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ABSTRACT We investigate optimal power and performance management for heterogeneous and arbitrary
cloud servers in a data center. In particular, we study the problems of power-constrained performance
optimization and performance-constrained power optimization in a data center with multiple heterogeneous
and arbitrary servers. These problems are essential to find optimal server speeds, such that: 1) the average
task response time is minimized, and that the total power consumption does not exceed certain power
constraint or 2) the total power consumption is minimized, and that the average task response time does
not exceed certain performance constraint. Each server is treated as a G/G/1 queuing system, whose task
interarrival times and task execution requirements can have arbitrary probability distributions. Furthermore,
these servers are entirely heterogeneous in terms of task interarrival time, task execution requirement, and
power consumptionmodels. Themain contributions of this paper are summarized as follows: 1) we formulate
the average task response time as well as the total power consumption in a data center with multiple
heterogeneous and arbitrary servers as the functions of server speeds; 2) we define our optimization problems
by finding optimal server speeds, since the server speeds determine both the average task response time and
total power consumption; 3) we develop algorithms to find the optimal solutions and demonstrate numerical
data; and 4) we also develop several closed-form heuristic solutions and compare their quality with that of
the optimal solution. Our approach provides an analytical way of studying the power-performance tradeoff
at the data center level.

INDEX TERMS Arbitrary cloud server, average task response time, data center, heterogeneous server, power
consumption.

I. INTRODUCTION
A. MOTIVATION
The Internet has createdmyriad new opportunities formodern
society. There are about 2.5 billion people online around
the world. In every minute, there are 204 million email
messages exchanged, 5 million searches made on Google,
1.8 million ‘‘likes’’ generated on Facebook, 350,000 tweets
sent on Twitter, 272,000 merchandise sold on Amazon, and
15,000 tracks downloaded via iTunes. All the above online
activities are delivered through data centers, and the more
we send emails, watch online videos, use social media,
and conduct business online, the more demands on data
centers will grow. Cloud computing is an effective way to
reduce the costs associated with running traditional private
data centers owned by individual companies, through large-
scale, high-volume, and low-cost centralization of computing

and communication resources from service providers. These
cloud service providers have the necessary technical and
financial capabilities, and are able to operate and maintain
dynamically scalable virtual systems capable of serving a
large number of consumers and customers from diversified
businesses simultaneously.

The Internet of Things (IoT) has been defined in Recom-
mendation ITU-T Y.2060 (06/2012) as a global infrastructure
for the information society, enabling advanced services by
interconnecting physical and virtual things based on exist-
ing and evolving interoperable information and communi-
cation technologies [5]. The IoT is the network of physical
objects (e.g., goods, products, vehicles, buildings) embedded
with electronics, sensors, software, and network connectivity,
which enable objects to collect and process data. The IoT
allows objects to be sensed and controlled remotely through
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existing network infrastructure, creating opportunities for
tight integration of the physical world into computer and
communication systems. Each thing is uniquely identifiable
through its embedded devices and is able to interoperate
within the existing Internet infrastructure [3]. It is estimated
that the IoT will consist of 50 billion objects by 2020 [10]
and contribute 19 trillion USD in the global economy [4].
It is conceivable that cloud computing is one of the major
enabling technologies for the IoT. The huge volume of data
generated by the IoT require diversified services from data
centers, which are well suited for large-scale transmission,
analysis, and storage of data, that can be easily collected from,
but not as easily processed by, IoT devices, e.g., security
cameras, temperature thermostats, power monitors, etc.

The data center industry represents a significant economic
burden due to its energy consumption. If the worldwide Inter-
net were a country, it would be the 12th largest consumer of
electricity in the world, somewhere between Spain and Italy.
The continued expansion of the data center industry means
that the energy consumption of data centers and the associated
emissions of greenhouse gases and other air pollutants will
continue to grow [22]. Motivated by cost reduction in owning
and operating data centers, and pressure from environmental
organizations, the largest consumer-facing companies like
Google, Facebook, eBay, Microsoft, and Apple have been
highly energy efficient. However, 11.3 (92%) of the 12.3 mil-
lion servers are installed in small and medium server rooms,
enterprise/corporate data centers, and multi-tenant data cen-
ters, which are much less energy efficient. A typical data cen-
ter wastes large amounts of energy powering equipment doing
little or no work. The average server operates at only 12–18%
of capacity. Increasing energy efficiency in these data centers
is a pressing issue, since they occupy 95% of electricity share.
Also, since the average power usage effectiveness (PUE,
i.e., the ratio of the energy used by all facilities in a data
center to the energy consumed by computing equipment) is
2.9, reduction of every watt used by IT equipment results in
reduction of almost 2 additional watts used by cooling, power
distribution, and lighting equipment [22].

One effective way of power management is dynamic volt-
age scaling, i.e., a power management technique in com-
puter architecture, where the voltage used in a component is
increased or decreased, depending upon circumstances [2].
Low voltage modes are used in conjunction with lowered
clock frequencies to minimize power consumption associated
with components such as CPUs; only when significant com-
putational power is needed will the voltage and frequency be
raised. Dynamic voltage scaling is widely used as an effective
strategy to manage switching (i.e., dynamic) power con-
sumption. However, the speed at which a digital circuit can
switch states is proportional to the voltage differential in that
circuit. Reducing the voltage means that a circuit switches
slower, reducing themaximum frequency at which that circuit
can run. This, in turn, reduces the rate at which program
instructions can be issued, which may increase run time of an
application. While the quality of service is a major concern

of cloud computing consumers, how to manage energy effi-
ciency together with quality of service, i.e., a combined and
balanced consideration of power and performance, becomes
a significant and challenging issue in data centers.

