
�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 331 2011-7-29

�

�

�

�

�

�

15
Algorithms and Analysis

of Energy-Efficient
Scheduling of Parallel

Tasks

Keqin Li
State University of New York

15.1 Introduction . 331
Motivation • Related Research • Our Contributions

15.2 Background Information . 334
Power Consumption Model • Definitions • Lower Bounds

15.3 Pre-Power-Determination Algorithms . 337
Overview • Analysis of Equal-Time Algorithms • Analysis of
Equal-Energy Algorithms • Analysis of Equal-Speed Algorithms •
Performance Data

15.4 Post-Power-Determination Algorithms . 351
Overview • System Partitioning • Task Scheduling • Power Supplying •
Performance Data

15.5 Summary . 358
Acknowledgment . 358
References . 358

15.1 Introduction

15.1.1 Motivation

For six decades, the concept of the performance of a computer has been equivalent to the computing
speed measured by floating-point operations per second (FLOPS). The peak speed of high-performance
supercomputers has increased at an exponential speed. At the same time, the peak power requirements also
increase at the same rate [12]. To achieve higher computing performance per processor, microprocessor
manufacturers have doubled the power density at an exponential speed over decades, which will soon
reach that of a nuclear reactor [40]. The emphasis on speed has led to the emergence of supercomputers
that consume tremendous amounts of electrical power and produce so much heat that excessive cooling
facilities must be constructed to ensure proper operation. Furthermore, the adoption of speed as the
ultimate performance metric has caused other metrics such as reliability, availability, and usability to be
largely ignored. Consequently, there has been an extraordinary increase in the total cost of ownership of
a supercomputer.

Such increased energy consumption causes severe economic, ecological, and technical problems.
A large-scale multiprocessor computing system consumes millions of dollars of electricity and natural

331

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 332 2011-7-29

�

�

�

�

�

�

332 Handbook of Energy-Aware and Green Computing

resources every year, equivalent to the amount of energy used by tens of thousands of U.S. households [13].
A large data center such as Google can consume as much electricity as a city. Furthermore, the cooling
bill for heat dissipation can be as high as 70% of the cost mentioned previously [11]. A recent report
reveals that the global information technology industry generates as much greenhouse gas as the world’s
airlines, about 2% of global carbon dioxide (CO2) emissions. Despite sophisticated cooling facilities
constructed to ensure proper operation, the reliability and availability (mean time between failures and
interrupts) of large-scale multiprocessor computing systems is measured in hours, and the main source
of outage is hardware (CPU, memory, storage, and third-party hardware) failure caused by excessive
heat. It is conceivable that a supercomputing system with 105 processors would spend most of its time
checkpointing and restarting [16]. Furthermore, the hourly cost of downtime can be as high as millions
of US dollars. The cost of ownership can easily exceed the initial acquisition cost.

In recent years, there has been rapidly growing interest and importance in developing high-performance
and energy-efficient computing systems (see [1,5,39,40] for comprehensive surveys). Low power consump-
tion and high system reliability, availability, and usability are main concerns of modern high-performance
computing system development. In addition to the traditional performance measure using FLOPS, the
Green500 list uses FLOPS per watt to rank the most energy-efficient supercomputers in the world, so
that the awareness of other performance metrics such as performance per watt, energy efficiency, system
reliability, and total cost of ownership can be raised [12]. The philosophy is that high-performance
supercomputers should only simulate and predict climate and weather, but should not change or
create them.

It can be found from the Green500 list that all the current supercomputing systems which can achieve
at least 400 MFLOPS/W are clusters of low-power processors, aiming to achieve high performance/power
and performance/space. For instance, the Dawning Nebulae, currently the world’s second fastest computer
which achieves peak performance of 2.984 PFLOPS, is also the fourth most energy-efficient supercomputer
in the world with an operational rate of 492.64 MFLOPS/W. Intel’s Tera-scale research project has
developed the world’s first programmable processor that delivers supercomputer-like performance from
a single 80-core chip which uses less electricity than most of today’s home appliances and achieves over
16.29 GFLOPS/W.

One effective and widely adopted approach to reducing energy consumption in computing systems is
the method of using a mechanism called dynamic voltage scaling (equivalently, dynamic frequency scaling,
dynamic speed scaling, dynamic power scaling). Many modern components allow voltage regulation to
be controlled through software, for example, the BIOS or applications such as PowerStrip. It is usually
possible to control the voltages supplied to the CPUs, main memories, local buses, and expansion
cards. Processor power consumption is proportional to frequency and the square of supply voltage. A
power-aware algorithm can change supply voltage and frequency at appropriate times to optimize a
combined consideration of performance and energy consumption. There are many existing technologies
and commercial processors that support dynamic voltage (frequency, speed, power) scaling. SpeedStep is
a series of dynamic frequency scaling technologies built into some Intel microprocessors that allow the
clock speed of a processor to be dynamically changed by software. LongHaul is a technology developed by
VIA technologies which supports dynamic frequency scaling and dynamic voltage scaling. By executing
specialized operating system instructions, a processor driver can exercise fine control on the bus-to-core
frequency ratio and core voltage according to how much load is put on the processor. LongRun and
LongRun2 are power management technologies introduced by Transmeta. LongRun2 has been licensed
to Fujitsu, NEC, Sony, Toshiba, and NVIDIA.

15.1.2 Related Research

Dynamic power management at the operating system level refers to supply voltage and clock frequency
adjustment schemes implemented while tasks are running. These energy conservation techniques explore
the opportunities for tuning the energy delay trade-off [38]. Power-aware task scheduling on processors

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 333 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 333

with variable voltages and speeds has been extensively studied since mid 1990s. In a pioneering paper [41],
the authors first proposed the approach to energy saving by using fine grain control of CPU speed by an
operating system scheduler. The main idea is to monitor CPU idle time and to reduce energy consumption
by reducing clock speed and idle time to a minimum. In a subsequent work [43], the authors analyzed
off-line and online algorithms for scheduling tasks with arrival times and deadlines on a uniprocessor
computer with minimum energy consumption. These researches have been extended in [3,7,21,28–30,44]
and inspired substantial further investigation, much of which focus on real-time applications, namely,
adjusting the supply voltage and clock frequency to minimize CPU energy consumption while still
meeting the deadlines for task execution. In [2,17,18,20,23,31,32,34,36,37,42,46–49] and many other
related works, the authors addressed the problem of scheduling independent or precedence-constrained
tasks on uniprocessor or multiprocessor computers where the actual execution time of a task may
be less than the estimated worst-case execution time. The main issue is energy reduction by slack
time reclamation.

There are two considerations in dealing with the energy delay trade-off. On one hand, in high-
performance computing systems, power-aware design techniques and algorithms attempt to maximize
performance under certain energy consumption constraints. On the other hand, low-power and energy-
efficient design techniques and algorithms aim to minimize energy consumption while still meeting
certain performance goals. In [4], the author studied the problems of minimizing the expected execution
time given a hard energy budget and minimizing the expected energy expenditure given a hard execution
deadline for a single task with randomized execution requirement. In [6], the author considered scheduling
jobs with equal requirements on multi-processors. In [9], the authors studied the relationship among
parallelization, performance, and energy consumption, and the problem of minimizing energy-delay
product. In [19,22], the authors attempted joint minimization of energy consumption and task execution
time. In [35], the authors investigated the problem of system value maximization subject to both time
and energy constraints.

In [25,27], we addressed energy- and time-constrained power allocation and task scheduling on
multiprocessor computers with dynamically variable voltage and frequency and speed and power as
combinatorial optimization problems. In particular, we defined the problem of minimizing schedule
length with energy consumption constraint and the problem of minimizing energy consumption with
schedule length constraint on multiprocessor computers [25]. The first problem has applications in
general multiprocessor and multi-core processor computing systems where energy consumption is an
important concern and in mobile computers where energy conservation is a main concern. The second
problem has applications in real-time multiprocessing systems and environments such as parallel signal
processing, automated target recognition, and real-time MPEG encoding, where timing constraint is a
major requirement. Our scheduling problems are defined such that the energy-delay product is optimized
by fixing one factor and minimizing the other. The investigation in [25,27] is for sequential tasks. A
sequential task is executed on one processor. The motivation of this chapter is to study energy-efficient
scheduling of parallel tasks.

15.1.3 Our Contributions

In this chapter, we investigate energy-efficient scheduling of parallel tasks on multiprocessor computers
with dynamically variable voltage and speed. As in traditional scheduling theory, our problems are defined
as combinatorial optimization problems. In particular, we define the problem of minimizing schedule
length with energy consumption constraint and the problem of minimizing energy consumption with
schedule length constraint for parallel tasks on multiprocessor computers. It is noticed that power-aware
scheduling of parallel tasks has not been well studied before. Most existing studies are on scheduling
sequential tasks which require one processor to execute, while a parallel task requires multiple processors
to execute. It is clear that our scheduling problems introduce new challenges to energy-aware computing.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 334 2011-7-29

�

�

�

�

�

�

334 Handbook of Energy-Aware and Green Computing

Our investigation in this chapter, together with our recent study in [26], make some initial attempt to
energy-efficient scheduling of parallel tasks on multiprocessor computers with dynamic voltage and speed.

It is found that our scheduling problems contain three nontrivial sub-problems, namely, system
partitioning, task scheduling, and power supplying. These subproblems are described as follows:

• System partitioning: Since each parallel task requests for multiple processors, a multiprocessor
computer should be partitioned into clusters of processors to be assigned to the tasks.

• Task scheduling: Parallel tasks are scheduled together with system partitioning, and it is NP-hard
even scheduling sequential tasks without system partitioning.

• Power supplying: Tasks should be supplied with appropriate powers and execution speeds such that
the schedule length is minimized by consuming given amount of energy or the energy consumed
is minimized without missing a given deadline.

Each subproblem should be solved efficiently, so that heuristic algorithms with overall good performance
can be developed.

We consider two types of algorithms to solve our energy-aware parallel task scheduling problems,
depending on the order of solving the subproblems.

• Pre-Power-Determination algorithms: In this type of algorithms, power allocation and execution
speed determination are performed before tasks are scheduled. When tasks are scheduled, their
execution times are available.

