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Energy-Efficient and High-Performance
Processing of Large-Scale Parallel Applications
in Data Centers

Keqin Li

1 Introduction1

1.1 Motivation2

Next generation supercomputers require drastically better energy efficiency to allow3

these systems to scale to exaflop computing levels. Virtually all major processor ven-4

dors and companies such as AMD, Intel, and IBM are developing high-performance5

and highly energy-efficient multicore processors and dedicating their current and6

future development and manufacturing to multicore products. It is conceivable that7

future multicore architectures can hold dozens or even hundreds of cores on a single8

die [3]. For instance, Adapteva’s Epiphany scalable manycore architecture consists9

of hundreds and thousands of RISC microprocessors, all sharing a single flat and10

unobstructed memory hierarchy, which allows cores to communicate with each other11

very efficiently with low core-to-core communication overhead. The number of cores12

in this new type of massively parallel multicore architecture can be up to 4096 [1].13

The Epiphany manycore architecture has been designed to maximize floating point14

computing power with the lowest possible energy consumption, aiming to deliver15

100 and more gigaflops of performance at under 2 watts of power [4].16

Multicore processors provide an ultimate solution to power management and17

performance optimization in current and future high-performance computing. A mul-18

ticore processor contains multiple independent processors, called cores, integrated19

onto a single circuit die (known an a chip multiprocessor or CMP).An m-core proces-20

sor achieves the same performance of a single-core processor whose clock frequency21

is m times faster, but consumes only 1/mφ−1 (φ ≥ 3) of the energy of the single-core22
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processor. The performance gain from a multicore processor is mainly from paral-23

lelism, i.e., multiple cores’ working together to achieve the performance of a single24

faster and more energy-consuming processor. A multicore processor implements25

multiprocessing in a single physical package. It can implement parallel architectures26

such as superscalar, multithreading, VLIW, vector processing, SIMD, and MIMD.27

Intercore communications are supported by message passing or shared memory. The28

degree of parallelism can increase together with the number m of cores. When m29

is large, a multicore processor is also called a manycore or a massively multicore30

processor.31

Modern information technology is developed into the era of cloud computing,32

which has received considerable attention in recent years and is widely accepted as33

a promising and ultimate way of managing and improving the utilization of data34

and computing resources and delivering various computing and communication ser-35

vices. However, enterprise data centers will spend several times as much on energy36

costs as on hardware and server management and administrative costs. Furthermore,37

many data centers are realizing that even if they are willing to pay for more power38

consumption, capacity constraints on the electricity grid mean that additional power39

is unavailable. Energy efficiency is one of the most important issues for large-scale40

computing systems in current and future data centers. Cloud computing can be an41

inherently energy-efficient technology, due to centralized energy management of42

computations on large-scale computing systems, instead of distributed and individ-43

ualized applications without efficient energy consumption control [10]. Moreover,44

such potential for significant energy savings can be fully explored with balanced45

consideration of system performance and energy consumption.46

As in all computing systems, increasing the utilization of a multicore processor47

becomes a critical issue, as the number of cores increases and as multicore processors48

are more and more widely employed in data centers. One effective way of increasing49

the utilization is to take the approach of multitasking, i.e., allowing multiple tasks50

to be executed simultaneously in a multicore processor. Such sharing of computing51

resources not only improves system utilization, but also improves system perfor-52

mance, because more users’ requests can be processed in the same among of time.53

Such performance enhancement is very important in optimizing the quality of ser-54

vice in a data center for cloud computing, where multicore processors are employed55

as servers. Partitioning and sharing of a large multicore processor among multiple56

tasks is particularly important for large-scale scientific computations and business57

applications, where each computation or application consists of a large number of58

parallel tasks, and each parallel task requires several cores simultaneously for its59

execution.60

When a multicore processor in a data center for cloud computing is shared by a61

large number of parallel tasks of a large-scale parallel application simultaneously, we62

are facing the problem of allocating the cores to the tasks and schedule the tasks, such63

that the system performance is optimized or the energy consumption is minimized.64

Furthermore, such core allocation and task scheduling should be conducted with en-65

ergy constraints or performance constraints. Such optimization problems need to be66

formulated and efficient algorithms need to be developed and their performance need67
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to be analyzed and evaluated. The motivation of the present chapter is to investigate68

energy-efficient and high-performance processing of large-scale parallel applications69

on multicore processors in data centers. In particular, we study low-power scheduling70

of precedence constrained parallel tasks on multicore processors. Our approach is to71

define combinatorial optimization problems, develop heuristic algorithms, analyze72

their performance, and validate our analytical results by simulations.73

1.2 Our Contributions74

In this chapter, we address scheduling precedence constrained parallel tasks on75

multicore processors with dynamically variable voltage and speed as combinatorial76

optimization problems. In particular, we define the problem of minimizing schedule77

length with energy consumption constraint and the problem of minimizing energy78

consumption with schedule length constraint on multicore processors. Our schedul-79

ing problems are defined in such a way that the energy-delay product is optimized80

by fixing one factor and minimizing the other. The first problem emphasizes energy81

efficiency, while the second problem emphasizes high performance.82

We notice that energy-efficient and high-performance scheduling of parallel tasks83

with precedence constraints has not been investigated before as combinatorial op-84

timization problems. Furthermore, all existing studies are on scheduling sequential85

tasks which require one processor to execute, or independent tasks which have86

no precedence constraint. Our study in this chapter makes some initial attempt to87

energy-efficient and high-performance scheduling of parallel tasks with precedence88

constraints on multicore processors with dynamic voltage and speed.89

Our scheduling problems contain four nontrivial subproblems, namely, prece-90

dence constraining, system partitioning, task scheduling, and power supplying. Each91

subproblem should be solved efficiently, so that heuristic algorithms with overall92

good performance can be developed. These subproblems and our strategies to solve93

them are described as follows.94

• Precedence Constraining—Precedence constraints make design and analysis of95

heuristic algorithms more difficult. We propose to use level-by-level scheduling96

algorithms to deal with precedence constraints. Since tasks in the same level are97

independent of each other, they can be scheduled by any of the efficient algorithms98

previously developed for scheduling independent tasks. Such decomposition of99

scheduling precedence constrained tasks into scheduling levels of independent100

tasks makes analysis of level-by-level scheduling algorithms much easier and101

clearer than analysis of other algorithms.102

• System Partitioning—Since each parallel task requests for multiple cores for its103

execution, a multicore processor should be partitioned into clusters of cores to be104

assigned to the tasks. We use the harmonic system partitioning and core allocation105

scheme, which divides a multicore processor into clusters of equal sizes and106

schedules tasks of similar sizes together to increase core utilization.107
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• Task Scheduling—Parallel tasks are scheduled together with system partition-108

ing and precedence constraining, and it is NP-hard even scheduling independent109

sequential tasks without system partitioning and precedence constraint. Our ap-110

proach is to divide a list (i.e., a level) of tasks into sublists, such that each sublist111

contains tasks of similar sizes which are scheduled on clusters of equal sizes.112

Scheduling such parallel tasks on clusters is no more difficult than scheduling113

sequential tasks and can be performed by list scheduling algorithms.114

• Power Supplying—Tasks should be supplied with appropriate powers and exe-115

cution speeds, such that the schedule length is minimized by consuming given116

amount of energy or the energy consumed is minimized without missing a given117

deadline. We adopt a four-level energy/time/power allocation scheme for a given118

schedule, namely, optimal energy/time allocation among levels of tasks (Theo-119

rems 6 and 10), optimal energy/time allocation among sublists of tasks in the120

same level (Theorems 5 and 9), optimal energy allocation among groups of tasks121

in the same sublist (Theorems 4 and 8), and optimal power supplies to tasks in122

the same group (Theorems 3 and 7).123

The above decomposition of our optimization problems into four subproblems makes124

design and analysis of heuristic algorithms tractable. A unique feature of our work125

is to compare the performance of our algorithms with optimal solutions analytically126

and validate our results experimentally, not to compare the performance of heuristic127

algorithms among themselves only experimentally. Such an approach is consistent128

with traditional scheduling theory.129

The remainder of the chapter is organized as follows. In Sect. 2, we review130

related research in the literature. In Sect. 3, we present background information,131

including the power and task models, definitions of our problems, and lower bounds132

for optimal solutions. In Sect. 4, we describe our methods to deal with precedence133

constraints, system partitioning, and task scheduling. In Sect. 5, we develop our134

optimal four-level energy/time/power allocation scheme for minimizing schedule135

length and minimizing energy consumption, analyze the performance of our heuristic136

algorithms, and derive accurate performance bounds. In Sect. 6, we demonstrate137

simulation data, which validate our analytical results. In Sect. 7, we summarize the138

chapter and give further research directions.139

2 Related Work140

Increased energy consumption causes severe economic, ecological, and technical141

problems. Power conservation is critical in many computation and communication142

environments and has attracted extensive research activities. Reducing processor en-143

ergy consumption has been an important and pressing research issue in recent years.144

