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CHAPTER 1

POWER ALLOCATION AND TASK
SCHEDULING ON MULTIPROCESSOR
COMPUTERS WITH ENERGY
AND TIME CONSTRAINTS

KEQIN LI

1.1 INTRODUCTION

1.1.1 Energy Consumption

Performance-driven computer development has lasted for over six decades. Com-
puters have been developed to achieve higher performance. As of June 2010, three
supercomputers have achieved petaflops speed: Cray Jaguar (224,162 proces-
sors, 1.759 petaflops), Dawning Nebulae (120,640 processors, 1.271 petaflops),
and IBM Roadrunner (122,400 processors, 1.042 petaflops) (1). According to
Moore’s law of computing hardware, the following quantities increase (decrease)
exponentially, doubling (halving) approximately every 2 years: the number of
transistors per integrated circuit (cost per transistor), processing speed, mem-
ory/storage capacity (cost per unit of information), and network capacity (2).

While performance/cost has increased dramatically, power consumption in
computer systems has also increased according to Moore’s law. To achieve higher
computing performance per processor, microprocessor manufacturers have dou-
bled the power density at an exponential speed over decades, which will soon
reach that of a nuclear reactor (3). Such increased energy consumption causes
severe economic, ecological, and technical problems.

• Economic Impact . Computer systems consume tremendous amount of
energy and natural resources. It has been reported that desktop computers
in the United States account for over 10% of commercial electricity
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consumption (4). A large-scale multiprocessor computing system consumes
millions of dollars of electricity and natural resources every year, equivalent
to the amount of energy used by tens of thousands US households (5). A
large data center such as Google can consume as much electricity as does
a city. Furthermore, the cooling bill for heat dissipation can be as high as
70% of the above cost (6). Supercomputers are making less efficient use of
space, which often results in the design and construction of new machine
rooms or even entirely new buildings.

• Ecological Impact . Desktop computers produce as much carbon dioxide
(CO2) as millions of cars. A recent report reveals that the global informa-
tion technology industry generates as much greenhouse gas as the world’s
airlines, about 2% of global CO2 emissions (7). The heat dissipation prob-
lem gets increasingly worse because of higher computing speeds, shrinking
packages, and growing energy-hungry applications such as multimedia and
communications.

• Technical Impact . Large-scale multiprocessor computers require expensive
packaging and cooling technologies, and demand for sophisticated fault-
tolerant mechanisms that deal with decreased reliability due to heat dissipa-
tion caused by increased energy consumption. Despite sophisticated cooling
facilities constructed to ensure proper operation, the reliability of large-scale
multiprocessor computing systems is measured in hours, and the main source
of outage is hardware failure caused by excessive heat. It is conceivable that
a supercomputing system with 105 processors would spend most of its time
in checkpointing and restarting (8).

It is clear that there are compelling economic, environmental, and technical rea-
sons for emphasis on energy efficiency.

1.1.2 Power Reduction

Power conservation is critical in many computation and communication envi-
ronments and has attracted extensive research activities. For high performance
supercomputers, energy-aware design has significance impact on system perfor-
mance. It is noticed that performance per rack equals to performance per watt
times watt per rack, where watt per rack is determined by thermal cooling capa-
bilities and can be considered as a constant of order 20 kW for an air-cooled
rack. Therefore, it is the performance per watt term that determines the rack
performance. It is found that in terms of performance per watt, the low fre-
quency and low power embedded IBM PowerPC consistently outperforms high
frequency and high power microprocessors by a factor of 2–10. This is one of
the main reasons why IBM chose the low power design for the Blue Gene/L
supercomputer that was developed around a processor with moderate frequency.
In mobile computing and communication environments, efficient processor power
management increases the lifetime of battery operated devices such as hand-held
mobile computers and portable embedded systems. Energy efficiency is a major
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design constraint in these portable devices, since battery technology has not been
developed in the same pace as semiconductor industry.

Reducing processor energy consumption has been an important and pressing
research issue in recent years. There has been increasing interest and importance
in developing high performance and energy-efficient computing systems. There
exists a large body of literature on power-aware computing and communication.
The reader is referred to References (3, 9–11) for comprehensive surveys.

There are two approaches to reducing power consumption in computing sys-
tems. The first approach is the method of thermal-aware hardware design, which
can be carried out at various levels, including device level power reduction,
circuit and logic level techniques, and architecture level power reduction (low
power processor architecture adaptations, low power memories and memory hier-
archies, and low power interconnects). Low power consumption and high system
reliability, availability, and usability are main concerns of modern high perfor-
mance computing system development. In addition to the traditional performance
measure using FLOPS, the Green500 list uses FLOPS per watt to rank the perfor-
mance of computing systems, so that the awareness of other performance metrics
such as energy efficiency and system reliability can be raised (12). All the current
systems that can achieve at least 400 MFLOPS/W are clusters of low power pro-
cessors, aiming to achieve high performance/power and performance/space. For
instance, the Dawning Nebulae, currently the world’s second fastest computer,
which achieves peak performance of 2.984 PFLOPS, is also the fourth most
energy-efficient supercomputer in the world with an operational rate of 492.64
MFLOPS/W (12). Intel’s Tera-scale research project has developed the world’s
first programmable processor that delivers supercomputer-like performance from
a single 80-core chip, which uses less electricity than most of today’s home
appliances and achieves over 16.29 GFLOPS/W (13).

The second approach to reducing energy consumption in computing systems is
the method of power-aware software design at various levels, including operating
system level power management, compiler level power management, application
level power management, and cross-layer (from transistors to applications) adap-
tations. The power reduction technique discussed in this chapter belongs to the
operating system level, which we elaborate in the next section.

1.1.3 Dynamic Power Management

Software techniques for power reduction are supported by a mechanism called
dynamic voltage scaling (equivalently, dynamic frequency scaling, dynamic
speed scaling, and dynamic power scaling). Many modern components allow
voltage regulation to be controlled through software, for example, the BIOS or
applications such as PowerStrip. It is usually possible to control the voltages
supplied to the CPUs, main memories, local buses, and expansion cards (14).
Processor power consumption is proportional to frequency and the square
of supply voltage. A power-aware algorithm can change supply voltage
and frequency at appropriate times to optimize a combined consideration of
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performance and energy consumption. There are many existing technologies and
commercial processors that support dynamic voltage (frequency, speed, power)
scaling. SpeedStep is a series of dynamic frequency scaling technologies built
into some Intel microprocessors that allow the clock speed of a processor to
be dynamically changed by software (15). LongHaul is a technology developed
by VIA Technologies, which supports dynamic frequency scaling and dynamic
voltage scaling. By executing specialized operating system instructions, a
processor driver can exercise fine control on the bus-to-core frequency ratio and
core voltage according to how much load is put on the processor (16). LongRun
and LongRun2 are power management technologies introduced by Transmeta.
LongRun2 has been licensed to Fujitsu, NEC, Sony, Toshiba, and NVIDIA (17).