• Post-Power-Determination algorithms: In this type of algorithms, power allocation and execution
speed determination are performed after tasks are scheduled. When a system is partitioned and
tasks are scheduled, their execution times are not available, and tasks are scheduled based on their
execution requirements.

The decomposition of our optimization problems into three subproblems makes design and analysis of
heuristic algorithms tractable. We will develop a number of pre-power-determination algorithms and
post-power-determination algorithms for energy-aware scheduling of parallel tasks. Furthermore, we will
show that our heuristic algorithms are able to produce solutions very close to optimum.

15.2 Background Information

15.2.1 Power Consumption Model

Power dissipation and circuit delay in digital CMOS circuits can be accurately modeled by simple
equations, even for complex microprocessor circuits. CMOS circuits have dynamic, static, and short-
circuit power dissipation; however, the dominant component in a well-designed circuit is dynamic power
consumption p (i.e., the switching component of power), which is approximately p = aCV2f , where a is
an activity factor, C is the loading capacitance, V is the supply voltage, and f is the clock frequency [8].
Since s ∝ f , where s is the processor speed, and f ∝ Vγ with 0 < γ ≤ 1 [45], which implies that
V ∝ f 1/γ, we know that power consumption is p ∝ f α and p ∝ sα, where α = 1 + 2/γ ≥ 3. It is clear
from f ∝ Vγ and s ∝ Vγ that linear change in supply voltage results in up to linear change in clock
frequency and processor speed. It is also clear from p ∝ Vγ+2 and p ∝ f α and p ∝ sα that linear change
in supply voltage results in at least quadratic change in power supply, and that linear change in clock
frequency and processor speed results in at least cubic change in power supply.

Assume that we are given n independent parallel tasks to be executed on m identical processors. Task
i requires πi processors to execute, where 1 ≤ i ≤ n, and any πi of the m processors can be allocated
to task i. We call πi the size of task i. It is possible that in executing task i, the πi processors may have
different execution requirements (i.e., the numbers of CPU cycles or the numbers of instructions executed
on the processors). Let ri represent the maximum execution requirement on the πi processors executing

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 335 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 335

task i. We use pi to represent the power supplied to execute task i. For ease of discussion, we will assume
that pi is simply sαi , where si = p1/α

i is the execution speed of task i. The execution time of task i is
ti = ri/si = ri/p1/α

i . Note that all the πi processors allocated to task i have the same speed si for duration
ti, although some of the πi processors may be idle for some time. The energy consumed to execute task i is
ei = πipiti = πirip

1−1/α
i = πirisα−1

i = wisα−1
i , where wi = πiri is the amount of work to be performed

for task i.
We would like to mention a number of important observations.

• fi ∝ Vφ
i and si ∝ Vφ

i : Linear change in supply voltage results in up to linear change in clock
frequency and processor speed.

• pi ∝ Vφ+2
i and pi ∝ f α

i and pi ∝ sαi : Linear change in supply voltage results in at least quadratic
change in power supply, and linear change in clock frequency and processor speed results in at
least cubic change in power supply.

• si/pi ∝ V−2
i and si/pi ∝ s−(α−1)

i : The processor energy performance, measured by speed per
Watt, is at least quadratically proportional to the supply voltage and speed reduction.

• wi/ei ∝ V−2
i and wi/ei ∝ s−(α−1)

i : The processor energy performance, measured by work per
Joule, is at least quadratically proportional to the supply voltage and speed reduction.

• ei ∝ p1−1/α
i ∝ V(φ+2)(1−1/α)

i = V2
i : Linear change in supply voltage results in quadratic change

in energy consumption.
• ei = wisα−1

i : Linear change in processor speed results in at least quadratic change in energy
consumption.

• ei = wip
1−1/α
i : Energy consumption reduces at a sublinear speed as power supply reduces.

• eitα−1
i = πirα

i and pitαi = rα
i : For a given task, there exist energy delay and power delay trade-

offs. (Later, we will extend such trade-off to a set of parallel tasks, i.e., the energy delay trade-off
theorem.)

15.2.2 Definitions

Problem 15.1 (Minimizing schedule length with energy consumption Constraint)
Input: A set of n parallel tasks with task sizes π1, π2, . . . , πn and task execution requirements r1, r2, . . . , rn,
a multiprocessor computer with m identical processors, and energy constraint E.
Output: Power supplies p1, p2, . . . , pn to the n tasks and a non-preemptive schedule of the n parallel tasks
on the m processors such that the schedule length is minimized and the total energy consumed does not
exceed E.

Problem 15.2 (Minimizing energy consumption with schedule length constraint)
Input: A set of n parallel tasks with task sizes π1, π2, . . . , πn and task execution requirements r1, r2, . . . , rn,
a multiprocessor computer with m identical processors, and time constraint T.
Output: Power supplies p1, p2, . . . , pn to the n tasks and a non-preemptive schedule of the n parallel tasks
on the m processors such that the total energy consumed is minimized and the schedule length does not
exceed T.

In the previous description, the energy-aware parallel task scheduling problems on multiproces-
sor computers with energy and time constraints addressed in this chapter are defined as optimization
problems.

When all the πi’s are identical, the scheduling problems discussed earlier are equivalent to scheduling
sequential tasks discussed in [25,27]. Since both scheduling problems are NP-hard in the strong sense
for all rational α > 1 in scheduling sequential tasks [14,25], our problems for scheduling parallel tasks
are also NP-hard in the strong sense for all rational α > 1. Hence, we will develop fast polynomial time
heuristic algorithms to solve these problems.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 336 2011-7-29

�

�

�

�

�

�

336 Handbook of Energy-Aware and Green Computing

Let TA denote the length of the schedule produced by algorithm A, and TOPT denote the length of an
optimal schedule. Similarly, let EA denote the total amount of energy consumed by algorithm A, and EOPT
denote the minimum amount of energy consumed by an optimal schedule. The following performance
measures are used to analyze and evaluate the performance of our heuristic power allocation and parallel
task scheduling algorithms.

Definition 15.1 The performance ratio of an algorithm A that solves the problem of minimizing sched-
ule length with energy consumption constraint is defined as βA = TA/TOPT. If βA ≤ B, we call B a
performance bound of algorithm A.

Definition 15.2 The performance ratio of an algorithm A that solves the problem of minimizing energy
consumption with schedule length constraint is defined as γA = EA/EOPT. If γA ≤ C, we call C a
performance bound of algorithm A.

When parallel tasks have random sizes and/or random execution requirements, TA, TOPT, βA, B, EA,
EOPT, γA, and C are all random variables. Let x̄ be the expectation of a random variable x.

Definition 15.3 If βA ≤ B, then β̄A ≤ B, where B is an average-case performance bound of algorithm A.

Definition 15.4 If γA ≤ C, then γ̄A ≤ C, where C is an average-case performance bound of algorithm A.

15.2.3 Lower Bounds

The performance of our heuristic algorithms will be compared with optimal solutions analytically. Unfor-
tunately, it is infeasible to compute optimal solutions in reasonable amount of time. To make such
comparison possible, we have derived lower bounds for the optimal solutions in Theorems 15.1 and
15.2 [26]. The significance of these lower bounds is that they can be used to evaluate the performance of
heuristic algorithms when they are compared with optimal solutions.

Let W = w1 + w2 + · · · + wn = π1r1 + π2r2 + · · · + πnrn denote the total amount of work to be
performed for the n parallel tasks. The following theorem gives a lower bound for the optimal schedule
length TOPT for the problem of minimizing schedule length with energy consumption constraint.

Theorem 15.1 For the problem of minimizing schedule length with energy consumption constraint in
scheduling parallel tasks, we have the following lower bound

TOPT ≥
(

m
E

(
W
m

)α)1/(α−1)

for the optimal schedule length.

The following theorem gives a lower bound for the minimum energy consumption EOPT for the problem
of minimizing energy consumption with schedule length constraint.

Theorem 15.2 For the problem of minimizing energy consumption with schedule length constraint in
scheduling parallel tasks, we have the following lower bound

EOPT ≥ m
(

W
m

)α 1
Tα−1

for the minimum energy consumption.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 337 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 337

The lower bounds in Theorems 15.1 and 15.2 essentially state the following important theorem.

ETα−1 Lower Bound Theorem (Energy-Delay Trade-off Theorem) For any execution of a set of parallel
tasks with total amount of work W on m processors with schedule length T and energy consumption E,
we must have the following trade-off

ETα−1 ≥ m
(

W
m

)α

,

by using any scheduling algorithm.

Therefore, our scheduling problems are defined such that the energy delay product is optimized by
fixing one factor and minimizing the other.

It is noticed that when α = 3, we have ETα−1 = ET2, which was proposed as a measure of the energy
efficiency of a computation [33].

Notice that the lower bounds in Theorems 15.1 and 15.2 and the energy delay trade-off theo-
rem are applicable to various parallel task models (independent or precedence constrained, static or
dynamic tasks), various processor models (regular homogeneous processors with continuous or discrete
voltage/frequency/speed/power levels, bounded or unbounded voltage/frequency/speed/power levels,
with/without overheads for voltage/frequency/speed/power adjustment and idle processors), and all
scheduling models (preemptive or non-preemptive, online or off-line, clairvoyant or non-clairvoyant
scheduling). (See [27] for description of these models.)

15.3 Pre-Power-Determination Algorithms

15.3.1 Overview

In pre-power-determination algorithms, we first determine power supplies to the n parallel tasks and
then partition the system and schedule the tasks. We use A1 −A2 to represent a pre-power-determination
algorithm, where A1 is a strategy for power supplying and A2 is an algorithm for system partitioning and
task scheduling. Algorithm A1 − A2 works in the following way. First, algorithm A1 is used to allocate
powers to the n tasks and to solve the subproblem of power supplying. Second, algorithm A2 is used to
partition the system with m processors and to schedule the n tasks whose execution times are known
based on the power allocation, and to solve the subproblems of system partitioning and task scheduling
simultaneously.

In this chapter, we consider three strategies (i.e., algorithm A1) for power allocation.

• Equal-time (ET): The power supplies p1, p2, . . . , pn are determined such that all the n parallel tasks
have the same execution time, i.e., t1 = t2 = · · · = tn.

