
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scheduling parallel tasks with energy and time constraints on
multiple manycore processors in a cloud computing environment
Keqin Li ∗
Department of Computer Science, State University of New York, New Paltz, New York 12561, USA

h i g h l i g h t s

• Addressing energy and time constrained scheduling of precedence constrained parallel tasks.
• Deriving lower bounds for optimal solutions.
• Developing pre-power-determination algorithms and post-power-determination algorithms.
• Considering multiple manycore processors with continuous or discrete speed levels.
• Evaluating the performance of these algorithms analytically and experimentally.

a r t i c l e i n f o

Article history:
Received 29 February 2016
Received in revised form
28 December 2016
Accepted 7 January 2017
Available online xxxx

Keywords:
Cloud computing
Energy constrained scheduling
Manycore processor
Parallel tasks
Performance evaluation
Precedence constraint
Simulation
Time constrained scheduling

a b s t r a c t

When multiple manycore processors in a data center for cloud computing are shared by a large number
parallel tasks simultaneously, we are facing the problemof allocating the cores to the tasks and scheduling
the tasks, such that the system performance is optimized or the energy consumption is minimized.
Furthermore, such core allocation and task scheduling should be conducted with energy constraints
or performance constraints. The problems of energy and time constrained scheduling of precedence
constrainedparallel tasks onmultiplemanycore processors in a cloud computing environment are defined
as optimization problems. Lower bounds for optimal solutions are generalized from a single parallel
computing system to multiple parallel computing systems. Our approach in this paper is to design
and analyze the performance of heuristic algorithms that employ the equal-speed method. Pre-power-
determination algorithms and post-power-determination algorithms are developed for both energy and
time constrained scheduling of precedence constrained parallel tasks on multiple manycore processors
with continuous or discrete speed levels. The performance of these algorithms are evaluated analytically
and experimentally. Our main strategy is to embed the equal-speed method into our algorithms, which
not only makes our analysis possible, but also yields good performance of our algorithms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Exascale computing is the next major goal of high-performance
computing (HPC), which is very important to modern economy
and businesses. The Exascale Computing Project (ECP) of US
Department of Energy will enable a new era of computational
capabilities by advancing HPC on an exponential scale. The
creation of a capable exascale ecosystem will have profound
effects on the lives of Americans, improving the nation’s economic

∗ Fax: +1 845 257 3996.
E-mail address: lik@newpaltz.edu.

competitiveness, scientific capabilities, and national security. The
Council on Competitiveness Study of US Industrial HPC Users,
sponsored by the Defense Advanced Research Projects Agency
(DARPA) and conducted by market research firm IDC, found that
97% of the US companies surveyed could not exist or could not
compete effectively, without the use of HPC [1, p. 83]. Achieving
energy-efficient exascale computing is amajor technical challenge,
since there is a consensus that an exascale computing system
should not consume more than 20 megawatts of power [2].
Unfortunately, according to Green500, which ranks the most
energy-efficient supercomputers in the world, energy efficiency is
improving exponentially for the top 25% of datacenters, but the
median is only slightly improving, meaning a lot of datacenters are
lagging in efficiency. Achieving the landmark goal 50,000 MFLOPS
per watt is driving datacenters to meet the power and cooling

http://dx.doi.org/10.1016/j.future.2017.01.010
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.01.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.future.2017.01.010

2 K. Li / Future Generation Computer Systems () –

requirements necessary to house the computational power at the
scale of 1018 FLOPS.

The energy consumption of data centers is a hot topic that
has received growing attention (see [3] for a recent survey),
given that data centers currently account for 1%–2% of global
electricity use. However, cloud computing holds great potential
to reduce data center energy demand, due to large reduction in
total servers through consolidation and large increase in facility
efficiency compared to traditional local data centers. The high
energy efficiency in cloud computing is realized by replacing
a large number of servers with low utilization and efficiency,
and inefficient and small-scale cooling systems without in-
house professionals by a small number of cloud servers with
high utilization and efficiency, and advanced and continuously
optimized and highly efficient cooling systems. Therefore, it
has been widely recognized that cloud-based computing cannot
only reduce IT capital costs, reduce labor costs, and enhance
productivity, but also provide a promising and ultimate way
of managing and improving the resource utilization and energy
efficiency of current and future data and computing centers [4].

A growing body of evidence reveals that the cloud is remarkably
energy-efficient. Based on a recent Google analysis, a typical
company or organization that migrates to the cloud can save
68%–87% in energy cost for office computing and reduce similar
amount of carbon emission. Replicating these savings across the
entire economy would have a profound impact. According to a
recent study by the Carbon Disclosure Project, by migrating to
cloud computing, large US companies could achieve annual energy
saving of 12.3 billion USD and carbon reduction of 85.7 million
metric tonnes by 2020 (equivalent to the annual emissions of over
16.8million passenger vehicles) [5]. In another recent study, it was
reported that if all US business users shift their email, productivity
software, and customer relationship management software to the
cloud, the energy consumption of these software applications
might be reduced by as much as 87%, or 326 Petajoules, enough
energy to generate the electricity used by the City of Los Angeles
each year (23 billion kilowatt-hours) [6].

One effective way of achieving high energy efficiency is to em-
ploy multicore and manycore processors. For instance, Adapteva’s
main product family is the Epiphany scalable multicore MIMD ar-
chitecture. The Epiphany architecture could accommodate chips
with up to 4096 RISC out-of-order microprocessors, all sharing
a single 32-bit flat memory space. Each RISC processor in the
Epiphany architecture is superscalar with 64 32-bit unified regis-
ter file (integer or single precision) microprocessor operating up
to 1 GHz and capable of 2 GFLOPS (single precision). The Epiphany
multicore coprocessor is a scalable shared memory architecture,
featuring up to 4096 processors on a single chip connected through
a high-bandwidth on-chip network. Each Epiphany processor core
includes a tiny high-performance floating point RISC processor for
multicore processing, a high bandwidth local memory system, and
an extensive set of built in hardware features for multicore com-
munication. The peak energy efficiency of ExG4 (x = 16, 64, 256,
1k, 4k) can be as high as 70 GFLOPS per watt, higher than the ex-
pected 50 GFLOPS per watt in exascale computing.

When multiple manycore processors in a data center for
cloud computing are shared by a large number parallel tasks
simultaneously, we are facing the problem of allocating the
cores to the tasks and scheduling the tasks, such that the
system performance is optimized or the energy consumption is
minimized. Furthermore, such core allocation and task scheduling
should be conducted with energy constraints or performance
constraints. Themotivation of this paper is to study the problems of
energy and time constrained scheduling of precedence constrained
parallel tasks on multiple manycore processors in a cloud
computing environment as optimization problems. As mentioned
above, such investigation is of significant importance in taking
advantage of the energy efficiency potential of cloud computing
and manycore processors.

1.2. Related research

According toMoore’s law, power consumption in computer sys-
tems has increased at an exponential speed for decades. Power
density in high-performance computer systems will soon reach
that of a nuclear reactor [7]. Such increased energy consumption
causes severe economic, ecological, and technical problems [8–11].
Power conservation is critical in many computation and commu-
nication environments and has attracted extensive research activ-
ities. Reducing processor energy consumption has been an impor-
tant and pressing research issue in recent years. There has been in-
creasing interest and importance in developing high-performance
and energy-efficient computing systems [12–14]. There exists an
explosive body of literature on power-aware computing and com-
munication. For comprehensive surveys, the reader is referred
to [15,16,7] for research on system-level power-aware design
and power reduction techniques, [17–19] for research on green
data centers, cloud computing systems, and distributed systems,
and [20–22] for research on energy-efficient scheduling algorithms
and scheduling techniques.

Power consumption in computing systems can be reduced
by thermal-aware hardware and software design at various
levels. Software techniques for power reduction are supported
by a mechanism called dynamic voltage scaling (equivalently,
dynamic frequency scaling, dynamic speed scaling, dynamic power
scaling). A power-aware algorithm can change supply voltage
and frequency at appropriate times to optimize a combined
consideration of performance and energy consumption. There
are many existing technologies and commercial processors that
support dynamic voltage (frequency, speed, power) scaling (see,
e.g., [23]). This paperwill employ the technique of dynamic voltage
scaling for energy and time constrained scheduling of parallel tasks
on multiple manycore processors.

Dynamic power management at the operating system level
refers to supply voltage and clock frequency adjustment schemes
implemented while tasks are running. These energy conserva-
tion techniques explore the opportunities for tuning the energy-
delay tradeoff [24]. Since the pioneering work in [25,26], power-
aware task scheduling on processors with variable voltages and
speeds has been extensively studied, including scheduling tasks
with arrival times and deadlines on a uniprocessor computer with
minimum energy consumption [27–36], scheduling independent
or precedence constrained tasks on uniprocessor or multiproces-
sor computers in real-time applications [37–55], dealing with the
energy-delay tradeoff [56–65], developing high-performance and
energy-efficient computing systems [4,12–14], improving system
level power management [66–70], and conducting other stud-
ies [71–73]. In [74,23,75–79], we addressed energy and time con-
strained power allocation and task scheduling on multiprocessors
with dynamically variable voltage and frequency and speed and
power as combinatorial optimization problems. However, all the
above research only considered a single system. Energy-efficient
scheduling of precedence constrained parallel tasks on multiple
parallel computing systemshas rarely been studied before, and this
will be themain focus of this paper. (We have noticed that system-
wide power management has been considered in [80–82].)

Much existing research assume that a task can be supplied
with any power and a processor can be set at any speed, that
is, clock frequency and supply voltage and execution speed and
power supply can be changed continuously in any range. However,
the currently available processors have only a few discrete clock
frequency and supply voltage and execution speed and power
levels [83,84]. Task scheduling on processors with discrete speed
levels has been investigated by a number of researchers. For
instances, it was shown that an optimal preemptive schedule with
minimum energy consumption on a uniprocessor computer can

K. Li / Future Generation Computer Systems () – 3

be found in polynomial time [32,34,35]. Processors with discrete
speed levels were also considered in real-time multiprocessor
systems [85,53]. Furthermore, energy and time constrained
nonpreemptive task scheduling onmultiprocessor computerswith
discrete speed levels has been studied analytically [86].

1.3. Our contributions

In this paper, we investigate the problems of energy and time
constrained scheduling of precedence constrained parallel tasks on
multiple manycore processors in a cloud computing environment.
The main contributions of the paper are summarized as follows.

• Lower bounds for optimal solutions are generalized from a sin-
gle parallel computing system to multiple parallel computing
systems.

• Pre-power-determination algorithms and post-power-
determination algorithms are devised for both energy and time
constrained scheduling of precedence constrainedparallel tasks
on multiple manycore processors with continuous or discrete
speed levels.

• The performance of these algorithms are evaluated analytically
and experimentally. Our main strategy is to embed the equal-
speed method into our algorithms, which not only makes our
analysis possible, but also yields good performance of our
algorithms.

Our approach in this paper is to design and analyze the
performance of heuristic algorithms that employ the equal-speed
method, which means that tasks scheduled on the samemanycore
processor are assigned the same power and executed with the
same speed (for processors with continuous speed levels) or
roughly the same speed (for processors with discrete speed levels).
Of course, tasks scheduled on different manycore processors
may still be executed with different speeds. We will provide
justification of the equal-speed method in Section 2.5.

Our investigation is significant in a number of ways.

• First, we extend the equal-speed method from one parallel
computing system to multiple parallel computing systems.

• Second, the equal-speed method can be incorporated into
both pre-power-determination algorithms and post-power-
determination algorithms.

• Third, the equal-speed method can be used for both energy
constrained scheduling and time constrained scheduling.

• Fourth, such extension has been implemented and applied
successfully to processors with continuous speed levels or
discrete speed levels.

