−2i ,

for the idle-speed model, and

∂2 Pi
∂λi∂si

= 0,

for the constant-speed model.
(12) ∂2 Pi/∂λi∂ci:

∂2 Pi
∂λi∂ci

=
di
βi

(
2ci/wi ln 2
ciwi

−
2ci/wi − 1

c2i

)
,

for both idle-speed and constant-speed models.
(13) ∂2 Pi/∂si∂λi = ∂2 Pi/∂λi∂si:

∂2 Pi
∂si∂λi

= −riξi(αi − 1)sαi−2i ,

for the idle-speed model, and

∂2 Pi
∂si∂λi

= 0,

for the constant-speed model.
(14) ∂2 Pi/∂s2i :

∂2 Pi
∂s2i
= (λ̃i − λi)riξi(αi − 1)(αi − 2)sαi−3i ,

for the idle-speed model, and

∂2 Pi
∂s2i
= ξiαi(αi − 1)sαi−2i ,

for the constant-speed model.
(15) ∂2 Pi/∂si∂ci:

∂2 Pi
∂si∂ci

= 0,

for both idle-speed and constant-speed models.
(16) ∂2 Pi/∂ci∂λi = ∂2 Pi/∂λi∂ci:

∂2 Pi
∂ci∂λi

=
di
βi

(
2ci/wi ln 2
ciwi

−
2ci/wi − 1

c2i

)
,

for both idle-speed and constant-speed models.
(17) ∂2 Pi/∂ci∂si = ∂2 Pi/∂si∂ci:

∂2 Pi
∂ci∂si

= 0,

for both idle-speed and constant-speed models.
(18) ∂2 Pi/∂c2i :

∂2 Pi
∂c2i
= λi

di
βi

(
2ci/wi (ln 2)2

ciw2
i

− 2 ·
2ci/wi ln 2

c2i wi

+
2(2ci/wi − 1)

c3i

)
,

for both idle-speed and constant-speed models.
(19) ∂2 T/∂s2:

∂2 T
∂s2
= 2

n∑
i=1

λi

λ
·
ri
s3
+
∂2 W
∂s2

,

where

∂2 W
∂s2

=
mm−2

2m!

(
∂2(λx2)
∂s2

D+ 2 ·
∂(λx2)
∂s
·
∂D
∂ρ
·
∂ρ

∂s

+ λx2 ·
∂2 D
∂ρ2

(
∂ρ

∂s

)2

+ λx2 ·
∂D
∂ρ
·
∂2ρ

∂s2

)
,

∂2(λx2)
∂s2

= 2
n∑
i=1

λi

(
3r2i
s4
+

2ri
s3
·
di
ci

)
,

69984 VOLUME 7, 2019

K. Li: How to Stabilize a Competitive Mobile Edge Computing Environment

∂2ρ

∂s2
= 2

n∑
i=1

λi

m
·
ri
s3
.

(20) ∂2 P/∂s2:

∂2 P
∂s2
= mξ

(
∂2ρ

∂s2
sα + 2

∂ρ

∂s
αsα−1 + ρα(α − 1sα−2

)
,

for the idle-speed model, and

∂2 P
∂s2
= mξα(α − 1)sα−2,

for the constant-speed model.

APPENDIX 3. NUMERICAL DEMONSTRATION
For the same parameter setting in Section 7.1, Tables 3 and 4
show that all the leading principal minors mentioned in
Section 5.3 are positive.

APPENDIX 4. PERFORMANCE DATA OF THE GAMES
Tables 5–18 demonstrate the performance data of our games.
They are explained in Section 7.2.

ACKNOWLEDGMENTS
The author would like to thank the five anonymous reviewers
for their constructive comments and suggestions.

REFERENCES
[1] B. Bernstein and R. A. Toupin, ‘‘Some properties of the Hessian matrix of

a strictly convex function,’’ J. für die reine und angewandte Mathematik,
vol. 210, pp. 65–72, 1962.

[2] A. Bhattacharya and P. De, ‘‘A survey of adaptation techniques in compu-
tation offloading,’’ J. Netw. Comput. Appl., vol. 78, pp. 97–115, Jan. 2017.