• Equal-energy (EE): The power supplies p1, p2, . . . , pn are determined such that all the n parallel
tasks consume the same amount of energy, i.e., e1 = e2 = · · · = en.

• Equal-speed (ES): The power supplies p1, p2, . . . , pn are determined such that all the n parallel tasks
have the same execution speed, i.e., s1 = s2 = · · · = sn.

In all cases, the execution times of all the n parallel tasks are available before the tasks are scheduled.
We consider the following four methods (i.e., algorithm A2) for scheduling parallel tasks.

• SIMPLE: The n parallel tasks are put into a list, which is divided into groups, where each group
contains a sublist of consecutive tasks. In the beginning and whenever a task is completed, the
next group of tasks are scheduled for execution. Each group includes as many tasks as possible for
simultaneous execution.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 338 2011-7-29

�

�

�

�

�

�

338 Handbook of Energy-Aware and Green Computing

• SIMPLE∗: This method works in the same way as SIMPLE, except that tasks are arranged in a
nonincreasing order of sizes, i.e., π1 ≥ π2 ≥ · · · ≥ πn, before scheduling.

• GREEDY: In the beginning and whenever a task is completed, each remaining unscheduled task is
examined for possible execution, i.e., whether there are enough available processors for the task.

• GREEDY∗: This method works in the same way as GREEDY, except that tasks are arranged in a
nonincreasing order of sizes, i.e., π1 ≥ π2 ≥ · · · ≥ πn, before scheduling.

Algorithms SIMPLE and GREEDY were considered in [24] for non-clairvoyant scheduling of parallel
tasks, since these algorithms do not require the information of task execution times.

To summarize, we have developed 12 pre-power-determination algorithms for power allocation and
parallel task scheduling, namely, ET-A, EE-A, and ES-A, where A ∈ {SIMPLE, SIMPLE∗, GREEDY,
GREEDY∗}.

For n parallel tasks with sizes π1, π2, . . . , πn and execution times t1, t2, . . . , tn, we use A(π1, t1, π2,
t2, . . . , πn, tn) to denote the length of the schedule produced by algorithm A.

15.3.2 Analysis of Equal-Time Algorithms

15.3.2.1 Minimizing Schedule Length

To solve the problem of minimizing schedule length with energy consumption constraint E by using an
equal-time algorithm ET-A, we have

t1 = t2 = · · · = tn = t,

where t is the identical task execution time. Since

ti = ri

si
= t,

we get

si = ri

t
,

and

pi = sαi =
(ri

t

)α
,

and

ei = πirip1−1/α
i = πirα

i
tα−1 ,

for all 1 ≤ i ≤ n. Since

e1 + e2 + · · · + en = E,

that is,

π1rα
1 + π2rα

2 + · · · + πnrα
n

tα−1 = E,

we obtain

t =
(

π1rα
1 + π2rα

2 + · · · + πnrα
n

E

)1/(α−1)

.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 339 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 339

Consequently, the length of the schedule generated by algorithm ET-A is

TET-A = A(π1, t, π2, t, . . . , πn, t).

By Theorem 1, the performance ratio of algorithm ET-A is

βET-A = TET-A

TOPT
≤ A(π1, t, π2, t, . . . , πn, t)

((m/E)(W/m)α)1/(α−1)
.

We observe that when all tasks have the same execution time t, the problem of scheduling parallel tasks
with sizes π1, π2, . . . , πn such that the total execution time is minimized is equivalent to the classic bin
packing problem, i.e., packing n items of sizes π1, π2, . . . , πn into bins of size m, such that the number of
bins used is minimized. Let b1, b2, b3, . . . be the sequence of bins used. The following four methods are
well known bin packing algorithms [10].

• Next fit (NF): Assume that bi is the current bin being packed. bi is packed as many items as possible,
until there is πj which cannot be packed into bi. Then, a new bin bi+1 is opened to pack πj.

• Next fit decreasing (NFD): This algorithm is the same as NF, except that the sizes are sorted in a
nonincreasing order before packing, i.e., π1 ≥ π2 ≥ · · · ≥ πn.

• First fit (FF): Let b1, b2, . . . , bi be the bins ever used. To pack an item πj, each bin of b1, b2, . . . , bi
is examined in this order to see whether πj can be packed. πj is packed into the first bin which can
accommodate πj. If no such bin is found, a new bin bi+1 is opened to pack πj.

• First fit decreasing (FFD): This algorithm is the same as FF, except that the sizes are sorted in a
nonincreasing order before packing, i.e., π1 ≥ π2 ≥ · · · ≥ πn.

Each parallel task scheduling algorithm A is equivalent to a bin packing algorithm A′. It is clear that for
A = SIMPLE, SIMPLE∗, GREEDY, GREEDY∗, we have A′ = NF, NFD, FF, FFD, respectively.

Let A′(π1, π2, . . . , πn) denote the number of bins used by algorithm A′. Then, we have

SIMPLE(π1, t, π2, t, . . . , πn, t) = tNF(π1, π2, . . . , πn),

SIMPLE∗(π1, t, π2, t, . . . , πn, t) = tNFD(π1, π2, . . . , πn),

GREEDY(π1, t, π2, t, . . . , πn, t) = tFF(π1, π2, . . . , πn),

GREEDY∗(π1, t, π2, t, . . . , πn, t) = tFFD(π1, π2, . . . , πn),

and

TET-A = tA′(π1, π2, . . . , πn).

By Theorem 1, the performance ratio of algorithm ET-A is

βET-A = TET-A

TOPT

≤ tA′(π1, π2, . . . , πn)

((m/E)(W/m)α)1/(α−1)

=
(

π1rα
1 + π2rα

2 + · · · + πnrα
n

E

)1/(α−1) A′(π1, π2, . . . , πn)

((m/E)(W/m)α)1/(α−1)

=
(

m(π1rα
1 + π2rα

2 + · · · + πnrα
n)1/(α−1)

Wα/(α−1)

)
A′(π1, π2, . . . , πn).

This discussion can be summarized in the following theorem.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 340 2011-7-29

�

�

�

�

�

�

340 Handbook of Energy-Aware and Green Computing

Theorem 15.3 By using an equal-time algorithm ET-A to solve the problem of minimizing schedule length
with energy consumption constraint, the schedule length is

TET-A = A(π1, t, π2, t, . . . , πn, t),

where

t =
(

π1rα
1 + π2rα

2 + · · · + πnrα
n

E

)1/(α−1)

,

or,

TET-A =
(

π1rα
1 + π2rα

2 + · · · + πnrα
n

E

)1/(α−1)

A′(π1, π2, . . . , πn).

The performance ratio is βET-A ≤ BET-A, where the performance bound is

BET-A = A(π1, t, π2, t, . . . , πn, t)
((m/E)(W/m)α)1/(α−1)

,

or,

BET-A =
(

m
(
π1rα

1 + π2rα
2 + · · · + πnrα

n
)1/(α−1)

(π1r1 + π2r2 + · · · + πnrn)α/(α−1)

)
A′(π1, π2, . . . , πn).

For the purpose of average-case performance analysis, throughout this chapter, we make the following
assumptions of task sizes and task execution requirements.

• π1, π2, . . . , πn are independent and identically distributed (i.i.d.) discrete random variables with a
common probability distribution in the range [1 . . . m].

• r1, r2, . . . , rn are i.i.d. continuous random variables.
• The probability distribution of the πi’s and the probability distribution of the ri’s are independent

of each other.

These assumptions make the probabilistic analysis of SIMPLE feasible.
Let us consider the following packing model. Assume that there is a bag of capacity m and there are

n objects of sizes π1, π2, . . . , πn. These objects are to be packed into the bag as many as possible, i.e., we
need to find i such that

π1 + π2 + · · · + πi ≤ m,

but

π1 + π2 + · · · + πi + πi+1 > m.

If π1, π2, . . . , πn are i.i.d. random variables, the total size of the objects packed into the bag, i.e., π1 +
π2 + · · · + πi, is also a random variable. Let P(n, m) denote the mean of this random variable, and
define P(m) = limn→∞ P(n, m). In fact, if π1, π2, . . . , πn are discrete integer random variables, we
have Pm = P(n, m) for all n ≥ m, since the bag can accommodate at most m objects. It was shown
in [24] that Pm can be calculated easily by using a recurrence relation for any probability distribution
of the πi’s.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 341 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 341

Furthermore, it was known that by the previously mentioned assumptions of task sizes and task
execution requirements, for algorithm SIMPLE, we have

E(SIMPLE(π1, t1, π2, t2, . . . , πn, tn)) ≈ 1
Pm

E(π1t1 + π2t2 + · · · + πntn),

when n is large [24]. (Notation: E(x) and x̄ represent the expectation of a random variable x.) Based on
the previous result, we obtain

E(SIMPLE(π1, t, π2, t, . . . , πn, t)) ≈ 1
Pm

E(π1t + π2t + · · · + πnt)

≈ 1
Pm

E(t)E(π1 + π2 + · · · + πn),

which implies the following approximation of the average-case performance bound BET-SIMPLE

BET-SIMPLE ≈ E(SIMPLE(π1, t, π2, t, . . . , πn, t))
E(((m/E)(W/m)α)1/(α−1))

≈ 1
Pm

· E(t)E(π1 + π2 + · · · + πn)

E(((m/E)(W/m)α)1/(α−1))

≈ m
Pm

·
E

((
π1rα

1 + π2rα
2 + · · · + πnrα

n
)1/(α−1)

)
E(π1 + π2 + · · · + πn)

E((π1r1 + π2r2 + · · · + πnrn)α/(α−1))
.

We will provide numerical and simulation data to demonstrate the accuracy of the previous
approximation.

15.3.2.2 Minimizing Energy Consumption

To solve the problem of minimizing energy consumption with schedule length constraint T by using
an equal-time algorithm ET-A, we need to provide enough energy EET-A, so that the deadline T is met,
i.e., TET-A = T,

(
π1rα

1 + π2rα
2 + · · · + πnrα

n
EET-A

)1/(α−1)

A′(π1, π2, . . . , πn) = T.