There has been increasing interest and importance in developing high-performance145

and energy-efficient computing systems [15–17]. There exists an explosive body of146

literature on power-aware computing and communication. The reader is referred to147

[5, 9, 45, 46] for comprehensive surveys.148

Software techniques for power reduction are supported by a mechanism called149

dynamic voltage scaling [2]. Dynamic power management at the operating system150
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level refers to supply voltage and clock frequency adjustment schemes implemented151

while tasks are running. These energy conservation techniques explore the oppor-152

tunities for tuning the energy-delay tradeoff [44]. In a pioneering paper [47], the153

authors first proposed the approach to energy saving by using fine grain control of154

CPU speed by an operating system scheduler. In a subsequent work [49], the authors155

analyzed offline and online algorithms for scheduling tasks with arrival times and156

deadlines on a uniprocessor computer with minimum energy consumption. These re-157

search have been extended in [7, 12, 25, 33–35, 50] and inspired substantial further158

investigation, much of which focus on real-time applications. In [6, 20, 21, 24, 27,159

36–40, 42, 43, 48, 52–55] and many other related work, the authors addressed the160

problem of scheduling independent or precedence constrained tasks on uniprocessor161

or multiprocessor computers where the actual execution time of a task may be less162

than the estimated worst-case execution time. The main issue is energy reduction by163

slack time reclamation.164

There are two considerations in dealing with the energy-delay tradeoff. On the165

one hand, in high-performance computing systems, power-aware design techniques166

and algorithms attempt to maximize performance under certain energy consumption167

constraints. On the other hand, low-power and energy-efficient design techniques168

and algorithms aim to minimize energy consumption while still meeting certain169

performance goals. In [8], the author studied the problems of minimizing the ex-170

pected execution time given a hard energy budget and minimizing the expected171

energy expenditure given a hard execution deadline for a single task with random-172

ized execution requirement. In [11], the author considered scheduling jobs with173

equal requirements on multiprocessors. In [14], the authors studied the relationship174

among parallelization, performance, and energy consumption, and the problem of175

minimizing energy-delay product. In [18], the authors addressed joint minimization176

of carbon emission and maximization of profit. In [23, 26], the authors attempted177

joint minimization of energy consumption and task execution time. In [41], the au-178

thors investigated the problem of system value maximization subject to both time179

and energy constraints. In [56], the authors considered task scheduling on clusters180

with significant communication costs.181

In [28–32], we addressed energy and time constrained power allocation and task182

scheduling on multiprocessors with dynamically variable voltage and frequency and183

speed and power as combinatorial optimization problems. In [28, 31], we studied184

the problems of scheduling independent sequential tasks. In [29, 32], we studied the185

problems of scheduling independent parallel tasks. In [30], we studied the problems186

of scheduling precedence constrained sequential tasks. In this chapter, we study the187

problems of scheduling precedence constrained parallel tasks.188

3 Preliminaries189

In this section, we present background information, including the power and task190

models, definitions of our problems, and lower bounds for optimal solutions.191
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3.1 Power and Task Models192

Power dissipation and circuit delay in digital CMOS circuits can be accurately mod-193

eled by simple equations, even for complex microprocessor circuits. CMOS circuits194

have dynamic, static, and short-circuit power dissipation; however, the dominant195

component in a well designed circuit is dynamic power consumption p (i.e., the196

switching component of power), which is approximately p = aCV 2f , where a is197

an activity factor, C is the loading capacitance, V is the supply voltage, and f is198

the clock frequency [13]. In the ideal case, the supply voltage and the clock fre-199

quency are related in such a way that V ∝ f φ for some constant φ > 0 [51]. The200

processor execution speed s is usually linearly proportional to the clock frequency,201

namely, s ∝ f . For ease of discussion, we will assume that V = bf φ and s = cf ,202

where b and c are some constants. Hence, we know that power consumption is203

p = aCV 2f = ab2Cf 2φ+1 = (ab2C/c2φ+1)s2φ+1 = ξsα , where ξ = ab2C/c2φ+1
204

and α = 2φ + 1. For instance, by setting b = 1.16, aC = 7.0, c = 1.0, φ = 0.5,205

α = 2φ + 1 = 2.0, and ξ = ab2C/cα = 9.4192, the value of p calculated by the206

equation p = aCV 2f = ξsα is reasonably close to that in [22] for the Intel Pentium207

M processor.208

Assume that we are given a parallel computation or application with a set of n209

precedence constrained parallel tasks. The precedence constraints can be specified as210

a partial order ≺ over the set of tasks {1, 2, ..., n}, or a task graph G = (V , E), where211

V = {1, 2, ..., n} is the set of tasks and E is a set of arcs representing the precedence212

constraints. The relationship i ≺ j , or an arc (i, j ) from i to j , means that task i must213

be executed before task j , i.e., task j cannot be executed until task i is completed. A214

parallel task i, where 1 ≤ i ≤ n, is specified by πi and ri explained below. The integer215

πi is the number of cores requested by task i, i.e., the size of task i. It is possible that216

in executing task i, the πi cores may have different execution requirements (i.e., the217

numbers of core cycles or the numbers of instructions executed on the cores) due to218

imbalanced load distribution. Let ri represent the maximum execution requirement219

on the πi cores executing task i. The product wi = πiri is called the work of task i.220

We are also given a multicore processor with m homogeneous and identical cores.221

To execute a task i, any πi of the m cores of the multicore processor can be allocated222

to task i. Several tasks can be executed simultaneously on the multicore processor,223

with the restriction that the total number of active cores (i.e., cores allocated to tasks224

being executed) at any moment cannot exceed m.225

In a more general setting, we can consider scheduling u parallel applications226

represented by task graphs G1, G2, ..., Gu respectively, on v multicore processors227

P1, P2, ..., Pv in a data center with m1, m2, ..., mv cores respectively (see Fig. 1).228

Notice that multiple task graphs can be viewed as a single task graph with discon-229

nected components. Therefore, our task model can accommodate multiple parallel230

applications. However, scheduling on multiple multicore processors is significantly231

different from scheduling on a single multicore processor. In this chapter, we fo-232

cus on scheduling parallel applications on a single multicore processor, and leave233



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 1 Dispatch Date: 04-12-2014 Proof No: 1

Energy-Efficient and High-Performance Processing of Large-Scale . . . 7

Fig. 1 Processing of parallel applications in a data center

the study of scheduling parallel applications on multiple multicore processors as a234

further research topic.235

We use pi to represent the power supplied to task i and si to represent the speed236

to execute task i. It is noticed that the constant ξ in pi = ξsα
i only linearly scales237

the value of pi . For ease of discussion, we will assume that pi is simply sα
i , where238

si = p
1/α

i is the execution speed of task i. The execution time of task i is ti =239

ri/si = ri/p
1/α

i . Note that all the πi cores allocated to task i have the same speed si240

for duration ti , although some of the πi cores may be idle for some time. The energy241
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consumed to execute task i is ei = πipiti = πirip
1−1/α

i = πiris
α−1
i = wi s

α−1
i ,242

where wi = πiri is the amount of work to be performed for task i.243

3.2 Problems244

Our combinatorial optimization problems solved in this chapter are formally defined245

as follows.246

Given n parallel tasks with precedence constraints ≺, task sizes π1, π2, ..., πn,247

and task execution requirements r1, r2, ..., rn, the problem of minimizing schedule248

length with energy consumption constraint E on an m-core processor is to find the249

power supplies p1, p2, ..., pn (equivalently, the task execution speeds s1, s2, ..., sn)250

and a nonpreemptive schedule of the n tasks on the m-core processor, such that the251

schedule length is minimized and that the total energy consumed does not exceed252

