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ABSTRACT We investigate optimal power and performance management for heterogeneous and arbitrary
cloud servers in a data center. In particular, we study the problems of power-constrained performance
optimization and performance-constrained power optimization in a data center with multiple heterogeneous
and arbitrary servers. These problems are essential to find optimal server speeds, such that: 1) the average
task response time is minimized, and that the total power consumption does not exceed certain power
constraint or 2) the total power consumption is minimized, and that the average task response time does
not exceed certain performance constraint. Each server is treated as a G/G/1 queuing system, whose task
interarrival times and task execution requirements can have arbitrary probability distributions. Furthermore,
these servers are entirely heterogeneous in terms of task interarrival time, task execution requirement, and
power consumption models. The main contributions of this paper are summarized as follows: 1) we formulate
the average task response time as well as the total power consumption in a data center with multiple
heterogeneous and arbitrary servers as the functions of server speeds; 2) we define our optimization problems
by finding optimal server speeds, since the server speeds determine both the average task response time and
total power consumption; 3) we develop algorithms to find the optimal solutions and demonstrate numerical
data; and 4) we also develop several closed-form heuristic solutions and compare their quality with that of
the optimal solution. Our approach provides an analytical way of studying the power-performance tradeoff
at the data center level.

INDEX TERMS Arbitrary cloud server, average task response time, data center, heterogeneous server, power

consumption.

I. INTRODUCTION

A. MOTIVATION

The Internet has created myriad new opportunities for modern
society. There are about 2.5 billion people online around
the world. In every minute, there are 204 million email
messages exchanged, 5 million searches made on Google,
1.8 million “likes” generated on Facebook, 350,000 tweets
sent on Twitter, 272,000 merchandise sold on Amazon, and
15,000 tracks downloaded via iTunes. All the above online
activities are delivered through data centers, and the more
we send emails, watch online videos, use social media,
and conduct business online, the more demands on data
centers will grow. Cloud computing is an effective way to
reduce the costs associated with running traditional private
data centers owned by individual companies, through large-
scale, high-volume, and low-cost centralization of computing

and communication resources from service providers. These
cloud service providers have the necessary technical and
financial capabilities, and are able to operate and maintain
dynamically scalable virtual systems capable of serving a
large number of consumers and customers from diversified
businesses simultaneously.

The Internet of Things (IoT) has been defined in Recom-
mendation ITU-T Y.2060 (06/2012) as a global infrastructure
for the information society, enabling advanced services by
interconnecting physical and virtual things based on exist-
ing and evolving interoperable information and communi-
cation technologies [5]. The IoT is the network of physical
objects (e.g., goods, products, vehicles, buildings) embedded
with electronics, sensors, software, and network connectivity,
which enable objects to collect and process data. The IoT
allows objects to be sensed and controlled remotely through
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existing network infrastructure, creating opportunities for
tight integration of the physical world into computer and
communication systems. Each thing is uniquely identifiable
through its embedded devices and is able to interoperate
within the existing Internet infrastructure [3]. It is estimated
that the IoT will consist of 50 billion objects by 2020 [10]
and contribute 19 trillion USD in the global economy [4].
It is conceivable that cloud computing is one of the major
enabling technologies for the IoT. The huge volume of data
generated by the IoT require diversified services from data
centers, which are well suited for large-scale transmission,
analysis, and storage of data, that can be easily collected from,
but not as easily processed by, IoT devices, e.g., security
cameras, temperature thermostats, power monitors, etc.

The data center industry represents a significant economic
burden due to its energy consumption. If the worldwide Inter-
net were a country, it would be the 12th largest consumer of
electricity in the world, somewhere between Spain and Italy.
The continued expansion of the data center industry means
that the energy consumption of data centers and the associated
emissions of greenhouse gases and other air pollutants will
continue to grow [22]. Motivated by cost reduction in owning
and operating data centers, and pressure from environmental
organizations, the largest consumer-facing companies like
Google, Facebook, eBay, Microsoft, and Apple have been
highly energy efficient. However, 11.3 (92%) of the 12.3 mil-
lion servers are installed in small and medium server rooms,
enterprise/corporate data centers, and multi-tenant data cen-
ters, which are much less energy efficient. A typical data cen-
ter wastes large amounts of energy powering equipment doing
little or no work. The average server operates at only 12—18%
of capacity. Increasing energy efficiency in these data centers
is a pressing issue, since they occupy 95% of electricity share.
Also, since the average power usage effectiveness (PUE,
i.e., the ratio of the energy used by all facilities in a data
center to the energy consumed by computing equipment) is
2.9, reduction of every watt used by IT equipment results in
reduction of almost 2 additional watts used by cooling, power
distribution, and lighting equipment [22].

One effective way of power management is dynamic volt-
age scaling, i.e., a power management technique in com-
puter architecture, where the voltage used in a component is
increased or decreased, depending upon circumstances [2].
Low voltage modes are used in conjunction with lowered
clock frequencies to minimize power consumption associated
with components such as CPUs; only when significant com-
putational power is needed will the voltage and frequency be
raised. Dynamic voltage scaling is widely used as an effective
strategy to manage switching (i.e., dynamic) power con-
sumption. However, the speed at which a digital circuit can
switch states is proportional to the voltage differential in that
circuit. Reducing the voltage means that a circuit switches
slower, reducing the maximum frequency at which that circuit
can run. This, in turn, reduces the rate at which program
instructions can be issued, which may increase run time of an
application. While the quality of service is a major concern
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of cloud computing consumers, how to manage energy effi-
ciency together with quality of service, i.e., a combined and
balanced consideration of power and performance, becomes
a significant and challenging issue in data centers.