B. RELATED WORK
Managing an energy efficient data center for cloud com-
puting has been a hot research topic in the last few years.
There have been several surveys available in the litera-
ture. Al-Dulaimy et al. [6] surveyed previous studies and
researches that aimed to improve power efficiency of virtual-
ized data centers. Beloglazov et al. [7] discussed causes and
problems of high power/energy consumption, and presented
a taxonomy of energy efficient design of computing sys-
tems, covering the hardware, operating system, virtualiza-
tion, and data center levels. Garg and Buyya [11] discussed
various elements of clouds which contribute to the total
energy consumption and how it is addressed in the liter-
ature. Kong and Liu [15] investigated the green-energy-
aware power management problem for data centers and
surveyed and classified works that explicitly consider renew-
able energy and/or carbon emission. Mittal [20] highlighted
the need of achieving energy efficiency in data centers and
surveyed several recent architectural techniques designed for
power management of data centers. Many authors exam-
ined various ways of making computing and information
systems greener and environmentally sustainable, and pre-
sented a comprehensive coverage of key topics of impor-
tance and practical relevance, i.e., green technologies, design,
standards, maturity models, strategies and adoption [21].
Orgerie et al. [23] surveyed techniques and solutions that aim
to improve the energy efficiency of computing and network
resources. Rahman et al. [24] summarized the motivations,
current state of the art, approaches, and techniques proposed
for power management methodologies based on geographic
load balancing.

Numerous researchers have investigated power and perfor-
mance management in cloud servers. Cao et al. [8] addressed
optimal power allocation and load distribution for multi-
ple heterogeneous multicore server processors across clouds
and data centers as optimization problems, i.e., power con-
strained performance optimization and performance con-
strained power optimization. Huang et al. [12] minimized
power consumption under performance constraints through
load distribution for heterogeneous embedded nodes with
dedicated/general tasks and different queueing disciplines.
Lefévre and Orgerie [16] explored the energy issue by ana-
lyzing how much energy virtualized environments cost, and
provided an energy-efficient framework dedicated to cloud
architectures. Li [17] considered the problem of optimal
power allocation among multiple heterogeneous servers in a
data center, i.e., minimizing the average task response time
of multiple heterogeneous computer systems with energy
constraint. Li [18] investigated the technique of using work-
load dependent dynamic power management (i.e., variable
power and speed of processor cores according to the current
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workload) to improve system performance and to reduce
energy consumption. Malik et al. [19] emphasized that the
operational cost of data centers is dominated by the cost
on energy consumption, and modeled a data center as a
cyber physical system to capture its thermal properties. Tian
et al. [26] optimized the performance and power consumption
tradeoff for multiple heterogeneous servers with continuous
and discrete speed scaling. Westphall et al. [27] proposed
two hybrid strategies to optimize the use of green cloud
computing resources.

Although the above studies all considered power and per-
formance management for cloud servers from different per-
spectives with different models, none has considered optimal
power and performance management for heterogeneous and
arbitrary cloud servers in a data center, which is the main
focus of this paper.

C. NEW CONTRIBUTIONS
In this paper, we investigate optimal power and performance
management for heterogeneous and arbitrary cloud servers in
a data center. In particular, we study the problems of power
constrained performance optimization and performance con-
strained power optimization in a data center with multiple
heterogeneous and arbitrary servers. Essentially, the purpose
of these problems is to find optimal server speeds, such that
(1) the average task response time is minimized, and that
the total power consumption does not exceed certain power
constraint; (2) or, the total power consumption is minimized,
and that the average task response time does not exceed cer-
tain performance constraint. Notice that from a user’s point
of view, the average task response time of all servers is an
important performance measure in a data center, and from a
service provider’s point of view, the total power consumption
of all servers is an important costmeasure in a data center. Our
approach to optimal power and performance management is
different from other approaches, e.g., controlling the arrival
rate of tasks.

It is worth to mention that in our model, each server
is treated as a G/G/1 queuing system, whose task interar-
rival times and task execution requirements can have arbi-
trary probability distributions. Furthermore, these servers are
entirely heterogeneous in terms of task interarrival time,
task execution requirement, and power consumption model.
Hence, we deal with any number of heterogeneous and arbi-
trary cloud servers in a data center.

The main contributions of the paper are summarized as
follows.

• We formulate the average task response time as well as
the total power consumption in a data center with mul-
tiple heterogeneous and arbitrary servers as functions of
server speeds.

• We define our optimization problems by finding opti-
mal server speeds, since the server speeds determine
both average task response time and total power
consumption.

• We develop algorithms to find the optimal solutions and
demonstrate numerical data.

• We also develop several closed-form heuristic solu-
tions and compare their quality with that of the optimal
solution.

Our approach provides an analytical way of studying the
power-performance tradeoff at the data center level. To the
best of the author’s knowledge, such combined analytical
study of data center power and performance optimization has
not been conducted before for heterogeneous and arbitrary
cloud servers.

The rest of the paper is organized as follows. In
Sections 2 and 3, we present our server model and power
consumption models. In Section 4, we consider the problem
of power constrained performance optimization. In Section 5,
we develop heuristic methods. In Section 6, we consider the
problem of performance constrained power optimization. In
Section 7, we demonstrate numerical data. In Section 8, we
conclude the paper.