Dynamic power management at the operating system level refers to supply
voltage and clock frequency adjustment schemes implemented while tasks are
running. These energy conservation techniques explore the opportunities for tun-
ing the energy-delay tradeoff (18). Power-aware task scheduling on processors
with variable voltages and speeds has been extensively studied since the mid-
1990s. In a pioneering paper (19), the authors first proposed an approach to energy
saving by using fine grain control of CPU speed by an operating system scheduler.
The main idea is to monitor CPU idle time and to reduce energy consumption
by reducing clock speed and idle time to a minimum. In a subsequent work (20),
the authors analyzed offline and online algorithms for scheduling tasks with
arrival times and deadlines on a uniprocessor computer with minimum energy
consumption. These research have been extended in References (21–27) and
inspired substantial further investigation, much of which focus on real-time appli-
cations, namely, adjusting the supply voltage and clock frequency to minimize
CPU energy consumption while still meeting the deadlines for task execution.
In References (28–42) and many other related work, the authors addressed the
problem of scheduling independent or precedence constrained tasks on unipro-
cessor or multiprocessor computers where the actual execution time of a task may
be less than the estimated worst-case execution time. The main issue is energy
reduction by slack time reclamation.

1.1.4 Task Scheduling with Energy and Time Constraints

There are two considerations in dealing with the energy-delay tradeoff. On the
one hand, in high performance computing systems, power-aware design tech-
niques and algorithms attempt to maximize performance under certain energy
consumption constraints. On the other hand, low power and energy-efficient
design techniques and algorithms aim to minimize energy consumption while still
meeting certain performance requirements. In Reference 43, the author studied the
problems of minimizing the expected execution time given a hard energy budget
and minimizing the expected energy expenditure given a hard execution dead-
line for a single task with randomized execution requirement. In Reference 44,
the author considered scheduling jobs with equal requirements on multiproces-
sors. In Reference 45, the authors studied the relationship among parallelization,
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performance, and energy consumption, and the problem of minimizing energy-
delay product. In References 46, 47, the authors attempted joint minimization
of energy consumption and task execution time. In Reference 48, the authors
investigated the problem of system value maximization subject to both time and
energy constraints.

In this chapter, we address energy and time constrained power allocation and
task scheduling on multiprocessor computers with dynamically variable volt-
age, frequency, speed, and power as combinatorial optimization problems. In
particular, we define the problem of minimizing schedule length with energy
consumption constraint and the problem of minimizing energy consumption with
schedule length constraint on multiprocessor computers (49). The first problem
has applications in general multiprocessor and multicore processor computing
systems, where energy consumption is an important concern, and in mobile
computers, where energy conservation is a main concern. The second problem
has applications in real-time multiprocessing systems and environments such as
parallel signal processing, automated target recognition, and real-time MPEG
encoding, where timing constraint is a major requirement. Our scheduling prob-
lems are defined such that the energy-delay product is optimized by fixing one
factor and minimizing the other.

1.1.5 Chapter Outline

The rest of the chapter is organized as follows: In Section 1.2, we present the
power consumption model; define our power allocation and task scheduling prob-
lems on multiprocessor computers with energy and time constraints; describe
various task models, processor models, and scheduling models; discuss problem
decomposition and subproblems; and mention different types of algorithms. In
Section 1.3, we develop optimal solution to our problems on uniprocessor com-
puters and multiprocessor computers with given partitions of tasks, prove the
strong NP-hardness of our problems, derive lower bounds for optimal solutions,
and the energy-delay tradeoff theorem. In Section 1.4, we present and analyze
the performance of pre-power-determination algorithms, including equal-time
algorithms, equal-energy algorithms, and equal-speed algorithms. We show both
numerical data and simulation results of our performance bounds. In Section 1.5,
we present and analyze the performance of post-power-determination algorithms.
We demonstrate both numerical data and simulation results of our performance
bounds. In Section 1.6, we summarize the chapter and point out several further
research directions.

1.2 PRELIMINARIES

1.2.1 Power Consumption Model

Power dissipation and circuit delay in digital CMOS circuits can be accurately
modeled by simple equations, even for complex microprocessor circuits. CMOS
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circuits have dynamic, static, and short-circuit power dissipation; however, the
dominant component in a well-designed circuit is dynamic power consumption p
(i.e., the switching component of power), which is approximately p = aCV 2f ,
where a is an activity factor, C is the loading capacitance, V is the supply
voltage, and f is the clock frequency (50). Since s ∝ f , where s is the processor
speed, and f ∝ V φ with 0 < φ ≤ 1 (51), which implies that V ∝ f 1/φ , we know
that the power consumption is p ∝ f α and p ∝ sα , where α = 1 + 2/φ ≥ 3.

Assume that we are given n independent sequential tasks to be executed on m
identical processors. Let ri represent the execution requirement (i.e., the number
of CPU cycles or the number of instructions) of task i , where 1 ≤ i ≤ n. We use
pi (Vi , fi , respectively) to represent the power (supply voltage, clock frequency,
respectively) allocated to execute task i . For ease of discussion, we will assume
that pi is simply sα

i , where si = p
1/α

i is the execution speed of task i . The
execution time of task i is ti = ri/si = ri/p

1/α

i . The energy consumed to execute
task i is ei = piti = rip

1−1/α

i = ris
α−1
i .

We would like to mention the following number of basic and important obser-
vations: (i) fi ∝ V

φ
i and si ∝ V

φ
i : Linear change in supply voltage results in

up to linear change in clock frequency and processor speed; (ii) pi ∝ V
φ+2
i and

pi ∝ f α
i and pi ∝ sα

i : Linear change in supply voltage results in at least quadratic
change in power supply and linear change in clock frequency and processor
speed results in at least cubic change in power supply; (iii) si/pi ∝ V −2

i and
si/pi ∝ s

−(α−1)
i : The processor energy performance, measured by speed per watt

(12), is at least quadratically proportional to the supply voltage and speed reduc-
tion; (iv) ri/ei ∝ V −2

i and ri/ei ∝ s
−(α−1)
i , where ri is the amount of work to be

performed for task i : The processor energy performance, measured by work per
Joule (19), is at least quadratically proportional to the supply voltage and speed
reduction; (v) ei ∝ p

1−1/α

i ∝ V
(φ+2)(1−1/α)

i = V 2
i : Linear change in supply volt-

age results in quadratic change in energy consumption; (vi) ei = ris
α−1
i : Linear

change in processor speed results in at least quadratic change in energy con-
sumption; (vii) ei = rip

1−1/α

i : Energy consumption reduces at a sublinear speed,
as power supply reduces; (viii) eit

α−1
i = rα

i and pit
α
i = rα

i : For a given task,
there exist energy-delay and power-delay tradeoffs. (Later, we will extend such
tradeoff to a set of tasks, i.e., the energy-delay tradeoff theorem.)