E. This problem aims at achieving energy-efficient processing of large-scale parallel253

applications with the best possible performance.254

Given n parallel tasks with precedence constraints ≺, task sizes π1, π2, ..., πn,255

and task execution requirements r1, r2, ..., rn, the problem of minimizing energy256

consumption with schedule length constraint T on an m-core processor is to find the257

power supplies p1, p2, ..., pn (equivalently, the task execution speeds s1, s2, ..., sn) and258

a nonpreemptive schedule of the n tasks on the m-core processor, such that the total259

energy consumption is minimized and that the schedule length does not exceed T .260

This problem aims at achieving high-performance processing of large-scale parallel261

applications with the lowest possible energy consumption.262

The above two problems are NP-hard even when the tasks are independent (i.e.,263

≺= ∅) and sequential (i.e., πi = 1 for all 1 ≤ i ≤ n) [28]. Thus, we will seek fast264

heuristic algorithms with near-optimal performance.265

3.3 Lower Bounds266

Let W = w1 + w2 + · · · + wn = π1r1 + π2r2 + · · · + πnrn denote the total amount267

of work to be performed for the n parallel tasks. We define T ∗ to be the length of268

an optimal schedule, and E∗ to be the minimum amount of energy consumed by an269

optimal schedule.270

The following theorem gives a lower bound for the optimal schedule length T ∗
271

for the problem of minimizing schedule length with energy consumption constraint.272

Theorem 1 For the problem of minimizing schedule length with energy consumption
constraint in scheduling parallel tasks, we have the following lower bound,

T ∗ ≥
(
m

E

(
W

m

)α)1/(α−1)

for the optimal schedule length.273
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Table 1 Summary of our methods to solve the subproblems

Subproblem Method

Precedence constraining Level-by-level scheduling algorithms

System partitioning Harmonic system partitioning and core allocation scheme

Task scheduling List scheduling algorithms

Power supplying Four-level energy/time/power allocation scheme

The following theorem gives a lower bound for the minimum energy consump-274

tion E∗ for the problem of minimizing energy consumption with schedule length275

constraint.276

Theorem 2 For the problem of minimizing energy consumption with schedule length
constraint in scheduling parallel tasks, we have the following lower bound,

E∗ ≥ m

(
W

m

)α 1

T α−1

for the minimum energy consumption.277

The above lower bound theorems were proved for independent parallel tasks278

[29], and therefore, are also applicable to precedence constrained parallel tasks. The279

significance of these lower bounds is that they can be used to evaluate the performance280

of heuristic algorithms when their solutions are compared with optimal solutions (see281

Sects. 5.1.4 and 5.2.4).282

4 Heuristic Algorithms283

In this section, we describe our methods to deal with precedence constraints, sys-284

tem partitioning, and task scheduling, i.e., our methods to solve the first three285

subproblems. Table 1 gives a summary of our strategies to solve the subproblems.286

4.1 Precedence Constraining287

Recall that a set of n parallel tasks with precedence constraints can be represented by288

a partial order ≺ on the tasks, i.e., for two tasks i and j , if i ≺ j , then task j cannot289

start its execution until task i finishes. It is clear that the n tasks and the partial order290

≺ can be represented by a directed task graph, in which, there are n vertices for the291

n tasks and (i, j ) is an arc if and only if i ≺ j . We call j a successor of i and i a292

predecessor of j . Furthermore, such a task graph must be a directed acyclic graph293

(dag). An arc (i, j ) is redundant if there exists k such that (i, k) and (k, j ) are also294

arcs in the task graph. We assume that there is no redundant arc in the task graph.295
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A dag can be decomposed into levels, with v being the number of levels. Tasks296

with no predecessors (called initial tasks) constitute level 1. Generally, a task i is in297

level l if the number of nodes on the longest path from some initial task to task i is298

l, where 1 ≤ l ≤ v. Note that all tasks in the same level are independent of each299

other, and hence, they can be scheduled by any of the algorithms (e.g., those from300

[29, 32]) for scheduling independent parallel tasks. Algorithm LL-Hc-A, where A301

is a list scheduling algorithm, standing for level-by-level scheduling with algorithm302

Hc-A, schedules the n tasks level by level in the order level 1, level 2, ..., level v.303

Tasks in level l +1 cannot start their execution until all tasks in level l are completed.304

For each level l, where 1 ≤ l ≤ v, we use algorithm Hc-A developed in [29] to305

generate its schedule (see Fig. 2).306

The details of algorithm Hc-A is given in the next two subsections.307

4.2 System Partitioning308

Our algorithms for scheduling independent parallel tasks are called Hc-A, where309

“Hc” stands for the harmonic system partitioning scheme with parameter c to be310

presented below, and A is a list scheduling algorithm to be presented in the next311

subsection.312

To schedule a list of independent parallel tasks in level l, algorithm Hc-A divides
the list into c sublists (l, 1), (l, 2), ..., (l, c) according to task sizes (i.e., numbers of
cores requested by tasks), where c ≥ 1 is a positive integer constant. For 1 ≤ j ≤
c − 1, we define sublist (l, j ) to be the sublist of tasks with

m

j + 1
< πi ≤ m

j
,

i.e., sublist (l, j ) contains all tasks whose sizes are in the interval Ij = (m/(j + 1),313

m/j ). We define sublist (l, c) to be the sublist of tasks with 0 < πi ≤ m/c, i.e., sublist314

(l, c) contains all tasks whose sizes are in the interval Ic = (0, m/c). The partition315

of (0, m) into intervals I1, I2, ..., Ij , ..., Ic is called the harmonic system partitioning316

scheme whose idea is to schedule tasks of similar sizes together. The similarity is317

defined by the intervals I1, I2, ..., Ij , ..., Ic. For tasks in sublist (l, j ), core utilization318

is higher than j/(j + 1), where 1 ≤ j ≤ c − 1. As j increases, the similarity319

among tasks in sublist (l, j ) increases and core utilization also increases. Hence, the320

harmonic system partitioning scheme is very good at handling small tasks.321

Algorithm Hc-A produces schedules of the sublists sequentially and separately322

(see Fig. 2). To schedule tasks in sublist (l, j ), where 1 ≤ j ≤ c, the m cores are323

partitioned into j clusters and each cluster contains m/j cores. Each cluster of cores324

is treated as one unit to be allocated to one task in sublist (l, j ). This is basically the325

harmonic system partitioning and core allocation scheme. The justification of the326

scheme is from the observation that there can be at most j parallel tasks from sublist327
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Fig. 2 Scheduling of level l

(l, j ) to be executed simultaneously. Therefore, scheduling parallel tasks in sublist328

(l, j ) on the j clusters, where each task i has core requirement πi and execution329

requirement ri , is equivalent to scheduling a list of sequential tasks on j processors330

where each task i has execution requirement ri . It is clear that scheduling of a list of331
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sequential tasks on j processors (i.e., scheduling of a sublist (l, j ) of parallel tasks on332

j clusters) can be accomplished by using algorithm A, where A is a list scheduling333

algorithm to be elaborated in the next subsection.334

4.3 Task Scheduling335

When a multicore processor with m cores is partitioned into j ≥ 1 clusters,336

scheduling tasks in sublist (l, j ) is essentially dividing sublist (l, j ) into j groups337

(l, j , 1), (l, j , 2), ..., (l, j , j ) of tasks, such that each group of tasks are executed on338

one cluster (see Fig. 2). Such a partition of sublist (l, j ) into j groups is essentially339

a schedule of the tasks in sublist (l, j ) on m cores with j clusters. Once a partition340