II. THE SERVER MODEL
In this section, we present a G/G/1 queuing model for arbi-
trary cloud servers in a data center. Throughout the paper, we
use ȳ to denote the expectation of a random variable y, and
σ 2
y to denote the variance of y, and Cy = σy/ȳ to denote the

coefficient of variation of y.
We consider a group of n heterogeneous servers 1, 2, . . . , n

in a data center or a cloud computing environment, each
having its own arrival stream of tasks, power supply, and
execution speed. There is no load distribution and balancing
mechanism. A task submitted to a server must be processed
on that server, i.e., task mitigation, migration, or rejection is
not allowed. System performance optimization is achieved
by an optimal power allocation among the servers, i.e.,
an optimal speed setting of the servers. Furthermore, such
performance optimization is accomplished with a power con-
sumption constraint. We would like to emphasize that the
capability for the servers to dynamically adjust their speeds
is critical in our study.

Each server is modeled as a general G/G/1 queuing system.
Assume that there is an arbitrary stream of arrival tasks to
server i, where 1 ≤ i ≤ n. The interarrival time ti is any
random variable with mean t̄i and variance σ 2

ti , which can be
collected from observing and recording the task stream in a
real server. Notice that ti can have an arbitrary probability
distribution function (pdf). The arrival rate is λi = 1/t̄i (mea-
sured by the number of tasks per second). Let ri represent
the random execution requirement (measured by the number
of giga instructions) of a task submitted to server i. Again,
ri can have an arbitrary probability distribution with mean r̄i
and variance σ 2

ri , which can be obtained from real tasks. We
use si to denote the execution speed of server i (measured
in the number of giga instructions executed per second).
The random execution time of a task on server i is xi = ri/si
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(measured in second) with mean x̄i = r̄i/si and variance
σ 2
xi = σ

2
ri/s

2
i and coefficient of variation Cxi = σxi/x̄i.

Let λ = λ1 + λ2 + · · · + λn be the total arrival rate. The
average task response time in the data center with n servers is

T (s1, s2, . . . , sn)

=
1
λ

n∑
i=1

λi

(
r̄i
si
+ (r̄2i + σ

2
ri )
(

σ 2
ti s

2
i + σ

2
ri

2si(t̄isi − r̄i)(t̄2i s
2
i + σ

2
ri )

))
,

where we view T as a function of server speeds s1, s2, . . . , sn.
For clarity of presentation, the derivation of the above result
is given in Appendix A.

III. POWER CONSUMPTION MODELS
In this section, we describe two types of server speed and
power consumption models.

Power dissipation and circuit delay in digital CMOS cir-
cuits can be accurately modeled by simple equations, even
for complex microprocessor circuits. CMOS circuits have
dynamic, static, and short-circuit power dissipation; how-
ever, the dominant component in a well-designed circuit
is dynamic power consumption P (i.e., the switching com-
ponent of power), which is approximately P = aCV 2f
(measured in Watt), where a is an activity factor, C is the
loading capacitance, V is the supply voltage, and f is the
clock frequency [9]. In the ideal case, the supply voltage and
the clock frequency are related in such a way that V ∝ f φ

for some constant φ > 0 [28]. The processor execution
speed s is usually linearly proportional to the clock frequency,
namely, s ∝ f . For ease of discussion, we will assume that
V = bf φ and s = cf , where b and c are some constants.
Hence, we know that power consumption is P = aCV 2f =
ab2Cf 2φ+1 = (ab2C/c2φ+1)s2φ+1 = ξsα , where ξ =
ab2C/c2φ+1 and α = 2φ+1. For instance, by setting α = 2.0
and ξ = 9.4192, the value of P calculated by the equation
P = ξsα is reasonably close to (with relative error less than
6.5%) that in [13] for the Intel Pentium M processor (see
[13, Fig. 1.1 and Table 1.6]).

Since the servers considered in this paper are heteroge-
neous in the sense that each has its own ξ and α values,
we assume that a server i with speed si consumes power
ξis

αi
i . Notice that a server still consumes some amount of

power even when it is idle. We assume that an idle server i
consumes certain base power P∗i , which includes static power
dissipation, short-circuit power dissipation, and other leakage
and wasted power [1]. We will consider two types of server
speed and power consumption models.

• In the idle-speed model, a server runs at zero speed when
there is no task to perform. Since the power for speed si
is ξis

αi
i , the power supplied to server i is Pi = ρiξis

αi
i =

λir̄iξis
αi−1
i . By including P∗i in Pi, we get Pi = ρiξis

αi
i +

P∗i = λir̄iξis
αi−1
i + P∗i .

• In the constant-speed model, server i still runs at the
speed si and consumes power ξis

αi
i even if there is no task

to perform (i.e., the server is not fully utilized). Hence,

the power allocated to server i is Pi = ξis
αi
i + P

∗
i , which

is independent of ρi.
The total power consumption (viewed as a function of server
speeds s1, s2, . . . , sn) is

P(s1, s2, . . . , sn) =
n∑
i=1

Pi =
n∑
i=1

(λir̄iξis
αi−1
i + P∗i ),

for the idle-speed model, and

P(s1, s2, . . . , sn) =
n∑
i=1

Pi =
n∑
i=1

(ξis
αi
i + P

∗
i ),

for the constant-speed model.