The equal-speed method not only makes our analysis possible, but
also yields good performance of our algorithms. Notice that our
algorithms and their analysis are also applicable to

• multiple multiprocessor and multicomputer systems for par-
allel computing, supercomputing, and high-performance com-
puting;

• multiple clusters of homogeneous nodes in a distributed
computing environment;

• multiple computing systems with identical cores in a grid
computing environment;

in addition to multiple manycore processors in a cloud computing
environment. To the best of the author’s knowledge, power-aware
scheduling of precedence constrained parallel tasks on multiple
parallel anddistributed computing systemshas rarely been studied
before.

The rest of the paper is organized as follows. In Section 2,
we provide necessary background information, including the
task model, the processor model, and the power model used in

Table 0
Symbols and definitions.

Symbol Definition

n The number of parallel tasks
nj The number of parallel tasks scheduled onMj
πi The number of cores requested by task i
ri The maximum execution requirement on the cores executing task i
wi The work of task i
pi The power supplied to execute task i
si The execution speed of task i
ti The execution time of task i
ei The energy consumed to execute task i
m The number of manycore processors
Mj The name as well as the number of cores in the jth manycore

processor
α Exponent of power consumption
Sk Discrete level of core speed
φk Sk+1/Sk
E Energy constraint
Ej Energy allocated toMj

Ek WSα−1
k

Ej,k WjSα−1
k

T Time constraint
Tj Aj(tj,1, tj,2, . . . , tj,nj)
Tk A(r1, r2, . . . , rn)/Sk
Tj,k Aj(rj,1, rj,2, . . . , rj,nj)/Sk
A An algorithm
Aj Aj(rj,1, rj,2, . . . , rj,nj)
TA The length of a schedule produced by algorithm A
TOPT The shortest length of an optimal schedule
EA The amount of energy consumed by algorithm A
EOPT The minimum amount of energy consumed by an optimal schedule
βA The performance ratio of an algorithm A for energy constrained

scheduling
γA The performance ratio of an algorithm A for time constrained

scheduling
W The total amount of work to be performed for the n parallel tasks
Wj The total amount of work to be performed for the nj parallel tasks

scheduled on Mj
A1–A2 A pre-power-determination algorithm (A1: power allocation, A2:

task scheduling)
A1–A2 A post-power-determination algorithm (A1: task scheduling, A2:

power allocation)

this paper, definitions of our optimization problems and per-
formance measures, and lower bounds for performance analysis
and evaluation of our heuristic algorithms. In Section 3, we de-
velop and analyze pre-power-determination algorithms and post-
power-determination algorithms for energy and time constrained
scheduling of precedence constrained parallel tasks on multiple
manycore processors with continuous speed levels. In Section 4,
we develop and evaluate pre-power-determination algorithms
and post-power-determination algorithms for energy and time
constrained scheduling of precedence constrained parallel tasks on
multiple manycore processors with discrete speed levels. In Sec-
tion 5, we give a summary and conclude the paper.

2. Preliminaries

2.1. The models

We first describe the task model, the processor model, and the
power model used in this paper. Table 0 provides a list of symbols
and their definitions used in this paper.

2.1.1. The task model
Assume that we are given a set of n parallel tasks. A parallel

task i, where 1 ≤ i ≤ n, is specified by πi and ri explained below.
The integer πi is the number of cores requested by task i, i.e., the
size of task i. It is possible that in executing task i, the πi cores
may have different execution requirements (i.e., the numbers of
core cycles or the numbers of instructions executed on the cores)

4 K. Li / Future Generation Computer Systems () –

due to imbalanced load distribution. Let ri represent themaximum
execution requirement on theπi cores executing task i. The product
wi = πiri is called the work of task i.

The n parallel tasks can be either independent or precedence
constrained. A set of precedence constrained parallel tasks can be
specified as a partial order ≺ over the set of tasks {1, 2, . . . , n}, or
a task graph G = (V , E), where V = {1, 2, . . . , n} is the set of tasks
and E is a set of arcs representing the precedence constraints. The
relationship i ≺ j, or an arc (i, j) from i to j, means that task imust
be executed before task j, i.e., task j cannot be executed until task i
is completed. We call j a successor of i and i a predecessor of j.

2.1.2. The processor model
We are also given m manycore processors with M1,M2, . . . ,

Mm cores respectively. All theM = M1+M2+· · ·+Mm cores in the
m manycore processors are identical. We use Mj to represent the
name aswell as the number of cores in the jthmanycore processor,
where 1 ≤ j ≤ m.

To execute a task i, any πi of the Mj cores of the jth manycore
processor can be allocated to task i. However, core allocation
cannot be performed across different manycore processors, i.e., all
the πi cores allocated to task i must reside in the same manycore
processor. Several tasks can be executed simultaneously on Mj,
with the restriction that the total number of active cores (i.e., cores
allocated to tasks being executed) at any moment cannot exceed
Mj, for all 1 ≤ j ≤ m.

Notice that inter-processor communications take considerably
more time than intra-processor communications. If a task is
executed by several manycore processors, the execution time is
no longer its execution requirement divided by the execution
speed. The specification of the increased execution time is not
clear. The increased execution time depends onmany factors, such
as (1) the communication network bandwidth; (2) the type of
algorithm; (3) the number of manycore processors involved; (4)
the number of cores allocated on each manycore processor. These
hardware and software and management dependent factors make
the specification of parallel task execution times very complicated
when cores are allocated across several manycore processors,
and eventually make energy and time constrained scheduling
analytically intractable. Further investigation along this direction
is beyond the scope of this paper and should be considered as a
future research direction.

2.1.3. The power model
Power dissipation and circuit delay in digital CMOS (comple-

mentary metal–oxide-semiconductor) circuits can be accurately
modeled by simple equations, even for complex microproces-
sor circuits. CMOS circuits have dynamic, static, and short-circuit
power dissipation; however, the dominant component in a well
designed circuit is dynamic power consumption p (i.e., the switch-
ing component of power), which is approximately p = aCV 2f ,
where a is an activity factor, C is the loading capacitance, V is the
supply voltage, and f is the clock frequency [87]. Since s ∝ f , where
s is the processor speed, and f ∝ V γ with 0 < γ ≤ 1 [88], which
implies that V ∝ f 1/γ , we know that power consumption is p ∝ f α

and p ∝ sα , where α = 1 + 2/γ ≥ 3.
We use pi to represent the power supplied to execute task i.

For ease of discussion, we will assume that pi is simply sαi , where
si = p1/αi is the execution speed of task i. The execution time of
task i is ti = ri/si = ri/p

1/α
i . Note that all the πi cores allocated

to task i have the same speed si for duration ti, although some of
the πi cores may be idle for some time. The energy consumed to
execute task i is ei = πipiti = πirip

1−1/α
i = πirisα−1

i = wisα−1
i ,

where wi = πiri is the amount of work to be performed for task i.
We will consider processors with continuous or discrete clock

frequency and supply voltage and execution speed and power
levels.

• Continuous speed levels—In this model, it is assume that a task
can be supplied with any power and a core can be set at any
execution speed, that is, power and speed can be changed
continuously and unboundedly.

• Discrete speed levels—In this model, it is assume that there are
only d discrete levels of power supply P1, P2, . . . , Pd, and d
discrete levels of core speed S1, S2, . . . , Sd, that is, power and
speed can be set with only a few options.
Throughout the paper, we assume that S1 < S2 < · · · < Sd,

where d ≥ 2. We also define φk = Sk+1/Sk, for all 1 ≤ k ≤ d − 1.
The quantity φk measures the relative gap between two successive
speed levels Sk and Sk+1. Although d is a finite number, we assume
that the number d of speed levels is large enough to accommodate
the needs of our algorithms.

2.2. The problems

The power-aware scheduling problems considered in this paper
are formally defined as follows.

Problem 1 (Energy Constrained Scheduling).
Input: A set of n precedence constrained parallel tasks with task
sizesπ1, π2, . . . , πn and task execution requirements r1, r2, . . . , rn,
m manycore processors with M1,M2, . . . ,Mm identical cores, and
energy constraint E.
Output: Power supplies p1, p2, . . . , pn to the n tasks and a
nonpreemptive schedule of the n parallel tasks on themmanycore
processors, such that the schedule length is minimized and the
total energy consumed does not exceed E.

Problem 2 (Time Constrained Scheduling).
Input: A set of n precedence constrained parallel tasks with task
sizesπ1, π2, . . . , πn and task execution requirements r1, r2, . . . , rn,
m manycore processors with M1,M2, . . . ,Mm identical cores, and
time constraint T .
Output: Power supplies p1, p2, . . . , pn to the n tasks and a
nonpreemptive schedule of the n parallel tasks on themmanycore
processors, such that the total energy consumed is minimized and
the schedule length does not exceed T .

Notice that allocating power to a task is equivalent to
determining the execution speed of the task.

2.3. Performance measures

Let TA denote the length of a schedule produced by algorithm
A, and TOPT denote the shortest length of an optimal schedule.
Similarly, let EA denote the amount of energy consumed by
algorithm A, and EOPT denote the minimum amount of energy
consumed by an optimal schedule. The following performance
measures are used to analyze and evaluate the performance of our
energy and time constrained scheduling algorithms.

Definition 1. The performance ratio of an algorithm A that solves
the energy constrained scheduling problem is defined as βA =

TA/TOPT. If βA ≤ B, we call B a performance bound of algorithm A.

Definition 2. The performance ratio of an algorithm A that solves
the time constrained scheduling problem is defined as γA =

EA/EOPT. If γA ≤ C , we call C a performance bound of algorithm A.
When parallel tasks have random sizes and/or random execu-

tion requirements and/or random precedence constraints, TA, TOPT,
βA, B, EA, EOPT, γA, and C are all random variables. Let x̄ be the ex-
pectation of a random variable x.

Definition 3. If βA ≤ B, then β̄A ≤ B, where B is an average-case
performance bound of algorithm A.

Definition 4. If γA ≤ C , then γ̄A ≤ C , where C is an average-case
performance bound of algorithm A.

K. Li / Future Generation Computer Systems () – 5

2.4. Lower bounds

LetW = w1 +w2 +· · ·+wn = π1r1 +π2r2 +· · ·+πnrn denote
the total amount of work to be performed for the n parallel tasks.

2.4.1. Energy constrained scheduling
For the energy constrained scheduling problem, we have the

following proposition which gives a lower bound for the optimal
schedule length TOPT.

Proposition 1. For the energy constrained scheduling problem, we
have the following lower bound

TOPT ≥


M
E


W
M

α1/(α−1)

,

for the optimal schedule length.

Proof. Let us consider one manycore processor with M cores.
Furthermore, the processor is divided into m subsystems with
M1,M2, . . . ,Mm cores respectively. It is clear that any schedule on
the m manycore processors M1,M2, . . . ,Mm can be implemented
on the single M-core processor, with each subsystem of Mj cores
simulating an Mj-core processor. However, the reverse is not true,
i.e., a schedule on the M-core processor may not be implemented
on themmanycore processors, since cores in theM-core processor
can be allocated across the boundaries of them subsystems, which
is not allowed for the m manycore processors. In other words, a
single M-core processor is more flexible in core allocation than m
manycore processors. This implies that the length of an optimal
schedule on the m manycore processors is no shorter than the
length of an optimal schedule on theM-core processor. From [77],
it is already known that the length of an optimal schedule on the
M-core processor is at least
M
E


W
M

α1/(α−1)

.

Hence, the length of an optimal schedule on the m manycore
processors is also at least the above bound. �

Notice that the above lower bound is applicable to manycore
processors with continuous speed levels, and of course, also to
discrete speed levels.

2.4.2. Time constrained scheduling
For the time constrained scheduling problem, we have the

following result which gives a lower bound for the minimum
energy consumption EOPT.

Proposition 2. For the time constrained scheduling problem, we
have the following lower bound,

EOPT ≥ M

W
M

α 1
Tα−1

,

for the minimum energy consumption.

Proof. The proof follows the same reasoning as that in the proof
of Proposition 1. The total energy consumption of an optimal
schedule on the m manycore processors is no less than the
total energy consumption of an optimal schedule on the M-core
processor. From [77], it is already known that the total energy
consumption of an optimal schedule on the M-core processor is
at least

M

W
M

α 1
Tα−1

.