1.2.2 Problem Definitions

The power allocation and task scheduling problems on multiprocessor computers
with energy and time constraints addressed in this chapter are defined as the
following optimization problems.

Problem 1.1 (Minimizing Schedule Length with Energy Consumption
Constraint)

Input : A set of n independent sequential tasks, a multiprocessor computer
with m identical processors, and energy constraint E .
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Output : Power supplies p1, p2, . . . , pn to the n tasks and a schedule of the n
tasks on the m processors such that the schedule length is minimized and
the total energy consumption does not exceed E .

Problem 1.2 (Minimizing Energy Consumption with Schedule Length
Constraint)

Input : A set of n independent sequential tasks, a multiprocessor computer
with m identical processors, and time constraint T .

Output : Power supplies p1, p2, . . . , pn to the n tasks and a schedule of
the n tasks on the m processors such that the total energy consumption is
minimized and the schedule length does not exceed T .

The framework of investigation can be established based on the product of
three spaces, namely, the task models, the processors models, and the schedul-
ing models. The above research problems have many variations and extensions,
depending on the task models, processors models, and scheduling models. These
power allocation and task scheduling problems can be investigated in a variety
of ways to consider sophisticated application environments, realistic processor
technologies, and practical scheduling algorithms.

1.2.3 Task Models

Our independent sequential tasks can be extended to precedence constrained
tasks, parallel tasks, and dynamic tasks, which arise in various application
environments.

• Independent and Precedence Constrained Tasks . A set of independent tasks
can be scheduled in any order. A set of n precedence constrained tasks can
be represented by a partial order ≺ on the tasks, that is, for two tasks i
and j , if i ≺ j , then task j cannot start its execution until task i finishes.
It is clear that the n tasks and the partial order ≺ can be represented by a
directed task graph, in which, there are n vertices for the n tasks and (i, j)

is an arc if and only if i ≺ j . Furthermore, such a task graph must be a
directed acyclic graph (dag).

• Sequential and Parallel Tasks . A sequential task requires one processor to
execute. A parallel task requires several processors to execute. Assume that
task i requires πi processors to execute and any πi of the m processors
can be allocated to task i . We call πi the size of task i . It is possible
that in executing task i , the πi processors may have different execution
requirements. Let ri represent the maximum execution requirement on the
πi processors executing task i . The execution time of task i is ti = ri/si =
ri/p

1/α

i . Note that all the πi processors allocated to task i have the same
speed si for duration ti , although some of the πi processors may be idle
for some time. The energy consumed to execute task i is ei = πipiti =
πirip

1−1/α

i = πiris
α−1
i .
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• Static and Dynamic Tasks . A set of tasks are static if they are all available
for scheduling at the same time. A schedule can be determined before the
execution of any task. A set of tasks are dynamic if each task has its own
arrival time. A scheduling algorithm should be able to schedule currently
available tasks without knowing the arrival of future tasks.

1.2.4 Processor Models

The following processor technologies can be incorporated into our power allo-
cation and task scheduling problems.

• Continuous and Discrete Voltage/Frequency/Speed/Power Levels . Most
existing research assume that tasks can be supplied with any power and
processors can be set at any speed, that is, voltage/frequency/speed/power
can be changed continuously. However, the currently available processors
have only discrete voltage/frequency/speed/power settings (40, 52, 53).
Such discrete settings certainly make our optimization problems more
difficult to solve.

• Bounded and Unbounded Voltage/Frequency/Speed/Power Levels . Much
existing research also assumes that voltage/frequency/speed/power can
be changed in any range. However, the currently available processors
can only change voltage/frequency/speed/power in certain bounded range.
Power-aware task scheduling algorithms developed with such constraints,
though more complicated, will be more practically useful.

• Regular and Irregular Voltage/Frequency/Speed/Power Levels . Much exist-
ing research also assume that voltage/frequency/speed/power can be changed
according to certain analytical and mathematical relation. However, real
processors hardly follow such regular models and exhibit irregular rela-
tion among voltage, frequency, speed, and power. Such irregularity makes
analytical study of algorithms very hard.

• Homogeneous and Heterogeneous Processors . A multiprocessor computer
is homogeneous if all the processors have the same power–speed relation-
ship. A multiprocessor computer is heterogeneous with α1, α2, . . . , αm, if
each processor k has its own αk , such that power dissipation on proces-
sor k is ∝ s

αk

k , where 1 ≤ k ≤ m. Heterogeneity makes the scheduling of
sequential tasks more difficult and the specification of parallel tasks more
sophisticated.

• Overheads for Voltage/Frequency/Speed/Power Adjustment and Idle Proces-
sors . In reality, it takes time and consumes energy to change voltage,
frequency, speed, and power. A processor also consumes energy when it is
idle (40). Although these overheads are ignored in most existing research, it
would be interesting to take these overheads into consideration to produce
more realistic solutions.

• Single and Multiple Systems . Processors can reside on a single computing
system or across multiple computing systems.
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1.2.5 Scheduling Models

As in traditional scheduling theory, different types of scheduling algorithms can
be considered for power-aware task scheduling problems.

• Preemptive and Nonpreemptive Scheduling . In a nonpreemptive schedule,
the execution of a task cannot be interrupted. Once a task is scheduled on
a processor, the task runs with the same power supply until it is completed.
In a preemptive schedule, the execution of a task can be interrupted at any
time and resumed later. When the execution of a task is resumed, the task
may be assigned to a different processor, supplied with different power,
and executed at different speed. Depending on the processor model, such
resumption may be performed with no cost or with overheads for relocation
and/or voltage/frequency/speed/power adjustment.

• Online and Offline Scheduling . An offline scheduling algorithm knows all the
information (execution requirements, precedence constraints, sizes, arrival
times, deadlines, etc.) of the tasks to be scheduled. An online algorithm
schedules the tasks in certain given order. When task j is scheduled, an
online algorithm only knows the information of tasks 1, 2, . . . , j but does
not know the information of tasks j + 1, j + 2, . . . Current tasks should be
scheduled without any knowledge of future tasks.

• Clairvoyant and Non-Clairvoyant Scheduling . Virtually all research in
scheduling theory has been concerned with clairvoyant scheduling, where
it is assumed that the execution requirements of the tasks are known a
priori. However, in many applications, the execution requirement of a task
is not available until the task is executed and completed. A non-clairvoyant
scheduling algorithm only knows the precedence constraints, sizes, arrival
times, and deadlines of the tasks and has no access to information about
the execution requirements of the tasks it is to schedule. The execution
requirement of a task is known only when it is completed.