IV. POWER CONSTRAINED PERFORMANCE
OPTIMIZATION
In this section, we consider power constrained performance
optimization.

A. PROBLEM DEFINITION
Our optimization problem is defined as follows. Given the
means t̄1, t̄2, . . . , t̄n and the variances σ 2

t1 , σ
2
t2 , . . . , σ

2
tn of task

interarrival times, the means r̄1, r̄2, . . . , r̄n and the variances
σ 2
r1 , σ

2
r2 , . . . , σ

2
rn of task execution requirements, parameters

of the power consumption models, i.e., ξ1, ξ2, . . . , ξn, and
α1, α2, . . . , αn, base power consumptions P∗1,P

∗

2, . . . ,P
∗
n,

and total available power P̃, our optimization problem is to
find optimal server speeds s1, s2, . . . , sn, such that (1) the
average task response time T (s1, s2, . . . , sn) is minimized,
and (2) the total power consumption P(s1, s2, . . . , sn) does
not exceed P̃.
It should be notice that the objective of the above opti-

mization problem is to minimize the average task response
time of all the servers in a data center. These servers are
entirely heterogeneous in terms of mean and variance of
task interarrival time, task arrival rate, mean and variance
of task execution requirement, power consumption model,
base power consumption, server speed, server utilization, task
execution time, average task waiting time, and average task
response time.
Notice that since si > λir̄i, we need

P̃ >
n∑
i=1

(ξi(λir̄i)αi + P∗i ),

for both idle-speed model and constant-speed model.
To meet the requirement of minimum server speeds, we

must have

P̃ >
n∑
i=1

(
ξi

(
r̄i
t̄i

)αi
+ P∗i

)
,

for both idle-speed model and constant-speed model.

B. THE ALGORITHM
We can minimize T (s1, s2, . . . , sn) subject to the constraint
P(s1, s2, . . . , sn) = P̃ by using the following Lagrange mul-
tiplier system,

∇T (s1, s2, . . . , sn) = φ∇P(s1, s2, . . . , sn),
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where φ is a Lagrange multiplier (see [25, Sec. 12.8]). Notice
that

∂T (s1, s2, . . . , sn)
∂si

=
λi

λ
·
∂Ti
∂si

=
λi

λ
·
∂

∂si

(
r̄i
si
+

(
r̄2i + σ

2
ri

2

)
×

(
σ 2
ti s

2
i + σ

2
ri

si(t̄isi − r̄i)(t̄2i s
2
i + σ

2
ri )

))
=
λi

λ
·
∂

∂si

(
r̄i
si
+

(
r̄2i + σ

2
ri

2

)
×

(
σ 2
ti s

2
i + σ

2
ri

t̄3i s
4
i − r̄i t̄

2
i s

3
i + t̄iσ

2
ris

2
i − r̄iσ

2
risi

))
=
λi

λ

(
−
r̄i
s2i
+

(
r̄2i + σ

2
ri

2

)
×

(
2σ 2

ti si

t̄3i s
4
i − r̄i t̄

2
i s

3
i + t̄iσ

2
ris

2
i − r̄iσ

2
risi
−

(σ 2
ti s

2
i + σ

2
ri )(4t̄

3
i s

3
i − 3r̄i t̄2i s

2
i + 2t̄iσ 2

risi − r̄iσ
2
ri )

(t̄3i s
4
i − r̄i t̄

2
i s

3
i + t̄iσ

2
ris

2
i − r̄iσ

2
risi)

2

))
.

Also, we have

∂P(s1, s2, . . . , sn)
∂si

= (αi − 1)λir̄iξis
αi−2
i ,

for the idle-speed model, and

∂P(s1, s2, . . . , sn)
∂si

= αiξis
αi−1
i ,

for the constant-speed model. Hence, we get

1

(αi − 1)λr̄iξis
αi−2
i

(
−
r̄i
s2i
+

(
r̄2i + σ

2
ri

2

)
×

(
2σ 2

ti si

t̄3i s
4
i − r̄i t̄

2
i s

3
i + t̄iσ

2
ris

2
i − r̄iσ

2
risi

−
(σ 2
ti s

2
i + σ

2
ri )(4t̄

3
i s

3
i − 3r̄i t̄2i s

2
i + 2t̄iσ 2

risi − r̄iσ
2
ri )

(t̄3i s
4
i − r̄i t̄

2
i s

3
i + t̄iσ

2
ris

2
i − r̄iσ

2
risi)

2

))
= φ,

for the idle-speed model, and

λi

λαiξis
αi−1
i

×

(
−
r̄i
s2i
+

(
r̄2i + σ

2
ri

2

)(
2σ 2

ti si

t̄3i s
4
i − r̄i t̄

2
i s

3
i + t̄iσ

2
ris

2
i − r̄iσ

2
risi

−
(σ 2
ti s

2
i + σ

2
ri )(4t̄

3
i s

3
i − 3r̄i t̄2i s

2
i + 2t̄iσ 2

risi − r̄iσ
2
ri )

(t̄3i s
4
i − r̄i t̄

2
i s

3
i + t̄iσ

2
ris

2
i − r̄iσ

2
risi)

2

))
= φ,

for the constant-speed model.

It is unlikely that the above equations accommodate a
closed-form solution. We use the following strategy to find
a numerical solution (φ, s1, s2, . . . , sn).