Hence, the total energy consumption of an optimal schedule on the
mmanycore processors is also at least the above bound. �

Again, the above lower bound is applicable to manycore
processors with continuous or discrete speed levels.

2.5. Overview of our method

There are three basic strategies to power allocation (i.e., execu-
tion speed determination) and task scheduling.

• Post-power-determination algorithms—First, a schedule of the
tasks is produced based on the task execution requirements.
Then, the execution speeds of the tasks are determined [78].

• Hybrid algorithms—The task execution speeds are determined
together with task scheduling, i.e., power allocation and task
scheduling are interleaved [79].

• Pre-power-determination algorithms—First, the execution speed
of each task is determined. Then, a schedule of the tasks is gen-
erated based on the known task execution times [89].

It has been shown that the class of pre-power-determination
algorithms have the best performance in power-aware scheduling
of precedence constrained parallel tasks.

Generally speaking, even for a set of independent parallel
tasks on one parallel computing system, after a schedule of the
tasks is produced based on the task execution requirements,
it is hard to set the task execution speeds, except the case
where all tasks are executed with the same speed. The reason
is that if tasks are executed with different speeds, processor
allocation and task scheduling need to be changed. To make post-
power-determination algorithms and hybrid algorithms possible,
special processor allocation methods (e.g., the harmonic processor
allocation scheme) and task scheduling algorithms (e.g., the
level-by-level scheduling method) need to be developed [78,
79]. However, these processor allocation methods and task
scheduling algorithms introduce inefficiency in dealing with
precedence constrained parallel tasks. This is the primary reason
that pre-power-determination algorithms adopting the equal-
speed method perform better than post-power-determination
algorithms and hybrid algorithms [89].

Our approach in this paper is to extend the equal-speedmethod
from one parallel computing system to multiple parallel comput-
ing systems. The equal-speed method can be applied to both pre-
power-determination algorithms and post-power-determination
algorithms and to both energy constrained scheduling and time
constrained scheduling. Furthermore, such extension has been
successful for processors with continuous speed levels or discrete
speed levels.

3. Continuous speed levels

3.1. Pre-power-determination algorithms

A pre-power-determination algorithm can be represented as
A1–A2, where A1 is a power allocation algorithm, and A2 is a
task scheduling algorithm. The power allocation algorithm in this
section is equal speed (ES), i.e., all tasks are allocated the same
power and executed with the same speed. Once the task execution
speeds and times are available, any efficient task scheduling
algorithm A2 can be used to produce a schedule. The pre-power-
determination algorithm in this section is called ES-A, where A is
any efficient task scheduling algorithm.

For n precedence constrained parallel tasks with execution
times t1, t2, . . . , tn, we use the notation A(t1, t2, . . . , tn) to denote
the length of the schedule produced by algorithm A on m
manycore processors M1,M2, . . . ,Mm. It is clear that if all tasks
are executed with the same speed s, we have A(t1, t2, . . . , tn) =

A(r1, r2, . . . , rn)/s, for all algorithm A.

6 K. Li / Future Generation Computer Systems () –

3.1.1. Energy constrained scheduling
The following theorem gives a performance bound of the

pre-power-determination algorithm ES-A in solving the energy
constrained scheduling problem.

Theorem 1. By using a pre-power-determination algorithm ES-A to
solve the energy constrained scheduling problem, the performance
ratio is

βES-A ≤
A(r1, r2, . . . , rn)

W/M
. (1)

Proof. By using pre-power-determination algorithm ES-A to solve
the energy constrained scheduling problem, we have s1 = s2 =

· · · = sn = s, where s is the same execution speed set for all tasks.
The energy consumed by task i is

ei = πirip
1−1/α
i = wip

1−1/α
i = wisα−1

i = wisα−1,

for all 1 ≤ i ≤ n. Since the total energy consumed is constrained
by
n

i=1

ei = sα−1
n

i=1

wi = Wsα−1
= E,

we obtain the identical task execution speed, which is

s =


E
W

1/(α−1)

,

and the execution time of task i, which is

ti =
ri
s

= ri


W
E

1/(α−1)

,

for all 1 ≤ i ≤ n. Therefore, the length of the schedule produced
by algorithm ES-A is

TES-A = A(t1, t2, . . . , tn) =
A(r1, r2, . . . , rn)

s

= A(r1, r2, . . . , rn)

W
E

1/(α−1)

.

By Proposition 1, the performance ratio of algorithm ES-A is

βES-A =
TES-A
TOPT

≤
A(r1, r2, . . . , rn)(W/E)1/(α−1)

((M/E)(W/M)α)1/(α−1)

=
A(r1, r2, . . . , rn)

W/M
.

The theorem is thus proved. �

3.1.2. Time constrained scheduling
The following theorem gives a performance bound of the

pre-power-determination algorithm ES-A in solving the time
constrained scheduling problem.

Theorem 2. By using a pre-power-determination algorithm ES-A to
solve the time constrained scheduling problem, the performance ratio
is

γES-A ≤


A(r1, r2, . . . , rn)

W/M

α−1

. (2)

Proof. By using a pre-power-determination algorithm ES-A to
solve the time constrained scheduling problem,weneed to provide
enough energy EES-A, so that the deadline T is met, i.e.,

TES-A = A(r1, r2, . . . , rn)


W
EES-A

1/(α−1)

= T .

The above equation implies that the total energy EES-A consumed
by algorithm ES-A is

EES-A =


A(r1, r2, . . . , rn)

T

α−1

W .

The execution speed is

s =


EES-A
W

1/(α−1)

=
A(r1, r2, . . . , rn)

T
,

which is obvious, since we need A(r1, r2, . . . , rn)/s = T . By
Proposition 2, the performance ratio of algorithm ES-A is

γES-A =
EES-A
EOPT

≤
(A(r1, r2, . . . , rn)/T)α−1W

(M/Tα−1)(W/M)α

=


A(r1, r2, . . . , rn)

W/M

α−1

.

This proves the theorem. �

3.1.3. Simulation results
We now show the expectation of the performance bounds in

(1)–(2) through simulation. (Note: All simulation results in this
paper are obtained by a simulation program written in the C++
programming language and running in a Linux environment. All
parameter settings will be described in detail.)

The task scheduling algorithm A is the well known list schedul-
ing (LS) algorithm, originally proposed in [90] for scheduling se-
quential tasks that demand for only one processor, i.e., πi = 1, for
all 1 ≤ i ≤ N . A list schedule is based on an initial ordering of
the tasks L = (i1, i2, . . . , in), called a priority list. Initially, at time
zero, the scheduler instantaneously scans list L from the beginning,
searching for tasks that are ready to be executed, i.e., which have
no predecessors under ≺ still waiting in L. The first ready task in
L is removed from L and sent to an idle core for processing. Such a
search is repeated until there is no ready task or there is no more
core available. In general, whenever a core completes a task, the
scheduler immediately scans L, looking for the first ready task to
be executed. If such a ready task is not found, the core becomes
idle andwaits for the next finished task. As running tasks complete,
more precedence constraints are removed and more tasks will be
ready.

The extension of the LS algorithm to scheduling parallel tasks
is straightforward [91]. When the scheduler finds a ready task i,
the scheduler checks whether there are at least πi idle cores. If
so, task i is allocated πi cores and executed nonpreemptively on
these cores. Otherwise, the ready task i still needs to wait in L
until other running tasks complete. Therefore, initially and later
whenever a task is completed, each of the remaining tasks not
scheduled yet is examined to see whether it can be scheduled
for execution, i.e., whether all its predecessors are completed and
there are enough cores for the task. The above algorithm can be
further extended to multiple manycore processors initially and
later whenever a task is completed, each of the remaining tasks
not scheduled yet is examined to see whether it can be scheduled
for execution on one of the m manycore processors, i.e., every
manycore processor will be examined.

It is clear that a task graph is a directed acyclic graph (dag). A
dag can be divided into levels, such that tasks in the same level
are independent of each other. Nodes without ant incoming arcs
constitute level 1. In general, a node i is in level j if the longest path
from a node in level 1 to node i has j nodes. Let l be the number of
levels in a dag and nj denote the number of tasks in level j, where
1 ≤ j ≤ l. An arc (i, j) is redundant if there exists a path from
i to j which goes through other nodes. Assume that there is no
redundant arc. Then, arcs only connect nodes in adjacent levels.
We consider six types of task graphs.

K. Li / Future Generation Computer Systems () – 7

• Independent tasks (IT(n))—A dag representing n independent
tasks, i.e., a dag which has no arc and one level. We set n = 500
in our simulations.

• Complete trees (CT(b, h))—A dag representing a search tree with
branching factor b and height h. The number of levels is l =

h+ 1. The number of nodes in level j is bj, where 0 ≤ j ≤ h. The
total number of nodes is n = b0 + b1 + b2 +· · ·+ bh = (bh+1

−

1)/(b − 1). The precedence constraints are i ≺ bi − b + 2, i ≺

bi − b + 3, . . . , i ≺ bi + 1, for all 1 ≤ i ≤ (bh − 1)/(b − 1)
(i.e., nodes in levels 0 to h− 1). We set b = 2 and h = 10 in our
simulations.

• Partitioning algorithms (PA(b, h))—A dag representing a divide-
and-conquer algorithm with b subproblems and depth of
recursion h. The number of levels is l = 2h + 1. The number of
nodes in level j is bj for 0 ≤ j ≤ h, and b2h−j for h + 1 ≤ j ≤ 2h.
The total number of nodes is n = 2(b0 +b1 +b2 +· · ·+bh−1)+
bh = (bh+1

+ bh − 2)/(b − 1). The precedence constraints
are i ≺ bi − b + 2, i ≺ bi − b + 3, . . . , i ≺ bi + 1, for all
1 ≤ i ≤ (bh − 1)/(b − 1) (i.e., nodes in levels 0 to h − 1), and
i ≺ n − (n − 1 − i)/b for all (bh − 1)/(b − 1) + 1 ≤ i ≤

(bh+1
+ bh − 2)/(b − 1) − 1 (i.e., nodes in levels h to 2h − 1).

We set b = 2 and h = 10 in our simulations.
• Linear algebra task graphs (LA(v))—A dag representing a linear

algebra algorithm with l = v levels. The number of nodes in
level j is nj = v − j + 1, where 1 ≤ j ≤ v. The total number of
nodes is n = v(v + 1)/2. Let aj = n1 + n2 + · · · + nj−1 + 1 be
the leading index of the nodes in level j, i.e., nodes in level j are
aj, aj + 1, . . . , aj + nj − 1, where 1 ≤ j ≤ v. The precedence
constraints are aj ≺ aj+1 + k, for all 1 ≤ j ≤ v − 1 and
0 ≤ k ≤ nj −1, and aj + k ≺ aj+1 + k−1, for all 1 ≤ k ≤ nj −1.
We set v = 200 in our simulations.

• Diamond dags (DD(d))—A dag with n = d2 nodes. The number
of levels is l = 2d − 1. The number of nodes in level j is nj = j
for 1 ≤ j ≤ d, and nj = d − j + 1 for d + 1 ≤ j ≤ 2d − 1. Let
aj = n1 + n2 + · · · + nj−1 + 1 be the leading index of the nodes
in level j, i.e., nodes in level j are aj, aj+1, . . . , aj+nj−1, where
1 ≤ j ≤ v. The precedence constraints are aj +k ≺ aj+1 +k and
aj + k ≺ aj+1 + k + 1, for all 1 ≤ j ≤ d − 1 and 0 ≤ k ≤ nj − 1,
aj ≺ aj+1 and aj+nj−1 ≺ aj+1+nj+1−1, for all d ≤ j ≤ 2d−2,
aj +k ≺ aj+1 +k−1 and aj +k ≺ aj+1 +k, for all d ≤ j ≤ 2d−2
and 1 ≤ k ≤ nj − 2. We set d = 200 in our simulations.