(i.e., a schedule) is determined, we can use the methods in the next section to find341

optimal energy/time allocation and power supplies.342

We propose to use the list scheduling algorithm and its variations to solve the task343

scheduling problem. Tasks in sublist (l, j ) are scheduled on j clusters by using the344

classic list scheduling algorithm [19] and by ignoring the issue of power supplies345

and execution speeds. In other words, the task execution times are simply the task346

execution requirements r1, r2, ..., rn, and tasks are assigned to the j clusters (i.e.,347

groups) by using the list scheduling algorithm, which works as follows to schedule348

a list of tasks 1, 2, 3 · · · .349

• List Scheduling (LS): Initially, task k is scheduled on cluster (or group) k, where350

1 ≤ k ≤ j , and tasks 1, 2, · · · , j are removed from the list. Upon the completion351

of a task k, the first unscheduled task in the list, i.e., task j + 1, is removed from352

the list and scheduled to be executed on cluster k. This process repeats until all353

tasks in the list are finished.354

Algorithm LS has many variations, depending on the strategy used in the initial355

ordering of the tasks. We mention several of them here.356

• Largest Requirement First (LRF): This algorithm is the same as the LS algorithm,357

except that the tasks are arranged such that r1 ≥ r2 ≥ · · · ≥ rn.358

• Smallest Requirement First (SRF): This algorithm is the same as the LS algorithm,359

except that the tasks are arranged such that r1 ≤ r2 ≤ · · · ≤ rn.360

• Largest Size First (LSF): This algorithm is the same as the LS algorithm, except361

that the tasks are arranged such that π1 ≥ π2 ≥ · · · ≥ πn.362

• Smallest Size First (SSF): This algorithm is the same as the LS algorithm, except363

that the tasks are arranged such that π1 ≤ π2 ≤ · · · ≤ πn.364

• Largest Task First (LTF): This algorithm is the same as the LS algorithm, except365

that the tasks are arranged such that π
1/α

1 r1 ≥ π
1/α

2 r2 ≥ · · · ≥ π
1/α
n rn.366

• Smallest Task First (STF): This algorithm is the same as the LS algorithm, except367

that the tasks are arranged such that π
1/α

1 r1 ≤ π
1/α

2 r2 ≤ · · · ≤ π
1/α
n rn.368

We call algorithm LS and its variations simply as list scheduling algorithms.369
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Table 2 Overview of the optimal energy/time/power allocation scheme

Level Method Theorems

1 Optimal power supplies to tasks in the same group 3 and 7

2 Optimal energy allocation among groups of tasks in the same sublist 4 and 8

3 Optimal energy/time allocation among sublists of tasks in the same level 5 and 9

4 Optimal energy/time allocation among levels of tasks 6 and 10

5 Optimal Energy/Time/Power Allocation370

In this section, we develop our optimal four-level energy/time/power allocation371

scheme for minimizing schedule length and minimizing energy consumption, i.e.,372

our method to solve the last subproblem. We also analyze the performance of our373

heuristic algorithms and derive accurate performance bounds.374

Once the n precedence constrained parallel tasks are decomposed into v375

levels, 1, 2, ..., v, and tasks in each level l are divided into c sublists376

(l, 1), (l, 2), ..., (l, c), and tasks in each sublist (l, j ) are further partitioned into j377

groups (l, j , 1), (l, j , 2), ..., (l, j , j ), power supplies to the tasks which minimize378

the schedule length within energy consumption constraint or the energy consump-379

tion within schedule length constraint can be determined. We adopt a four-level380

energy/time/power allocation scheme for a given schedule, namely,381

• Level 1—optimal power supplies to tasks in the same group (l, j , k) (Theorems 3382

and 7);383

• Level 2—optimal energy allocation among groups (l, j , 1), (l, j , 2), ..., (l, j , j ) of384

tasks in the same sublist (l, j ) (Theorems 4 and 8);385

• Level 3—optimal energy/time allocation among sublists (l, 1), (l, 2), ..., (l, c) of386

tasks in the same level l (Theorems 5 and 9);387

• Level 4—optimal energy/time allocation among levels 1, 2, ..., l of tasks of a388

parallel application (Theorems 6 and 10).389

Table 2 gives an overview of our energy/time/power allocation scheme. We will give390

the details of the above optimal four-level energy/time/power allocation scheme for391

the two optimization problems separately.392

5.1 Minimizing Schedule Length393

5.1.1 Level 1394

We first consider optimal power supplies to tasks in the same group. Notice that tasks
in the same group are executed sequentially. In fact, we consider a more general case,
i.e., n parallel tasks with sizes π1, π2, ..., πn and execution requirements r1, r2, ..., rn
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to be executed sequentially one by one. Let us define

M = π
1/α

1 r1 + π
1/α

2 r2 + · · · + π1/α
n rn.

The following result [29] gives the optimal power supplies when the n parallel tasks395

are scheduled sequentially.396

Theorem 3 When n parallel tasks are scheduled sequentially, the schedule length397

is minimized when task i is supplied with power pi = (E/M)α/(α−1)/πi , where398

1 ≤ i ≤ n. The optimal schedule length is T = Mα/(α−1)/E1/(α−1).399

5.1.2 Level 2400

Now, we consider optimal energy allocation among groups of tasks in the same401

sublist. Again, we discuss group level energy allocation in a more general case, i.e.,402

scheduling n parallel tasks on m cores, where πi ≤ m/j for all 1 ≤ i ≤ n with j ≥ 1.403

In this case, the m cores can be partitioned into j clusters, such that each cluster404

contains m/j cores. Each cluster of cores are treated as one unit to be allocated to405

one task. Assume that the set of n tasks is partitioned into j groups, such that all the406

tasks in group k are executed on cluster k, where 1 ≤ k ≤ j . Let Mk denote the total407

π
1/α

i ri of the tasks in group k. For a given partition of the n tasks into j groups, we are408

seeking an optimal energy allocation and power supplies that minimize the schedule409

length. Let Ek be the energy consumed by all the tasks in group k. The following410

result [29] characterizes the optimal energy allocation and power supplies.411

Theorem 4 For a given partition M1, M2, ..., Mj of n parallel tasks into j groups
on a multicore processor partitioned into j clusters, the schedule length is minimized
when task i in group k is supplied with power pi = (Ek/Mk)α/(α−1)/πi , where

Ek =
(

Mα
k

Mα
1 + Mα

2 + · · · + Mα
j

)
E,

for all 1 ≤ k ≤ j . The optimal schedule length is

T =
(
Mα

1 + Mα
2 + · · · + Mα

j

E

)1/(α−1)

,

for the above energy allocation and power supplies.412

5.1.3 Level 3413

To use algorithm Hc-A to solve the problem of minimizing schedule length with414

energy consumption constraint E, we need to allocate the available energy E to the415

c sublists. We use E1, E2, ..., Ec to represent an energy allocation to the c sublists,416

where sublist j consumes energy Ej , and E1 + E2 + · · · + Ec = E. By using any417
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of the list scheduling algorithms to schedule tasks in sublist j , we get a partition418

of the tasks in sublist j into j groups. Let Rj be the total execution requirement of419

tasks in sublist j , and Rj ,k be the total execution requirement of tasks in group k,420

and Mj ,k be the total π
1/α

i ri of tasks in group k, where 1 ≤ k ≤ j . Theorem 5 [29]421

provides optimal energy allocation to the c sublists for minimizing schedule length422

with energy consumption constraint in scheduling parallel tasks by using scheduling423

algorithms Hc-A, where A is a list scheduling algorithm.424

Theorem 5 For a given partition Mj ,1, Mj ,2, ..., Mj ,j of the tasks in sublist j into j

groups produced by a list scheduling algorithm A, where 1 ≤ j ≤ c, and an energy
allocation E1, E2, ..., Ec to the c sublists, the length of the schedule produced by
algorithm Hc-A is

T =
c∑

j=1

(
Mα

j ,1 + Mα
j ,2 + · · · + Mα

j ,j

Ej

)1/(α−1)

.