B. RELATED WORK

Managing an energy efficient data center for cloud com-
puting has been a hot research topic in the last few years.
There have been several surveys available in the litera-
ture. Al-Dulaimy et al. [6] surveyed previous studies and
researches that aimed to improve power efficiency of virtual-
ized data centers. Beloglazov et al. [7] discussed causes and
problems of high power/energy consumption, and presented
a taxonomy of energy efficient design of computing sys-
tems, covering the hardware, operating system, virtualiza-
tion, and data center levels. Garg and Buyya [11] discussed
various elements of clouds which contribute to the total
energy consumption and how it is addressed in the liter-
ature. Kong and Liu [15] investigated the green-energy-
aware power management problem for data centers and
surveyed and classified works that explicitly consider renew-
able energy and/or carbon emission. Mittal [20] highlighted
the need of achieving energy efficiency in data centers and
surveyed several recent architectural techniques designed for
power management of data centers. Many authors exam-
ined various ways of making computing and information
systems greener and environmentally sustainable, and pre-
sented a comprehensive coverage of key topics of impor-
tance and practical relevance, i.e., green technologies, design,
standards, maturity models, strategies and adoption [21].
Orgerie et al. [23] surveyed techniques and solutions that aim
to improve the energy efficiency of computing and network
resources. Rahman et al. [24] summarized the motivations,
current state of the art, approaches, and techniques proposed
for power management methodologies based on geographic
load balancing.

Numerous researchers have investigated power and perfor-
mance management in cloud servers. Cao et al. [8] addressed
optimal power allocation and load distribution for multi-
ple heterogeneous multicore server processors across clouds
and data centers as optimization problems, i.e., power con-
strained performance optimization and performance con-
strained power optimization. Huang et al. [12] minimized
power consumption under performance constraints through
load distribution for heterogeneous embedded nodes with
dedicated/general tasks and different queueing disciplines.
Lefévre and Orgerie [16] explored the energy issue by ana-
lyzing how much energy virtualized environments cost, and
provided an energy-efficient framework dedicated to cloud
architectures. Li [17] considered the problem of optimal
power allocation among multiple heterogeneous servers in a
data center, i.e., minimizing the average task response time
of multiple heterogeneous computer systems with energy
constraint. Li [18] investigated the technique of using work-
load dependent dynamic power management (i.e., variable
power and speed of processor cores according to the current
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workload) to improve system performance and to reduce
energy consumption. Malik et al. [19] emphasized that the
operational cost of data centers is dominated by the cost
on energy consumption, and modeled a data center as a
cyber physical system to capture its thermal properties. Tian
et al. [26] optimized the performance and power consumption
tradeoff for multiple heterogeneous servers with continuous
and discrete speed scaling. Westphall et al. [27] proposed
two hybrid strategies to optimize the use of green cloud
computing resources.

Although the above studies all considered power and per-
formance management for cloud servers from different per-
spectives with different models, none has considered optimal
power and performance management for heterogeneous and
arbitrary cloud servers in a data center, which is the main
focus of this paper.

C. NEW CONTRIBUTIONS

In this paper, we investigate optimal power and performance
management for heterogeneous and arbitrary cloud servers in
a data center. In particular, we study the problems of power
constrained performance optimization and performance con-
strained power optimization in a data center with multiple
heterogeneous and arbitrary servers. Essentially, the purpose
of these problems is to find optimal server speeds, such that
(1) the average task response time is minimized, and that
the total power consumption does not exceed certain power
constraint; (2) or, the total power consumption is minimized,
and that the average task response time does not exceed cer-
tain performance constraint. Notice that from a user’s point
of view, the average task response time of all servers is an
important performance measure in a data center, and from a
service provider’s point of view, the total power consumption
of all servers is an important cost measure in a data center. Our
approach to optimal power and performance management is
different from other approaches, e.g., controlling the arrival
rate of tasks.

It is worth to mention that in our model, each server
is treated as a G/G/1 queuing system, whose task interar-
rival times and task execution requirements can have arbi-
trary probability distributions. Furthermore, these servers are
entirely heterogeneous in terms of task interarrival time,
task execution requirement, and power consumption model.
Hence, we deal with any number of heterogeneous and arbi-
trary cloud servers in a data center.

The main contributions of the paper are summarized as
follows.

« We formulate the average task response time as well as
the total power consumption in a data center with mul-
tiple heterogeneous and arbitrary servers as functions of
server speeds.

o We define our optimization problems by finding opti-
mal server speeds, since the server speeds determine
both average task response time and total power
consumption.
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« We develop algorithms to find the optimal solutions and
demonstrate numerical data.

« We also develop several closed-form heuristic solu-
tions and compare their quality with that of the optimal
solution.

Our approach provides an analytical way of studying the
power-performance tradeoff at the data center level. To the
best of the author’s knowledge, such combined analytical
study of data center power and performance optimization has
not been conducted before for heterogeneous and arbitrary
cloud servers.

The rest of the paper is organized as follows. In
Sections 2 and 3, we present our server model and power
consumption models. In Section 4, we consider the problem
of power constrained performance optimization. In Section 5,
we develop heuristic methods. In Section 6, we consider the
problem of performance constrained power optimization. In
Section 7, we demonstrate numerical data. In Section 8, we
conclude the paper.

Il. THE SERVER MODEL

In this section, we present a G/G/1 queuing model for arbi-
trary cloud servers in a data center. Throughout the paper, we
use y to denote the expectation of a random variable y, and
crvz to denote the variance of y, and Cy = o,/y to denote the
coefficient of variation of y.

We consider a group of n heterogeneous servers 1,2, ..., n
in a data center or a cloud computing environment, each
having its own arrival stream of tasks, power supply, and
execution speed. There is no load distribution and balancing
mechanism. A task submitted to a server must be processed
on that server, i.e., task mitigation, migration, or rejection is
not allowed. System performance optimization is achieved
by an optimal power allocation among the servers, i.e.,
an optimal speed setting of the servers. Furthermore, such
performance optimization is accomplished with a power con-
sumption constraint. We would like to emphasize that the
capability for the servers to dynamically adjust their speeds
is critical in our study.