A complete description of the algorithm to optimize T
is given in Algorithm 1. A key observation is that the left-
hand sides of the last two equations are increasing functions
of si due to the convexity of Ti as a function of si. This
leads to the following method to find a numerical solution
(φ, s1, s2, . . . , sn). First, given a φ (line 3), which is negative
(line 1), since ∂Ti/∂si < 0, we can find si for all 1 ≤ i ≤ n
(lines 4–6). Second, the obtained si’s are used to verify the
constraint P(s1, s2, . . . , sn) = P̃ (lines 7–12). Third, φ can
be obtained by using the classical bisection method (lines
1–13), where we notice that P is an increasing function of
s1, s2, . . . , sn.

Algorithm 1 Optimizing T

Input: Parameters t̄i, σ 2
ti , r̄i, σ

2
ri , ξi, αi,P

∗
i , for all 1 ≤ i ≤ n,

and P̃.
Output: Optimal s1, s2, . . . , sn, such that T (s1, s2, . . . , sn)
is minimized and P(s1, s2, . . . , sn) ≤ P̃.

Initialize the search interval of φ to be [−100, 0]; (1)
while (the length of the search interval is ≥ ε) do (2)
φ← the middle point of the search interval; (3)
for (i← 1; i ≤ n; i++) do (4)

Calculate si using Algorithm 2; (5)
end do; (6)
Calculate P(s1, s2, . . . , sn); (7)
if (P(s1, s2, . . . , sn) < P̃) then (8)

Set the search interval to the right half; (9)
else (10)

Set the search interval to the left half; (11)
end if (12)

end do (13)

A complete description of the method to find si is given in
Algorithm 2. The value of si can also be found by using the
bisection method (lines 1–11) in such a way that

(∂T (s1, s2, . . . , sn)/∂si)/(∂P(s1, s2, . . . , sn)/∂si) = φ,

where we notice that si is an increasing function of φ.
It is well known that the bisection method is extremely fast

and efficient. Let I denote the maximum length of all initial
search intervals in this paper. Then, the time complexity of
Algorithm 2 isO(log(I/ε)). (We set ε = 10−10 in this paper.)
Due to the use of Algorithm 2 as a sub-algorithm, the time
complexity of Algorithm 1 is O(n(log(I/ε))2).

V. HEURISTIC METHODS
In this section, we develop several heuristic methods with
closed-form solutions, so that the optimal server speed setting
can be compared with the server speed settings obtained by
using these heuristic methods.
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Algorithm 2 Finding si
Input: Parameters t̄i, σ 2

ti , r̄i, σ
2
ri , ξi, αi, and λ.

Output: si such that (∂T/∂si)/(∂P/∂si) = φ.

Initialize the search interval of si to be [0, 100]; (1)
while (the length of the search interval is ≥ ε) do (2)

si← the middle point of the search interval; (3)
Calculate ∂T (s1, s2, . . . , sn)/∂si; (4)
Calculate ∂P(s1, s2, . . . , sn)/∂si; (5)
if ((∂T/∂si)/(∂P/∂si) < φ) then (6)

Set the search interval to the right half; (7)
else (8)

Set the search interval to the left half; (9)
end if (10)

end do (11)

There are a number of heuristic methods to be considered.
• The Workload Proportional Method — In the workload
proportional (WP) method, the dynamic power allo-
cated to a server is proportional to its workload wi =
λir̄i. In the idle-speed model, we have

λir̄iξis
αi−1
i = wiξis

αi−1
i

=

(
wi

w1 + w2 + · · · + wn

)(
P̃−

n∑
i=1

P∗i

)
,

which gives

si =
(
1
ξi

(
1

w1+w2+· · ·+wn

)(
P̃−

n∑
i=1

P∗i

))1/(αi−1)

,

for all 1 ≤ i ≤ n. In the constant-speed model, we have

ξis
αi
i =

(
wi

w1 + w2 + · · · + wn

)(
P̃−

n∑
i=1

P∗i

)
,

which gives

si =
(
1
ξi

(
wi

w1 + w2 + · · · + wn

)(
P̃−

n∑
i=1

P∗i

))1/αi

,

for all 1 ≤ i ≤ n.
• The Equal Speed Method — In the equal speed (ES)
method, all servers have the same speed s. For the idle-
speed model, we have

P(s1, s2, . . . , sn) =
n∑
i=1

Pi =
n∑
i=1

(λir̄iξis
αi−1
i + P∗i )

=

n∑
i=1

(λir̄iξisαi−1 + P∗i ) = P̃.

Therefore, s satisfies the following equation,

n∑
i=1

λir̄iξisαi−1 = P̃−
n∑
i=1

P∗i .

If α1 = α2 = · · · = αn = α, we get

s =
(( n∑

i=1

λir̄iξi

)−1(
P̃−

n∑
i=1

P∗i

))1/(α−1)

.

For the constant-speed model, we have

P(s1, s2, . . . , sn) =
n∑
i=1

Pi =
n∑
i=1

(ξis
αi
i + P

∗
i )

=

n∑
i=1

(ξisαi + P∗i ) = P̃.

Therefore, s satisfies the following equation,
n∑
i=1

ξisαi = P̃−
n∑
i=1

P∗i .

If α1 = α2 = · · · = αn = α, we get

s =
(( n∑

i=1

ξi

)−1(
P̃−

n∑
i=1

P∗i

))1/α

.

• The Equal Utilization Method— In the equal utilization
(EU)method, all servers have the same utilization ρ, i.e.,
ρi = wi/si = ρ, and si = wi/ρ, for all 1 ≤ i ≤ n. For
the idle-speed model, we have

P(s1, s2, . . . , sn) =
n∑
i=1

Pi

=

n∑
i=1

(wiξis
αi−1
i + P∗i )

=

n∑
i=1

(
ξi

wαii
ραi−1

+ P∗i

)
= P̃.