• Random dags (DAG(n, p))—A random dag with n nodes and arc
probability p. For each pair of i and j, where 1 ≤ i < j ≤ n,
there is an arc (i, j) with probability p, which is independent of
the probability of other arcs. The expectednumber of successors
of task i is (n− i)p, where 1 ≤ i ≤ n. If p = 2/n, then it is in the
range [0, 2).We setn = 2000 and p = 0.001 in our simulations.

The task sizesπ1, π2, . . . , πn are i.i.d. discrete random variables
in [1..D]. We consider three types of probability distributions of
task sizes with about the same expected task size π̄ [23,77–79].
Let ξb be the probability that πi = b, where b ≥ 1.

• Uniform distributions in the range [1..u], i.e., ξb = 1/u for all
1 ≤ b ≤ u, where u is chosen such that (u + 1)/2 = π̄ , i.e.,
u = 2π̄ − 1.

• Binomial distributions in the range [1..D], where D =

min{M1,M2, . . . ,Mm}, i.e.,

ξb =
1

1 − (1 − p)D


D
b


pb(1 − p)D−b,

for all 1 ≤ b ≤ D, where p is chosen such that Dp = π̄ , i.e.,
p = π̄/D. However, the actual expectation of task sizes is

π̄

1 − (1 − p)D
=

π̄

1 − (1 − π̄/D)D
,

which is slightly greater than π̄ , especially when π̄ is small.

Table 1A
Simulation data for the performance bound (1) (IT(500), CI = ±0.54386%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.2245384 1.2233637 1.2157317
20 1.1170146 1.1146973 1.1302962
30 1.0926097 1.0835406 1.1096424
40 1.0865066 1.0721085 1.0989122
50 1.0940931 1.0859161 1.0977620
60 1.0957334 1.0936939 1.0939319

Table 1B
Simulation data for the performance bound (2) (IT(500), CI = ±1.00848%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.5010664 1.4974894 1.4743129
20 1.2463026 1.2419159 1.2756722
30 1.1965773 1.1750458 1.2284184
40 1.1785307 1.1477416 1.2110139
50 1.1973015 1.1794252 1.2055510
60 1.1990831 1.1956248 1.1955979

• Geometric distributions in the range [1..D], where D =

min{M1,M2, . . . ,Mm}, i.e.,

ξb =
q(1 − q)b−1

1 − (1 − q)D
,

for all 1 ≤ b ≤ D, where q is chosen such that 1/q = π̄ , i.e.,
q = 1/π̄ . However, the actual expectation of task sizes is

1/q − (1/q + D)(1 − q)D

1 − (1 − q)D
=

π̄ − (π̄ + D)(1 − 1/π̄)D

1 − (1 − 1/π̄)D
,

which is less than π̄ , especially when π̄ is large.

The task execution requirements r1, r2, . . . , rn are treated as
i.i.d. continuous random variables uniformly distributed in [0, 1).

We consider a cloud computing environment with m = 5
manycore processors,where thenumbers of cores are (M1,M2,M3,
M4,M5) = (128, 128, 196, 256, 256).

The parameter α is set as 3.
Our simulation data for the performance bounds of the pre-

power-determination algorithm ES-LS are given in Tables 1–6, for
the six types of task graphs respectively.

In Table 1A, we show simulation data for the performance
bound of βES-LS of IT(500) in (1) for π̄ = 10, 20, 30, 40, 50, 60 and
the three types of task size distributions. For each combination of
average task size and task size distribution, we generate certain
number rep of sets of parallel tasks with random task sizes and
execution requirements, apply the ES-LS algorithm, obtain the
schedule length, and record the performance bound. The average
value of the recorded performance bounds is reported as the
expectation of the performance bound in (1), i.e., the average-
case performance bound for energy-constrained scheduling. The
number rep is chosen such that the 99% confidence interval (CI) is
within a reasonable range.

In Table 1B, we show simulation data for the performance
bound of γES-LS of IT(500) in (2) for π̄ = 10, 20, 30, 40, 50, 60 and
the three types of task size distributions. For each combination of
average task size and task size distribution, we generate certain
number rep of sets of parallel tasks with random task sizes and
execution requirements, apply the ES-LS algorithm, obtain the
total energy consumption, and record the performance bound. The
average value of the recorded performance bounds is reported as
the expectation of the performance bound in (2), i.e., the average-
case performance bound for time-constrained scheduling.

In Tables 2–6, we repeat the same work for other task graphs,
i.e., CT(2,10), PA(2,10), LA(200), DD(200), and DAG(2000,0.001).

8 K. Li / Future Generation Computer Systems () –

Table 2A
Simulation data for the performance bound (1) (CT(2,10), CI = ±0.90249%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.2935307 1.3142450 1.3744934
20 1.1340361 1.1307032 1.1644624
30 1.0902498 1.0835326 1.1105078
40 1.0707470 1.0687952 1.0976130
50 1.0678596 1.0772388 1.0883946
60 1.0687400 1.0896199 1.0843028

Table 2B
Simulation data for the performance bound (2) (CT(2,10), CI = ±1.98097%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.6705812 1.7356443 1.8822022
20 1.2810853 1.2806652 1.3481393
30 1.1846435 1.1770298 1.2386948
40 1.1501013 1.1365295 1.2044014
50 1.1379861 1.1595916 1.1861223
60 1.1429223 1.1885100 1.1769446

Table 3A
Simulation data for the performance bound (1) (PA(2,10), CI = ±0.67899%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.4376047 1.4673924 1.5293757
20 1.1861939 1.1913076 1.2417406
30 1.1191124 1.1156335 1.1534792
40 1.0895668 1.0870271 1.1218429
50 1.0770378 1.0925717 1.1087258
60 1.0741365 1.1003475 1.1007152

Table 3B
Simulation data for the performance bound (2) (PA(2,10), CI = ±1.47089%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 2.0610655 2.1835053 2.3687051
20 1.4136206 1.4257727 1.5356184
30 1.2505442 1.2452238 1.3296139
40 1.1857568 1.1840140 1.2624047
50 1.1600027 1.1920766 1.2270179
60 1.1511566 1.2114935 1.2078904

Table 4A
Simulation data for the performance bound (1) (LA(200), CI = ±1.54235%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.4734815 1.4866587 1.5330269
20 1.1279051 1.1285387 1.1886043
30 1.0722037 1.0680042 1.1152157
40 1.0566575 1.0535742 1.0898886
50 1.0570322 1.0718280 1.0789907
60 1.0607582 1.0756554 1.0744501

Table 4B
Simulation data for the performance bound (2) (LA(200), CI = ±2.52869%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 2.1903773 2.1833820 2.3235177
20 1.2741338 1.2678296 1.4177314
30 1.1478139 1.1395352 1.2422587
40 1.1172385 1.1079037 1.1842388
50 1.1169127 1.1487781 1.1638758
60 1.1265809 1.1585084 1.1536938

Notice that in Tables 6A–6B, for each combination of average task
size and task size distribution, we generate certain number rep

Table 5A
Simulation data for the performance bound (1) (DD(200), CI = ±0.91345%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.4631074 1.4649221 1.4958565
20 1.1238616 1.1210457 1.1704593
30 1.0704894 1.0665019 1.1108245
40 1.0567077 1.0525773 1.0892356
50 1.0568041 1.0716766 1.0807973
60 1.0613479 1.0756088 1.0752173

Table 5B
Simulation data for the performance bound (2) (DD(200), CI = ±1.85918%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 2.1495022 2.1576704 2.2434231
20 1.2676168 1.2584933 1.3704508
30 1.1469711 1.1372444 1.2336513
40 1.1165582 1.1083230 1.1875610
50 1.1155978 1.1485951 1.1664790
60 1.1255280 1.1567379 1.1550887

Table 6A
Simulation data for the performance bound (1) (DAG(2000,0.001), CI =

±0.88592%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.0958950 1.1076803 1.1839701
20 1.0437175 1.0423292 1.0838451
30 1.0366603 1.0305382 1.0529580
40 1.0363596 1.0310143 1.0480047
50 1.0431013 1.0522974 1.0469290
60 1.0511509 1.0698291 1.0466739

Table 6B
Simulation data for the performance bound (2) (DAG(2000,0.001), CI =

±1.82052%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.1982456 1.2090995 1.4015087
20 1.0892417 1.0874801 1.1696480
30 1.0735307 1.0616709 1.1057308
40 1.0751805 1.0624417 1.1000261
50 1.0865988 1.1069430 1.0965371
60 1.1047828 1.1422357 1.0964218

of sets of parallel tasks with random task sizes and execution
requirements, and for each set of parallel tasks, we also generate
a random dag.

We observe that the average-case performance bounds for
both energy-constrained and time-constrained scheduling is
determined by the number of processors, the numbers of cores
on the processors, the type of task graph, the number of
tasks, the average task size, the distribution of task sizes, the
average execution requirement, the distribution of execution
requirements, and quality of the scheduling algorithm A. Since M
is as large as M1 + M2 + M3 + M4 + M5 = 960, the number
of tasks that can be executed simultaneously is roughly M/π̄ ,
which is 96, 48, 32, 24, 19, 16, for π̄ = 10, 20, 30, 40, 50, 60,
respectively. There must be enough work to be done. A good
indication is the average task size and the number of tasks, which
is 500 for IT(500), 2047 for CT(2,10), 3070 for PA(2,10), 20 100 for
LA(200), 40 000 for DD(200), and 2000 for DAG(2000,0.001). There
must also be sufficient independent tasks which can be executed
simultaneously. A good indication is the width of a task graph,
i.e., max{n1, n2, . . . , nl}, the largest number of tasks in a level. The
width of the six task graphs is 500 for IT(500), 1024 for CT(2,10),
1024 for PA(2,10), 200 for LA(200), 200 for DD(200), and 864 for
DAG(2000,0.001).

K. Li / Future Generation Computer Systems () – 9

All our simulation data demonstrate that the pre-power-
determination algorithm ES-LS exhibit very good performance
in energy-constrained and time-constrained scheduling of prece-
dence constrained parallel tasks onmultiple manycore processors.
This is based on the observation that the performance bounds are
very close to one, which means that the performance of our al-
gorithm is very close to that of the optimal algorithm. It is clear
that increasing the number of tasks and especially the number
of independent tasks will further reduce the average-case perfor-
mance bounds, because the quality of the LS algorithmwill further
improve. For instance, CT(2,10) exhibits better performance than
PA(2,10) due to relatively more independent tasks. Furthermore,
for some probability distributions of task sizes (e.g., the geometric
distribution), increasing the average task size reduces the average-
case performance bound.

3.2. Post-power-determination algorithms

A post-power-determination algorithm can also be represented
as A1–A2, where A1 is a task scheduling algorithm, and A2 is a power
allocation algorithm. Thepower allocation algorithm in this section
is also ES, i.e. all tasks scheduled on the same manycore processor
are allocated the same power and executed with the same speed.
However, tasks on differentmanycore processorsmay be executed
with different speeds. It is clear that for independent parallel tasks,
such a power allocation method is feasible. Since power allocation
can be done in such a way that the overall schedule length or
energy consumption is minimized, there might be performance
improvement. The post-power-determination algorithm in this
section is called A-ES, where A is any efficient task scheduling
algorithm.

Assume that rj,1, rj,2, . . . , rj,nj are the execution requirements
of the nj tasks scheduled on Mj, where 1 ≤ j ≤ m. Let Tj =

Aj(tj,1, tj,2, . . . , tj,nj) denote the length of the schedule produced by
algorithm A for scheduling the nj independent parallel tasks with
execution times tj,1, tj,2, . . . , tj,nj on Mj. It is clear that if all tasks
are executed with the same speed sj onMj, we have

Tj = Aj(tj,1, tj,2, . . . , tj,nj) = Aj(rj,1, rj,2, . . . , rj,nj)/sj
= Aj/sj,

where Aj = Aj(rj,1, rj,2, . . . , rj,nj), for all 1 ≤ j ≤ m, and all
algorithm A.