This equation implies that the amount of energy EET-A consumed by algorithm ET-A is

EET-A =
(

A′(π1, π2, . . . , πn)

T

)α−1 (
π1rα

1 + π2rα
2 + · · · + πnrα

n
)

.

By theorem 2, the performance ratio of algorithm ET-A is

γET-A = EET-A

EOPT

≤ (A′(π1, π2, . . . , πn)/T)α−1 (
π1rα

1 + π2rα
2 + · · · + πnrα

n
)

(m/Tα−1)(W/m)α

= (mA′(π1, π2, . . . , πn))
α−1 (

π1rα
1 + π2rα

2 + · · · + πnrα
n

)
Wα

.

This discussion basically proves the following theorem.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 342 2011-7-29

�

�

�

�

�

�

342 Handbook of Energy-Aware and Green Computing

Theorem 15.4 By using an equal-time algorithm ET-A to solve the problem of minimizing energy
consumption with schedule length constraint, the energy consumed is

EET-A =
(

A′(π1, π2, . . . , πn)

T

)α−1 (
π1rα

1 + π2rα
2 + · · · + πnrα

n
)

.

The performance ratio is γET-A ≤ CET-A, where the performance bound is

CET-A =
(

mα−1 (
π1rα

1 + π2rα
2 + · · · + πnrα

n
)

(π1r1 + π2r2 + · · · + πnrn)α

) (
A′(π1, π2, . . . , πn)

)α−1 .

Since CET-A = Bα−1
ET-A, we obtain the following approximation of the average-case performance-bound

CET-SIMPLE, i.e.,

CET-SIMPLE = E(Bα−1
ET-SIMPLE) ≈ Bα−1

ET-SIMPLE

≈
⎛
⎝ m

Pm
·

E

((
π1rα

1 + π2rα
2 + · · · + πnrα

n
)1/(α−1)

)
E(π1 + π2 + · · · + πn)

E((π1r1 + π2r2 + · · · + πnrn)α/(α−1))

⎞
⎠

α−1

.

15.3.3 Analysis of Equal-Energy Algorithms

15.3.3.1 Minimizing Schedule Length

To solve the problem of minimizing schedule length with energy consumption constraint E by using an
equal-energy algorithm EE-A, we have

e1 = e2 = · · · = en = E
n

.

Hence, we get

ei = πirip1−1/α
i = wip1−1/α

i = E
n

,

which gives

pi =
(

E
nwi

)α/(α−1)

,

and

si = p1/α
i =

(
E

nwi

)1/(α−1)

,

and

ti = ri

si
= riw1/(α−1)

i

(n
E

)1/(α−1)

,

for all 1 ≤ i ≤ n.
It is noticed that for all φ ≥ 0, we have

A(π1, φt1, π2, φt2, . . . , πn, φtn) = φA(π1, t1, π2, t2, . . . , πn, tn).

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 343 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 343

In other words, the schedule length is changed by a factor of φ if all the task execution times are changed
by a factor of φ. This observation implies that the length of the schedule produced by algorithm EE-A is

TEE-A = A(π1, t1, π2, t2, . . . , πn, tn)

= A
(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

) (n
E

)1/(α−1)

.

By theorem 1, the performance ratio of algorithm EE-A is

βEE-A = TEE-A

TOPT

≤
A

(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

)
(n/E)1/(α−1)

((m/E)(W/m)α)1/(α−1)

=
mn1/(α−1)A

(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

)
Wα/(α−1)

=
mn1/(α−1)A

(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

)
(π1r1 + π2r2 + · · · + πnrn)α/(α−1)

.

This discussion leads to the following theorem.

Theorem 15.5 By using an equal-energy algorithm EE-A to solve the problem of minimizing schedule
length with energy consumption constraint, the schedule length is

TEE-A = A
(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

) (n
E

)1/(α−1)

.

The performance ratio is βEE-A ≤ BEE-A, where the performance bound is

BEE-A =
mn1/(α−1)A

(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

)
(π1r1 + π2r2 + · · · + πnrn)α/(α−1)

.

For algorithm SIMPLE, we have

E(SIMPLE
(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n)
)

≈ 1
Pm

E

(
wα/(α−1)

1 + wα/(α−1)
2 + · · · + wα/(α−1)

n

)
.

Hence, we get

BEE-SIMPLE ≈
mn1/(α−1)

E(SIMPLE
(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n)
)

E((π1r1 + π2r2 + · · · + πnrn)α/(α−1))

≈ m
Pm

·
n1/(α−1)

E

(
wα/(α−1)

1 + wα/(α−1)
2 + · · · + wα/(α−1)

n

)
E((w1 + w2 + · · · + wn)α/(α−1))

,

for large n.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 344 2011-7-29

�

�

�

�

�

�

344 Handbook of Energy-Aware and Green Computing

15.3.3.2 Minimizing Energy Consumption

To solve the problem of minimizing energy consumption with schedule length constraint T by using an
equal-energy algorithm EE-A, we need to provide enough energy EEE-A, so that the deadline T is met,
i.e., TEE-A = T,

A
(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

)(
n

EEE-A

)1/(α−1)

= T.

The last equation implies that the amount of energy EEE-A consumed by algorithm EE-A is

EEE-A = n
Tα−1

(
A

(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

))α−1
.

By theorem 2, the performance ratio of algorithm EE-A is

γEE-A = EEE-A

EOPT

≤
(n/Tα−1)

(
A

(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

))α−1

(m/Tα−1)(W/m)α

=
nmα−1

(
A

(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

))α−1

Wα

=
nmα−1

(
A

(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

))α−1

(π1r1 + π2r2 + · · · + πnrn)α
.

This discussion essentially proves the following theorem.

Theorem 15.6 By using an equal-energy algorithm EE-A to solve the problem of minimizing energy
consumption with schedule length constraint, the energy consumed is

EEE-A = n
Tα−1

(
A

(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

))α−1
.

The performance ratio is γEE-A ≤ CEE-A, where the performance bound is

CEE-A =
nmα−1

(
A

(
π1, r1w1/(α−1)

1 , π2, r2w1/(α−1)
2 , . . . , πn, rnw1/(α−1)

n

))α−1

(π1r1 + π2r2 + · · · + πnrn)α
.

Since CEE-A = Bα−1
EE-A, we obtain the following approximation of the average-case performance-bound

CEE-SIMPLE, i.e.,

CEE-SIMPLE = E(Bα−1
EE-SIMPLE) ≈ Bα−1

EE-SIMPLE

≈
⎛
⎝ m

Pm
·

n1/(α−1)
E

(
wα/(α−1)

1 + wα/(α−1)
2 + · · · + wα/(α−1)

n

)
E((w1 + w2 + · · · + wn)α/(α−1))

⎞
⎠

α−1

.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 345 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 345

15.3.4 Analysis of Equal-Speed Algorithms

15.3.4.1 Minimizing Schedule Length

To solve the problem of minimizing schedule length with energy consumption constraint E by using an
equal-speed algorithm ES-A, we have

s1 = s2 = · · · = sn = s,

where s is the identical task execution speed. Hence, we get

ei = πirip1−1/α
i = wip1−1/α

i = wisα−1
i = wisα−1,

for all 1 ≤ i ≤ n. Since

n∑
i=1

ei = sα−1
n∑

i=1
wi = Wsα−1 = E,

we obtain

s =
(

E
W

)1/(α−1)

,

and

ti = ri

s
= ri

(
W
E

)1/(α−1)

,

for all 1 ≤ i ≤ n. Thus, we get the length of the schedule generated by algorithm ES-A as

TES-A = A(π1, r1, π2, r2, . . . , πn, rn)

(
W
E

)1/(α−1)

.

By theorem 1, the performance ratio of algorithm ES-A is

βES-A = TES-A

TOPT

≤ A(π1, r1, π2, r2, . . . , πn, rn)(W/E)1/(α−1)

((m/E)(W/m)α)1/(α−1)

= mA(π1, r1, π2, r2, . . . , πn, rn)

π1r1 + π2r2 + · · · + πnrn
.

This discussion is summarized in the following theorem.

Theorem 15.7 By using an equal-speed algorithm ES-A to solve the problem of minimizing schedule
length with energy consumption constraint, the schedule length is

TES-A = A(π1, r1, π2, r2, . . . , πn, rn)

(
W
E

)1/(α−1)

.

The performance ratio is βES-A ≤ BES-A, where the performance bound is

BES-A = mA(π1, r1, π2, r2, . . . , πn, rn)

π1r1 + π2r2 + · · · + πnrn
.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 346 2011-7-29

�

�

�

�

�

�

346 Handbook of Energy-Aware and Green Computing

For algorithm SIMPLE, we have

BES-SIMPLE ≈ mE(SIMPLE(π1, r1, π2, r2, . . . , πn, rn))

E(π1r1 + π2r2 + · · · + πnrn)
≈ m

Pm
,

for large n.

15.3.4.2 Minimizing Energy Consumption

To solve the problem of minimizing energy consumption with schedule length constraint T by using an
equal-speed algorithm ES-A, we need to provide enough energy EES-A, so that the deadline T is met, i.e.,
TES-A = T,

A(π1, r1, π2, r2, . . . , πn, rn)

(
W

EES-A

)1/(α−1)

= T.

This equation implies that the amount of energy EES-A consumed by algorithm ES-A is

EES-A =
(

A(π1, r1, π2, r2, . . . , πn, rn)

T

)α−1
W.

By theorem 2, the performance ratio of algorithm ES-A is

γES-A = EES-A

EOPT

≤ (A(π1, r1, π2, r2, . . . , πn, rn)/T)α−1W
(m/Tα−1)(W/m)α

= (A(π1, r1, π2, r2, . . . , πn, rn))
α−1

(W/m)α−1

=
(

mA(π1, r1, π2, r2, . . . , πn, rn)

π1r1 + π2r2 + · · · + πnrn

)α−1
.

This discussion gives rise to the following theorem.

Theorem 15.8 By using an equal-speed algorithm ES-A to solve the problem of minimizing energy
consumption with schedule length constraint, the energy consumed is

EES-A =
(

A(π1, r1, π2, r2, . . . , πn, rn)

T

)α−1
W.