[3] R. L. Burden, J. D. Faires, and A. C. Reynolds,Numerical Analysis, 2nd ed.
Boston, MA, USA: Prindle, Weber & Schmidt, 1981.

[4] H. Cao and J. Cai, ‘‘Distributed multiuser computation offloading for
cloudlet-based mobile cloud computing: A game-theoretic machine learn-
ing approach,’’ IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 752–764,
Jan. 2018.

[5] V. Cardellini, V. De Nitto Personé, V. Di Valerio, F. Facchinei, V. Grassi,
F. L. Presti, and V. Piccialli, ‘‘A game-theoretic approach to computation
offloading in mobile cloud computing,’’ Math. Program., vol. 157, no. 2,
pp. 421–449, Jun. 2016.

[6] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, ‘‘Low-power CMOS
digital design,’’ IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473–484,
Apr. 1992.

[7] J. Chen, K. Li, Q. Deng, S. Yu, K. Li, and P. S. Yu, ‘‘QoE-aware compu-
tation offloading game algorithm for 5G mobile edge computing,’’ IEEE
Trans. Mobile Comput., 2019.

[8] W. Chen, D.Wang, and K. Li, ‘‘Multi-user multi-task computation offload-
ing in green mobile edge cloud computing,’’ IEEE Trans. Serv. Comput.,
to be published.

[9] X. Chen, ‘‘Decentralized computation offloading game for mobile
cloud computing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[10] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[11] G. T. Gilbert, ‘‘Positive definite matrices and Sylvester’s criterion,’’ Amer.
Math. Monthly, vol. 98, no. 1, pp. 44–46, Jan. 1991.

[12] L. Gupta, R. Jain, and H. A. Chan, ‘‘Mobile edge computing—An impor-
tant ingredient of 5G networks,’’ IEEE Softwarization, Mar. 2016.

[13] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile edge
computing a key technology towards 5G,’’ Eur. Telecommun. Standards
Inst., Sophia Antipolis, France, ETSI White Paper 11, Sep. 2015.

[14] Enhanced Intel SpeedStep Technology for the Intel Pentium M
Processor—White Paper, Intel, Santa Clara, CA, USA, Mar. 2004.

[15] M. A. Khan, ‘‘A survey of computation offloading strategies for perfor-
mance improvement of applications running on mobile devices,’’ J. Netw.
Comput. Appl., vol. 56, pp. 28–40, Oct. 2015.

[16] L. Kleinrock, Queueing Systems. Volume 1: Theory. New York, NY, USA:
Wiley, 1975.

[17] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, ‘‘A survey of computa-
tion offloading for mobile systems,’’ Mobile Netw. Appl., vol. 18, no. 1,
pp. 129–140, Feb. 2013.

[18] A. M. Lee and P. A. Longton, ‘‘Queueing processes associated with
airline passenger check-in,’’ J. Oper. Res. Soc., vol. 10, no. 1, pp. 56–71,
Mar. 1959.

[19] K. Li, ‘‘Optimal task execution speed setting and lower bound for delay and
energy minimization,’’ J. Parallel Distrib. Comput., vol. 123, pp. 13–25,
Jan. 2019.

[20] K. Li, ‘‘A game theoretic approach to computation offloading strategy
optimization for non-cooperative users in mobile edge computing,’’ IEEE
Trans. Sustain. Comput., to be published.

[21] K. Li, ‘‘Computation offloading strategy optimization with multiple het-
erogeneous servers in mobile edge computing,’’ IEEE Trans. Sustain.
Comput., to be published.

[22] C. Liu, K. Li, J. Liang, and K. Li, ‘‘COOPER-MATCH: Job offloading
with a cooperative game for guaranteeing strict deadlines in MEC,’’ IEEE
Trans. Mobile Comput., to be published.

[23] X. Ma, C. Lin, X. Xiang, and C. Chen, ‘‘Game-theoretic analysis of
computation offloading for cloudlet-based mobile cloud computing,’’ in
Proc. 18th ACM Int. Conf. Modeling, Anal. Simulation Wireless Mobile
Syst., Cancun, Mexico, Nov. 2015, pp. 271–278.