Therefore, ρ satisfies the following equation,
n∑
i=1

ξi
wαii
ραi−1

= P̃−
n∑
i=1

P∗i .

If α1 = α2 = · · · = αn = α, we get

ρ =

(( n∑
i=1

ξiwαi

)(
P̃−

n∑
i=1

P∗i

)−1)1/(α−1)

.

For the constant-speed model, we have

P(s1, s2, . . . , sn) =
n∑
i=1

Pi

=

n∑
i=1

(ξis
αi
i + P

∗
i )

=

n∑
i=1

(
ξi

(
wi
ρ

)αi
+ P∗i

)
= P̃.

Therefore, ρ satisfies the following equation,
n∑
i=1

ξi
wαii
ραi
= P̃−

n∑
i=1

P∗i .
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Algorithm 3 Optimizing P

Input: Parameters t̄i, σ 2
ti , r̄i, σ

2
ri , ξi, αi,P

∗
i , for all 1 ≤ i ≤ n,

and T̃ .
Output: Optimal s1, s2, . . . , sn, such that P(s1, s2, . . . , sn)
is minimized and T (s1, s2, . . . , sn) ≤ T̃ .

Initialize the search interval of P; (1)
while (the length of the search interval is ≥ ε) do (2)

P← the middle point of the search interval; (3)
Call Alg. 1 to find the optimal T with P̃ = P; (4)
if (T > T̃ ) then (5)

Set the search interval to the right half; (6)
else (7)

Set the search interval to the left half; (8)
end if (9)

end do (10)

If α1 = α2 = · · · = αn = α, we get

ρ =

(( n∑
i=1

ξiwαi

)(
P̃−

n∑
i=1

P∗i

)−1)1/α

.

• The Equal Time Method — In the equal time (ET)
method, all servers have the same average task response
time T , i.e., T1 = T2 = · · · = Tn = T . Therefore, si
satisfies the following equation,

r̄i
si
+ (r̄2i + σ

2
ri )
(

σ 2
ti s

2
i + σ

2
ri

2si(t̄isi − r̄i)(t̄2i s
2
i + σ

2
ri )

)
= T .

We observe that the left-hand side of the above equa-
tion is a decreasing functions of si. Given a T , we can
find si for all 1 ≤ i ≤ n by using the bisection
method. The obtained si’s are used to verify the con-
straint P(s1, s2, . . . , sn) = P̃. The value of T can also
be found by using the bisection method in such a way
that P(s1, s2, . . . , sn) = P̃.

VI. PERFORMANCE CONSTRAINED POWER
OPTIMIZATION
In this section, we consider performance constrained power
optimization, which is actually a dual form of power con-
strained performance optimization.

A. PROBLEM DEFINITION
Given the means t̄1, t̄2, . . . , t̄n and the variances σ 2

t1 , σ
2
t2 , . . . ,

σ 2
tn of task interarrival times, the means r̄1, r̄2, . . . , r̄n and

the variances σ 2
r1 , σ

2
r2 , . . . , σ

2
rn of task execution require-

ments, parameters of the power consumption models, i.e.,
ξ1, ξ2, . . . , ξn, and α1, α2, . . . , αn, base power consumptions
P∗1,P

∗

2, . . . ,P
∗
n, and a time constraint T̃ , our dual optimiza-

tion problem is to find optimal server speeds s1, s2, . . . , sn,
such that (1) the total power consumption P(s1, s2, . . . , sn)
is minimized, and (2) the average task response time
T (s1, s2, . . . , sn) does not exceed T̃ .

FIGURE 1. Optimal server speeds (idle-speed model).

FIGURE 2. Optimal server speeds (constant-speed model).

B. THE ALGORITHM
It is clear that the above optimization problem can be solved
by bisection search of P̃ that yields T (s1, s2, . . . , sn) = T̃ and
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FIGURE 3. Server utilization (idle-speed model).

FIGURE 4. Server utilization (constant-speed model).

the solution to the dual optimization problem, based on the
observation that T is a decreasing function of P̃. A complete
description of the method is given in Algorithm 3. The initial

FIGURE 5. Average task response times (idle-speed model).

FIGURE 6. Average task response times (constant-speed model).

search interval of P is[
n∑
i=1

(ξi(λir̄i)αi + P∗i ), 1000

]
.
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TABLE 1. Performance comparison (power constrained, idle-speed model).

Due to the use of Algorithm 1 as a sub-algorithm, the time
complexity of Algorithm 3 is O(n(log(I/ε))3).

C. HEURISTIC METHODS
For the EU, ET, and the optimal methods, P̃ can be arbitrarily
close to its lower bound, i.e.,

n∑
i=1

(ξi(λir̄i)αi + P∗i ).

For theWPmethod, we notice that in the idle-speed model,

si =
(
1
ξi

(
1

w1 + w2 + · · · + wn

)(
P̃−

n∑
i=1

P∗i

))1/(αi−1)

> r̄i/t̄i,

which gives

P̃ > ξi(w1 + w2 + · · · + wn)
(
r̄i
t̄i

)αi−1
+

n∑
i=1

P∗i ,

for all 1 ≤ i ≤ n. In the constant-speed model, we have

si =
(
1
ξi

(
wi

w1 + w2 + · · · + wn

)(
P̃−

n∑
i=1

P∗i

))1/αi

> r̄i/t̄i,

which gives

P̃ > ξi

(
w1 + w2 + · · · + wn

wi

)(
r̄i
t̄i

)αi
+

n∑
i=1

P∗i ,

for all 1 ≤ i ≤ n.