The performance ratio is γES-A ≤ CES-A, where the performance bound is

CES-A =
(

mA(π1, r1, π2, r2, . . . , πn, rn)

π1r1 + π2r2 + · · · + πnrn

)α−1
.

Since CES-A = Bα−1
ES-A , we obtain the following approximation of the average-case performance-bound

CES-SIMPLE, i.e.,

CES-SIMPLE = E(Bα−1
ES-SIMPLE) ≈ Bα−1

ES-SIMPLE ≈
(

m
Pm

)α−1
.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 347 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 347

15.3.5 Performance Data

In this section, we demonstrate numerical and simulation data for the average-case performance bounds
derived for pre-power-determination algorithms in theorems 3 through 15.8.

Assume that there are n = 1,000 parallel tasks to be scheduled on a parallel computing system with
m = 128 processors. The parameter α is set as 3. Although these parameters are for demonstration, they
do not affect the observations and conclusion to be made.

The task execution requirements r1, r2, . . . , rn are treated as i.i.d. continuous random variables
uniformly distributed in [0, 1). The task sizes π1, π2, . . . , πn are i.i.d. discrete random variables in [1 . . . m].

We consider three types of probability distributions of task sizes with about the same expected task
size π̄. Let ab be the probability that πi = b, where b ≥ 1.

• Uniform distributions in the range [1 . . . u], i.e., ab = 1/u for all 1 ≤ b ≤ u, where u is chosen
such that (u + 1)/2 = π̄, i.e., u = 2π̄ − 1.

• Binomial distributions in the range [1 . . . m], i.e.,

ab =

(
m
b

)
pb(1 − p)m−b

1 − (1 − p)m ,

for all 1 ≤ b ≤ m, where p is chosen such that mp = π̄, i.e., p = π̄/m. However, the actual
expectation of task sizes is

π̄

1 − (1 − p)m = π̄

1 − (1 − π̄/m)m ,

which is slightly greater than π̄, especially when π̄ is small.
• Geometric distributions in the range [1 . . . m], i.e.,

ab = q(1 − q)b−1

1 − (1 − q)m ,

for all 1 ≤ b ≤ m, where q is chosen such that 1/q = π̄, i.e., q = 1/π̄. However, the actual
expectation of task sizes is

1/q − (1/q + m)(1 − q)m

1 − (1 − q)m = π̄ − (π̄ + m)(1 − 1/π̄)m

1 − (1 − 1/π̄)m ,

which is less than π̄, especially when π̄ is large.

In Table 15.1, we show the average-case performance-bound BET-SIMPLE. For each combination of the
expected task size π̄ = 10, 20, 30, 40, 50, 60 and the three probability distributions of task sizes, we

TABLE 15.1 Simulation Data for BET-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.4925696 1.4799331 1.5272638
20 1.5727972 1.5363483 1.6507309
30 1.6701122 1.5875832 1.7432123
40 1.7975673 1.6175625 1.7904198
50 1.9119195 1.8022895 1.8189020
60 1.9069588 1.6583340 1.8336815

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 348 2011-7-29

�

�

�

�

�

�

348 Handbook of Energy-Aware and Green Computing

show BET-SIMPLE obtained by random sampling as follows. We generate 500 sets of n parallel tasks,
find BET-SIMPLE by using theorem 15.3, and report the average of the 500 values of BET-SIMPLE, which
is the experimental value of BET-SIMPLE. In Table 15.2, we show our approximation of the average-case
performance-bound BET-SIMPLE. These data are obtained by using the same method of Table 15.1. In
Table 15.3, we show the average-case performance-bound BET-GREEDY.

In Table 15.4, we show the average-case performance-bound CET-SIMPLE. For each combination of
the expected task size π̄ = 10, 20, 30, 40, 50, 60 and the three probability distributions of task sizes,
we show CET-SIMPLE obtained by random sampling as follows. We generate 500 sets of n parallel tasks,
find CET-SIMPLE by using theorem 15.4, and report the average of the 500 values of CET-SIMPLE, which
is the experimental value of CET-SIMPLE. In Table 15.5, we show our approximation of the average-case
performance-bound CET-SIMPLE. These data are obtained by using the same method of Table 15.4. In
Table 15.6, we show the average-case performance-bound CET-GREEDY.

TABLE 15.2 Simulation Data for the Approximation of BET-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.4838727 1.4712699 1.5175525
20 1.5673887 1.5321343 1.6497503
30 1.6657088 1.5823904 1.7527788
40 1.7812809 1.6123531 1.8235302
50 1.9030034 1.8004366 1.8632664
60 1.9571228 1.6383452 1.8903620

TABLE 15.3 Simulation Data for BET-GREEDY

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.4310459 1.4299945 1.4431398
20 1.4385093 1.4304722 1.4728624
30 1.4752343 1.4447528 1.5030419
40 1.4796543 1.4884609 1.5269353
50 1.6343792 1.7111951 1.5403827
60 1.6434003 1.5080826 1.5556964

TABLE 15.4 Simulation Data for CET-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 2.2253142 2.1877799 2.3346273
20 2.4741347 2.3623308 2.7328413
30 2.7900444 2.5184688 3.0317472
40 3.2155913 2.6227083 3.1991694
50 3.6596691 3.2529483 3.3139123
60 3.6380009 2.7527856 3.3663785

TABLE 15.5 Simulation Data for the Approximation of CET-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 2.2013749 2.1650992 2.3096532
20 2.4662319 2.3443439 2.7233384
30 2.7792308 2.5079857 3.0749527
40 3.1699565 2.5930330 3.3145158
50 3.6138148 3.2443710 3.4685996
60 3.8208861 2.6877475 3.5659465

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 349 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 349

In Tables 15.7 through 15.12, we duplicate the same work for algorithms EE-SIMPLE and EE-GREEDY.
In Tables 15.13 through 15.18, we repeat the same work for algorithms ES-SIMPLE and ES-GREEDY.

Notice that the data in Tables 15.14 and 15.17 are obtained by numerical calculation.
We would like to mention that the 99% confidence interval of all the data in the same table is no more

than ±0.8%.

TABLE 15.6 Simulation Data for CET-GREEDY

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 2.0460829 2.0405601 2.0883940
20 2.0758287 2.0537063 2.1842573
30 2.1838240 2.0850937 2.2613991
40 2.1899949 2.2190162 2.3271776
50 2.6855169 2.9297280 2.3798546
60 2.7006062 2.2793767 2.4128476

TABLE 15.7 Simulation Data for BEE-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.3463462 1.2348196 1.6112312
20 1.4298048 1.2560974 1.7861327
30 1.5369151 1.2928216 1.8688076
40 1.7015489 1.3220516 1.8833816
50 1.8260972 1.4423315 1.8774630
60 1.7745509 1.3775116 1.8612660

TABLE 15.8 Simulation Data for the Approximation of BEE-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.3264845 1.2174092 1.5773889
20 1.4117628 1.2450593 1.7214958
30 1.5017826 1.2792598 1.7990156
40 1.6086828 1.2981559 1.8269234
50 1.7165236 1.4474411 1.8372114
60 1.7664283 1.3150274 1.8392359

TABLE 15.9 Simulation Data for BEE-GREEDY

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.2918285 1.1932594 1.5244995
20 1.3051615 1.1673758 1.5757269
30 1.3561090 1.1688848 1.5902360
40 1.3677546 1.1954258 1.5857617
50 1.5496023 1.3769236 1.5722843
60 1.5302645 1.2082060 1.5644404

TABLE 15.10 Simulation Data for CEE-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.8114682 1.5255576 2.5931999
20 2.0482069 1.5777715 3.1880987
30 2.3612833 1.6696594 3.5059091
40 2.9001191 1.7473951 3.5492390
50 3.3359420 2.0831180 3.5155132
60 3.1424992 1.9012417 3.4714851

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 350 2011-7-29

�

�

�

�

�

�

350 Handbook of Energy-Aware and Green Computing

TABLE 15.11 Simulation Data for the Approximation of CEE-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.7574598 1.4814359 2.4787496
20 1.9903160 1.5500319 2.9644179
30 2.2544732 1.6362618 3.2282039
40 2.5863755 1.6841439 3.3426538
50 2.9486812 2.0959486 3.3784349
60 3.1174110 1.7281041 3.3864316

TABLE 15.12 Simulation Data for CEE-GREEDY

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.6706632 1.4231051 2.3331851
20 1.7052260 1.3624873 2.5014480
30 1.8417139 1.3675744 2.5252715
40 1.8759147 1.4285966 2.4987712
50 2.3967202 1.8971794 2.4801984
60 2.3425787 1.4592520 2.4528297

TABLE 15.13 Simulation Data for BES-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.0612181 1.0519759 1.0904810
20 1.1183020 1.0897683 1.1905421
30 1.1916076 1.1270139 1.2693422
40 1.2985623 1.1529977 1.3120221
50 1.3915928 1.2759972 1.3375258
60 1.3963486 1.1952081 1.3525453

TABLE 15.14 Numerical Data for the Approximation of BES-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.0491804 1.0403200 1.0756198
20 1.1099183 1.0836783 1.1677707
30 1.1784512 1.1202275 1.2417018
40 1.2610587 1.1400834 1.2889239
50 1.3448804 1.2739033 1.3179703
60 1.3831981 1.1585732 1.3363460

TABLE 15.15 Simulation Data for BES-GREEDY

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.0164086 1.0145500 1.0246841
20 1.0200092 1.0138670 1.0470670
30 1.0472299 1.0226195 1.0700968
40 1.0506965 1.0535358 1.0857458
50 1.1677252 1.2109840 1.0971333
60 1.1684183 1.0682941 1.1036731

We have the following observations from our simulations.

• The performance of the three power allocation algorithms are ranked as ET, EE, ES, from the worst
to the best.