[24] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architecture
and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628–1656, 3rd Quart., 2017.

[25] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, ‘‘Power-delay tradeoff
in multi-user mobile-edge computing systems,’’ in Proc. IEEE Global
Commun. Conf., Washington, DC, USA, Dec. 2016, pp. 1–6.

[26] J. B. Rosen, ‘‘Existence and uniqueness of equilibrium points for concave
N-person games,’’ Econometrica, vol. 33, no. 3, pp. 520–534, Jul. 1965.

[27] M. Shiraz, M. Sookhak, A. Gani, and S. A. A. Shah, ‘‘A study on the
critical analysis of computational offloading frameworks for mobile cloud
computing,’’ J. Netw. Comput. Appl., vol. 47, pp. 47–60, Jan. 2015.

[28] T. X. Tran and D. Pompili, ‘‘Joint task offloading and resource allo-
cation for multi-server mobile-edge computing networks,’’ May 2017,
arXiv:1705.00704. [Online]. Available: https://arxiv.org/abs/1705.00704

[29] C. You, K. Huang, H. Chae, and B.-H. Kim, ‘‘Energy-efficient resource
allocation for mobile-edge computation offloading,’’ IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[30] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, ‘‘Theoretical and
practical limits of dynamic voltage scaling,’’ in Proc. 41st Annu. Design
Autom. Conf., Jun. 2004, pp. 868–873.

[31] J. Zhang, W. Xia, F. Yan, and L. Shen, ‘‘Joint computation offloading and
resource allocation optimization in heterogeneous networks with mobile
edge computing,’’ IEEE Access, vol. 6, pp. 19324–19337, 2018.

[32] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan,
and Y. Zhang, ‘‘Energy-efficient offloading for mobile edge computing in
5G heterogeneous networks,’’ IEEE Access, vol. 4, pp. 5896–5907, 2016.

KEQIN LI is currently a SUNY Distinguished
Professor of computer science with the State
University of New York. He is also a Distin-
guished Professor with Hunan University, China.
He has published more than 660 journal articles,
book chapters, and refereed conference papers,
and has received several best paper awards. His
current research interests include cloud comput-
ing, fog computing and mobile edge computing,
energy-efficient computing and communication,

embedded systems and cyber-physical systems, heterogeneous comput-
ing systems, big data computing, high-performance computing, CPU-GPU
hybrid and cooperative computing, computer architectures and systems,
computer networking, machine learning, and intelligent and soft com-
puting. He currently serves or has served on the Editorial Boards of
the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE
TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING,
the IEEE TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS

ON SUSTAINABLE COMPUTING.

VOLUME 7, 2019 69985

	INTRODUCTION
	MOTIVATION
	SUMMARY OF CONTRIBUTIONS

	RELATED WORK
	QUEUEING MODELS
	THE USER MODEL: M/G/1
	THE SERVER MODEL: M/G/m

	POWER CONSUMPTION MODELS
	COMPUTATION
	COMMUNICATION

	A GAME FORMULATION
	BACKGROUND INFORMATION
	NON-COOPERATIVE GAMES
	THE UE PLAYERS
	THE MEC PLAYER
	THE GAMES

	EXISTENCE OF THE NASH EQUILIBRIUM

	SOLUTIONS TO THE GAMES
	THE BEST RESPONSE OF A UE
	GAME(i)
	GAME(si)
	GAME(ci)
	GAME(i,si)
	GAME(i,ci)
	GAME(si,ci)
	GAME(i,si,ci)

	THE BEST RESPONSE OF AN MEC
	AN ITERATIVE ALGORITHM FOR NASH EQUILIBRIUM

	NUMERICAL EXAMPLES AND PERFORMANCE DATA
	NUMERICAL EXAMPLES
	PERFORMANCE DATA
	GAME(i)
	GAME(si)
	GAME(ci)
	GAME(i,si)
	GAME(i,ci)
	GAME(si,ci)
	GAME(i,si,ci)

	CONCLUDING REMARKS
	REFERENCES
	Biographies
	KEQIN LI