1.2.6 Problem Decomposition

Our power allocation and task scheduling problems contain four nontrivial sub-
problems, namely, system partitioning, precedence constraining, task scheduling,
and power supplying. Each subproblem should be solved efficiently, so that
heuristic algorithms with overall good performance can be developed.

• System Partitioning . Since each parallel task requests for multiple pro-
cessors, a multiprocessor computer should be partitioned into clusters of
processors to be assigned to the tasks.

• Precedence Constraining . Precedence constraints make design and analysis
of heuristic algorithms more difficult.

• Task Scheduling . Precedence constrained parallel tasks are scheduled
together with system partitioning and precedence constraining, and it
is NP-hard even when scheduling independent sequential tasks without
system partitioning and precedence constraint.
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• Power Supplying . Tasks should be supplied with appropriate powers and
execution speeds, such that the schedule length is minimized by consum-
ing given amount of energy or the energy consumed is minimized without
missing a given deadline.

The above decomposition of our optimization problems into several subproblems
makes design and analysis of heuristic algorithms tractable. Our approach is
significantly different from most existing studies. A unique feature of our work is
to compare the performance of our algorithms with optimal solutions analytically
and validate our results experimentally, and not to compare the performance of
heuristic algorithms among themselves only experimentally. Such an approach is
consistent with traditional scheduling theory.

1.2.7 Types of Algorithms

There are naturally three types of power-aware task scheduling algorithms,
depending on the order of power supplying and task scheduling.

• Pre-Power-Determination Algorithms . In this type of algorithms, we first
determine power supplies and then schedule the tasks.

• Post-Power-Determination Algorithms . In this type of algorithms, we first
schedule the tasks and then determine power supplies.

• Hybrid Algorithms . In this type of algorithms, scheduling tasks and deter-
mining power supplies are interleaved among different stages of an algo-
rithm.

1.3 PROBLEM ANALYSIS

Our study in this chapter assumes the following models, namely, task model:
independent, sequential, static tasks; processor model: a single system of homoge-
neous processors with continuous and unbounded and regular voltage/frequency/
speed/power levels and without overheads for voltage/frequency/speed/power
adjustment and idle processors; scheduling model: nonpreemptive, offline, clair-
voyant scheduling. The above combination of task model, processor model, and
scheduling model yields the easiest version of our power allocation and task
scheduling problems.

1.3.1 Schedule Length Minimization

1.3.1.1 Uniprocessor Computers. It is clear that on a uniprocessor com-
puter with energy constraint E , the problem of minimizing schedule length with
energy consumption constraint is simply to find the power supplies p1, p2, . . . ,
pn, such that the schedule length

T (p1, p2, . . . , pn) = r1

p
1/α

1

+ r2

p
1/α

2

+ · · · + rn

p
1/α
n
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is minimized and the total energy consumed e1 + e2 + · · · + en does not exceed
E , that is,

F(p1, p2, . . . , pn) = r1p
1−1/α

1 + r2p
1−1/α

2 + · · · + rnp
1−1/α
n ≤ E

Notice that both the schedule length T (p1, p2, . . . , pn) and the energy consump-
tion F(p1, p2, . . . , pn) are viewed as functions of p1, p2, . . . , pn.

We can minimize T (p1, p2, . . . , pn) subject to the constraint F(p1, p2,

. . . , pn) = E by using the Lagrange multiplier system:

∇T (p1, p2, . . . , pn) = λ∇F(p1, p2, . . . , pn)

where λ is a Lagrange multiplier. Since

∂T (p1, p2, . . . , pn)

∂pi

= λ · ∂F (p1, p2, . . . , pn)

∂pi

that is,

ri

(
− 1

α

)
1

p
1+1/α

i

= λri

(
1 − 1

α

)
1

p
1/α

i

where 1 ≤ i ≤ n, we have pi = 1/λ(1 − α), for all 1 ≤ i ≤ n. Substi-
tuting the above pi into the constraint F(p1, p2, . . . , pn) = E, we get
R (1/λ(1 − α))1−1/α = E, where R = r1 + r2 + · · · + rn is the total exe-
cution requirement of the n tasks. Therefore, we obtain pi = 1/λ(1 − α)

= (E/R)α/(α−1), for all 1 ≤ i ≤ n.
The above discussion is summarized in the following theorem, which gives

the optimal power supplies and the optimal schedule length.

Theorem 1.1 On a uniprocessor computer, the schedule length is minimized
when all tasks are supplied with the same power pi = (E/R)α/(α−1), where 1 ≤
i ≤ n. The optimal schedule length is TOPT = Rα/(α−1)/E1/(α−1).

1.3.1.2 Multiprocessor Computers. Let us consider a multiprocessor com-
puter with m processors. Assume that a set of n tasks is partitioned into m groups,
such that all the tasks in group k are executed on processor k , where 1 ≤ k ≤ m.
Let Rk denote group k and the total execution requirement of the tasks in group
k . For a given partition of the n tasks into m groups R1, R2, . . . , Rm, we are
seeking power supplies that minimize the schedule length.

Let Ek be the energy consumed by all the tasks in group k . We observe that
by fixing Ek and adjusting the power supplies for the tasks in group k to the
same power (Ek/Rk)

α/(α−1) according to Theorem 1.1, the total execution time
of the tasks in group k can be minimized to Tk = R

α/(α−1)

k /E
1/(α−1)

k . Therefore,
the problem of finding power supplies p1, p2, . . . , pn, which minimize the
schedule length is equivalent to finding E1, E2, . . . , Em, which minimize the
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schedule length. It is clear that the schedule length is minimized when all the m
processors complete their execution of the m groups of tasks at the same time
T , that is, T1 = T2 = · · · = Tm = T , which implies that Ek = Rα

k /T α−1. Since
E1 + E2 + · · · + Em = E, we have

Rα
1 + Rα

2 + · · · + Rα
m

T α−1
= E

that is,

T =
(

Rα
1 + Rα

2 + · · · + Rα
m

E

)1/(α−1)

and

Ek =
(

Rα
k

Rα
1 + Rα

2 + · · · + Rα
m

)
E

Thus, we have proved the following theorem.

Theorem 1.2 For a given partition R1, R2, . . . , Rm of n tasks into m groups
on a multiprocessor computer, the schedule length is minimized when all the tasks
in group k are supplied with the same power (Ek/Rk)

α/(α−1), where

Ek =
(

Rα
k

Rα
1 + Rα

2 + · · · + Rα
m

)
E

for all 1 ≤ k ≤ m. The optimal schedule length is

TOPT =
(

Rα
1 + Rα

2 + · · · + Rα
m

E

)1/(α−1)

for the above power supplies.