• The task scheduling algorithm GREEDY performs noticeably better than algorithm SIMPLE.
• All our approximate performance bounds are very accurate.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 351 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 351

TABLE 15.16 Simulation Data for CES-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.1262599 1.1070876 1.1897538
20 1.2499551 1.1877677 1.4151224
30 1.4202129 1.2702833 1.6086410
40 1.6843206 1.3293841 1.7232975
50 1.9345899 1.6277295 1.7879323
60 1.9475815 1.4293379 1.8290383

TABLE 15.17 Numerical Data for the Approximation of CES-SIMPLE

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.1007795 1.0822657 1.1569579
20 1.2319186 1.1743586 1.3636884
30 1.3887472 1.2549096 1.5418234
40 1.5902689 1.2997902 1.6613248
50 1.8087032 1.6228296 1.7370457
60 1.9132369 1.3422920 1.7858207

TABLE 15.18 Simulation Data for CES-GREEDY

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.0340945 1.0288788 1.0494240
20 1.0405856 1.0282521 1.0972321
30 1.0974053 1.0459606 1.1451099
40 1.1046457 1.1095928 1.1824923
50 1.3555731 1.4671864 1.2022531
60 1.3672342 1.1413527 1.2230523

Due to space limitation, we do not provide the performance data for algorithms SIMPLE∗ and
GREEDY∗. Our main finding is that the performance of SIMPLE∗ is slightly better than that of SIMPLE,
while the performance of GREEDY∗ is about the same as that of GREEDY.

15.4 Post-Power-Determination Algorithms

15.4.1 Overview

In post-power-determination algorithms, we first partition the system and schedule the tasks, and then
determine power supplies to the n parallel tasks. Unfortunately, if we apply algorithm SIMPLE or GREEDY
to generate a schedule of the tasks, it is not clear at all how power allocation can be performed, since
power supplies also determine (and change) task execution speeds and times, and such change affects the
schedule already produced. What we need to make sure is that power supplies do not change the schedule.
Therefore, new system partitioning and task scheduling methods are required.

Our strategies for solving the three subproblems are described as follows.

• System partitioning : We use the harmonic system partitioning and processor allocation scheme,
which divides a multiprocessor computer into clusters of equal sizes and schedules tasks of similar
sizes together to increase processor utilization.

• Task scheduling : Our approach is to divide a list of tasks into sublists such that each sublist contains
tasks of similar sizes which are scheduled on clusters of equal sizes. Scheduling such parallel tasks
on clusters is no more difficult than scheduling sequential tasks and can be performed by list
scheduling algorithms.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 352 2011-7-29

�

�

�

�

�

�

352 Handbook of Energy-Aware and Green Computing

• Power supplying : We adopt a three-level energy/time/power allocation scheme for a given
schedule, namely, optimal energy/time allocation among sublists of tasks (theorems 15.11 and
15.14), optimal energy allocation among groups of tasks in the same sublist (theorems 15.10 and
15.13), and optimal power supplies to tasks in the same group (theorems 15.9 and 15.12).

The post-power-determination algorithms and their analysis presented in this section are developed
in [26].

15.4.2 System Partitioning

Our post-power-determination algorithms are called Hc-A, where “Hc” stands for the harmonic system
partitioning scheme with parameter c to be presented later, and A is a list scheduling algorithm to be
presented in the next section.

To schedule a list of n parallel tasks, algorithm Hc-A divides the list into c sublists according to task
sizes (i.e., numbers of processors requested by tasks), where c ≥ 1 is a positive integer constant. For
1 ≤ j ≤ c − 1, we define sublist j to be the sublist of tasks with

m
j + 1

< πi ≤ m
j

,

i.e., sublist j contains all tasks whose sizes are in the interval Ij = (m/(j + 1), m/j]. We define sublist c to
be the sublist of tasks with 0 < πi ≤ m/c, i.e., sublist c contains all tasks whose sizes are in the interval
Ic = (0, m/c]. The partition of (0, m] into intervals I1, I2, . . . , Ij, . . . , Ic is called the harmonic system
partitioning scheme whose idea is to schedule tasks of similar sizes together. The similarity is defined by
the intervals I1, I2, . . . , Ij, . . . , Ic. For tasks in sublist j, processor utilization is higher than j/(j + 1), where
1 ≤ j ≤ c − 1. As j increases, the similarity among tasks in sublist j increases and processor utilization
also increases. Hence, the harmonic system partitioning scheme is very good at handling small tasks.

Algorithm Hc-A produces schedules of the sublists sequentially and separately. To schedule tasks in
sublist j, where 1 ≤ j ≤ c, the m processors are partitioned into j clusters and each cluster contains m/j
processors. Each cluster of processors is treated as one unit to be allocated to one task in sublist j. This
is basically the harmonic system partitioning and processor allocation scheme. Therefore, scheduling
parallel tasks in sublist j on the j clusters where each task i has processor requirement πi and execution
requirement ri is equivalent to scheduling a list of sequential tasks on j processors where each task i has
execution requirement ri. It is clear that scheduling of the list of sequential tasks on j processors can be
accomplished by using algorithm A, where A is a list scheduling algorithm.

15.4.3 Task Scheduling

When a multiprocessor computer with m processors is partitioned into j ≥ 1 clusters, scheduling tasks
in sublist j is essentially dividing sublist j into j groups of tasks, such that each group of tasks are executed
on one cluster. Such a partition of sublist j into j groups is essentially a schedule of the tasks in sublist j on
m processors with j clusters. Once a partition (i.e., a schedule) is determined, we can use the methods in
the next section to find power supplies.

We propose to use the list scheduling algorithm and its variations to solve the task scheduling problem.
Tasks in sublist j are scheduled on j clusters by using the classic list scheduling algorithm [15] and by
ignoring the issue of power supplies. In other words, the task execution times are simply the task execution
requirements r1, r2, . . . , rn, and tasks are assigned to the j clusters (i.e., groups) by using the list scheduling
algorithm, which works as follows to schedule a list of tasks 1, 2, 3

• List scheduling (LS): Initially, task k is scheduled on cluster (or group) k, where 1 ≤ k ≤ j, and
tasks 1, 2, . . . , j are removed from the list. Upon the completion of a task k, the first unscheduled

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 353 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 353

task in the list, i.e., task j + 1, is removed from the list and scheduled to be executed on cluster k.
This process repeats until all tasks in the list are finished.

Algorithm LS has many variations, depending on the strategy used in the initial ordering of the tasks. We
mention several of them here.

• Largest requirement first (LRF): This algorithm is the same as the LS algorithm, except that the
tasks are arranged such that r1 ≥ r2 ≥ · · · ≥ rn.

• Smallest requirement first (SRF): This algorithm is the same as the LS algorithm, except that the
tasks are arranged such that r1 ≤ r2 ≤ · · · ≤ rn.

• Largest size first (LSF): This algorithm is the same as the LS algorithm, except that the tasks are
arranged such that π1 ≥ π2 ≥ · · · ≥ πn.

• Smallest size first (SSF): This algorithm is the same as the LS algorithm, except that the tasks are
arranged such that π1 ≤ π2 ≤ · · · ≤ πn.

• Largest task first (LTF): This algorithm is the same as the LS algorithm, except that the tasks are
arranged such that π

1/α
1 r1 ≥ π

1/α
2 r2 ≥ · · · ≥ π

1/α
n rn.

• Smallest task first (STF): This algorithm is the same as the LS algorithm, except that the tasks are
arranged such that π

1/α
1 r1 ≤ π

1/α
2 r2 ≤ · · · ≤ π

1/α
n rn.

We call algorithm LS and its variations simply as list scheduling algorithms.

15.4.4 Power Supplying

Once the n parallel tasks are divided into c sublists and tasks in sublist j are further partitioned into j
groups, power supplies which minimize the schedule length within energy consumption constraint or
the energy consumption within schedule length constraint can be determined. We adopt a three-level
energy/time/power allocation scheme for a given schedule, namely,

• Optimal power supplies to tasks in the same group (theorems 15.9 and 15.12)
• Optimal energy allocation among groups of tasks in the same sublist (theorems 15.10 and 15.13)
• Optimal energy/time allocation among sublists of tasks (theorems 15.11 and 15.14)

15.4.4.1 Minimizing Schedule Length

We first consider optimal power supplies to tasks in the same group. Notice that tasks in the same
group are executed sequentially. In fact, we consider a more general case, i.e., n parallel tasks with sizes
π1, π2, . . . , πn and execution requirements r1, r2, . . . , rn to be executed sequentially one by one. Let

M = π
1/α
1 r1 + π

1/α
2 r2 + · · · + π1/α

n rn.

The following result gives the optimal power supplies when the n parallel tasks are scheduled sequentially.
(Note: Due to space limitation, the proofs of all theorems in this section are omitted, and the interested

reader is referred to [26].)

Theorem 15.9 When n parallel tasks are scheduled sequentially, the schedule length is minimized when
task i is supplied with power pi = (E/M)α/(α−1)/πi, where 1 ≤ i ≤ n. The optimal schedule length is
T = Mα/(α−1)/E1/(α−1).

Now, we consider optimal energy allocation among groups of tasks in the same sublist. Again, we discuss
group-level energy allocation in a more general case, i.e., scheduling n parallel tasks on m processors,
where πi ≤ m/j for all 1 ≤ i ≤ n with j ≥ 1. In this case, the m processors can be partitioned into
j clusters, such that each cluster contains m/j processors. Each cluster of processors are treated as one
unit to be allocated to one task. Assume that the set of n tasks is partitioned into j groups, such that all
the tasks in group k are executed on cluster k, where 1 ≤ k ≤ j. Let Mk denote the total π

1/α
i ri of the

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 354 2011-7-29

�

�

�

�

�

�

354 Handbook of Energy-Aware and Green Computing

tasks in group k. For a given partition of the n tasks into j groups, we are seeking power supplies that
minimize the schedule length. Let Ek be the energy consumed by all the tasks in group k. The following
result characterizes the optimal power supplies.

Theorem 15.10 For a given partition M1, M2, . . . , Mj of n parallel tasks into j groups on a multiprocessor
computer partitioned into j clusters, the schedule length is minimized when task i in group k is supplied with
power pi = (Ek/Mk)

α/(α−1)/πi, where

Ek =
(

Mα
k

Mα
1 + Mα

2 + · · · + Mα
j

)
E,

for all 1 ≤ k ≤ j. The optimal schedule length is

T =
(

Mα
1 + Mα

2 + · · · + Mα
j

E

)1/(α−1)

,

for the previously mentioned power supplies.