Each server is modeled as a general G/G/1 queuing system.
Assume that there is an arbitrary stream of arrival tasks to
server i, where 1 < i < n. The interarrival time #; is any
random variable with mean f; and variance at?,, which can be
collected from observing and recording the task stream in a
real server. Notice that #; can have an arbitrary probability
distribution function (pdf). The arrival rate is A; = 1/7; (mea-
sured by the number of tasks per second). Let r; represent
the random execution requirement (measured by the number
of giga instructions) of a task submitted to server i. Again,
r; can have an arbitrary probability distribution with mean 7;
and variance or%, which can be obtained from real tasks. We
use s; to denote the execution speed of server i (measured
in the number of giga instructions executed per second).
The random execution time of a task on server i is x; = r;/s;
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(measured in second) with mean X; = r;/s; and variance
2 2,2 . . .. . -
o, = o, /s; and coefficient of variation Cy, = oy, /X;.

Let A = Ay + Ay + --- 4+ A, be the total arrival rate. The
average task response time in the data center with n servers is

T(s1, 82, 8n)
_ 2.2 2
1 oo opst + o)
:_Z)‘i =+ +ol) PR Tv=y n))
A part S 2si(tis; — ri)(ti 57+ Gri)
where we view T as a function of server speeds s1, 52, .. ., Sp.

For clarity of presentation, the derivation of the above result
is given in Appendix A.

Ill. POWER CONSUMPTION MODELS
In this section, we describe two types of server speed and
power consumption models.

Power dissipation and circuit delay in digital CMOS cir-
cuits can be accurately modeled by simple equations, even
for complex microprocessor circuits. CMOS circuits have
dynamic, static, and short-circuit power dissipation; how-
ever, the dominant component in a well-designed circuit
is dynamic power consumption P (i.e., the switching com-
ponent of power), which is approximately P = aCV?f
(measured in Watt), where a is an activity factor, C is the
loading capacitance, V is the supply voltage, and f is the
clock frequency [9]. In the ideal case, the supply voltage and
the clock frequency are related in such a way that V oc f¢
for some constant ¢ > 0 [28]. The processor execution
speed s is usually linearly proportional to the clock frequency,
namely, s o« f. For ease of discussion, we will assume that
V = bf? and s = cf, where b and ¢ are some constants.
Hence, we know that power consumption is P = aCV?f =
ab*Cr2e+tl = (ab?C /Pt hHs2tl = g5 where £ =
ab?>C /c*** and @ = 2¢+ 1. For instance, by setting o = 2.0
and £ = 9.4192, the value of P calculated by the equation
P = &s5“ is reasonably close to (with relative error less than
6.5%) that in [13] for the Intel Pentium M processor (see
[13, Fig. 1.1 and Table 1.6]).

Since the servers considered in this paper are heteroge-
neous in the sense that each has its own & and o values,
we assume that a server i with speed s; consumes power
S,-s?”. Notice that a server still consumes some amount of
power even when it is idle. We assume that an idle server i
consumes certain base power P}, which includes static power
dissipation, short-circuit power dissipation, and other leakage
and wasted power [1]. We will consider two types of server
speed and power consumption models.

o Inthe idle-speed model, a server runs at zero speed when
there is no task to perform. Since the power for speed s;
is sis?” , the power supplied to server i is P; = p,-éis;."" =
)L,-F,-Sis?i_l. By including P} in P;, we get P; = pi&is;" +
P = nrigsd T 4+ P

o In the constant-speed model, server i still runs at the
speed s; and consumes power é,-s;-x" even if there is no task
to perform (i.e., the server is not fully utilized). Hence,
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the power allocated to server i is P; = é,-sf“ + P}, which
is independent of p;.
The total power consumption (viewed as a function of server
speeds s1, 52, ..., Sp) iS

n n
P(si. 2, ..os) = D Pi= Y (rksi ™+ PY),
i=1 i=1
for the idle-speed model, and
n n
P(st,2,....s) =Y _Pi=Y (&s{"+P)),
i=1 i=1
for the constant-speed model.

IV. POWER CONSTRAINED PERFORMANCE
OPTIMIZATION

In this section, we consider power constrained performance
optimization.

A. PROBLEM DEFINITION
Our optimization problem is defined as follows. Given the
means f1, b, . . . , I, and the variances atzl, aé, e, at% of task

interarrival times, the means 7y, 2, ..., 1, and the variances

ar2l, 0,22, el afn of task execution requirements, parameters
of the power consumption models, i.e., &1, &, ..., &,, and
ay,ay, ..., a,, base power consumptions Py, P, ..., Py,

and total available power P, our optimization problem is to
find optimal server speeds si, 52, ..., S;, such that (1) the
average task response time 7'(sq, 52, ..., S,) 1S minimized,
and (2) the total power consumption P(sq, 52, ..., s,) does
not exceed P.

It should be notice that the objective of the above opti-
mization problem is to minimize the average task response
time of all the servers in a data center. These servers are
entirely heterogeneous in terms of mean and variance of
task interarrival time, task arrival rate, mean and variance
of task execution requirement, power consumption model,
base power consumption, server speed, server utilization, task
execution time, average task waiting time, and average task
response time.

Notice that since s; > A;r;, we need

n
P> Y E0ar™ + P)).
i=1
for both idle-speed model and constant-speed model.
To meet the requirement of minimum server speeds, we

must have
n 7_ o
ot 1
P2 (a(%) +7).
1=

for both idle-speed model and constant-speed model.