The energy allocation E1, E2, ..., Ec which minimizes T is

Ej =
(

N
1/α

j

N
1/α

1 + N
1/α

2 + · · · + N
1/α
c

)
E,

where Nj = Mα
j ,1 + Mα

j ,2 + · · · + Mα
j ,j , for all 1 ≤ j ≤ c, and the minimized

schedule length is

T = (N1/α

1 + N
1/α

2 + · · · + N
1/α
c )α/(α−1)

E1/(α−1)
,

by using the above energy allocation.425

5.1.4 Level 4426

To use a level-by-level scheduling algorithm to solve the problem of minimizing427

schedule length with energy consumption constraint E, we need to allocate the428

available energy E to the v levels. We use E1, E2, ..., Ev to represent an energy allo-429

cation to the v levels, where level l consumes energy El , and E1+E2 +· · ·+Ev = E.430

431 Let Rl,j ,k be the total execution requirement of tasks in group (l, j , k), i.e., group432

k of sublist (l, j ) of level l, and Rl,j be the total execution requirement of tasks in433

sublist (l, j ) of level l, and Rj be the total execution requirement of tasks in sublist434

(l, j ) of all levels, and Ml,j ,k be the total π
1/α

i ri of tasks in group (l, j , k), where435

1 ≤ l ≤ v and 1 ≤ j ≤ c and 1 ≤ k ≤ j .436

By Theorem 5, for a given partition Ml,j ,1, Ml,j ,2, ..., Ml,j ,j of the tasks in sublist
(l, j ) of level l into j groups produced by a list scheduling algorithm A, where
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1 ≤ l ≤ v and 1 ≤ j ≤ c, and an energy allocation El,1, El,2, ..., El,c to the c sublists
of level l, where

El,j =
(

N
1/α

l,j

N
1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c

)
El ,

with Nl,j = Mα
l,j ,1 + Mα

l,j ,2 + · · · + Mα
l,j ,j , for all 1 ≤ l ≤ v and 1 ≤ j ≤ c, the

scheduling algorithm Hc-A produces schedule length

Tl = (N1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c )α/(α−1)

E
1/(α−1)
l

,

for tasks in level l, where 1 ≤ l ≤ v. Since the level-by-level scheduling algorithm
produces schedule length T = T1 + T2 + · · · + Tv, we have

T =
v∑

l=1

(N1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c )α/(α−1)

E
1/(α−1)
l

.

Let Sl = (N1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c )α , for all 1 ≤ l ≤ v. By the definition of Sl , we
obtain

T =
(

S1

E1

)1/(α−1)

+
(

S2

E2

)1/(α−1)

+ · · · +
(

Sv

Ev

)1/(α−1)

.

To minimize T with the constraint F (E1, E2, ..., Ev) = E1 + E2 + · · · + Ev = E,
we use the Lagrange multiplier system

∇T (E1, E2, ..., Ev) = λ∇F (E1, E2, ..., Ev),

where λ is the Lagrange multiplier. Since ∂T /∂El = λ∂F/∂El , that is,

S
1/(α−1)
l

(
− 1

α − 1

) 1

E
1/(α−1)+1
l

= λ,

1 ≤ l ≤ v, we get

El = S
1/α

l

( 1

λ(1 − α)

)(α−1)/α
,

which implies that

E = (S1/α

1 + S
1/α

2 + · · · + S1/α
v )

( 1

λ(1 − α)

)(α−1)/α
,

and

El =
(

S
1/α

l

S
1/α

1 + S
1/α

2 + · · · + S
1/α
v

)
E,

for all 1 ≤ l ≤ v. By using the above energy allocation, we have437
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T =
v∑

l=1

( Sl

El

)1/(α−1)

=
v∑

l=1

S
1/(α−1)
l((

S
1/α

l

S
1/α

1 + S
1/α

2 + · · · + S
1/α
v

)
E

)1/(α−1)

=
v∑

l=1

S
1/α

l (S1/α

1 + S
1/α

2 + · · · + S
1/α
v )1/(α−1)

E1/(α−1)

= (S1/α

1 + S
1/α

2 + · · · + S
1/α
v )α/(α−1)

E1/(α−1)
.

For any list scheduling algorithm A, we have Rl,j ,k ≤ Rl,j /j + r∗, for all 1 ≤ l ≤ v
and 1 ≤ j ≤ c and 1 ≤ k ≤ j , where r∗ = max(r1, r2, ..., rn) is the maximum task
execution requirement. Since πi ≤ m/j for every task i in group (l, j , k) of sublist
(l, j ) of level l, we get

Ml,j ,k ≤
(m

j

)1/α

Rl,j ,k ≤
(m

j

)1/α
(

Rl,j

j
+ r∗

)
.

Therefore,

Nl,j ≤ m

(
Rl,j

j
+ r∗

)α

,

and

N
1/α

l,j ≤ m1/α

(
Rl,j

j
+ r∗

)
,

and

N
1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c ≤ m1/α

⎛
⎝
⎛
⎝ c∑

j=1

Rl,j

j

⎞
⎠ + cr∗

⎞
⎠ .

Consequently,

Sl ≤ m

⎛
⎝
⎛
⎝ c∑

j=1

Rl,j

j

⎞
⎠ + cr∗

⎞
⎠

α

,

and

S
1/α

l ≤ m1/α

⎛
⎝
⎛
⎝ c∑

j=1

Rl,j

j

⎞
⎠ + cr∗

⎞
⎠ ,

and

S
1/α

1 + S
1/α

2 + · · · + S1/α
v ≤ m1/α

⎛
⎝
⎛
⎝ c∑

j=1

Rj

j

⎞
⎠ + cvr∗

⎞
⎠ ,
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which implies that

T ≤ m1/(α−1)

⎛
⎝
⎛
⎝ c∑

j=1

Rj

j

⎞
⎠ + cvr∗

⎞
⎠

α/(α−1)

1

E1/(α−1)
.

We define the performance ratio as β = T/T ∗ for heuristic algorithms that solve
the problem of minimizing schedule length with energy consumption constraint on
a multicore processor. By Theorem 1, we get

β = T

T ∗ ≤
⎛
⎝
⎛
⎝
⎛
⎝ c∑

j=1

Rj

j

⎞
⎠ + cvr∗

⎞
⎠ / (

W

m

)⎞
⎠

α/(α−1)

.

Theorem 6 provides optimal energy allocation to the v levels for minimizing schedule438

length with energy consumption constraint in scheduling precedence constrained439

parallel tasks by using level-by-level scheduling algorithms LL-Hc-A, where A is a440

list scheduling algorithm.441

Theorem 6 For a given partition Ml,j ,1, Ml,j ,2, ..., Ml,j ,j of the tasks in sublist
(l, j ) of level l into j groups produced by a list scheduling algorithm A, where
1 ≤ l ≤ v and 1 ≤ j ≤ c, and an energy allocation E1, E2, ..., Ev to the v levels,
the level-by-level scheduling algorithm LL-Hc-A produces schedule length

T =
v∑

l=1

(N1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c )α/(α−1)

E
1/(α−1)
l

,

where Nl,j = Mα
l,j ,1 + Mα

l,j ,2 + · · · + Mα
l,j ,j , for all 1 ≤ l ≤ v and 1 ≤ j ≤ c. The

energy allocation E1, E2, ..., Ev which minimizes T is

El =
(

S
1/α

l

S
1/α

1 + S
1/α

2 + · · · + S
1/α
v

)
E,

where Sl = (N1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c )α , for all 1 ≤ l ≤ v, and the minimized
schedule length is

T = (S1/α

1 + S
1/α

2 + · · · + S
1/α
v )α/(α−1)

E1/(α−1)
,

by using the above energy allocation. The performance ratio is

β ≤
⎛
⎝
⎛
⎝
⎛
⎝ c∑

j=1

Rj

j

⎞
⎠ + cvr∗

⎞
⎠ / (

W

m

)⎞
⎠

α/(α−1)