Let Wj = πj,1rj,1 + πj,2rj,2 + · · · + πj,nj rj,nj be the total amount
of work to be performed for the nj parallel tasks scheduled on Mj.
Assume that E is divided into E1, E2, . . . , Em, where Ej is allocated
toMj, and E = E1 + E2 + · · · + Em. Since the execution speed ofMj
is

sj =


Ej
Wj

1/(α−1)

,

we have

Tj = Aj


Wj

Ej

1/(α−1)

,

for all 1 ≤ j ≤ m.

3.2.1. Energy constrained scheduling
The following theorem gives a performance bound of the

post-power-determination algorithm A-ES in solving the energy
constrained scheduling problem.

Theorem 3. By using a post-power-determination algorithm A-ES to
solve the energy constrained scheduling problem, the optimal energy

allocation is

Ej =


Aα−1
j Wj

Aα−1
1 W1 + Aα−1

2 W2 + · · · + Aα−1
m Wm


E,

for all 1 ≤ j ≤ m. The schedule length is

TA-ES =


1
E

m
j=1

Aα−1
j Wj

1/(α−1)

.

The performance ratio is

βA-ES ≤


Aα−1
1 W1 + Aα−1

2 W2 + · · · + Aα−1
m Wm

W

1/(α−1)
1

W/M
.

(3)

Proof. It is clear that E should be divided and allocated to the m
manycore processors in such a way that all processors complete
their work at the same time, i.e., T1 = T2 = · · · = Tm = T . In other
words, we need

A1


W1

E1

1/(α−1)

= A2


W2

E2

1/(α−1)

= · · ·

= Am


Wm

Em

1/(α−1)

= T .

Since

Aj


Wj

Ej

1/(α−1)

= T ,

we have

Ej =
Aα−1
j Wj

Tα−1
,

for all 1 ≤ j ≤ m. By the condition that

E =

m
j=1

Ej =

m
j=1

Aα−1
j Wj

Tα−1
=

1
Tα−1

m
j=1

Aα−1
j Wj,

we get the schedule length of algorithm A-ES, which is

TA-ES = T =


1
E

m
j=1

Aα−1
j Wj

1/(α−1)

.

Furthermore, we obtain the optimal energy allocation, i.e.,

Ej =


Aα−1
j Wj

Aα−1
1 W1 + Aα−1

2 W2 + · · · + Aα−1
m Wm


E,

for all 1 ≤ j ≤ m. By Proposition 1, the performance ratio of
algorithm A-ES is

βA-ES =
TA-ES
TOPT

≤
((1/E)(Aα−1

1 W1 + Aα−1
2 W2 + · · · + Aα−1

m Wm))1/(α−1)

((M/E)(W/M)α)1/(α−1)

=


Aα−1
1 W1 + Aα−1

2 W2 + · · · + Aα−1
m Wm

Wα/Mα−1

1/(α−1)

=


Aα−1
1 W1 + Aα−1

2 W2 + · · · + Aα−1
m Wm

W

1/(α−1)
1

W/M
.

The theorem is thus proved. �

10 K. Li / Future Generation Computer Systems () –

Notice that A(r1, r2, . . . , rn) = max{A1, A2, . . . , Am}. Hence, we
have
Aα−1
1 W1 + Aα−1

2 W2 + · · · + Aα−1
m Wm

W

1/(α−1)

≤ A(r1, r2, . . . , rn).

That is, the performance bound of the post-power-determination
algorithm A-ES is no greater than the performance bound of the
pre-power-determination algorithm ES-A in solving the energy
constrained scheduling problem.

3.2.2. Time constrained scheduling
The following theorem gives a performance bound of the

post-power-determination algorithm A-ES in solving the time
constrained scheduling problem.

Theorem 4. By using a post-power-determination algorithm A-ES to
solve the time constrained scheduling problem, the energy allocation
is

Ej =
Aα−1
j Wj

Tα−1
,

for all 1 ≤ j ≤ m. The total energy consumed is

EA-ES =
1

Tα−1

m
j=1

Aα−1
j Wj.

The performance ratio is

γA-ES ≤


Aα−1
1 W1 + Aα−1

2 W2 + · · · + Aα−1
m Wm

W


1

(W/M)α−1
. (4)

Proof. By using a post-power-determination algorithm A-ES to
solve the time constrained scheduling problem, we need

Tj = Aj


Wj

Ej

1/(α−1)

= T ,

that is,

Ej =
Aα−1
j Wj

Tα−1
,

for all 1 ≤ j ≤ m. In other words, we need to provide enough
energy EA-ES, so that the deadline T is met, i.e.,

TA-ES =


1

EA-ES

m
j=1

Aα−1
j Wj

1/(α−1)

= T .

The above equation implies that the total energy EA-ES consumed
by algorithm A-ES is

EA-ES =
1

Tα−1

m
j=1

Aα−1
j Wj.

By Proposition 2, the performance ratio of algorithm A-ES is

γA-ES =
EA-ES
EOPT

≤
(1/T)α−1(Aα−1

1 W1 + Aα−1
2 W2 + · · · + Aα−1

m Wm)

(M/Tα−1)(W/M)α

=


Aα−1
1 W1 + Aα−1

2 W2 + · · · + Aα−1
m Wm

W


1

(W/M)α−1
.

This proves the theorem. �

Table 7A
Simulation data for the performance bound (3) (IT(500), CI = ±0.34104%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.1738552 1.1788602 1.1450335
20 1.0833691 1.0858256 1.0776934
30 1.0640175 1.0595913 1.0722596
40 1.0609201 1.0516637 1.0690041
50 1.0714196 1.0689405 1.0677635
60 1.0756109 1.0784248 1.0689723

Table 7B
Simulation data for the performance bound (4) (IT(500), CI = ±0.68379%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.3757196 1.3953765 1.3149472
20 1.1739046 1.1771137 1.1630049
30 1.1334744 1.1203476 1.1468589
40 1.1253395 1.1055719 1.1447847
50 1.1494851 1.1455666 1.1427324
60 1.1617398 1.1636299 1.1437753

It is easy to see that the performance bound of the post-power-
determination algorithm A-ES is no greater than the performance
bound of the pre-power-determination algorithm ES-A in solving
the time constrained scheduling problem.

3.2.3. Simulation results
We now show the expectation of the performance bounds in

(3)–(4) through simulation.
Our simulation data for the performance bounds of the post-

power-determination algorithm LS-ES are given in Tables 7A–7B
for IT(500).

All parameters are identical to those set for Tables 1A–1B.
As proven by Theorems 3–4, the post-power-determination algo-
rithm LS-ES performs better than the pre-power-determination al-
gorithm ES-LS for each combination of average task size and task
size distribution.

4. Discrete speed levels

Assume that the available speed levels are S1 < S2 < · · · < Sd.
Furthermore, let φk = Sk+1/Sk, where 1 ≤ k ≤ d − 1. With only
finite number of speed levels, the challenge is how to generate
a schedule which is close to that generated with continuous
speed levels. We will show how the algorithms in Section 3 can
be adapted to discrete speed levels without significant loss of
performance.

4.1. Pre-power-determination algorithms

4.1.1. Energy constrained scheduling
Our main idea is to generate a schedule which is an

approximation of the schedule produced in Theorem 1 by using
the available discrete speed levels.

Let Ek = WSα−1
k , where 1 ≤ k ≤ d. Assume that Ek ≤ E < Ek+1

and Sk ≤ s < Sk+1, where E is the energy constraint, and

s =


E
W

1/(α−1)

is the execution speed obtained in the proof of Theorem 1.
Our strategy is to find a set of indices I ⊆ {1, 2, . . . , n}, such

that tasks i, i ∈ I , are executed with speed Sk+1 and tasks i, i ∉ I ,
are executed with speed Sk, and that

i∉I

wi


Sα−1
k +


i∈I

wi


Sα−1
k+1 ≤ E,

K. Li / Future Generation Computer Systems () – 11

and that the left-hand side of the above inequality is as large as
possible. The last inequality implies that
i∈I

wi ≤
E − WSα−1

k

Sα−1
k+1 − Sα−1

k

=
E − Ek

Sα−1
k+1 − Sα−1

k

.

If we assume that E = Ek(1 + ∆) = WSα−1
k (1 + ∆), where

0 ≤ ∆ < φα−1
k − 1, we get

i∈I

wi ≤ K ,

where

K =
WSα−1

k ∆

Sα−1
k+1 − Sα−1

k

=


∆

φα−1
k − 1


W .

The problem of finding a set of indices I is actually to choose
a subset of objects from n objects of sizes w1, w2, . . . , wn, such
that these chosen objects can be placed into a bag with capacity
K , and that the total size of the selected objects in the bag is as
large as possible. The set I can be determined by using a simple
greedy algorithm called list placement (LP) [92], which works as
follows. Initially, the available space of the bag is K . We scan the
list of objects one after another. For each object i, we put the object
into the bag if wi is no greater than the currently available space of
the bag. After object i is packed into the bag, the available space of
the bag is reduced by wi.

It is clear that once the execution speed of each task is
determined, we have

TES-A = A(t1, t2, . . . , tn),

where ti = ri/Sk for i ∉ I , and ti = ri/Sk+1 for i ∈ I . By
Proposition 1, the performance ratio of algorithm ES-A is

βES-A =
TES-A
TOPT

≤
A(t1, t2, . . . , tn)

((M/E)(W/M)α)1/(α−1)
.

The above discussion can be summarized in the following theorem.

Theorem 5. By using a pre-power-determination algorithm ES-A to
solve the energy constrained scheduling problem, the performance
ratio is

βES-A ≤
A(t1, t2, . . . , tn)

((M/E)(W/M)α)1/(α−1)
. (5)

4.1.2. Time constrained scheduling
Our main idea is to generate a schedule which is an

approximation of the schedule produced in Theorem 2 by using
the available discrete speed levels.

Let Tk = A(r1, r2, . . . , rn)/Sk, where 1 ≤ k ≤ d. Assume that
Tk > T ≥ Tk+1 and Sk < s ≤ Sk+1, where T is the time constraint,
and

s =
A(r1, r2, . . . , rn)

T
is the execution speed obtained in the proof of Theorem 2.
Furthermore, we assume that the time constraint is T = Tk(1−∆),
where 0 < ∆ ≤ 1 − 1/φk.

Our strategy is to arrange the tasks in certain order, and then
find an index b, such that tasks 1, 2, . . . , b are executedwith speed
Sk and tasks b + 1, b + 2, . . . , n are executed with speed Sk+1, and
that

A(t1, t2, . . . , tn) ≤ T ,

Table 8A
Simulation data for the performance bound (5) (IT(500), CI = ±1.31418%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.4802000 1.4815759 1.4675007
20 1.3088172 1.3085285 1.3123301
30 1.2587699 1.2574060 1.2717605
40 1.2431246 1.2346972 1.2632977
50 1.2461323 1.2410009 1.2527744
60 1.2482941 1.2442779 1.2488359

Table 8B
Simulation data for the performance bound (6) (IT(500), CI = ±2.82929%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.7722774 1.8148113 1.9029352
20 1.4889217 1.4995786 1.5994512
30 1.4600634 1.4433426 1.5208194
40 1.4565743 1.4160428 1.5092297
50 1.4811762 1.4767136 1.4953507
60 1.5248528 1.4872187 1.4786129

Table 9A
Simulation data for the performance bound (5) (CT(2,10), CI = ±1.04101%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.4011281 1.4114901 1.4475286
20 1.2599358 1.2459119 1.2725152
30 1.2105799 1.2026877 1.2411670
40 1.1952755 1.1900901 1.2259406
50 1.1998833 1.2073815 1.2237489
60 1.1983067 1.2201052 1.2160760

where ti = ri/Sk for 1 ≤ i ≤ b, and ti = ri/Sk+1 for b + 1 ≤ i ≤ n,
and b is as large as possible. Then, we have

EES-A =


b

i=1

wi


Sα−1
k +


n

i=b+1

wi


Sα−1
k+1 .