1.3.2 Energy Consumption Minimization

1.3.2.1 Uniprocessor Computers. It is clear that on a uniprocessor com-
puter with time constraint T , the problem of minimizing energy consumption
with schedule length constraint is simply to find the power supplies p1, p2, . . . ,
pn, such that the total energy consumption

E(p1, p2, . . . , pn) = r1p
1−1/α

1 + r2p
1−1/α

2 + · · · + rnp
1−1/α
n

is minimized and the schedule length t1 + t2 + · · · + tn does not exceed T , that is,

F(p1, p2, . . . , pn) = r1

p
1/α

1

+ r2

p
1/α

2

+ · · · + rn

p
1/α
n

≤ T



Zomaya c01.tex V1 - 04/11/2012 7:39am Page 13

PROBLEM ANALYSIS 13

The energy consumption E(p1, p2, . . . , pn) and the schedule length F(p1, p2,

. . . , pn) are viewed as functions of p1, p2, . . . , pn.
We can minimize E(p1, p2, . . . , pn) subject to the constraint F(p1, p2, . . . ,

pn) = T by using the Lagrange multiplier system:

∇E(p1, p2, . . . , pn) = λ∇F(p1, p2, . . . , pn)

where λ is a Lagrange multiplier. Since

∂E(p1, p2, . . . , pn)

∂pi

= λ · ∂F (p1, p2, ..., pn)

∂pi

that is,

ri

(
1 − 1

α

)
1

p
1/α

i

= λri

(
− 1

α

)
1

p
1+1/α

i

where 1 ≤ i ≤ n, we have pi = λ/(1 − α), for all 1 ≤ i ≤ n. Substituting the
above pi into the constraint F(p1, p2, . . . , pn) = T , we get R ((1 − α)/λ)1/α =
T and pi = λ/(1 − α) = (R/T )α , for all 1 ≤ i ≤ n.

The above discussion gives rise to the following theorem, which gives the
optimal power supplies and the minimum energy consumption.

Theorem 1.3 On a uniprocessor computer, the total energy consumption is min-
imized when all tasks are supplied with the same power pi = (R/T )α , where
1 ≤ i ≤ n. The minimum energy consumption is EOPT = Rα/T α−1.

1.3.2.2 Multiprocessor Computers. By Theorem 1.3, the energy consumed
by tasks in group k is minimized as Ek = Rα

k /T α−1 by allocating the same power
(Rk/T )α to all the tasks in group k without missing the time deadline T . The
minimum energy consumption is simply

E1 + E2 + · · · + Em = Rα
1 + Rα

2 + · · · + Rα
m

T α−1

The following result gives the optimal power supplies that minimize energy
consumption for a given partition of n tasks into m groups on a multiprocessor
computer.

Theorem 1.4 For a given partition R1, R2, . . . , Rm of n tasks into m groups on
a multiprocessor computer, the total energy consumption is minimized when all
the tasks in group k are supplied with the same power (Rk/T )α , where 1 ≤ k ≤ m.
The minimum energy consumption is

EOPT = Rα
1 + Rα

2 + · · · + Rα
m

T α−1

for the above power supplies.
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1.3.3 Strong NP-Hardness

The sum of powers problem is defined as follows:

Problem 1.3 (Sum of Powers)

Input : A set of integers {r1, r2, . . . , rn} and an integer m ≥ 2.
Output : A partition of the set into m disjoint subsets, where the sum of integers

in subset k is Rk , 1 ≤ k ≤ m, such that Rα
1 + Rα

2 + · · · + Rα
m is minimized.

Theorems 1.2 and 1.4 imply that on a multiprocessor computer, the problem of
minimizing schedule length with energy consumption constraint and the problem
of minimizing energy consumption with schedule length constraint are equivalent
to finding a partition R1, R2, . . . , Rm of the n tasks into m groups such that
Rα

1 + Rα
2 + · · · + Rα

m is minimized. This is exactly the same problem as the sum
of powers problem. Hence, we have reached the following theorem.

Theorem 1.5 On a multiprocessor computer with m ≥ 2 processors, the prob-
lem of minimizing schedule length with energy consumption constraint and the
problem of minimizing energy consumption with schedule length constraint are
equivalent to the sum of powers problem.

We can easily prove that the sum of powers problem is NP-hard even when
m = 2 and α = 2. We use a reduction from the well-known partition prob-
lem (54), that is, to decide whether there is a partition of a set of integers
{r1, r2, . . . , rn} into two disjoint subsets, such that R1 = R2, where R1 and R2
are the sums of integers in the two subsets. Let R = R1 + R2 be the sum of all
integers. Since R2

1 + R2
2 = R2

1 + (R − R1)
2 = 2(R1 − R/2)2 + R2/2, we know

that R2
1 + R2

2 is minimized as R2/2 if and only if R1 = R/2, that is, there is a
partition. Actually, the following result is known in Reference [54 (p. 225)].

Theorem 1.6 The sum of powers problem is NP-hard in the strong sense for all
rational α > 1. Consequently, on a multiprocessor computer with m ≥ 2 proces-
sors, the problem of minimizing schedule length with energy consumption con-
straint and the problem of minimizing energy consumption with schedule length
constraint are NP-hard in the strong sense.

1.3.4 Lower Bounds

Assume that R1, R2, . . . , Rm are continuous variables. By using a Lagrange
multiplier system, it is easy to show that the multivariable function

f (R1, R2, . . . , Rm) = Rα
1 + Rα

2 + · · · + Rα
m

subject to the constraint R1 + R2 + · · · + Rm = R is minimized when R1 = R2 =
· · · = Rm = R/m. If there exists such a partition, we have the optimal schedule
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length TOPT = ((m/E) (R/m)α)1/(α−1), by Theorem 1.2. Of course, in general,
there may not exist such a partition and the above quantity can only serve as
a lower bound for the optimal schedule length. The following theorem gives a
lower bound for the optimal schedule length TOPT for the problem of minimizing
schedule length with energy consumption constraint.

Theorem 1.7 For the problem of minimizing schedule length with energy con-
sumption constraint on a multiprocessor computer, we have the following lower
bound

TOPT ≥
(

m

E

(
R

m

)α)1/(α−1)

for the optimal schedule length.

Similarly, we know that if there exists a partition that results in R1 = R2 =
· · · = Rm = R/m, the minimum total energy consumption could be EOPT =
m(R/m)α /T α−1 by Theorem 1.4. The following theorem gives a lower bound
for the minimum energy consumption EOPT for the problem of minimizing energy
consumption with schedule length constraint.