For the ES method, we notice that in the idle-speed model,
if α1 = α2 = · · · = αn = α, we have

s =
(( n∑

i=1

λir̄iξi

)−1(
P̃−

n∑
i=1

P∗i

))1/(α−1)

> r̄i/t̄i,

which gives

P̃ >
( n∑
i−1

λir̄iξi

)(
r̄i
t̄i

)α−1
+

n∑
i=1

P∗i ,

for all 1 ≤ i ≤ n. In the constant-speed model, if α1 = α2 =
· · · = αn = α, we have

s =
(( n∑

i=1

ξi

)−1(
P̃−

n∑
i=1

P∗i

))1/α

> r̄i/t̄i,

which gives

P̃ >
( n∑
i−1

ξi

)(
r̄i
t̄i

)α
+

n∑
i=1

P∗i ,

for all 1 ≤ i ≤ n.

VII. NUMERICAL DATA
In this section, we demonstrate numerical data for the
performance of our optimization algorithms and heuristic
algorithms using synthetic parameters. Our computing envi-
ronment is an Intel R© Xeon R© CPU E5620 2.40GHz with the
Linux OS version RHEL 6.8. All the data in this section
are generated by a computation program written in C++
supported by the g++ 4.4.7 compiler.
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TABLE 2. Performance comparison (power constrained, constant-speed model).

TABLE 3. Performance comparison (performance constrained, idle-speed model).

Let us consider a group of n = 7 heterogeneous servers
with the following parameters: t̄i = 1.05−0.05i, σti = 0.21−
0.01i, r̄i = 0.9 + 0.1i, σri = 0.45 + 0.05i, ξi = 0.9 + 0.1i,
αi = 3, P∗i = 2, for all 1 ≤ i ≤ n. The above parameters

imply that

n∑
i=1

(
ξi

(
r̄i
t̄i

)αi
+ P∗i

)
= 62.8126110.
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TABLE 4. Performance comparison (performance constrained, constant-speed model).

TABLE 5. Accuracy of the G/G/1 approximation.

(Notice that these synthetic parameters are for illustrative
purpose only. As mentioned earlier, our optimization algo-
rithms are applicable to any data centers with any number of
arbitrary servers.)

For power constrained performance optimization, we give
the optimal speed setting, including the optimal server speeds
s1, s2, . . . , sn, the server utilization ρ1, ρ2, . . . , ρn, and the
average task response times T1,T2, . . . ,Tn, in Figures 1–6
for the two power consumption models, where P̃ =

63, 66, 69, . . . , 135. It is clear that the servers 1, 2, . . . , n

have increased arrival rate (λ1 < λ2 < · · · < λn), increased
execution requirement (r̄1 < r̄2 < · · · < r̄n), and increased
power consumption (ξ1 < ξ2 < · · · < ξn). Thus, the servers
1, 2, . . . , n have increased server speed (s1 < s2 < · · · < sn),
increased server utilization (ρ1 < ρ2 < · · · < ρn), and
increased average response time (T1 < T2 < · · · < Tn). (The
only exception is that for the idle-speed model, there might
be si1 > si2 for i1 < i2, when P̃ is large.) As P̃ increases,
all the si’s increase, and the servers 1, 2, . . . , n have reduced
percentage of increment; all the ρi’s decrease, and the servers
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1, 2, . . . , n have reduced percentage of decrement; all the Ti’s
decrease, and the servers 1, 2, . . . , n have reduced percentage
of decrement.

In Tables 1–2, we compare the performance of the four
heuristic methods with that of the optimal solution. It is
noticed that if P̃ is not sufficient, it is impossible to imple-
ment the WP and ES methods (indicated by ‘‘—’’ in the
tables). If P̃ is sufficiently large, all the four heuristic methods
have performance comparable to that of the optimal solu-
tion. ET has the best performance among the four heuris-
tic methods, since the optimal speed setting tends to make
all servers to have roughly the same average task response
time.

For performance constrained power optimization, we
compare the performance of the four heuristic methods
with that of the optimal solution in Tables 3–4, where
T̃ = 0.6, 0.8, 1.0, . . . , 5.4. It is noticed that it is always possi-
ble to implement the four heuristic methods. As T̃ increases,
all methods have reduced power consumption, and EU and
ET have more significant reduction than WP and ES, since
the optimal speed setting tends to make all servers to have
roughly the same utilization and roughly the same average
task response time. Again, ET has the best performance
among the four heuristic methods.

VIII. CONCLUDING REMARKS
We have investigated optimal power and performance man-
agement in a data center with multiple heterogeneous and
arbitrary cloud servers. The tradeoff between power and
performance is tackled by studying the problems of power
constrained performance optimization and performance con-
strained power optimization. These problems have signif-
icant practical importance and implication in data centers
supporting cloud computing. Our problems are formulated
as multi-variable optimizations by modeling each server as
a G/G/1 queuing system, the most general class of queuing
models. We are able to find optimal server speed settings
numerically.We also find that some simple heuristic solutions
such as EU and ET generate near-optimal solutions.