By Proposition 2, the performance ratio of algorithm ES-A is

γES-A =
EES-A
EOPT

≤
(w1 + w2 + · · · + wb)Sα−1

k + (wb+1 + wb+2 + · · · + wn)Sα−1
k+1

(M/Tα−1)(W/M)α
.

The above discussion can be summarized in the following theorem.

Theorem 6. By using a pre-power-determination algorithm ES-A to
solve the time constrained scheduling problem, the performance ratio
is

γES-A ≤
(w1 + w2 + · · · + wb)Sα−1

k + (wb+1 + wb+2 + · · · + wn)Sα−1
k+1

(M/Tα−1)(W/M)α
.

(6)

The index b can be found by using the binary search algorithm
in an interval [lb, ub]. It is clear that A(t1, t2, . . . , tn) depends on
b. Initially, lb = 1 and ub = n. We set b = (lb + ub)/2. If
A(t1, t2, . . . , tn) < T , we set lb = (lb + ub)/2 + 1; otherwise, we
set ub = (lb + ub)/2. The search is completed if lb = ub. Finally,
we set b = (lb + ub)/2 − 1.

4.1.3. Simulation results
We now show the expectation of the performance bounds in

(5)–(6) through simulation.
Our simulation data for the performance bounds of the pre-

power-determination algorithm ES-LS are given in Tables 8–13, for
the six types of task graphs respectively.

12 K. Li / Future Generation Computer Systems () –

Table 9B
Simulation data for the performance bound (6) (CT(2,10), CI = ±3.38677%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 2.2733281 2.4176649 2.7652964
20 1.6340871 1.6880994 1.8174636
30 1.5349267 1.5332805 1.5998362
40 1.4685468 1.4692488 1.5619782
50 1.4652617 1.4923328 1.5407591
60 1.4459194 1.5270916 1.5086720

Table 10A
Simulation data for the performance bound (5) (PA(2,10), CI = ±1.39962%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.6869191 1.7102639 1.7663974
20 1.3618047 1.3569517 1.4295905
30 1.2806196 1.2785914 1.3216469
40 1.2415204 1.2347142 1.2760383
50 1.2259741 1.2447799 1.2578893
60 1.2164613 1.2438438 1.2515346

Table 10B
Simulation data for the performance bound (6) (PA(2,10), CI = ±2.92578%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 2.3769129 2.5905027 2.8151365
20 1.7078194 1.7178979 1.8952732
30 1.5456078 1.5275878 1.6199307
40 1.4885049 1.4737307 1.5568187
50 1.4608128 1.4902875 1.5349947
60 1.4565319 1.5208104 1.5145033

Table 11A
Simulation data for the performance bound (5) (LA(200), CI = ±2.01333%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.7878766 1.8252803 1.9026930
20 1.3194789 1.3111903 1.3871795
30 1.2263830 1.2199219 1.2782206
40 1.1977777 1.1972839 1.2565644
50 1.1974917 1.2115625 1.2270764
60 1.2091115 1.2223213 1.2175088

Table 11B
Simulation data for the performance bound (6) (LA(200), CI = ±2.78964%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 2.2819040 2.2617298 2.4914600
20 1.5108635 1.4785284 1.6713468
30 1.4033391 1.3944339 1.5041119
40 1.3831826 1.3702492 1.4553787
50 1.4149842 1.4706011 1.4539490
60 1.4010601 1.4666081 1.4348255

Table 12A
Simulation data for the performance bound (5) (DD(200), CI = ±1.63712%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.6878659 1.6868576 1.7264586
20 1.2836456 1.2701128 1.3203330
30 1.2114772 1.1965342 1.2506925
40 1.1842532 1.1863488 1.2261895
50 1.1874710 1.2106041 1.2253910
60 1.2013503 1.2073089 1.2170532

All parameters used in Tables 1–6 remain the same. We set
φk = 2 for all 1 ≤ k ≤ d − 1, where d is large enough and not

Table 12B
Simulation data for the performance bound (6) (DD(200), CI = ±3.64169%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 2.5825475 2.5688181 2.7436398
20 1.5881836 1.5637508 1.6967545
30 1.4420455 1.4157434 1.5346161
40 1.4115704 1.4104472 1.4599536
50 1.4103420 1.4452986 1.4717989
60 1.4270322 1.4603983 1.4615142

Table 13A
Simulation data for the performance bound (5) (DAG(2000,0.001), CI =

±1.33405%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.2783476 1.2654799 1.3461753
20 1.1909535 1.1857032 1.2222676
30 1.1742890 1.1681412 1.1959972
40 1.1781274 1.1614185 1.1878143
50 1.1793475 1.1818928 1.1878168
60 1.1850562 1.2097923 1.1880627

Table 13B
Simulation data for the performance bound (6) (DAG(2000,0.001), CI =

±2.83384%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.4501086 1.4947344 1.7786323
20 1.3446787 1.3416277 1.4682050
30 1.3598515 1.3415398 1.3866931
40 1.3450735 1.3323213 1.3586393
50 1.3510648 1.4051232 1.3529095
60 1.3946523 1.4530305 1.3726073

very related. The energy constraint is E = Ek(1 + ∆), where k is
some integer and ∆ is uniformly distributed in [0, φα−1

k − 1). The
time constraint is T = Tk(1−∆), where k is some integer and ∆ is
uniformly distributed in (0, 1 − 1/φk].

As expected, the performance bounds of ES-LS for discrete
speed levels performworse than for continuous speed levels. How-
ever, one should notice that the lower bounds in Propositions 1
and 2 are overly optimistic for manycore processors with discrete
speed levels. In other words, an optimal solution should be worse
than the one predicted by our lower bounds. Therefore, the actual
performance ratios should be better than the data in Tables 8–13.

4.2. Post-power-determination algorithms

4.2.1. Energy constrained scheduling
Our main idea is to generate a schedule which is an

approximation of the schedule produced in Theorem 3 by using
the available discrete speed levels.

From the proof of Theorem3,we know that the execution speed
ofMj is

sj =


Ej
Wj

1/(α−1)

=


Aj

(Aα−1
1 W1 + Aα−1

2 W2 + · · · + Aα−1
m Wm)1/(α−1)


E1/(α−1),

where 1 ≤ j ≤ m. Let Ej,k = WjSα−1
k , where 1 ≤ j ≤ m and

1 ≤ k ≤ d. Assume that Ej,kj ≤ Ej < Ej,kj+1 and Skj ≤ sj < Skj+1,
where Ej is the amount of energy allocated to Mj in the proof of
Theorem 3.

K. Li / Future Generation Computer Systems () – 13

If Sk = φk for all k, then we have

φkj ≤


Ej
Wj

1/(α−1)

< φkj+1,

which implies that

kj =


1

α − 1
logφ

Ej
Wj


,

for all 1 ≤ j ≤ m.
Let the tasks executed on Mj be named as (j, i), where 1 ≤ i ≤

nj. Our strategy is to find a set of indices Ij ⊆ {1, 2, . . . , nj}, such
that tasks (j, i), i ∈ Ij, are executed with speed Skj+1 and tasks (j, i),
i ∉ Ij, are executed with speed Skj , and that

i∉Ij

wj,i

 Sα−1
kj

+


i∈Ij

wj,i

 Sα−1
kj+1 ≤ Ej,

and that the left-hand side of the above inequality is as large as
possible. If we assume that Ej = Ej,kj(1 + ∆j) = WjSα−1

kj
(1 + ∆j),

where 0 ≤ ∆j < φα−1
kj

− 1, we get
i∈Ij

wj,i ≤ Kj,

where

Kj =


∆j

φα−1
kj

− 1


Wj.

It is clear that we have

TA-ES = max(T1, T2, . . . , Tm) = max
1≤j≤m


Aj(tj,1, tj,2, . . . , tj,nj)


,

where tj,i = rj,i/Skj for i ∉ Ij, and tj,i = rj,i/Skj+1 for i ∈ Ij, and
Tj = Aj(tj,1, tj,2, . . . , tj,nj) denotes the schedule length produced
by algorithm A for tasks with execution times tj,1, tj,2, . . . , tj,nj on
Mj. By Proposition 1, the performance ratio of algorithm A-ES is

βA-ES =
TA-ES
TOPT

≤
max(T1, T2, . . . , Tm)

((M/E)(W/M)α)1/(α−1)

=

max
1≤j≤m


Aj(tj,1, tj,2, . . . , tj,nj)


((M/E)(W/M)α)1/(α−1)

.

The above discussion can be summarized in the following theorem.

Theorem 7. By using a post-power-determination algorithm A-ES to
solve the energy constrained scheduling problem, the performance
ratio is

βA-ES ≤

max
1≤j≤m


Aj(tj,1, tj,2, . . . , tj,nj)


((M/E)(W/M)α)1/(α−1)

. (7)

The set Ij can be determined by using a list placement algorithm
described in Section 4.1.1.

4.2.2. Time constrained scheduling
Our main idea is to generate a schedule which is an

approximation of the schedule produced in Theorem 4 by using
the available discrete speed levels.

From the proof of Theorem4,we know that the execution speed
ofMj is

sj =


Ej
Wj

1/(α−1)

=
Aj

T
=

Aj(rj,1, rj,2, . . . , rj,nj)

T
,

where 1 ≤ j ≤ m. Let Tj,k = Aj/Sk = Aj(rj,1, rj,2, . . . , rj,nj)/Sk,
where 1 ≤ j ≤ m and 1 ≤ k ≤ d. Assume that Tj,kj > T ≥ Tj,kj+1
and Skj < sj ≤ Skj+1.

If Sk = φk for all k, then we have

φkj <
Aj

T
≤ φkj+1,

which implies that

kj =


logφ

Aj

T


− 1,

for all 1 ≤ j ≤ m.
Our strategy is to arrange the tasks executed on Mj in certain

order, say, (j, 1), (j, 2), . . . , (j, nj), and then find an index bj, such
that tasks (j, 1), (j, 2), . . . , (j, bj) are executed with speed Skj and
tasks (j, bj + 1), (j, bj + 2), . . . , (j, nj) are executed with speed Skj+1,
and that

Tj = Aj(tj,1, tj,2, . . . , tj,nj) ≤ T ,

where tj,i = rj,i/Skj for 1 ≤ i ≤ bj, and tj,i = rj,i/Skj+1 for
bj + 1 ≤ i ≤ nj, and bj is as large as possible. Then, we have

EA-ES =

m
j=1

 bj
i=1

wj,i


Sα−1
kj

+

 nj
i=bj+1

wj,i

 Sα−1
kj+1

 .

By Proposition 2, the performance ratio of algorithm A-ES is

γA-ES =
EA-ES
EOPT

≤
1

(M/Tα−1)(W/M)α

×

m
j=1

 bj
i=1

wj,i


Sα−1
kj

+

 nj
i=bj+1

wj,i

 Sα−1
kj+1

 .

The above discussion can be summarized in the following theorem.

Theorem 8. By using a post-power-determination algorithm A-ES to
solve the time constrained scheduling problem, the performance ratio
is

γA-ES ≤
1

(M/Tα−1)(W/M)α

×

m
j=1

 bj
i=1

wj,i


Sα−1
kj

+

 nj
i=bj+1

wj,i

 Sα−1
kj+1

 . (8)

The index bj can be found by using the binary search algorithm
described in Section 4.1.2.

4.2.3. Simulation results
We now show the expectation of the performance bounds in

(7)–(8) through simulation.
Our simulation data for the performance bounds of the post-

power-determination algorithmLS-ES are given in Tables 14A–14B
for IT(500).