,

where r∗ = max(r1, r2, ..., rn) is the maximum task execution requirement.442
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Theorems 4 and 5 and 6 give the power supply to the task i in group (l, j , k) as443

1

πi

(
El,j ,k

Ml,j ,k

)α/(α−1)

= 1

πi

((
Mα

l,j ,k

Mα
l,j ,1 + Mα

l,j ,2 + · · · + Mα
l,j ,j

)

(
N

1/α

l,j

N
1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c

) (
S

1/α

l

S
1/α

1 + S
1/α

2 + · · · + S
1/α
v

)
E

Ml,j ,k

)α/(α−1)

,

for all 1 ≤ l ≤ v and 1 ≤ j ≤ c and 1 ≤ k ≤ j .444

We notice that the performance bound given in Theorem 6 is loose and pessimistic
mainly due to the overestimation of the πi’s in sublist (l, j ) to m/j . One possible
remedy is to use the value of (m/(j + 1) + m/j )/2 as an approximation to πi . Also,
as the number of tasks gets large, the term cvr∗ may be removed. This gives rise to
the following performance bound for β:

⎛
⎝
⎛
⎝ c∑

j=1

Rj

j

(
2j + 1

2j + 2

)1/α

⎞
⎠ / (

W

m

)⎞⎠
α/(α−1)

. (1)

Our simulation shows that the modified bound in (1) is more accurate than the445

performance bound given in Theorem 6.446

5.2 Minimizing Energy Consumption447

5.2.1 Level 1448

The following result [29] gives the optimal power supplies when n parallel tasks are449

scheduled sequentially.450

Theorem 7 When n parallel tasks are scheduled sequentially, the total energy451

consumption is minimized when task i is supplied with power pi = (M/T )α/πi ,452

where 1 ≤ i ≤ n. The minimum energy consumption is E = Mα/T α−1.453

5.2.2 Level 2454

The following result [29] gives the optimal energy allocation and power supplies455

that minimize energy consumption for a given partition of n tasks into j groups on456

a multicore processor.457

Theorem 8 For a given partition M1, M2, ..., Mj of n parallel tasks into j groups
on a multicore processor partitioned into j clusters, the total energy consumption is
minimized when task i in group k is executed with power pi = (Mk/T )α/πi , where
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1 ≤ k ≤ j . The minimum energy consumption is

E = Mα
1 + Mα

2 + · · · + Mα
j

T α−1
,

for the above energy allocation and power supplies.458

5.2.3 Level 3459

To use algorithm Hc-A to solve the problem of minimizing energy consumption460

with schedule length constraint T , we need to allocate the time T to the c sublists.461

We use T1, T2, .., Tc to represent a time allocation to the c sublists, where tasks462

in sublist sublist j are executed within deadline Tj , and T1 + T2 + · · · + Tc = T .463

Theorem 9 [29] provides optimal time allocation to the c sublists for minimizing464

energy consumption with schedule length constraint in scheduling parallel tasks by465

using scheduling algorithms Hc-A, where A is a list scheduling algorithm.466

Theorem 9 For a given partition Mj ,1, Mj ,2, ..., Mj ,j of the tasks in sublist j into
j groups produced by a list scheduling algorithm A, where 1 ≤ j ≤ c, and a time
allocation T1, T2, ..., Tc to the c sublists, the amount of energy consumed by algorithm
Hc-A is

E =
c∑

j=1

(
Mα

j ,1 + Mα
j ,2 + · · · + Mα

j ,j

T α−1
j

)
.

The time allocation T1, T2, ..., Tc which minimizes E is

Tj =
(

N
1/α

j

N
1/α

1 + N
1/α

2 + · · · + N
1/α
c

)
T ,

where Nj = Mα
j ,1 + Mα

j ,2 + · · · + Mα
j ,j , for all 1 ≤ j ≤ c, and the minimized energy

consumption is

E = (N1/α

1 + N
1/α

2 + · · · + N
1/α
c )α

T α−1
,

by using the above time allocation.467

5.2.4 Level 4468

To use a level-by-level scheduling algorithm to solve the problem of minimizing469

energy consumption with schedule length constraint T , we need to allocate the time470

T to the v levels. We use T1, T2, ..., Tv to represent a time allocation to the v levels,471

where tasks in level l are executed within deadline Tl , and T1 + T2 + · · · + Tv = T .472

By Theorem 9, for a given partition Ml,j ,1, Ml,j ,2, ..., Ml,j ,j of the tasks in sublist
(l, j ) of level l into j groups produced by a list scheduling algorithm A, where
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1 ≤ l ≤ v and 1 ≤ j ≤ c, and a time allocation Tl,1, Tl,2, ..., Tl,c to the c sublists of
level l, where

Tl,j =
(

N
1/α

l,j

N
1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c

)
Tl ,

with Nl,j = Mα
l,j ,1 + Mα

l,j ,2 + · · · + Mα
l,j ,j , for all 1 ≤ l ≤ v and 1 ≤ j ≤ c, the

scheduling algorithm Hc-A consumes energy

El = (N1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c )α

T α−1
l

,

for tasks in level l, where 1 ≤ l ≤ v. Since the level-by-level scheduling algorithm
consumes energy E = E1 + E2 + · · · + Ev, we have

E =
v∑

l=1

(N1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c )α

T α−1
l

.

By the definition of Sl , we obtain

E = S1

T α−1
1

+ S2

T α−1
2

+ · · · + Sv

T α−1
v

.

To minimize E with the constraint F (T1, T2, ..., Tv) = T1 + T2 + · · · + Tv = T , we
use the Lagrange multiplier system

∇E(T1, T2, ..., Tv) = λ∇F (T1, T2, ..., Tv),

where λ is the Lagrange multiplier. Since ∂E/∂Tl = λ∂F/∂Tl , that is,

Sl

(
1 − α

T α
l

)
= λ,

1 ≤ l ≤ v, we get

Tl = S
1/α

l

(
1 − α

λ

)1/α

,

which implies that

T = (S1/α

1 + S
1/α

2 + · · · + S1/α
v )

(
1 − α

λ

)1/α

,

and

Tl =
(

S
1/α

l

S
1/α

1 + S
1/α

2 + · · · + S
1/α
v

)
T ,

for all 1 ≤ l ≤ v. By using the above time allocation, we have473
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E =
v∑

l=1

Sl

T α−1
l

=
v∑

l=1

Sl((
S

1/α

l

S
1/α

1 + S
1/α

2 + · · · + S
1/α
v

)
T

)α−1

=
v∑

l=1

S
1/α

l (S1/α

1 + S
1/α

2 + · · · + S
1/α
v )α−1

T α−1

= (S1/α

1 + S
1/α

2 + · · · + S
1/α
v )α

T α−1
.

Similar to the derivation in Sect. 5.1.4, we have

S
1/α

1 + S
1/α

2 + · · · + S1/α
v ≤ m1/α

⎛
⎝

⎛
⎝ c∑

j=1

Rj

j

⎞
⎠ + cvr∗

⎞
⎠ ,

which implies that

E ≤ m

⎛
⎝
⎛
⎝ c∑

j=1

Rj

j

⎞
⎠ + cvr∗

⎞
⎠

α

1

T α−1
.

We define the performance ratio as β = E/E∗ for heuristic algorithms that solve
the problem of minimizing energy consumption with schedule length constraint on
a multicore processor. By Theorem 2, we get

β = E

E∗ ≤
⎛
⎝
⎛
⎝
⎛
⎝ c∑

j=1

Rj

j

⎞
⎠ + cvr∗

⎞
⎠ /(W

m

)⎞
⎠

α

.