APPENDIX A
DERIVATION OF THE AVERAGE TASK RESPONSE TIME
The average waiting time of tasks in server i is approximately
([14, p. 34, and Appendix B])

Wi =
1+ C2

xi

(1/ρi)2 + C2
xi

·
σ 2
ti + σ

2
xi

2t̄i(1− ρi)
,

where

ρi = λix̄i =
x̄i
t̄i
=

r̄i
t̄isi

is the utilization of server i. Since ρi < 1, we must have si >
r̄i/t̄i. Notice that ρi = λix̄i = λir̄i/si = wi/si, where wi =
λir̄i is the expected amount of work received by server i in a

unit of time. Since ρi < 1, we must have si > wi. Notice that

1+ C2
xi

(1/ρi)2 + C2
xi

·
σ 2
ti + σ

2
xi

2t̄i(1− ρi)

=
1+ σ 2

xi/x̄
2
i

(t̄i/x̄i)2 + σ 2
xi/x̄

2
i

·
σ 2
ti + σ

2
xi

2t̄i(1− ρi)

=
x̄2i + σ

2
xi

t̄2i + σ
2
xi

·
σ 2
ti + σ

2
xi

2t̄i(1− ρi)
.

The above equation for Wi includes some classic results as
special cases. For instance, for an M/G/1 queue, we have
σ 2
ti = t̄2i and

Wi =
λix2i

2(1− ρi)
,

where x2i = x̄2i + σ 2
xi . This is exactly the well-known

Pollaczek-Khinchin mean value formula ([14, p. 16]).
The average response time of tasks in server i is

Ti = x̄i +Wi

= x̄i +
1+ C2

xi

(1/ρi)2 + C2
xi

·
σ 2
ti + σ

2
xi

2t̄i(1− ρi)

= x̄i +
x̄2i + σ

2
xi

t̄2i + σ
2
xi

·
σ 2
ti + σ

2
xi

2(t̄i − x̄i)

=
r̄i
si
+
r̄2i /s

2
i + σ

2
ri/s

2
i

t̄2i + σ
2
ri/s

2
i

·
σ 2
ti + σ

2
ri/s

2
i

2(t̄i − r̄i/si)

=
r̄i
si
+

r̄2i + σ
2
ri

t̄2i s
2
i + σ

2
ri

·
σ 2
ti s

2
i + σ

2
ri

2si(t̄isi − r̄i)

=
r̄i
si
+ (r̄2i + σ

2
ri )
(

σ 2
ti s

2
i + σ

2
ri

2si(t̄isi − r̄i)(t̄2i s
2
i + σ

2
ri )

)
,

which is viewed as a function of si, where si > r̄i/t̄i.
Let λ = λ1 + λ2 + · · · + λn be the total arrival rate. The

average task response time in the data center with n servers is

T (s1, s2, . . . , sn)

=

n∑
i=1

(
λi

λ

)
Ti

=
1
λ

n∑
i=1

λi

(
r̄i
si
+ (r̄2i + σ

2
ri )
(

σ 2
ti s

2
i + σ

2
ri

2si(t̄isi − r̄i)(t̄2i s
2
i + σ

2
ri )

))
,

where we view T as a function of server speeds s1, s2, . . . , sn.

APPENDIX B
ACCURACY OF THE G/G/1 APPROXIMATION
Our study has employed approximations of the average
waiting time and the average response time. Some experi-
ments have been conducted to examine the accuracy of the
approximations.
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Let us consider a server i. Assume that the interarrival time
ti has a hyper-Erlang distribution with probability density
function (pdf)

f (t) =
ka∑
j=1

wa,j

(
λje−λjt (λjt)γa,j−1

(γa,j − 1)!

)
,

wherewa,1+wa,2+· · ·+wa,ka = 1. (Notice that hyper-Erlang
distributions include hyperexponential distributions, expo-
nential distributions, chi-square distributions, and Erlang dis-
tributions as special cases.) Similarly, assume that the execu-
tion time xi also has a hyper-Erlang distribution with pdf

f (x) =
kb∑
j=1

wb,j

(
µje−µjx(µjx)γb,j−1

(γb,j − 1)!

)
,

where wb,1 + wb,2 + · · · + wb,kb = 1. Then, we have

t̄i =
ka∑
j=1

wa,j ·
γa,j

λj
,

and

x̄i =
kb∑
j=1

wb,j ·
γb,j

µj
.

Let r = t̄i/x̄i. For arbitrary server utilization ρ, we adjust λj
as λj ← ρrλj, for all 1 ≤ j ≤ ka. This results in the actual
server utilization to be ρ.
For interarrival time, we set ka = 3, wa,1 = 0.3, wa,2 =

0.3,wa,3 = 0.4, γa,1 = 2, γa,2 = 3, γa,3 = 4, λ1 = 1, λ2 = 2,
λ3 = 3. For execution time, we set kb = 2, wb,1 = 0.4,
wb,2 = 0.6, γb,1 = 3, γb,2 = 4, µ1 = 2, µ2 = 3. We
generate 1,000,000 random tasks, simulate a G/G/1 server,
record the response time of each task, and report the average
response time. In Table 5, we show our experimental results.
For ρ = 0.10, 0.15, 0.20, . . . , 0.95, we show the simulation
results of the average response time and the 99% confidence
interval (C.I.). We also show the theoretical approximation
and its relative error, i.e.,

(approximation− simulation)/simulation× 100%.

It is observed that the 99% C.I. is very small (less than
0.24%). In other words, the simulation results are very reli-
able and robust, and very close to the real values of the
average response time. Furthermore, the theoretical approx-
imation is very accurate with relative error no more than
7%, i.e., the theoretical approximation can be used in real
applications with high accuracy.
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