To use algorithm Hc-A to solve the problem of minimizing schedule length with energy consumption
constraint E, we need to allocate the available energy E to the c sublists. We use E1, E2, . . . , Ec to represent
an energy allocation to the c sublists, where sublist j consumes energy Ej, and E1 + E2 + · · · + Ec = E.
By using any of the list scheduling algorithms to schedule tasks in sublist j, we get a partition of the tasks
in sublist j into j groups. Let Rj be the total execution requirement of tasks in sublist j, and Rj,k be the
total execution requirement of tasks in group k, and Mj,k be the total π

1/α
i ri of tasks in group k, where

1 ≤ k ≤ j. Theorem 15.11 provides optimal energy allocation to the c sublists for minimizing schedule
length with energy consumption constraint in scheduling parallel tasks by using scheduling algorithms
Hc-A, where A is a list scheduling algorithm. The theorem also gives the performance bound when
algorithms Hc-A are used to solve the problem of minimizing schedule length with energy consumption
constraint.

Theorem 15.11 For a given partition Mj,1, Mj,2, . . . , Mj,j of the tasks in sublist j into j groups produced by
a list scheduling algorithm A, where 1 ≤ j ≤ c, and an energy allocation E1, E2, . . . , Ec to the c sublists, the
length of the schedule produced by algorithm Hc-A is

THc-A =
c∑

j=1

(
Mα

j,1 + Mα
j,2 + · · · + Mα

j,j

Ej

)1/(α−1)

.

The energy allocation E1, E2, . . . , Ec which minimizes THc-A is

Ej =
⎛
⎝ N1/α

j

N1/α
1 + N1/α

2 + · · · + N1/α
c

⎞
⎠ E,

where Nj = Mα
j,1 + Mα

j,2 + · · · + Mα
j,j , for all 1 ≤ j ≤ c, and the minimized schedule length is

THc-A =
(

N1/α
1 + N1/α

2 + · · · + N1/α
c

)α/(α−1)

E1/(α−1)
,

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 355 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 355

by using the previous energy allocation. The performance ratio is βHc-A ≤ BHc-A, where

BHc-A =
⎛
⎜⎝

(
N1/α

1 + N1/α
2 + · · · + N1/α

c

)α

m(W/m)α

⎞
⎟⎠

1/(α−1)

.

Furthermore, we have

BHc-A ≈
⎛
⎝

⎛
⎝ c∑

j=1

Rj

j

(
2j + 1
2j + 2

)1/α
⎞
⎠

/ (
W
m

)⎞
⎠

α/(α−1)

.

Theorems 15.10 and 15.11 give the power supply to the task i in group k of sublist j as

1
πi

(Ej,k

Mj,k

)α/(α−1)

= 1
πi⎛

⎝
(

Mα
j,k

Mα
j,1 + Mα

j,2 + · · · + Mα
j,j

) ⎛
⎝ N1/α

j

N1/α
1 + N1/α

2 + · · · + N1/α
c

⎞
⎠ E

Mj,k

⎞
⎠

α/(α−1)

,

for all 1 ≤ j ≤ c and 1 ≤ k ≤ j.

15.4.4.2 Minimizing Energy Consumption

The following result gives the optimal power supplies when n parallel tasks are scheduled sequentially.

Theorem 15.12 When n parallel tasks are scheduled sequentially, the total energy consumption is min-
imized when task i is supplied with power pi = (M/T)α/πi, where 1 ≤ i ≤ n. The minimum energy
consumption is E = Mα/Tα−1.

The following result gives the optimal power supplies that minimize energy consumption for a given
partition of n tasks into j groups on a multiprocessor computer.

Theorem 15.13 For a given partition M1, M2, . . . , Mj of n parallel tasks into j groups on a multiprocessor
computer partitioned into j clusters, the total energy consumption is minimized when task i in group k is
executed with power pi = (Mk/T)α/πi, where 1 ≤ k ≤ j. The minimum energy consumption is

E = Mα
1 + Mα

2 + · · · + Mα
j

Tα−1

for the previously mentioned power supplies.

To use algorithm Hc-A to solve the problem of minimizing energy consumption with schedule length
constraint T, we need to allocate the time T to the c sublists. We use T1, T2, . . . , Tc to represent a time alloca-
tion to the c sublists, where tasks in sublist j are executed within deadline Tj, and T1 + T2 + · · · + Tc = T.
Theorem 15.14 provides optimal time allocation to the c sublists for minimizing energy consump-
tion with schedule length constraint in scheduling parallel tasks by using scheduling algorithms Hc-A,
where A is a list scheduling algorithm. The theorem also gives the performance bound when algo-
rithms Hc-A is used to solve the problem of minimizing energy consumption with schedule length
constraint.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 356 2011-7-29

�

�

�

�

�

�

356 Handbook of Energy-Aware and Green Computing

Theorem 15.14 For a given partition Mj,1, Mj,2, . . . , Mj,j of the tasks in sublist j into j groups produced
by a list scheduling algorithm A, where 1 ≤ j ≤ c, and a time allocation T1, T2, . . . , Tc to the c sublists, the
amount of energy consumed by algorithm Hc-A is

EHc-A =
c∑

j=1

(
Mα

j,1 + Mα
j,2 + · · · + Mα

j,j

Tα−1
j

)
.

The time allocation T1, T2, . . . , Tc which minimizes EHc-A is

Tj =
⎛
⎝ N1/α

j

N1/α
1 + N1/α

2 + · · · + N1/α
c

⎞
⎠ T,

where Nj = Mα
j,1 + Mα

j,2 + · · · + Mα
j,j , for all 1 ≤ j ≤ c, and the minimized energy consumption is

EHc-A =
(

N1/α
1 + N1/α

2 + · · · + N1/α
c

)α

Tα−1 ,

by using the previous time allocation. The performance ratio is γHc-A ≤ CHc-A, where

CHc-A =
(

N1/α
1 + N1/α

2 + · · · + N1/α
c

)α

m(W/m)α
.

Furthermore, we have

CHc-A ≈
⎛
⎝

⎛
⎝ c∑

j=1

Rj

j

(
2j + 1
2j + 2

)1/α
⎞
⎠

/ (
W
m

)⎞
⎠

α

.

Theorems 15.13 and 15.14 give the power supply to task i in group k of sublist j as

1
πi

(Mj,k

Tj

)α

= 1
πi

⎛
⎝Mj,k

(
N1/α

1 + N1/α
2 + · · · + N1/α

c

)

N1/α
j T

⎞
⎠

α

,

for all 1 ≤ j ≤ c and 1 ≤ k ≤ j.

15.4.5 Performance Data

In this section, we demonstrate numerical and simulation data for the average-case performance bounds
derived for pre-power-determination algorithms in theorems 15.11 and 15.14.

All parameters are set in the same way as pre-power-determination algorithms.
In Table 15.19, we show the average-case performance-bound BHc-LS. For each combination of the

expected task size π̄ = 10, 20, 30, 40, 50, 60 and the three probability distributions of task sizes, we show
BHc-LS obtained by random sampling as follows. We generate 200 sets of n parallel tasks, find BHc-LS by
using theorem 15.11, and report the average of the 200 values of BHc-LS, which is the experimental value
of BHc-LS. In Table 15.20, we show our approximation of the average-case performance-bound BHc-LS.
These data are obtained by using the same method of Table 15.19.

In Table 15.21, we show the average-case performance-bound CHc-LS. For each combination of the
expected task size π̄ = 10, 20, 30, 40, 50, 60 and the three probability distributions of task sizes, we show
CHc-LS obtained by random sampling as follows. We generate 200 sets of n parallel tasks, find CHc-LS by

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 357 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 357

TABLE 15.19 Simulation Data for BHc-LS

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.1310152 1.0710001 1.2195685
20 1.1374080 1.0998380 1.2254590
30 1.1921506 1.1376307 1.2639101
40 1.3722257 1.2113868 1.2818346
50 1.3957714 1.2486290 1.2907563
60 1.3266285 1.2804629 1.2935460

TABLE 15.20 Simulation Data for the Approximation of BHc-LS

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.1850743 1.0637377 1.3192655
20 1.1495195 1.0823137 1.2730873
30 1.2030697 1.1397329 1.3026445
40 1.4479539 1.2382998 1.3166660
50 1.4619769 1.2776203 1.3207317
60 1.3441788 1.3188035 1.3190466

TABLE 15.21 Simulation Data for CHc-LS

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.2775988 1.1481701 1.4868035
20 1.2942669 1.2084384 1.5021708
30 1.4215784 1.2940830 1.5991783
40 1.8829298 1.4667344 1.6447990
50 1.9496348 1.5596231 1.6669842
60 1.7650820 1.6392893 1.6759810

TABLE 15.22 Simulation Data for the Approximation of CHc-LS

Average Task Size Uniform Distribution Binomial Distribution Geometric Distribution

10 1.4023173 1.1313445 1.7373603
20 1.3197428 1.1711625 1.6161178
30 1.4463168 1.2997302 1.7008003
40 2.0986717 1.5306295 1.7312586
50 2.1356210 1.6311186 1.7435018
60 1.8069105 1.7392907 1.7393141

using theorem 15.14, and report the average of the 200 values of CHc-LS, which is the experimental value
of CHc-LS. In Table 15.22, we show our approximation of the average-case performance-bound CHc-LS.
These data are obtained by using the same method of Table 15.21.

We would like to mention that the 99% confidence interval of all the data in the same table is no more
than ±0.6%.

We have the following observations from our simulations.

• BHc-LS is less than 1.4 and CHc-LS is less than 1.95. Since BHc-LS and CHc-LS only give upper bonds
for the average-case performance ratios, the performance of our heuristic algorithms is even better
and our heuristic algorithms are able to produce solutions very close to optimum.

• The performance of algorithm Hc-A for A other than LS (i.e., LRF, SRF, LSF, SSF, LTF, STF) is
very close (within ±1%) to the performance of algorithm Hc-LS. Since these data do not provide
further insight, they are not shown here.