Theorem 10 provides optimal time allocation to the v levels for minimizing energy474

consumption with schedule length constraint in scheduling precedence constrained475

parallel tasks by using level-by-level scheduling algorithms LL-Hc-A, where A is a476

list scheduling algorithm.477

Theorem 10 For a given partition Ml,j ,1, Ml,j ,2, ..., Ml,j ,j of the tasks in sublist (l, j )478

of level l into j groups produced by a list scheduling algorithm A, where 1 ≤ l ≤ v479

and 1 ≤ j ≤ c, and a time allocation T1, T2, ..., Tv to the v levels, the level-by-level480

scheduling algorithm LL-Hc-A consumes energy481
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E =
v∑

l=1

(N1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c )α

T α−1
l

,

where Nl,j = Mα
l,j ,1 + Mα

l,j ,2 + · · · + Mα
l,j ,j , for all 1 ≤ l ≤ v and 1 ≤ j ≤ c. The

time allocation T1, T2, ..., Tv which minimizes E is

Tl =
(

S
1/α

l

S
1/α

1 + S
1/α

2 + · · · + S
1/α
v

)
T ,

where Sl = (N1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c )α , for all 1 ≤ l ≤ v, and the minimized
energy consumption is

E = (S1/α

1 + S
1/α

2 + · · · + S
1/α
v )α

T α−1
,

by using the above time allocation. The performance ratio is

β ≤
⎛
⎝
⎛
⎝
⎛
⎝ c∑

j=1

Rj

j

⎞
⎠ + cvr∗

⎞
⎠ /(W

m

)⎞⎠
α

,

where r∗ = max(r1, r2, ..., rn) is the maximum task execution requirement.482

Theorems 8 and 9 and 10 give the power supply to the task i in group (l, j , k) as

1

πi

(
Ml,j ,k

Tl,j

)α

= 1

πi

((
N

1/α

l,1 + N
1/α

l,2 + · · · + N
1/α

l,c

N
1/α

l,j

)

(
S

1/α

1 + S
1/α

2 + · · · + S
1/α
v

S
1/α

l

)
Ml,j ,k

T

)α

,

for all 1 ≤ l ≤ v and 1 ≤ j ≤ c and 1 ≤ k ≤ j .483

Again, we adjust the performance bound given in Theorem 10 to
⎛
⎝
⎛
⎝ c∑

j=1

Rj

j

(
2j + 1

2j + 2

)1/α

⎞
⎠ / (

W

m

)⎞
⎠

α

. (2)

Our simulation shows that the modified bound in (2) is more accurate than the484

performance bound given in Theorem 10.485

6 Simulation Data486

To validate our analytical results, extensive simulations have been conducted. In this487

section, we demonstrate some numerical and experimental data for several example488

task graphs. The following task graphs are considered in our experiments.489
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Fig. 3 CT(b, h): a complete
binary tree with b = 2 and
h = 4

Fig. 4 PA(b, h): a
partitioning algorithm with
b = 2 and h = 3

• Tree-Structured Computations. Many computations are tree-structured, includ-490

ing backtracking search, branch-and-bound computations, game-tree evaluation,491

functional and logical programming, and various numeric computations. For sim-492

plicity, we consider CT(b, h), i.e., complete b-ary trees of height h (see Fig. 3493

where b = 2 and h = 4). It is easy to see that there are v = h+1 levels numbered494

as 0, 1, 2, ..., h, and nl = bl for 0 ≤ l ≤ h, and n = (bh+1 − 1)/(b − 1).495

• Partitioning Algorithms. A partitioning algorithm PA(b, h) represents a divide-496

and-conquer computation with branching factor b and height (i.e., depth of497

recursion) h (see Fig. 4 where b = 2 and h = 3). The dag of PA(b, h) has498
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Fig. 5 LA(v): a linear algebra
task graph with v = 5

v = 2h + 1 levels numbered as 0, 1, 2, ..., 2h. A partitioning algorithm pro-499

ceeds in three stages. In levels 0, 1, ..., h − 1, each task is divided into b subtasks.500

Then, in level h, subproblems of small sizes are solved directly. Finally, in levels501

h + 1, h + 2, ..., 2h, solutions to subproblems are combined to form the solution502

to the original problem. Clearly, nl = n2h−l = bl , for all 0 ≤ l ≤ h− 1, nh = bh,503

and n = (bh+1 + bh − 2)/(b − 1).504

• Linear Algebra Task Graphs. A linear algebra task graph LA(v) with v levels (see505

Fig. 5 where v = 5) has nl = v − l + 1 for l = 1, 2, ..., v, and n = v(v + 1)/2.506

• Diamond Dags. A diamond dag DD(d) (see Fig. 6 where d = 4) contains v =507

2d − 1 levels numbered as 1, 2, ..., 2d − 1. It is clear that nl = n2d−l = l, for all508

1 ≤ l ≤ d − 1, nd = d , and n = d2.509

Since each task graph has at least one parameter, we are actually dealing with classes510

of task graphs.511
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Fig. 6 DD(d): a diamond dag
with d = 4

We define the normalized schedule length (NSL) as

NSL = T(
m

E

(
W

m

)α)1/(α−1) .

When T is the schedule length produced by a heuristic algorithm LL-Hc-A according
to Theorem 6, the normalized schedule length is

NSL =

⎛
⎜⎜⎝(S1/α

1 + S
1/α

2 + · · · + S
1/α
v )α

m

(
W

m

)α

⎞
⎟⎟⎠

1/(α−1)

.

NSL is an upper bound for the performance ratio β = T/T ∗ for the problem of512

minimizing schedule length with energy consumption constraint on a multicore pro-513

cessor. When the πi’s and the ri’s are random variables, T , T ∗, β, and NSL all514

become random variables. It is clear that for the problem of minimizing schedule515

length with energy consumption constraint, we have β̄ ≤ NSL, i.e., the expected516

performance ratio is no larger than the expected normalized schedule length. (We517

use x̄ to represent the expectation of a random variable x.)518

We define the normalized energy consumption (NEC) as519
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NEC = E

m

(
W

m

)α 1

T α−1

.

When E is the energy consumed by a heuristic algorithm LL-Hc-A according to
Theorem 10, the normalized energy consumption is

NEC = (S1/α

1 + S
1/α

2 + · · · + S
1/α
v )α

m

(
W

m

)α .

NEC is an upper bound for the performance ratio β = E/E∗ for the problem of520

minimizing energy consumption with schedule length constraint on a multicore pro-521

cessor. For the problem of minimizing energy consumption with schedule length522

constraint, we have β̄ ≤ NEC.523

Notice that for a given task graph, the expected normalized schedule length NSL524

and the expected normalized energy consumption NEC are determined by A, c, m,525

α, and the probability distributions of the πi’s and the ri’s. In our simulations, the526

algorithm A is chosen as LS; the parameter c is set as 20; the number of cores is527

set as m = 128; and the parameter α is set as 3. The particular choices of these528

values do not affect our general observations and conclusions. For convenience, the529

ri’s are treated as independent and identically distributed (i.i.d.) continuous random530

variables uniformly distributed in [0, 1). The πi’s are i.i.d. discrete random variables.531

We consider three types of probability distributions of task sizes with about the same532

expected task size π̄ . Let ab be the probability that πi = b, where b ≥ 1.533

• Uniform distributions in the range [1..u], i.e., ab = 1/u for all 1 ≤ b ≤ u, where534

u is chosen such that (u + 1)/2 = π̄ , i.e., u = 2π̄ − 1.535

• Binomial distributions in the range [1..m], i.e.,

ab =

(
m

b

)
pb(1 − p)m−b

1 − (1 − p)m
,

for all 1 ≤ b ≤ m, where p is chosen such that mp = π̄ , i.e., p = π̄/m. However,536

the actual expectation of task sizes is537

π̄

1 − (1 − p)m
= π̄

1 − (1 − π̄/m)m
,

which is slightly greater than π̄ , especially when π̄ is small.538

• Geometric distributions in the range [1..m], i.e.,

ab = q(1 − q)b−1

1 − (1 − q)m
,

for all 1 ≤ b ≤ m, where q is chosen such that 1/q = π̄ , i.e., q = 1/π̄ . However,539

the actual expectation of task sizes is540
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Table 3 Simulation data for expected NSL on CT(2,12)