B. THE ALGORITHM

We can minimize Tgsl, $2,...,8,) subject to the constraint

P(s1, 82, ...,8,) = P by using the following Lagrange mul-

tiplier system,
VT(Sla S27 ceey Sn) = ¢VP(SI5 S27 IR sn)a
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where ¢ is a Lagrange multiplier (see [25, Sec. 12.8]). Notice
that

0T (s1,82,...,84)

8si
Ao 0T
=
Ao (R (TE4ol
=3 a‘(‘ " (T)
0,’2_51.2+o,2i
) (Si(fisi — F)(IEst + 0%)))
Ao (R (TRt}
-G (5

« ( Utlz-siz + orzi >>
734 =723 722 7y2a.
1s; —ritss; + t,arl,si — Tiogsi

A ;‘i_’_ T_’i2+0r2[
A sl.2 2

2.
8 ( 20.si B

734 =723 22 2.
1Sy — ritys; +t,(7rl_si riozsi

i
(0257 + o})AEs? — 3rit2s? + 2o lsi — fiafi)))

B4 -23 .7 22 _ -
@s} — Fit7s] + tioks; —Tio2si)?

i
Also, we have
0P(s1,52,...,5n)
as;
for the idle-speed model, and
0P(s1,52,...,8y)
as;

for the constant-speed model. Hence, we get

1 ( i L (ff +o;§)
(i — DAREST 2\ s 2

2‘7;,251'
O O S S S
s —ritts; + tiUr,-Si — TioCS;

(0787 + 02)A1s) — 3Fitrs? + 2ioksi — Fio )
_ 5

34 _-23 .7 22 -
(17s] — Fit7s? + IiG,ZiS,» — ricrr%,s,-

- i—2
= (Ol,' - 1))\.[?’[&'.??[ )

a;i—1
= a§is;

:(1),

for the idle-speed model, and

(e (B
52 2 ffs? — ?ifizs;?’ + fi02s7 — Fioksi

ri
2.2 2\473 3 =222 ) = 2
(cr,l, 57+ U,i)(4ti s7 = 3ty sy + 2tiorisi — riari))>

34 =723 z 2 =
(&'s; —ritfs; + fiUrZ,-S,- — riarz[_s,-)2

= ¢,
for the constant-speed model.
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It is unlikely that the above equations accommodate a
closed-form solution. We use the following strategy to find
a numerical solution (¢, s1, §2, ..., Sy).

A complete description of the algorithm to optimize T
is given in Algorithm 1. A key observation is that the left-
hand sides of the last two equations are increasing functions
of s; due to the convexity of 7; as a function of s;. This
leads to the following method to find a numerical solution
(¢, 51, 82, - .., 8). First, given a ¢ (line 3), which is negative
(line 1), since 9T;/9ds; < 0, we can find s; forall 1 <i <n
(lines 4-6). Second, the obtained s;’s are used to verify the
constraint P(sq, 52, ...,8,) = P (lines 7-12). Third, ¢ can
be obtained by using the classical bisection method (lines
1-13), where we notice that P is an increasing function of
51,82, ...,8.

Algorithm 1 Optimizing T

Input: Parameters 7;, a,%, i, orzi, &, a;, P foralll <i<n,
and P.

Output: Optimal s1, 53, . .., Sy, such that T(sy, 52, ..., $p)
is minimized and P(sq, 52, ..., Sp) < P.

Initialize the search interval of ¢ to be [—100, 0]; @€))

while (the length of the search interval is > ¢) do 2)

¢ <« the middle point of the search interval; 3)

for (i < 1;i < n;i++)do 4

Calculate s; using Algorithm 2; 5)

end do; (6)

Calculate P(s1, 52, ..., Sp); @)

if (P(s1, 52, ...,5,) < P) then ®)

Set the search interval to the right half; O]

else (10)

Set the search interval to the left half; (1

end if (12)

end do (13)

A complete description of the method to find s; is given in
Algorithm 2. The value of s; can also be found by using the
bisection method (lines 1-11) in such a way that

., 8n)/08)/(OP(s1, 82, ..., $,)/0s;) = @,

where we notice that s; is an increasing function of ¢.

It is well known that the bisection method is extremely fast
and efficient. Let / denote the maximum length of all initial
search intervals in this paper. Then, the time complexity of
Algorithm 2 is O(log(I /€)). (We set € = 10710 in this paper.)
Due to the use of Algorithm 2 as a sub-algorithm, the time
complexity of Algorithm 1 is O(n(log(/ /6))2).

(0T (s1, 52, - -

V. HEURISTIC METHODS

In this section, we develop several heuristic methods with
closed-form solutions, so that the optimal server speed setting
can be compared with the server speed settings obtained by
using these heuristic methods.
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Algorithm 2 Finding s;

Input: Parameters 1;, 0112,, 7, O’rzi, &, o, and A.
Output: s; such that (07 /ds;)/(0P/0s;) = ¢.

Initialize the search interval of s; to be [0, 100]; (1)
while (the length of the search interval is > €) do 2)
s; < the middle point of the search interval; 3)
Calculate o7 (s1, 52, ..., Sn)/0Si; 4
Calculate dP(s1, 2, ..., Sy)/0Si; 5)

if (0T /0s;)/(0P/3s;) < ¢) then (6)

Set the search interval to the right half; @)

else (8)

Set the search interval to the left half; ©)]

end if (10)

end do (11)

There are a number of heuristic methods to be considered.

o The Workload Proportional Method — In the workload
proportional (WP) method, the dynamic power allo-
cated to a server is proportional to its workload w; =
A;i7;. In the idle-speed model, we have

-« ai—1 ai—1
Airi&is;t T = wikis;

n
wi ~
= P->"Pr).
<W1+wz+~-~+wn)< pr ’)

which gives

1 1 n 1/(e;j—1)
= (& () 27)
& \witwat---+wy P

for all 1 < i < n. In the constant-speed model, we have

n
'S‘.xi = < Wi > (P— P*)a
511 W1+W2+"'+Wn ; 2

which gives

1 W _ n 1/a;
o= (¢ (Gt ) (-2m))
E \wi+w2+---+wy —

foralll <i<n.

o The Equal Speed Method — In the equal speed (ES)
method, all servers have the same speed s. For the idle-
speed model, we have

n n
_ i—1
P(sl,sz,...,sn)=§ P,:E (hiri&isi™ + P))
i=1 =1

n
=) (uiFi&is™ ! + P} =P.