Theorem 1.8 For the problem of minimizing energy consumption with sched-
ule length constraint on a multiprocessor computer, we have the following lower
bound:

EOPT ≥ m

(
R

m

)α 1

T α−1

for the minimum energy consumption.

Since it is infeasible to compute optimal solutions in reasonable amount of
time, the lower bounds in Theorems 1.7 and 1.8 can be used to evaluate the per-
formance of heuristic algorithms when they are compared with optimal solutions.

1.3.5 Energy-Delay Trade-off

The lower bounds in Theorems 1.7 and 1.8 essentially state the following impor-
tant theorem.

ETα−1 Lower Bound Theorem (Energy-Delay Trade-off Theorem). For any
execution of a set of tasks with total execution requirement R on m processors
with schedule length T and energy consumption E, we must have the following
tradeoff:

ET α−1 ≥ m

(
R

m

)α

by using any scheduling algorithm.
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The above energy-delay tradeoff theorem implies that our power allocation
and task scheduling problems are defined such that the energy-delay product is
optimized by fixing one factor and minimizing the other.

Notice that the lower bounds in Theorems 1.7 and 1.8 and the energy-
delay tradeoff theorem are applicable to various sequential task models
(independent or precedence constrained, static or dynamic tasks), various
processor models (regular homogeneous processors with continuous or discrete
voltage/frequency/speed/power levels, bounded or unbounded voltage/frequency/
speed/power levels, with/without overheads for voltage/frequency/speed/power
adjustment, and idle processors), and all scheduling models (preemptive or
nonpreemptive, online or offline, clairvoyant, or non-clairvoyant scheduling).
These lower bounds have also been extended to parallel tasks (55).

1.4 PRE-POWER-DETERMINATION ALGORITHMS

1.4.1 Overview

We observe that for independent sequential tasks considered in this chapter, we
only need to deal with two subproblems, namely, scheduling tasks and deter-
mining power supplies. Depending on which subproblem is solved first, we
have two types of power-aware task scheduling algorithm, namely, pre-power-
determination algorithms and post-power-determination algorithms.

In pre-power-determination algorithms, we first determine power supplies and
then schedule the tasks. Let A1-A2 denote a pre-power-determination algorithm,
where A1 is an algorithm for power allocation and A2 is an algorithm for task
scheduling. Algorithm A1-A2 works as follows: First, algorithm A1 is used to
assign powers to the n tasks. Second, algorithm A2 is used to produce a schedule
of the n tasks (whose execution times are known) on the m processors.

In this section, we consider the following pre-power-determination algorithms:

• Equal-Time Algorithms (ET-A). The power supplies p1, p2, . . . , pn are
determined in such a way that all the n tasks have the identical execution
time, that is, t1 = t2 = · · · = tn.

• Equal-Energy Algorithms (EE-A). The power supplies p1, p2, . . . , pn are
determined in such a way that all the n tasks consume the same amount of
energy, that is, e1 = e2 = · · · = en.

• Equal-Speed Algorithms (ES-A). All the n tasks are supplied with the same
power and executed at the same speed, that is, p1 = p2 = · · · = pn and
s1 = s2 = · · · = sn.

In all the above algorithms, A is any task scheduling algorithm.
We propose to use the classic list scheduling algorithm (56) and its variations

to solve the task scheduling problem.

• List Scheduling (LS). The algorithm works as follows to schedule a list
of tasks 1, 2, . . . , n . Initially, task k is scheduled on processor k , where
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1 ≤ k ≤ m, and tasks 1, 2, . . . , m are removed from the list simultaneously.
On the completion of a task k , the first unscheduled task in the list, that
is, task m + 1, is removed from the list and scheduled to be executed on
processor k . This process repeats until all tasks in the list are finished.

Algorithm LS has many variations depending on the strategy used in the initial
ordering of the tasks. We mention two of them here.

• Largest Requirement First (LRF). This algorithm is the same as the LS
algorithm, except that the tasks are arranged such that r1 ≥ r2 ≥ · · · ≥ rn.

• Smallest Requirement First (SRF). This algorithm is the same as the LS
algorithm, except that the tasks are arranged such that r1 ≤ r2 ≤ · · · ≤ rn.

We call algorithm LS and its variations simply as list scheduling algorithms .
Notice that for equal-time algorithms ET-A, since all tasks have the same

execution time, all list scheduling algorithms generate the same schedule. Hence,
we basically have one algorithm ET-LS. However, for equal-energy algorithms,
EE-A, and equal-speed algorithms, ES-A, different list scheduling algorithms
generate different schedules and have different performance. Therefore, we will
distinguish algorithms EE-SRF, EE-LS, EE-LRF, and ES-SRF, ES-LS, ES-LRF.

1.4.2 Performance Measures

Let TA denote the length of the schedule produced by algorithm A and EA

denote the total amount of energy consumed by algorithm A. The following
performance measures are used to analyze and evaluate the performance of our
power allocation and task scheduling algorithms.

Definition 1.1 The performance ratio of an algorithm A that solves the problem
of minimizing schedule length with energy consumption constraint is defined as
βA = TA/TOPT. If βA ≤ B, we call B a performance bound of algorithm A. The
asymptotic performance ratio of algorithm A is defined as β∞

A = limR/r∗→∞ βA

(by fixing m), where r∗ = max{r1, r2, . . . , rn} is the maximum task execution
requirement. If β∞

A ≤ B, we call B an asymptotic performance bound of algo-
rithm A. Algorithm A is called asymptotically optimal if β∞

A = 1.

Definition 1.2 The performance ratio of an algorithm A that solves the problem
of minimizing energy consumption with schedule length constraint is defined as
γA = EA/EOPT. If γA ≤ C, we call C a performance bound of algorithm A. The
asymptotic performance ratio of algorithm A is defined as γ ∞

A = limR/r∗→∞ γA

(by fixing m), where r∗ = max{r1, r2, . . . , rn} is the maximum task execution
requirement. If γ ∞

A ≤ C, we call C an asymptotic performance bound of algo-
rithm A. Algorithm A is called asymptotically optimal if γ ∞

A = 1.

When tasks have random execution requirements, TA, TOPT, βA, β∞
A , B , EA,

EOPT, γA, γ ∞
A , and C are all random variables. Let x be the expectation of a

random variable x .
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Definition 1.3 If βA ≤ B, then B is an expected performance bound of algo-
rithm A. If β∞

A ≤ B then B is an expected asymptotic performance bound of
algorithm A.

Definition 1.4 If γA ≤ C then C is an expected performance bound of algo-
rithm A. If γ ∞

A ≤ C then C is an expected asymptotic performance bound of
algorithm A.