• Our approximate performance bounds are very accurate.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 358 2011-7-29

�

�

�

�

�

�

358 Handbook of Energy-Aware and Green Computing

It is interesting to compare the performance of pre-power-determination algorithms and post-power-
determination algorithms. We find that algorithm Hc-LS performs better than ET-SIMPLE, ET-GREEDY,
EE-SIMPLE, EE-GREEDY, and is comparable with ES-SIMPLE; however, it performs worse than ES-
GREEDY. Although post-power-determination provides an optimal power allocation for a given schedule,
the performance of Hc-LS is still worse than ES-GREEDY due to the inefficiency of the harmonic system
partition scheme.

15.5 Summary

We have developed a number of pre-power-determination algorithms and post-power-determination
algorithms for energy-aware scheduling of parallel tasks. Our best heuristic algorithms (ES-GREEDY and
ES-GREEDY∗) are able to produce solutions very close to optimum.

It is of great interest to extend our algorithms to other task models, processor models, and scheduling
models described in [27].

Acknowledgment

The material presented in this chapter is based in part upon the author’s work in [26].

References

1. S. Albers, Energy-efficient algorithms, Communications of the ACM, 53(5), 86–96, 2010.
2. H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez, Power-aware scheduling for periodic real-time

tasks, IEEE Transactions on Computers, 53(5), 584–600, 2004.
3. N. Bansal, T. Kimbrel, and K. Pruhs, Dynamic speed scaling to manage energy and temperature,

Proceedings of the 45th IEEE Symposium on Foundation of Computer Science, Rome, Italy, 520–529,
2004.

4. J. A. Barnett, Dynamic task-level voltage scheduling optimizations, IEEE Transactions on Computers,
54(5), 508–520, 2005.

5. L. Benini, A. Bogliolo, and G. De Micheli, A survey of design techniques for system-level dynamic
power management, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(3), 299–316,
2000.

6. D. P. Bunde, Power-aware scheduling for makespan and flow, Proceedings of the 18th ACM Symposium
on Parallelism in Algorithms and Architectures, Cambridge, MA, p. 190–196, 2006.

7. H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, and P. W. H. Wong, Energy efficient
online deadline scheduling, Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, LA, p. 795–804, 2007.

8. A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, Low-power CMOS digital design, IEEE Journal
on Solid-State Circuits, 27(4), 473–484, 1992.

9. S. Cho and R. G. Melhem, On the interplay of parallelization, program performance, and energy
consumption, IEEE Transactions on Parallel and Distributed Systems, 21(3), 342–353, 2010.

10. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation algorithms for bin packing:
A survey, in Approximation Algorithms for NP-Hard Problems, D. S. Hochbaum, ed., PWS Publishing
Company, Boston, MA, 1997.

11. W.-C. Feng, The importance of being low power in high performance computing, Cyber Infrastructure
Watch Quarterly, 1(3), Los Alamos National Laboratory, August 2005.

12. W.-C. Feng and K. W. Cameron, The Green500 list: Encouraging sustainable supercomputing,
Computer, 40(12), 50–55, 2007.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 359 2011-7-29

�

�

�

�

�

�

Algorithms and Analysis of Energy-Efficient Scheduling of Parallel Tasks 359

13. A. Gara, et al., Overview of the Blue Gene/L system architecture, IBM Journal of Research and
Development, 49(2/3), 195–212, 2005.

14. M. R. Garey and D. S. Johnson, Computers and Intractability—A Guide to the Theory of
NP-Completeness, W. H. Freeman, New York, 1979.

15. R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal of Applied Mathematics,
2, 416–429, 1969.

16. S. L. Graham, M. Snir, and C. A. Patterson, eds., Getting up to speed: The future of supercomputing,
Committee on the Future of Supercomputing, National Research Council, National Academies Press,
Washington, DC, 2005.

17. I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, Power optimization of variable-
voltage core-based systems, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 18(12), 1702–1714, 1999.

18. C. Im, S. Ha, and H. Kim, Dynamic voltage scheduling with buffers in low-power multimedia
applications, ACM Transactions on Embedded Computing Systems, 3(4), 686–705, 2004.

19. S. U. Khan and I. Ahmad, A cooperative game theoretical technique for joint optimization of energy
consumption and response time in computational grids, IEEE Transactions on Parallel and Distributed
Systems, 20(3), 346–360, 2009.

20. C. M. Krishna and Y.-H. Lee, Voltage-clock-scaling adaptive scheduling techniques for low power in
hard real-time systems, IEEE Transactions on Computers, 52(12), 1586–1593, 2003.

21. W.-C. Kwon and T. Kim, Optimal voltage allocation techniques for dynamically variable voltage
processors, ACM Transactions on Embedded Computing Systems, 4(1), 211–230, 2005.

22. Y. C. Lee and A. Y. Zomaya, Energy conscious scheduling for distributed computing systems under
different operating conditions, IEEE Transactions on Parallel and Distributed Systems, 272–279, 1999.

23. Y.-H. Lee and C. M. Krishna, Voltage-clock scaling for low energy consumption in fixed-priority
real-time systems, Real-Time Systems, 24(3), 303–317, 2003.

24. K. Li, An average-case analysis of online non-clairvoyant scheduling of independent parallel tasks,
Journal of Parallel and Distributed Computing, 66(5), 617–625, 2006.

25. K. Li, Performance analysis of power-aware task scheduling algorithms on multiprocessor computers
with dynamic voltage and speed, IEEE Transactions on Parallel and Distributed Systems, 19(11),
1484–1497, 2008.

26. K. Li, Energy efficient scheduling of parallel tasks on multiprocessor computers, Journal of
Supercomputing, 2011.AQ1

27. K. Li, Power allocation and task scheduling on multiprocessor computers with energy and time
constraints, Energy Aware Distributed Computing Systems, Y.-C. Lee and A. Zomaya, eds., Wiley
Series on Parallel and Distributed Computing, 2011.

28. M. Li, B. J. Liu, and F. F. Yao, Min-energy voltage allocation for tree-structured tasks, Journal of
Combinatorial Optimization, 11, 305–319, 2006.

29. M. Li, A. C. Yao, and F. F. Yao, Discrete and continuous min-energy schedules for variable voltage
processors, Proceedings of the National Academy of Sciences USA, 103(11), pp. 3983–3987, 2006.

30. M. Li and F. F. Yao, An efficient algorithm for computing optimal discrete voltage schedules, SIAM
Journal on Computing, 35(3), 658–671, 2006.

31. J. R. Lorch and A. J. Smith, PACE: A new approach to dynamic voltage scaling, IEEE Transactions on
Computers, 53(7), 856–869, 2004.

32. R. N. Mahapatra and W. Zhao, An energy-efficient slack distribution technique for multimode
distributed real-time embedded systems, IEEE Transactions on Parallel and Distributed Systems,
16(7), 650–662, 2005.

33. A. J. Martin, Towards an energy complexity of computation, Information Processing Letters, 77,
181–187, 2001.

34. G. Quan and X. S. Hu, Energy efficient DVS schedule for fixed-priority real-time systems, ACM
Transactions on Embedded Computing Systems, 6(4), Article no. 29, 2007.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 360 2011-7-29

�

�

�

�

�

�

360 Handbook of Energy-Aware and Green Computing

35. C. Rusu, R. Melhem, D. Mossé, Maximizing the system value while satisfying time and energy
constraints, Proceedings of the 23rd IEEE Real-Time Systems Symposium, Austin, TX, pp. 256–265,
2002.

36. D. Shin and J. Kim, Power-aware scheduling of conditional task graphs in real-time multiprocessor
systems, Proceedings of the International Symposium on Low Power Electronics and Design, Fukuoka,
Japan, pp. 408–413, 2003.

37. D. Shin, J. Kim, and S. Lee, Intra-task voltage scheduling for low-energy hard real-time applications,
IEEE Design & Test of Computers, 18(2), 20–30, 2001.

38. M. R. Stan and K. Skadron, Guest editors’ introduction: Power-aware computing, IEEE Computer,
36(12) 35–38, 2003.

39. O. S. Unsal and I. Koren, System-level power-aware design techniques in real-time systems,
Proceedings of the IEEE, 91(7), 1055–1069, 2003.

40. V. Venkatachalam and M. Franz, Power reduction techniques for microprocessor systems, ACM
Computing Surveys, 37(3), 195–237, 2005.

41. M. Weiser, B. Welch, A. Demers, and S. Shenker, Scheduling for reduced CPU energy, Proceedings of
the First USENIX Symposium on Operating Systems Design and Implementation, San Diego, CA, pp.
13–23, 1994.

42. P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, and R. Lauwereins, Energy-aware
runtime scheduling for embedded-multiprocessor SOCs, IEEE Design & Test of Computers, 18(5),
46–58, 2001.

43. F. Yao, A. Demers, and S. Shenker, A scheduling model for reduced CPU energy, Proceedings of the
36th IEEE Symposium on Foundations of Computer Science, Washington DC, pp. 374–382, 1995.

44. H.-S. Yun and J. Kim, On energy-optimal voltage scheduling for fixed-priority hard real-time systems,
ACM Transactions on Embedded Computing Systems, 2(3), 393–430, 2003.

45. B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, Theoretical and practical limits of dynamic voltage
scaling, Proceedings of the 41st Design Automation Conference, San Diego, CA, pp. 868–873, 2004.

46. X. Zhong and C.-Z. Xu, Energy-aware modeling and scheduling for dynamic voltage scaling with
statistical real-time guarantee, IEEE Transactions on Computers, 56(3), 358–372, 2007.

47. D. Zhu, R. Melhem, and B. R. Childers, Scheduling with dynamic voltage/speed adjustment using
slack reclamation in multiprocessor real-time systems, IEEE Transactions on Parallel and Distributed
Systems, 14(7), 686–700, 2003.

48. D. Zhu, D. Mossé, and R. Melhem, Power-aware scheduling for AND/OR graphs in real-time systems,
IEEE Transactions on Parallel and Distributed Systems, 15(9), 849–864, 2004.

49. J. Zhuo and C. Chakrabarti, Energy-efficient dynamic task scheduling algorithms for DVS systems,
ACM Transactions on Embedded Computing Systems, 7(2), Article no. 17, 2008.

�

�

Ranka/Handbook of Energy-Aware and Green Computing K12293_C015 Page proof Page 361 2011-7-29

�

�

�

�

�

�

AUTHOR QUERY

[AQ1] Please provide volume number and page numbers for the Ref. [26]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