i=1

Therefore, s satisfies the following equation,

n n
ZAiFiSiS“’_l =P- X:P;k
i=1 i=1
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for=a = =0a, =a, we get

n —1 n 1/(a—1)
(o) (5™
i=1 i=1

For the constant-speed model, we have

n n
P(s1,52.....50) = »_Pi=Y (&s{"+P))
i=1 i=1

n
=) (" +P})=P.
i=1

Therefore, s satisfies the following equation,

n n
Zéjié‘ai =P X:P;I<
i=1 i=1

for=a = =0ao, =a, we get

=((x) (-37)

o The Equal Utilization Method — In the equal utilization
(EU) method, all servers have the same utilization p, i.e.,
pi = wi/si = p,and s; = w;/p, forall 1 <i < n. For
the idle-speed model, we have

n
P(s1,82,...,8:) = ZPi
i=1

n
= D Owigssy ™+ PP)

i=1
n < W‘-Xi

=2 Siﬁ’LP?‘):P-
i=1 P

Therefore, p satisfies the following equation,

D& -
i=1

p%i

o n

i _p *

-1 _P_Zpi'
i=1

If(xlz(xz:H‘:C{n:C{,Weget

o ((ggiw?> (13— gP;*>_l)l/(a_l).

For the constant-speed model, we have

n
P(S17s25'-'asn)=ZPi
i=1

n
=) &+ P))
i=1

=y <g,- (ﬁ>ai + Pj) =P
i=1 p

Therefore, p satisfies the following equation,
n Wol,' n
i _ D *
Db =P=) Pl
i=1 i=1
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Algorithm 3 Optimizing P

Input: Parameters 7;, 0112,, 7, O’rzi, &, a;, Py foralll <i<n,
and T'.

Output: Optimal s1, 52, ..., Sy, such that P(sy, 52, ..., $)
is minimized and 7T'(sq, 52, ..., Sy) < T.

Initialize the search interval of P; (@))]

while (the length of the search interval is > ¢) do 2)

P <« the middle point of the search interval; 3)

Call Alg. 1 to find the optimal T with P = P; @)

if (T > T) then (5)

Set the search interval to the right half; 6)

else @)

Set the search interval to the left half; (8)

end if O]

end do (10)

foai=a = =a, =«a, we get

(S5

o The Equal Time Method — In the equal time (ET)
method, all servers have the same average task response
time T,1e., Ty = Tp = --- = T, = T. Therefore, s;
satisfies the following equation,

2.2 2
o;s; + oy, )

—+—(F~2+02.)( —
! "i 2s;(t;s; — ri)(tl.zs% + O’%)

Si
We observe that the left-hand side of the above equa-
tion is a decreasing functions of s;. Given a T, we can
find s; for all 1 < i < n by using the bisection
method. The obtained s;’s are used to verify the con-
straint P(s1, 52, ..., 8,) = P. The value of T can also
be found by using the bisection method in such a way
that P(s1, 82, ..., 8,) = P.

Vi. PERFORMANCE CONSTRAINED POWER
OPTIMIZATION

In this section, we consider performance constrained power
optimization, which is actually a dual form of power con-
strained performance optimization.

A. PROBLEM DEFINITION

Given the means 11, 12, . . ., t, and the variances 0,21, oé, e
ati of task interarrival times, the means 7y, 7y, ..., r, and
the variances orzl , orzz, R arzn of task execution require-

ments, parameters of the power consumption models, i.e.,
&1,&,...,&,and a1, ap, . . ., oy, base power consumptions
PT’ P;, ..., P}, and a time constraint T. our dual optimiza-
tion problem is to find optimal server speeds sy, 52, ..., Sy,
such that (1) the total power consumption P(s1, 52, ..., $y)
is minimized, and (2) the average task response time
T(s1,s2,...,S,) does not exceed T.
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FIGURE 1. Optimal server speeds (idle-speed model).
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FIGURE 2. Optimal server speeds (constant-speed model).

B. THE ALGORITHM
It is clear that the above optimization problem can be solved
by bisection search of P that yields T'(sy, s2, ..., s,) = T and
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search interval of P is
the solution to the dual optimization problem, based on the |:

observation that 7 is a decreasing function of P. A complete
description of the method is given in Algorithm 3. The initial

D G+ P, 1000}.

i=1

5078 VOLUME 7, 2019



K. Li: Optimal Power and Performance Management for Heterogeneous and Arbitrary Cloud Servers IEEEACC@SS

TABLE 1. Performance comparison (power constrained, idle-speed model).

P WP ES EU ET OPT

63.0 — — 63.9278478 58.6240391 31.7770505
66.0 — — 4.3257014 3.9726990 3.6439684
69.0 — — 2.5096058 2.3078020 2.1502993
72.0 — — 1.8727847 1.7240902 1.6228733
75.0 — — 1.5448081 1.4234505 1.3489804
78.0 — — 1.3429553 1.2383629 1.1789228
81.0 — — 1.2050346 1.1118244 1.0617014
84.0 — — 1.1040565 1.0191073 0.9751537
87.0 — — 1.0264056 0.9477439 0.9080790
90.0 — — 0.9644639 0.8907618 0.8541947
93.0 — 4.1037799 0.9136319 0.8439540 0.8096966
96.0 — 1.3718077 0.8709660 0.8046285 0.7721409
99.0 — 1.0316946 0.8344926 0.7709809 0.7398827
102.0 — 0.8886355 0.8028376 0.7417548 0.7117714
105.0 — 0.8056014 0.7750137 0.7160476 0.6869768
108.0 2.6236078 0.7493019 0.7502927 0.6931930 0.6648831
111.0 1.2735480 0.7075043 0.7281249 0.6726878 0.6450234
114.0 0.9807738 0.6745976 0.7080872 0.6541446 0.6270364
117.0 0.8470258 0.6476168 0.6898483 0.6372596 0.6106378
120.0 0.7676590 0.6248320 0.6731447 0.6217913 0.5956005
123.0 0.7136339 0.6051579 0.6577642 0.6075447 0.5817406
126.0 0.6736253 0.5878735 0.6435335 0.5943607 0.5689072
129.0 0.6422738 0.5724782 0.6303099 0.5821078 0.5569756
132.0 0.6166995 0.5586115 0.6179743 0.5706767 0.5458414
135.0 0.5952075 0.5460058 0.6064268 0.5599752 0.5354164

Due to the use of Algorithm 1 as a sub-algorithm, the time

complexity of Algorithm 3 is O(n(log(I/ €)>).