1.4.3 Equal-Time Algorithms and Analysis

1.4.3.1 Schedule Length Minimization. To solve the problem of minimiz-
ing schedule length with energy consumption constraint E by using the equal-time
algorithm ET-LS, we notice that t1 = t2 = · · · = tn = t , that is, ti = ri/p

1/α

i = t ,
for all 1 ≤ i ≤ n, where t is the identical task execution time. The above equation
gives pi = (

ri/t
)α

, where 1 ≤ i ≤ n. Since the total energy consumption is

r1p
1−1/α

1 + r2p
1−1/α

2 + · · · + rnp
1−1/α
n = E

namely,
rα

1 + rα
2 + · · · + rα

n

tα−1
= E

we get

t =
(

rα
1 + rα

2 + · · · + rα
n

E

)1/(α−1)

Therefore, the schedule length of algorithm ET-LS is

TET-LS =
⌈ n

m

⌉
t =

⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

E

)1/(α−1)

By Theorem 1.7, the performance ratio of algorithm ET-LS is

βET-LS = TET-LS

TOPT
≤ m

⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

Rα

)1/(α−1)

The above discussion is summarized in the following theorem.

Theorem 1.9 By using the equal-time algorithm ET-LS to solve the problem of
minimizing schedule length with energy consumption constraint on a multiproces-
sor computer, the schedule length is

TET-LS =
⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

E

)1/(α−1)
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The performance ratio is βET-LS ≤ BET-LS, where the performance bound is

BET-LS = m
⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

(r1 + r2 + · · · + rn)
α

)1/(α−1)

1.4.3.2 Energy Consumption Minimization. To solve the problem of min-
imizing energy consumption with schedule length constraint T by using the
equal-time algorithm ET-LS, we notice that enough energy E

ET-LS
should be

given such that T
ET-LS

= T , that is,

⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

EET-LS

)1/(α−1)

= T

The above equation implies that the energy consumed by algorithm ET-LS is

EET-LS =
(⌈ n

m

⌉ 1

T

)α−1 (
rα

1 + rα
2 + · · · + rα

n

)
By Theorem 1.8, the performance ratio of algorithm ET-LS is

γET-LS = EET-LS

EOPT
≤

(
m

⌈ n

m

⌉)α−1
(

rα
1 + rα

2 + · · · + rα
n

Rα

)

The above discussion is summarized in the following theorem.

Theorem 1.10 By using the equal-time algorithm ET-LS to solve the problem
of minimizing energy consumption with schedule length constraint on a multipro-
cessor computer, the energy consumed is

EET-LS =
(⌈ n

m

⌉ 1

T

)α−1 (
rα

1 + rα
2 + · · · + rα

n

)
The performance ratio is γ

ET-LS
≤ C

ET-LS
, where the performance bound is

CET-LS =
(
m

⌈ n

m

⌉)α−1
(

rα
1 + rα

2 + · · · + rα
n

(r1 + r2 + · · · + rn)
α

)

1.4.4 Equal-Energy Algorithms and Analysis

1.4.4.1 Schedule Length Minimization. To solve the problem of min-
imizing schedule length with energy consumption constraint E by using an
equal-energy algorithm EE-A, where A is a list scheduling algorithm, we
notice that e1 = e2 = · · · = en = E/n, that is, ei = rip

1−1/α

i = E/n, for all
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1 ≤ i ≤ n, where E/n is the identical energy consumption of the n tasks. The
above equation gives pi = (

E/nri

)α/(α−1)
, si = p

1/α

i = (
E/nri

)1/(α−1)
, and

ti = ri/si = r
α/(α−1)

i (n/E)1/(α−1), where 1 ≤ i ≤ n.
Let A(t1, t2, . . . , tn) represent the length of the schedule produced by algorithm

A for n tasks with execution times t1, t2, . . . , tn, where A is a list scheduling algo-
rithm. We notice that for all x ≥ 0, we have A(t1, t2, . . . , tn) = xA(t ′1, t

′
2, . . . , t

′
n),

if ti = xt ′i for all 1 ≤ i ≤ n. That is, the schedule length is scaled by a factor of
x if all the task execution times are scaled by a factor of x . Therefore, we get
the schedule length of algorithm EE-A as

TEE-A = A(t1, t2, . . . , tn) = A(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

( n

E

)1/(α−1)

By Theorem 1.7, the performance ratio of algorithm EE-A is

βEE-A = TEE-A
TOPT

≤ mn1/(α−1)A(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

Rα/(α−1)

By using any list scheduling algorithm A, we get

A(t1, t2, . . . , tn) ≤ t1 + t2 + · · · + tn

m
+ t∗

where t∗ = max{t1, t2, . . . , tn} is the longest task execution time. Hence, we
obtain

βEE-A ≤
n1/(α−1)

(
(r

α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n ) + m(r∗)α/(α−1)

)
Rα/(α−1)

= n1/(α−1)

(
r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n

Rα/(α−1)
+ m

(
r∗

R

)α/(α−1)
)

where r∗ = max{r1, r2, . . . , rn} is the maximum task execution requirement. The
asymptotic performance ratio of algorithm EE-A is

β∞
EE-A = lim

R/r∗→∞
βEE-A ≤ n1/(α−1)(r

α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n )

Rα/(α−1)

The above discussion is summarized in the following theorem.

Theorem 1.11 By using an equal-energy algorithm EE-A to solve the problem
of minimizing schedule length with energy consumption constraint on a multipro-
cessor computer, the schedule length is

TEE-A = A(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

( n

E

)1/(α−1)

.
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The performance ratio is

βEE-A ≤ n1/(α−1)

(
r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n

Rα/(α−1)
+ m

(
r∗

R

)α/(α−1)
)

As R/r∗ → ∞, the asymptotic performance ratio is β∞
EE-A ≤ BEE-A, where the

asymptotic performance bound is

BEE-A = n1/(α−1)(r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n )

(r1 + r2 + · · · + rn)
α/(α−1)

1.4.4.2 Energy Consumption Minimization. To solve the problem of min-
imizing energy consumption with schedule length constraint T by using an
equal-energy algorithm EE-A, we notice that enough energy EEE-A should be
given such that TEE-A = T , that is,

A(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

(
n

EEE-A

)1/(α−1)

= T

The above equation implies that the energy consumed by algorithm EE-A is

EEE-A = n

T α−1

(
A(r

α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

)α−1

By Theorem 1.8, the performance ratio of algorithm EE-A is

γEE-A = EEE-A
EOPT

≤ n

(
mA(r

α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

Rα/(α−1)