Uniform Binomial Geometric

π̄ Simulation Analysis Simulation Analysis Simulation Analysis

10 1.1772602 1.1850145 1.1127903 1.0635657 1.2695944 1.3183482

20 1.1609754 1.1485746 1.1046696 1.0817685 1.2527372 1.2739448

30 1.2032217 1.2026955 1.1401395 1.1407631 1.2827662 1.3051035

40 1.3783493 1.4501456 1.2111586 1.2364135 1.2959831 1.3174113

50 1.3977418 1.4592250 1.2498124 1.2784298 1.2998132 1.3175610

60 1.3278814 1.3437082 1.2799084 1.3180794 1.3030358 1.3200509

99 % confidence interval ±0.365 %)

10 1.3816853 1.4002241 1.2386909 1.1314678 1.6180743 1.7403012

20 1.3471473 1.3204301 1.2223807 1.1720051 1.5698000 1.6194065

30 1.4504859 1.4461415 1.2989038 1.2983591 1.6412385 1.6968020

40 1.9023971 2.1084568 1.4683900 1.5308593 1.6805737 1.7387274

50 1.9592480 2.1352965 1.5604366 1.6323378 1.6883269 1.7364845

60 1.7623788 1.8044903 1.6405732 1.7409541 1.6957874 1.7386959

(99 % confidence interval ±0.687 %)

1/q − (1/q + m)(1 − q)m

1 − (1 − q)m
= π̄ − (π̄ + m)(1 − 1/π̄ )m

1 − (1 − 1/π̄ )m
,

which is less than π̄ , especially when π̄ is large.541

In Tables 3, 4, 5 and 6, we show and compare the analytical results with simulation542

data. For each task graph in { CT(2,12), PA(2,12), LA(2000), DD(2000) }, and each543

π̄ in the range 10, 20, .., 60, and each probability distribution of task sizes, we544

generate rep sets of tasks, produce their schedules by using algorithm LL-Hc-LS,545

calculate their NSL (or NEC) and the bound (1) (or bound (2)), report the average546

of NSL (or NEC) which is the experimental value of NSL (or NEC), and report the547

average of bound (1) (or bound (2)) which is the numerical value of analytical results.548

The number rep is large enough to ensure high quality experimental data. The 99 %549

confidence interval of all the data in the same table is also given.550

We have the following observations from our simulations.551

• NSL is less than 1.41 and NEC is less than 1.98. Therefore, our algorithms produce552

solutions reasonably close to optimum. In fact, NSL and NEC reported here are553

very close to those for independent parallel tasks reported in [29].554

• The performance of algorithm LL-Hc-A for A other than LS is very close (within555

±1 %) to the performance of algorithm LL-Hc-LS. Since these data do not provide556

further insight, they are not shown here.557

• The performance bound (1) is very close to NSL and the performance bound (2)558

is very close to NEC.559
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Table 4 Simulation data for expected NSL on PA(2,12)

Uniform Binomial Geometric

π̄ Simulation Analysis Simulation Analysis Simulation Analysis

10 1.1940250 1.1841913 1.1287074 1.0635894 1.2918262 1.3185661

20 1.1710935 1.1489358 1.1120907 1.0822820 1.2628233 1.2735483

30 1.2121712 1.2032254 1.1414699 1.1396784 1.2893692 1.3044971

40 1.3838241 1.4505296 1.2130609 1.2377678 1.3006607 1.3152063

50 1.4034276 1.4608829 1.2497254 1.2777187 1.3052527 1.3182187

60 1.3319146 1.3448578 1.2799201 1.3177687 1.3067475 1.3179615

(99 % confidence interval ±0.284 %)

10 1.4280855 1.4053089 1.2756771 1.1309478 1.6643757 1.7374005

20 1.3687912 1.3196764 1.2362757 1.1716339 1.5959196 1.6185853

30 1.4680717 1.4464946 1.3037462 1.3007006 1.6629560 1.7012833

40 1.9143602 2.1021764 1.4697836 1.5294041 1.6933298 1.7328875

50 1.9717267 2.1383667 1.5614395 1.6318344 1.7026727 1.7361106

60 1.7748939 1.8095803 1.6402284 1.7397315 1.7084739 1.7376521

(99 % confidence interval ±0.565 %)

Table 5 Simulation data for expected NSL on LA(2000)

Uniform Binomial Geometric

π̄ Simulation Analysis Simulation Analysis Simulation Analysis

10 1.1392509 1.1841096 1.0771624 1.0638363 1.2300726 1.3179978

20 1.1430859 1.1491148 1.0989144 1.0823187 1.2321125 1.2722681

30 1.1954796 1.2028781 1.1372623 1.1399934 1.2686012 1.3032303

40 1.3729227 1.4497884 1.2109722 1.2375699 1.2858406 1.3161030

50 1.3964647 1.4610101 1.2488649 1.2779096 1.2930727 1.3191233

60 1.3272967 1.3445859 1.2802743 1.3187192 1.2959390 1.3182489

(99 % confidence interval ±0.085 %)

10 1.2974381 1.4020482 1.1602487 1.1313969 1.5137571 1.7379887

20 1.3062497 1.3200333 1.2076518 1.1715685 1.5175999 1.6178453

30 1.4292225 1.4470430 1.2933014 1.2994524 1.6099920 1.6995260

40 1.8847470 2.1014650 1.4664142 1.5315937 1.6530311 1.7317472

50 1.9501571 2.1348479 1.5596494 1.6330611 1.6715971 1.7392715

60 1.7624447 1.8088376 1.6389275 1.7388263 1.6797186 1.7382355

(99 % confidence interval ±0.204 %)
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Table 6 Simulation data for expected NSL on DD(2000)

Uniform Binomial Geometric

π̄ Simulation Analysis Simulation Analysis Simulation Analysis

10 1.1393071 1.1842982 1.0770276 1.0636933 1.2303693 1.3183983

20 1.1429980 1.1490295 1.0989960 1.0822466 1.2316570 1.2714949

30 1.1955924 1.2030593 1.1372779 1.1400176 1.2690205 1.3039776

40 1.3726198 1.4493161 1.2109189 1.2375156 1.2859527 1.3162776

50 1.3962951 1.4607530 1.2487413 1.2777190 1.2932855 1.3193741

60 1.3274819 1.3447974 1.2803877 1.3189128 1.2962310 1.3186892

(99 % confidence interval ± 0.054 %)

10 1.2978774 1.4023671 1.1597583 1.1313744 1.5144683 1.7391638

20 1.3063526 1.3202184 1.2076968 1.1715103 1.5179540 1.6182936

30 1.4292362 1.4470899 1.2934523 1.2996875 1.6099667 1.6996302

40 1.8840943 2.1007925 1.4659063 1.5308111 1.6536717 1.7325694

50 1.9501477 2.1345382 1.5596254 1.6330039 1.6719013 1.7398729

60 1.7625789 1.8090184 1.6405736 1.7412621 1.6799813 1.7386383

(99 % confidence interval ± 0.155 %)

7 Summary and Future Research560

We have emphasized the significance of investigating energy-efficient and high-561

performance processing of large-scale parallel applications on multicore processors562

in data centers. We addressed scheduling precedence constrained parallel tasks on563

multicore processors with dynamically variable voltage and speed as combinatorial564

optimization problems. We pointed out that our scheduling problems contain four565

nontrivial subproblems, namely, precedence constraining, system partitioning, task566

scheduling, and power supplying. We described our methods to deal with precedence567

constraints, system partitioning, and task scheduling, and developed our optimal568

four-level energy/time/power allocation scheme for minimizing schedule length and569

minimizing energy consumption. We also analyzed the performance of our heuristic570

algorithms, and derived accurate performance bounds. We demonstrated simulation571

data, which validate our analytical results.572

Further research can be directed toward employing more effective and effi-573

cient algorithms to deal with independent tasks in the same level. Notice that the574

approach in this chapter (i.e., algorithm LL-Hc-A) belongs to the class of post-575

power-determination algorithms. Such an algorithm first generates a schedule, and576

then determines power supplies [31, 32]. The classes of pre-power-determination and577

hybrid algorithms are worth of investigation [30]. Our study in this chapter can also578

be extended to multiple multicore/manycore processors in data centers and discrete579

speed levels.580
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