C. HEURISTIC METHODS

For the EU, ET, and the optimal methods, P can be arbitrarily

close to its lower bound, i.e.,

DGR + PY).

i=1

For the WP method, we notice that in the idle-speed model,

1 1 n 1/(e;i—1)
o= ( )(P-xx))
E\wi+wr+-- 4wy, =

> i/t
which gives

5 7 ai—1 n
P>‘§i(W1+W2+"’+Wn)<E_T> +z;P?,
i

1

for all 1 < i < n. In the constant-speed model, we have

1 Wi n 1/a;
O [ 0)
E \wi+wa+---Fwy P

> 1i/t;,

which gives

= wi+wy -+ wy, i\ - %
P>& 4 Pt
- (et (1) %

foralll <i<n.
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For the ES method, we notice that in the idle-speed model,
ifog =0y =--- = o, = a, we have

n -1 n /(=1
s = <<Z A-#iéi) (P — ZPT)) > ;,'/Ei,
i=1 i=1

which gives

n 3 a—1 n
P> <Z )»,'7‘,'%'[) (%) + ZP?,
i—1 ! i=1

for all 1 <i < n. In the constant-speed model, if ¢; = oy =
... =, = a, we have

n -1 n 1/a
() )
i=1 i=1

which gives
n 7\ n
- N\ (Ti 3
Po(Xa)(Z) + 2
i—1 i=1
foralll <i<n.

VIi. NUMERICAL DATA

In this section, we demonstrate numerical data for the
performance of our optimization algorithms and heuristic
algorithms using synthetic parameters. Our computing envi-
ronment is an Intel® Xeon® CPU E5620 2.40GHz with the
Linux OS version RHEL 6.8. All the data in this section
are generated by a computation program written in C++
supported by the g+ 4.4.7 compiler.
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TABLE 2. Performance comparison (power constrained, constant-speed model).

P WP ES EU ET OPT
63.0 — — 95.6449097 87.7073810 38.8419287
66.0 — — 6.2507746 5.7383891 5.2330295
69.0 — — 3.5351405 3.2486967 3.0047632
72.0 — — 2.5878994 2.3804502 2.2247615
75.0 — — 2.1034564 1.9364987 1.8241353
78.0 — — 1.8077740 1.6655727 1.5784593
81.0 — — 1.6076024 1.4821748 1.4113259
84.0 — — 1.4624906 1.3492207 1.2895662
87.0 — — 1.3520448 1.2480169 1.1964423
90.0 — — 1.2648639 1.1681152 1.1225866
93.0 — — 1.1940720 1.1032160 1.0623424
96.0 — — 1.1352742 1.0492939 1.0120886
99.0 — — 1.0855287 1.0036552 0.9693976
102.0 — — 1.0427912 0.9644287 0.9325793
105.0 — — 1.0055959 0.9302731 0.9004197
108.0 3.8205788 — 0.9728640 0.9002017 0.8720237
111.0 1.7990116 — 0.9437836 0.8734718 0.8467158
114.0 1.3632272 — 0.9177314 0.8495135 0.8239768
117.0 1.1658457 — 0.8942207 0.8278819 0.8034002
120.0 1.0499084 — 0.8728660 0.8082245 0.7846631
123.0 0.9718638 17.8197736 0.8533574 0.7902582 0.7675057
126.0 0.9147314 2.3847530 0.8354433 0.7737529 0.7517163
129.0 0.8704788 1.5657610 0.8189168 0.7585194 0.7371205
132.0 0.8347918 1.2658779 0.8036062 0.7444009 0.7235734
135.0 0.8051341 1.1069346 0.7893680 0.7312661 0.7109532

TABLE 3. Performance comparison (performance constrained, idle-speed model).
T WP ES EU ET OPT
0.6 134.2884172 123.8572803 136.7557103 124.6890845 119.0960334
0.8 118.6171222 105.2560434 102.2893780 96.3869942 93.7293995
1.0 113.6950720 99.5110907 88.2023718 84.7342090 83.0519679
1.2 111.5143183 97.1135698 81.1305927 78.8054486 77.5558477
1.4 110.3179802 95.8621472 77.0184842 75.3153006 74.3081303
1.6 109.5698391 95.1073420 74.3694322 73.0442714 72.1948190
1.8 109.0599992 94.6063611 72.5340769 71.4581675 70.7211354
2.0 108.6910505 94.2509408 71.1927346 70.2914921 69.6394129
2.2 108.4120169 93.9862289 70.1719501 69.3989553 68.8136873
2.4 108.1937554 93.7816742 69.3702100 68.6948910 68.1637125
2.6 108.0184412 93.6189836 68.7244317 68.1257184 67.6393109
2.8 107.8745766 93.4865626 68.1934682 67.6562918 67.2075984
3.0 107.7544202 93.3767189 67.7493907 67.2626381 66.8461733
3.2 107.6525726 93.2841537 67.3726020 66.9278635 66.5392715
3.4 107.5651547 93.2051006 67.0489590 66.6397293 66.2754899
3.6 107.4893087 93.1368109 66.7680065 66.3891576 66.0463831
3.8 107.4228836 93.0772321 66.5218527 66.1692755 65.8455663
4.0 107.3642295 93.0248013 66.3044317 65.9747860 65.6681257
42 107.3120600 92.9783075 66.1110058 65.8015416 65.5102191
4.4 107.2653574 92.9367983 65.9378217 65.6462496 65.3688000
4.6 107.2233063 92.8995142 65.7818681 65.5062627 65.2414221
4.8 107.1852453 92.8658423 65.6407015 65.3794289 65.1260991
5.0 107.1506328 92.8352828 65.5123186 65.2639809 65.0212014
5.2 107.1190210 92.8074237 65.3950616 65.1584538 64.9253799
5.4 107.0900361 92.7819226 65.2875469 65.0616235 64.8375080
Let us consider a group of n = 7 heterogeneous servers imply that

with the following parameters: ; = 1.05—0.05, oy, = 0.21—

0.01i, ; = 09+ 0.1i, 0, = 0.45+0.054, & = 0.9 + 0.14, " Fi\ ¢ N

;i = 3, P = 2,forall 1 < i < n. The above parameters Z (Ei <;_l> + Pi) = 62.8126110.
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TABLE 4. Performance comparison (performance constrained, constant-speed model).