All parameters are identical to those set for Tables 8A–8B.
We observe that for energy constrained scheduling, the post-

power-determination algorithm LS-ES performs worse than the
pre-power-determination algorithmES-LS for each combination of
average task size and task size distribution. The reason is thatwhen
Ej is allocated to tasks in Mj, i.e., finding the set Ij, there is some
leftover of Ej, for all 1 ≤ j ≤ m. Hence, when the LP algorithm
is applied m times on the m manycore processors separately by
the post-power-determination algorithm LS-ES, therewill bemore
wasted energy than a single application of the LP algorithm for all
the n tasks by the pre-power-determination algorithm ES-LS.

14 K. Li / Future Generation Computer Systems () –

Table 14A
Simulation data for the performance bound (7) (IT(500), CI = ±3.79952%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.6568728 1.6558267 1.5970324
20 1.4908681 1.4966154 1.4934169
30 1.4560852 1.4362307 1.4850170
40 1.4894199 1.4002700 1.4756269
50 1.4620843 1.4290061 1.5093383
60 1.4679689 1.4449650 1.5159271

Table 14B
Simulation data for the performance bound (8) (IT(500), CI = ±1.88312%).

Average task
size

Uniform
distribution

Binomial
distribution

Geometric
distribution

10 1.6373675 1.6489660 1.6107650
20 1.4487165 1.4374588 1.4599286
30 1.4345915 1.4097659 1.4564348
40 1.4259428 1.3921292 1.4623996
50 1.4461258 1.4371667 1.4664019
60 1.4704655 1.4951573 1.4405544

However, for time constrained scheduling, the post-power-
determination algorithm LS-ES performs better than the pre-
power-determination algorithm ES-LS for each combination of
average task size and task size distribution. In other words, m
binary searches on the m manycore processors separately yields
less energy consumption than a single binary search on the entire
list of n tasks. The reason is that the pre-power-determination
only allows two speeds (i.e., Sk and Sk+1 in Theorem 6), while the
post-power-determination algorithm allows 2m speeds (i.e., Skj
and Skj+1, for 1 ≤ j ≤ m, in Theorem 8, two speeds for each of
them manycore processors).

5. Summary

We have defined the problems of energy and time constrained
scheduling of precedence constrained parallel tasks on multiple
manycore processors in a cloud computing environment. We ex-
tended our lower bounds from a single parallel computing sys-
tem to multiple parallel computing systems. We developed pre-
power-determination algorithms and post-power-determination
algorithms for both energy and time constrained scheduling of
precedence constrained parallel tasks on multiple manycore pro-
cessors with continuous or discrete speed levels. We evaluated the
performance of these algorithms analytically and experimentally.
Our main strategy is to embed the ES method into our algorithms.
The ESmethod not onlymakes our analysis possible, but also yields
good performance of our algorithms.

We would like to emphasize two significant aspects of our re-
search. First, our algorithms developed in this paper are applica-
ble to a variety of environments, including parallel, distributed,
cluster, grid, and cloud computing environments, wheremanycore
processors are employed. Second, the performance of our algo-
rithms have been comparedwith optimal algorithms, such that the
algorithms in this paper have rigorous performance guarantee and
practical implication.

Acknowledgments

The author would like to express his gratitude to three
anonymous reviewers for their criticism and comments on
improving the quality of the manuscript.

References

[1] M.V. Zelkowitz (Ed.), Advances in Computers, Vol. 72, Academic Press, London,
UK, 2008.

[2] J. Shalf, S. Dosanjh, J. Morrison, Exascale computing technology challenges,
Lecture Notes in Comput. Sci. 6449 (2011) 1–25.

[3] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, A.V. Vasilakos,
Cloud computing: survey on energy efficiency, ACM Comput. Surv. 47 (2)
(2015) article no. 33.

[4] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M.Q. Dang,
K. Pentikousis, Energy-efficient cloud computing, Comput. J. 53 (7) (2010)
1045–1051.

[5] Google, Google apps: energy efficiency in the cloud, Whitepaper, 2012.
https://static.googleusercontent.com/media/www.google.com/en//green/
pdf/google-apps.pdf.

[6] E. Masanet, A. Shehabi, L. Ramakrishnan, J. Liang, X. Ma, B. Walker, V. Hendrix,
P. Mantha, The energy efficiency potential of cloud-based software: A US case
study, Lawrence Berkeley National Laboratory, Berkeley, California, 2013.

[7] V. Venkatachalam, M. Franz, Power reduction techniques for microprocessor
systems, ACM Comput. Surv. 37 (3) (2005) 195–237.

[8] W.-C. Feng, The importance of being low power in high performance
computing, CTWatch Quart. 1 (3) (2005) Los Alamos National Laboratory.

[9] A. Gara, et al., Overview of the Blue Gene/L system architecture, IBM J. Res. Dev.
49 (2/3) (2005) 195–212.

[10] S.L. Graham, M. Snir, and C.A. Patterson (Eds.), Getting up to speed: the future
of supercomputing, Committee on the Future of Supercomputing, National
Research Council, National Academies Press, 2005.

[11] M.B. Srivastava, A.P. Chandrakasan, R.W. Rroderson, Predictive system shut-
down and other architectural techniques for energy efficient programmable
computation, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 4 (1) (1996)
42–55.

[12] D. Donofrio, L. Oliker, J. Shalf, M.F. Wehner, C. Rowen, J. Krueger, S. Kamil, M.
Mohiyuddin, Energy-efficient computing for extreme-scale science, Computer
42 (11) (2009) 62–71.

[13] W.-c. Feng, K.W. Cameron, The green500 list: encouraging sustainable
supercomputing, Computer 40 (12) (2007) 50–55.

[14] V.W. Freeh, D.K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B.L. Rountree, M.E.
Femal, Analyzing the energy–time trade-off in high-performance computing
applications, IEEE Trans. Parallel Distrib. Syst. 18 (6) (2007) 835–848.

[15] L. Benini, A. Bogliolo, G. De Micheli, A survey of design techniques for system-
level dynamic power management, IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 8 (3) (2000) 299–316.

[16] O.S. Unsal, I. Koren, System-level power-aware design techniques in real-time
systems, Proc. IEEE 91 (7) (2003) 1055–1069.

[17] A. Beloglazov, R. Buyya, Y.C. Lee, A. Zomaya, A taxonomy and survey of energy-
efficient data centers and cloud computing systems, Adv. Comput. 82 (2011)
47–111.

[18] F. Kong, X. Liu, A survey on green-energy-aware power management for
datacenters, ACM Comput. Surv. 47 (2) (2014) article 30.

[19] A.-C. Orgerie, M.D. de Assuncao, L. Lefevre, A survey on techniques for
improving the energy efficiency of large-scale distributed systems, ACM
Comput. Surv. 46 (4) (2014) article 47.

[20] S. Albers, Energy-efficient algorithms, Commun. ACM 53 (5) (2010) 86–96.
[21] G.L. Valentini, W. Lassonde, S.U. Khan, N. Min-Allah, S.A. Madani, J. Li, L. Zhang,

L. Wang, N. Ghani, J. Kolodziej, H. Li, A.Y. Zomaya, C.-Z. Xu, P. Balaji, A. Vishnu,
F. Pinel, J.E. Pecero, D. Kliazovich, P. Bouvry, An overview of energy efficiency
techniques in cluster computing systems, Cluster Comput. 16 (1) (2013) 3–15.

[22] S. Zhuravlev, J.C. Saez, S. Blagodurov, A. Fedorova, M. Prieto, Survey of energy-
cognizant scheduling techniques, IEEE Trans. Parallel Distrib. Syst. 24 (7)
(2013) 1447–1464.

[23] K. Li, Energy efficient scheduling of parallel tasks on multiprocessor
computers, J. Supercomput. 60 (2) (2012) 223–247.

[24] M.R. Stan, K. Skadron, Guest editors’ introduction: power-aware computing,
IEEE Comput. 36 (12) (2003) 35–38.

[25] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced CPU
energy, in: Proceedings of the 1st USENIX Symposium on Operating Systems
Design and Implementation, 1994, pp. 13–23.

[26] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced CPU energy, in:
Proceedings of the 36th IEEE Symposiumon Foundations of Computer Science,
1995, pp. 374–382.

[27] E. Bampis, C. Dürr, F. Kacem, I. Milis, Speed scaling with power down
scheduling for agreeable deadlines, Sustain. Comput.: Inform. Syst. 2 (4) (2012)
184–189.

[28] N. Bansal, T. Kimbrel, K. Pruhs, Speed scaling to manage energy and
temperature, J. ACM 54 (1) (2007) article no. 3.

[29] P. Baptiste, M. Chrobak, C. Dürr, Polynomial-time algorithms for minimum
energy scheduling, ACM Trans. Algorithms 8 (3) (2012) article no. 26.

[30] H.-L. Chan, W.-T. Chan, T.-W. Lam, L.-K. Lee, K.-S. Mak, P.W.H. Wong, Energy
efficient online deadline scheduling, in: Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms, 2007, pp. 795–804.

[31] S. Irani, S. Shukla, R. Gupta, Algorithms for power savings, ACM Trans.
Algorithms 3 (4) (2007) article no. 41.

[32] W.-C. Kwon, T. Kim, Optimal voltage allocation techniques for dynamically
variable voltage processors, ACM Trans. Embedded Comput. Syst. 4 (1) (2005)
211–230.

[33] M. Li, B.J. Liu, F.F. Yao, Min-energy voltage allocation for tree-structured tasks,
J. Comb. Optim. 11 (2006) 305–319.

[34] M. Li, A.C. Yao, F.F. Yao, Discrete and continuous min-energy schedules
for variable voltage processors, Proc. Natl. Acad. Sci. USA 103 (11) (2006)
3983–3987.

[35] M. Li, F.F. Yao, An efficient algorithm for computing optimal discrete voltage
schedules, SIAM J. Comput. 35 (3) (2006) 658–671.

[36] H.-S. Yun, J. Kim, On energy-optimal voltage scheduling for fixed-priority hard
real-time systems, ACM Trans. Embedded Comput. Syst. 2 (3) (2003) 393–430.

http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref1
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref2
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref3
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref4
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
https://static.googleusercontent.com/media/www.google.com/en//green/pdf/google-apps.pdf
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref7
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref8
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref9
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref11
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref12
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref13
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref14
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref15
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref16
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref17
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref18
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref19
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref20
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref21
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref22
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref23
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref24
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref27
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref28
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref29
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref31
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref32
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref33
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref34
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref35
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref36

K. Li / Future Generation Computer Systems () – 15

[37] H. Aydin, R. Melhem, D. Mossé, P. Mejía-Alvarez, Power-aware scheduling for
periodic real-time tasks, IEEE Trans. Comput. 53 (5) (2004) 584–600.

[38] M.E.T. Gerards, Algorithmic PowerManagement – EnergyMinimization under
Real-Time Constraints (Ph.D. thesis), University of Twente, Netherlands, 2014.

[39] J.-J. Han, X. Wu, D. Zhu, H. Jin, L.T. Yang, J.-L. Gaudiot, Synchronization-aware
energy management for VFI-based multicore real-time systems, IEEE Trans.
Comput. 61 (12) (2012) 1682–1696.

[40] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M.B. Srivastava, Power optimization
of variable-voltage core-based systems, IEEE Trans. Comput.-AidedDes. Integr.
Circuits Syst. 18 (12) (1999) 1702–1714.

[41] C. Im, S. Ha, H. Kim, Dynamic voltage scheduling with buffers in low-power
multimedia applications, ACM Trans. Embedded Comput. Syst. 3 (4) (2004)
686–705.

[42] C.M. Krishna, Y.-H. Lee, Voltage-clock-scaling adaptive scheduling techniques
for low power in hard real-time systems, IEEE Trans. Comput. 52 (12) (2003)
1586–1593.

[43] Y.-H. Lee, C.M. Krishna, Voltage-clock scaling for low energy consumption in
fixed-priority real-time systems, Real-Time Syst. 24 (3) (2003) 303–317.

[44] J.R. Lorch, A.J. Smith, PACE: a new approach to dynamic voltage scaling, IEEE
Trans. Comput. 53 (7) (2004) 856–869.