T WP ES EU ET OPT
0.6 182.3802468 194.9225752 208.6688826 181.7643823 173.5982278
0.8 135.5743537 150.9752017 132.7398966 121.3408969 117.5244558
1.0 121.7966005 138.2462142 105.4872686 99.2617300 96.8030697
1.2 116.3353676 133.0576756 92.7253686 88.7227517 86.8709812
1.4 113.6108945 130.3788854 85.6037734 82.7486582 81.2445081
1.6 112.0230823 128.7730042 81.1366422 78.9552291 77.6813375
1.8 110.9958269 127.7112594 78.0983930 76.3504388 75.2426645
2.0 110.2810242 126.9600027 75.9077862 74.4580871 73.4768115
2.2 109.7565927 126.4015572 74.2577946 73.0240075 72.1427027
24 109.3561520 125.9706539 72.9723232 71.9011284 71.1010121
2.6 109.0407352 125.6283330 71.9436530 70.9988027 70.2660228
2.8 108.7860493 125.3499613 71.1024048 70.2582660 69.5822833
3.0 108.5761993 125.1192268 70.4019733 69.6398208 69.0124152
3.2 108.4003646 124.9249107 69.8099385 69.1157163 68.5303454
34 108.2509322 124.7590497 69.3030749 68.6659862 68.1173534
3.6 108.1223947 124.6158379 68.8643213 68.2759069 67.7596621
3.8 108.0106714 124.4909443 68.4808703 67.9343883 67.4469136
4.0 107.9126763 124.3810738 68.1429248 67.6329211 67.1711745
4.2 107.8260327 124.2836750 67.8428654 67.3648692 66.9262679
4.4 107.7488813 124.1967425 67.5746789 67.1249823 66.7073147
4.6 107.6797470 124.1186781 67.3335573 66.9090528 66.5104103
4.8 107.6174445 124.0481928 67.1156109 66.7136700 66.3323940
5.0 107.5610108 123.9842355 66.9176596 66.5360399 66.1706798
5.2 107.5096555 123.9259407 66.7370785 66.3738524 66.0231321
54 107.4627238 123.8725891 66.5716819 66.2251809 65.8879721
TABLE 5. Accuracy of the G/G/1 approximation.
P Simulation 99% C.1. Approximation Relative Error
0.1000000 1.4056398 0.1393483% 1.4435529 2.6972120%
0.1500000 1.4141122 0.1399932% 1.4695010 3.9168597%
0.2000000 1.4320511 0.1411626% 1.4991060 4.6824357%
0.2500000 1.4509859 0.1422068% 1.5332366 5.6686030%
0.3000000 1.4799714 0.1441451% 1.5730007 6.2858827%
0.3500000 1.5167226 0.1458743% 1.6198362 6.7984467%
0.4000000 1.5677397 0.1488191% 1.6756467 6.8829667%
0.4500000 1.6284936 0.1522949% 1.7430114 7.0321330%
0.5000000 1.7063720 0.1563612% 1.8255226 6.9826843%
0.5500000 1.8059174 0.1607947% 1.9283472 6.7793659%
0.6000000 1.9365131 0.1663225% 2.0592108 6.3360111%
0.6500000 2.1099013 0.1731604% 2.2302259 5.7028543%
0.7000000 2.3413061 0.1814181% 2.4615484 5.1356942%
0.7500000 2.6675611 0.1898358% 2.7894226 4.5682757%
0.8000000 3.1908007 0.2018568% 3.2862949 2.9927991%
0.8500000 4.0303375 0.2102933% 4.1211549 2.2533437%
0.9000000 5.8513945 0.2286247% 5.8009004 -0.8629412%
0.9500000 11.0209946 0.2382927% 10.8598948 -1.4617541%

(Notice that these synthetic parameters are for illustrative
purpose only. As mentioned earlier, our optimization algo-
rithms are applicable to any data centers with any number of

arbitrary servers.)

For power constrained performance optimization, we give
the optimal speed setting, including the optimal server speeds

S1, 952, .

average task response times 71, T2, ...

.., 8y, the server utilization pg, o3, ...
, Ty, in Figures 1-6

, Pn, and the

for the two power consumption models, where P =
63, 66,69, ...,135. It is clear that the servers 1,2,...,n

VOLUME 7, 2019

have increased arrival rate (A < Ay < - --
execution requirement (r{ < rp < ---
power consumption (§; < & < ---

1,2, ..., nhaveincreased server speed (s] < s < - --

increased server utilization (p; < py < ---
increased average response time (77 < Tp < - - -
only exception is that for the idle-speed model, there might
be s;, > s;, for iy < i, when P is large.) As P increases,
all the s;’s increase, and the servers 1, 2, ..., n have reduced
percentage of increment; all the p;’s decrease, and the servers

< Ayn), increased
< ry), and increased
< &,). Thus, the servers

< pn), and
< T,). (The
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1,2, ..., nhavereduced percentage of decrement; all the T;’s
decrease, and the servers 1, 2, . .., n have reduced percentage
of decrement.

In Tables 1-2, we compare the performance of the four
heuristic methods with that of the optimal solution. It is
noticed that if P is not sufficient, it is impossible to imple-
ment the WP and ES methods (indicated by “—” in the
tables). If P is sufficiently large, all the four heuristic methods
have performance comparable to that of the optimal solu-
tion. ET has the best performance among the four heuris-
tic methods, since the optimal speed setting tends to make
all servers to have roughly the same average task response
time.

For performance constrained power optimization, we
compare the performance of the four heuristic methods
with that of the optimal solution in Tables 3—4, where
T = 0.6,0.8, 1.0, ..., 5.4.Itis noticed that it is always possi-
ble to implement the four heuristic methods. As T increases,
all methods have reduced power consumption, and EU and
ET have more significant reduction than WP and ES, since
the optimal speed setting tends to make all servers to have
roughly the same utilization and roughly the same average
task response time. Again, ET has the best performance
among the four heuristic methods.

VIIl. CONCLUDING REMARKS

We have investigated optimal power and performance man-
agement in a data center with multiple heterogeneous and
arbitrary cloud servers. The tradeoff between power and
performance is tackled by studying the problems of power
constrained performance optimization and performance con-
strained power optimization. These problems have signif-
icant practical importance and implication in data centers
supporting cloud computing. Our problems are formulated
as multi-variable optimizations by modeling each server as
a G/G/1 queuing system, the most general class of queuing
models. We are able to find optimal server speed settings
numerically. We also find that some simple heuristic solutions
such as EU and ET generate near-optimal solutions.

APPENDIX A

DERIVATION OF THE AVERAGE TASK RESPONSE TIME
The average waiting time of tasks in server i is approximately
([14, p. 34, and Appendix B])

1+C32 ol + o}
(/e +C225(1—py)]

i

where

WE X i
Pi = AjXj = — = —
i A 2 I:si
is the utilization of server i. Since p; < 1, we must have s; >
I_’i/;i. Notice that p; = A;x; = Airi/si = w;/s;, where w; =
A;ri is the expected amount of work received by server i in a
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unit of time. Since p; < 1, we must have s; > w;. Notice that

1+ C)%i ot’z, + UXZ[
(1/p)* +C2 26:(1 — p))
1+ ole,/iiz cr,lz, + szi

C@/%)? +o2/5 21— p)
4ol ' ol + o}
2 +02 2(1—p)

The above equation for W; includes some classic results as
special cases. For instance, for an M/G/1 queue, we have
of = 7% and

2
. AiX;
1

21—’
where xl.z = )'clz + ale_. This is exactly the well-known
Pollaczek-Khinchin mean value formula ([14, p. 16]).
The average response time of tasks in server i is
Ti=x+W
_ 1+ C)%, 0,2, + sz,
— xi —‘f_ 2 1 2 . _I 1
(1/p)* + C3 26:(1 — pi)

=2 2 2 2
xi + Oxi Gti + Gxi

=X+ = D
B 4ol 2063

- =2,2 2/2 2 2/2
TS +U,l_/sl. . o +O’,l_/Si

Si 7+ c7,2,,/si2 2(t; — 1i/si)

= 72 2 2.2 2
Ti ri+opn o8y + o

5 ?izsl.z—i—a}i 2si(tisi — i)

. 22, 2
o5 2 o087 + oy

S AR e
Si 2si(tisi — ri)(t;s; +0)

which is viewed as a function of s;, where s; > 7;/f;.
Let A = A1 + A2 4+ --- 4+ X, be the total arrival rate. The
average task response time in the data center with n servers is

T(sls S27 ) sﬂ)

£ ()

i=1

I, (T, 2, 2 opsi + 0,
i—1 i SilliSi rl)(ti §; + Gr,-)

where we view T as a function of server speeds sy, 52, . . ., Sy-

APPENDIX B

ACCURACY OF THE G/G/1 APPROXIMATION

Our study has employed approximations of the average
waiting time and the average response time. Some experi-
ments have been conducted to examine the accuracy of the
approximations.
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Let us consider a server i. Assume that the interarrival time
t; has a hyper-Erlang distribution with probability density
function (pdf)

ka g 4

Aje ! (At )

t =E il —= ),
o j=1w’]< (Vaj— D!

where w, 1 +wg 2+ - -+wga i, = 1. (Notice that hyper-Erlang
distributions include hyperexponential distributions, expo-
nential distributions, chi-square distributions, and Erlang dis-
tributions as special cases.) Similarly, assume that the execu-
tion time x; also has a hyper-Erlang distribution with pdf

k e~ HX (1 j—1
_ ([ e ()i >
fm—gw( )

where wp 1 +wp2 4+ -+ - +wpk, = 1. Then, we have

ka

" Yaj

=D Wagt
=1 !

and
ki
_ Vb,j
X = Zwb,j . —
=1 K

Let r = 1;/x;. For arbitrary server utilization p, we adjust A;
as Aj < prij, forall 1 < j < k,. This results in the actual
server utilization to be p.

For interarrival time, we set k, = 3, wg1 = 0.3, wy2 =
0.3, Wa3 = 0.4, Va1 = 2, Va2 = 3, Va3 = 4 =11 =2,
A3 = 3. For execution time, we set kp, = 2, w1 = 0.4,
wpo = 0.6, vp1 = 3, w2 = 4, u1 = 2, up = 3. We
generate 1,000,000 random tasks, simulate a G/G/1 server,
record the response time of each task, and report the average
response time. In Table 5, we show our experimental results.
For p = 0.10, 0.15, 0.20, ..., 0.95, we show the simulation
results of the average response time and the 99% confidence
interval (C.1.). We also show the theoretical approximation
and its relative error, i.e.,

(approximation — simulation)/simulation x 100%.

It is observed that the 99% C.I. is very small (less than
0.24%). In other words, the simulation results are very reli-
able and robust, and very close to the real values of the
average response time. Furthermore, the theoretical approx-
imation is very accurate with relative error no more than
7%, i.e., the theoretical approximation can be used in real
applications with high accuracy.
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