[45] R.N. Mahapatra, W. Zhao, An energy-efficient slack distribution technique
for multimode distributed real-time embedded systems, IEEE Trans. Parallel
Distrib. Syst. 16 (7) (2005) 650–662.

[46] B.C. Mochocki, X.S. Hu, G. Quan, A unified approach to variable voltage
scheduling for nonideal DVS processors, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 23 (9) (2004) 1370–1377.

[47] G. Quan, X.S. Hu, Energy efficient DVS schedule for fixed-priority real-time
systems, ACM Trans. Embedded Comput. Syst. 6 (4) (2007) Article no. 29.

[48] N.B. Rizvandi, J. Taheri, A.Y. Zomaya, Some observations on optimal frequency
selection in DVFS-based energy consumption minimization, J. Parallel Distrib.
Comput. 71 (8) (2011) 1154–1164.

[49] D. Shin, J. Kim, Power-aware scheduling of conditional task graphs in real-time
multiprocessor systems, in: Proceedings of the International Symposium on
Low Power Electronics and Design, 2003, pp. 408–413.

[50] D. Shin, J. Kim, S. Lee, Intra-task voltage scheduling for low-energy hard real-
time applications, IEEE Des. Test Comput. 18 (2) (2001) 20–30.

[51] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, R. Lauwereins,
Energy-aware runtime scheduling for embedded-multiprocessor SOCs, IEEE
Des. Test Comput. 18 (5) (2001) 46–58.

[52] X. Zhong, C.-Z. Xu, Energy-awaremodeling and scheduling for dynamic voltage
scaling with statistical real-time guarantee, IEEE Trans. Comput. 56 (3) (2007)
358–372.

[53] D. Zhu, R. Melhem, B.R. Childers, Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems, IEEE
Trans. Parallel Distrib. Syst. 14 (7) (2003) 686–700.

[54] D. Zhu, D. Mossé, R. Melhem, Power-aware scheduling for AND/OR graphs in
real-time systems, IEEE Trans. Parallel Distrib. Syst. 15 (9) (2004) 849–864.

[55] J. Zhuo, C. Chakrabarti, Energy-efficient dynamic task scheduling algorithms
for DVS systems, ACM Trans. Embedded Comput. Syst. 7 (2) (2008) Article no.
17.

[56] J.A. Barnett, Dynamic task-level voltage scheduling optimizations, IEEE Trans.
Comput. 54 (5) (2005) 508–520.

[57] D.P. Bunde, Power-aware scheduling for makespan and flow, in: Proceedings
of the 18th ACM Symposium on Parallelism in Algorithms and Architectures,
2006, pp. 190–196.

[58] S. Cho, R.G.Melhem, On the interplay of parallelization, program performance,
and energy consumption, IEEE Trans. Parallel Distrib. Syst. 21 (3) (2010)
342–353.

[59] S.K. Garg, C.S. Yeo, A. Anandasivam, R. Buyya, Environment-conscious
scheduling of HPC applications on distributed cloud-oriented data centers, J.
Parallel Distrib. Comput. 71 (6) (2011) 732–749.

[60] S.U. Khan, I. Ahmad, A cooperative game theoretical technique for joint
optimization of energy consumption and response time in computational
grids, IEEE Trans. Parallel Distrib. Syst. 20 (3) (2009) 346–360.

[61] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing
systems under different operating conditions, IEEE Trans. Parallel Distrib. Syst.
22 (8) (2011) 1374–1381.

[62] K. Li, X. Tang, K. Li, Energy-efficient stochastic task scheduling on heteroge-
neous computing systems, IEEE Trans. Parallel Distrib. Syst. 25 (11) (2014)
2867–2876.

[63] C. Rusu, R. Melhem, D. Mossé, Maximizing rewards for real-time applications
with energy constraints, ACM Trans. Embedded Comput. Syst. 2 (4) (2003)
537–559.

[64] L. Zhang, K. Li, Y. Xu, F. Zhang, K. Li, Maximizing reliability with energy
conservation for parallel task scheduling in a heterogeneous cluster, Inform.
Sci. 319 (2015) 113–131.

[65] Z. Zong, A. Manzanares, X. Ruan, X. Qin, EAD and PEBD: two energy-aware
duplication scheduling algorithms for parallel tasks on homogeneous clusters,
IEEE Trans. Comput. 60 (3) (2011) 360–374.

[66] V. Devadas, H. Aydin, On the interplay of voltage/frequency scaling and device
power management for frame-based real-time embedded applications, IEEE
Trans. Comput. 61 (1) (2012) 31–44.

[67] F. Hu, J.J. Evans, Power and environment aware control of Beowulf clusters,
Cluster Comput. 12 (3) (2009) 299–308.

[68] W.-K. Lee, S.-W. Lee, W.-O. Siew, Hybrid model for dynamic power
management, IEEE Trans. Consum. Electron. 55 (2) (2009) 656–664.

[69] G. Lovász, F. Niedermeier, H. de Meer, Performance tradeoffs of energy-aware
virtual machine consolidation, Cluster Comput. 16 (3) (2013) 481–496.

[70] V.A. Patil, V. Chaudhary, Rack aware scheduling in HPC data centers: an energy
conservation strategy, Cluster Comput. 16 (3) (2013) 559–573.

[71] J. Augustine, S. Irani, C. Swamy, Optimal power-down strategies, SIAM J.
Comput. 37 (5) (2008) 1499–1516.

[72] J. Mei, K. Li, K. Li, Energy-aware task scheduling in heterogeneous computing
environments, Cluster Comput. 17 (2) (2014) 537–550.

[73] L.M. Zhang, K. Li, D.C.-T. Lo, Y. Zhang, Energy-efficient task scheduling
algorithms on heterogeneous computerswith continuous and discrete speeds,
Sustain. Comput.: Inform. Syst. 3 (2) (2013) 109–118.

[74] K. Li, Performance analysis of power-aware task scheduling algorithms on
multiprocessor computers with dynamic voltage and speed, IEEE Trans.
Parallel Distrib. Syst. 19 (11) (2008) 1484–1497.

[75] K. Li, Scheduling precedence constrained tasks with reduced processor energy
onmultiprocessor computers, IEEE Trans. Comput. 61 (12) (2012) 1668–1681.

[76] K. Li, Power allocation and task scheduling on multiprocessor computers with
energy and time constraints, in: A.Y. Zomaya, Y.C. Lee (Eds.), Energy-Efficient
Distributed Computing Systems, John Wiley & Sons, 2012, pp. 1–37. (Chapter
1).

[77] K. Li, Algorithms and analysis of energy-efficient scheduling of parallel
tasks, in: I. Ahmad, S. Ranka (Eds.), Handbook of Energy-Aware and Green
Computing, Vol. 1, CRC Press/Taylor & Francis Group, 2012, pp. 331–360.
(Chapter 15).

[78] K. Li, Energy-efficient and high-performance processing of large-scale parallel
applications in data centers, in: S.U. Khan, A.Y. Zomaya (Eds.), Data Centers,
Springer, 2015, pp. 1–33. (Chapter 1).

[79] K. Li, Power and performancemanagement for parallel computations in clouds
and data centers, J. Comput. System Sci. 82 (2016) 174–190.

[80] D.A. Ellsworth, A.D. Malony, B. Rountree, M. Schulz, POW: system-wide
dynamic reallocation of limited power in HPC, in: Proceedings of the
24th International Symposium on High-Performance Parallel and Distributed
Computing, 2015, pp. 145–148.

[81] D.A. Ellsworth, A.D. Malony, B. Rountree, M. Schulz, Dynamic power sharing
for higher job throughput, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, Article No.
80, 2015.

[82] T. Patki, D.K. Lowenthal, A. Sasidharan, M. Maiterth, B.L. Rountree, M. Schulz,
B.R. de Supins, Practical resource management in power-constrained, high
performance computing, in: Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing, 2015, pp. 121–132.

[83] Intel, Enhanced Intel SpeedStep Technology for the Intel PentiumM Processor
– White Paper, March 2004.

[84] G. Qu, What is the limit of energy saving by dynamic voltage scaling, in:
Proceedings of the International Conference on Computer-AidedDesign, 2001,
pp. 560–563.

[85] M.Marinoni, G. Buttazzo, Elastic DVSmanagement in processors with discrete
voltage/frequency modes, IEEE Trans. Ind. Inf. 3 (1) (2007) 51–62.

[86] K. Li, Energy and time constrained task scheduling on multiprocessor
computers with discrete speed levels, J. Parallel Distrib. Comput. 95 (2016)
15–28.

[87] A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design,
IEEE J. Solid-State Circuits 27 (4) (1992) 473–484.

[88] B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, Theoretical and practical limits
of dynamic voltage scaling, in: Proceedings of the 41st Design Automation
Conference, 2004, pp. 868–873.

[89] K. Li, Private communication available on results of pre-power-determination
algorithms.

[90] R.L. Graham, Bounds onmultiprocessing timing anomalies, SIAM J. Appl. Math.
2 (1969) 416–429.

[91] K. Li, Analysis of the list scheduling algorithm for precedence constrained
parallel tasks, J. Comb. Optim. 3 (1999) 73–88.

[92] K. Li, Average-case performance analysis of an approximation algorithm for
maximum subset sum using recurrence relations, Comput. Math. Appl. 36 (6)
(1998) 63–75.

Keqin Li is a SUNY Distinguished Professor of computer
science in the State University of New York. He is also a
Distinguished Professor of Chinese National Recruitment
Program of Global Experts (1000 Plan) at Hunan Univer-
sity, China. Hewas an Intellectual Ventures endowed visit-
ing chair professor at the National Laboratory for Informa-
tion Science and Technology, Tsinghua University, Beijing,
China, during 2011–2014. His current research interests
include parallel computing and high-performance com-
puting, distributed computing, energy-efficient comput-
ing and communication, heterogeneous computing sys-

tems, cloud computing, big data computing, CPU–GPU hybrid and cooperative com-
puting, multicore computing, storage and file systems, wireless communication
networks, sensor networks, peer-to-peer file sharing systems, mobile computing,
service computing, Internet of things and cyber–physical systems. He has published
over 460 journal articles, book chapters, and refereed conference papers, and has
received several best paper awards. He is currently or has served on the editorial
boards of IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on
Computers, IEEE Transactions on Cloud Computing, IEEE Transactions on Services Com-
puting, and IEEE Transactions on Sustainable Computing. He is an IEEE Fellow.

http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref37
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref38
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref39
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref40
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref41
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref42
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref43
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref44
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref45
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref46
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref47
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref48
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref50
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref51
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref52
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref53
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref54
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref55
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref56
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref58
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref59
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref60
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref61
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref62
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref63
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref64
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref65
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref66
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref67
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref68
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref69
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref70
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref71
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref72
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref73
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref74
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref75
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref76
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref77
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref78
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref79
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref85
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref86
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref87
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref90
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref91
http://refhub.elsevier.com/S0167-739X(17)30029-8/sbref92

	Scheduling parallel tasks with energy and time constraints on multiple manycore processors in a cloud computing environment
	Introduction
	Motivation
	Related research
	Our contributions

	Preliminaries
	The models
	The task model
	The processor model
	The power model

	The problems
	Performance measures
	Lower bounds
	Energy constrained scheduling
	Time constrained scheduling

	Overview of our method

	Continuous speed levels
	Pre-power-determination algorithms
	Energy constrained scheduling
	Time constrained scheduling
	Simulation results

	Post-power-determination algorithms
	Energy constrained scheduling
	Time constrained scheduling
	Simulation results

	Discrete speed levels
	Pre-power-determination algorithms
	Energy constrained scheduling
	Time constrained scheduling
	Simulation results

	Post-power-determination algorithms
	Energy constrained scheduling
	Time constrained scheduling
	Simulation results

	Summary
	Acknowledgments
	References