)α−1

≤ n

(
r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n

Rα/(α−1)
+ m

(
r∗

R

)α/(α−1)
)α−1

The asymptotic performance ratio of algorithm EE-A is

γ ∞
EE-A = lim

R/r∗→∞
γEE-A ≤ n(r

α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n )α−1

Rα

The above discussion is summarized in the following theorem.
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Theorem 1.12 By using an equal-energy algorithm EE-A to solve the problem
of minimizing energy consumption with schedule length constraint on a multipro-
cessor computer, the energy consumed is

EEE-A = n

T α−1

(
A(r

α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

)α−1

The performance ratio is

γEE-A ≤ n

(
r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n

Rα/(α−1)
+ m

(
r∗

R

)α/(α−1)
)α−1

As R/r∗ → ∞, the asymptotic performance ratio is γ ∞
EE-A ≤ CEE-A, where the

asymptotic performance bound is

CEE-A = n(r
α/(α−1)

1 + r
α/(α−1)

2 + · · · + r
α/(α−1)
n )α−1

(r1 + r2 + · · · + rn)
α

1.4.5 Equal-Speed Algorithms and Analysis

1.4.5.1 Schedule Length Minimization. To solve the problem of minimiz-
ing schedule length with energy consumption constraint E by using an equal-
speed algorithm ES-A, we notice that p1 = p2 = · · · = pn = p, that is,

E = r1p
1−1/α + r2p

1−1/α + · · · + rnp
1−1/α = Rp1−1/α

which gives p = (E/R)α/(α−1). Since s1 = s2 = · · · = sn = s, we get s = p1/α =
(E/R)1/(α−1) and ti = ri/s = ri (R/E)1/(α−1). Hence, we get the schedule length
of algorithm ES-A as

TES-A = A(t1, t2, . . . , tn) = A(r1, r2, . . . , rn)

(
R

E

)1/(α−1)

By Theorem 1.7, the performance ratio of algorithm ES-A is

βES-A = TES-A
TOPT

≤ A(r1, r2, . . . , rn)

R/m

By using any list scheduling algorithm A, we get

A(r1, r2, . . . , rn) ≤ R

m
+ r∗

which implies that

βES-A ≤ 1 + mr∗

R
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It is clear that for a fixed m , βES-A can be arbitrarily close to 1 as R/r∗ becomes
large.

The above discussion yields the following theorem.

Theorem 1.13 By using an equal-speed algorithm ES-A to solve the problem
of minimizing schedule length with energy consumption constraint on a multipro-
cessor computer, the schedule length is

TES-A = A(r1, r2, . . . , rn)

(
R

E

)1/(α−1)

.

The performance ratio is

βES-A ≤ 1 + mr

R
.

As R/r∗ → ∞, the asymptotic performance ratio is β∞
ES-A = 1.

1.4.5.2 Energy Consumption Minimization. To solve the problem of min-
imizing energy consumption with schedule length constraint T by using an
equal-speed algorithm ES-A, we notice that enough energy EES-A should be
given such that TES-A = T , that is,

A(r1, r2, . . . , rn)

(
R

EES-A

)1/(α−1)

= T

The above equation implies that the energy consumed by algorithm ES-A is

EES-A =
(

A(r1, r2, . . . , rn)

T

)α−1

R

By Theorem 1.8, the performance ratio of algorithm ES-A is

γES-A = EES-A
EOPT

≤
(

A(r1, r2, . . . , rn)

R/m

)α−1

≤
(

1 + mr∗

R

)α−1

As R/r∗ becomes large, γES-A can be arbitrarily close to 1.

Theorem 1.14 By using an equal-speed algorithm ES-A to solve the problem
of minimizing energy consumption with schedule length constraint on a multipro-
cessor computer, the energy consumed is

EES-A =
(

A(r1, r2, . . . , rn)

T

)α−1

R
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The performance ratio is

γES-A ≤
(

1 + mr∗

R

)α−1

As R/r∗ → ∞, the asymptotic performance ratio is γ ∞
ES-A = 1.

1.4.6 Numerical Data

In Table 1.1, we demonstrate numerical data for the expectation of the
performance bound BET-LS given in Theorem 1.9 and the expectation of the per-
formance bound CET-LS given in Theorem 1.10, where n = 1, 2, 3, . . . , 15 and
α = 3.0, 4.0, 5.0. For each combination of n and α, we generate 20,000 sets of n
random execution requests. In each set, the n execution requests are independent
and identically distributed (i.i.d.) random variables uniformly distributed in
[0, 1]. For each set of n random execution requests r1, r2, . . . , rn, we calculate
BET-LS. The average of the 20,000 values of BET-LS is reported as the expected
performance bound BET-LS. A similar process is performed to get the expected
performance bound CET-LS. The maximum 99% confidence interval of all the data
in the table is also given. We observe that as n increases, BET-LS (CET-LS, respec-
tively) quickly approaches its stable value, that is, the limit limn→∞ BET-LS
(limn→∞ CET-LS, respectively). Both BET-LS and CET-LS increase as α

increases.

TABLE 1.1 Numerical Data for the Expected Performance Bounds BET−LS and
CET−LS

a

α = 3 α = 4 α = 5

n BET−LS CET−LS BET−LS CET−LS BET−LS CET−LS

1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
2 1.2640340 1.6907929 1.2880188 2.4780966 1.3061883 3.8923041
3 1.3532375 1.9228341 1.3904990 3.2061946 1.4189932 5.8662235
4 1.3867956 1.9966842 1.4310920 3.4847355 1.4713283 6.5784617
5 1.3982354 2.0269460 1.4521804 3.5441669 1.4888736 6.6706692
6 1.4057998 2.0470706 1.4584030 3.5018100 1.5022930 6.5576159
7 1.4104677 2.0506264 1.4637247 3.4949204 1.5088842 6.5677028
8 1.4134329 2.0410096 1.4678481 3.4582288 1.5122321 6.3209251
9 1.4156317 2.0348810 1.4711866 3.4471772 1.5159571 6.2137416

10 1.4151582 2.0379807 1.4698276 3.4048056 1.5154895 6.1304240
11 1.4160890 2.0323743 1.4719247 3.3859182 1.5156527 6.0539296
12 1.4139975 2.0254020 1.4739329 3.3727408 1.5190419 6.0878647
13 1.4138615 2.0243764 1.4748107 3.3570116 1.5200183 6.0082183
14 1.4145436 2.0204771 1.4754312 3.3439681 1.5226907 5.8638511
15 1.4136195 2.0204157 1.4739066 3.3324817 1.5193218 5.8842350

a99% confidence interval, ±2.718%.
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TABLE 1.2 Numerical Data for the Expected Asymptotic Performance Bounds
BEE−A and CEE−A

a

α = 3 α = 4 α = 5

n BEE−A CEE−A BEE−A CEE−A BEE−A CEE−A

1 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
2 1.0883879 1.1970545 1.0545042 1.1854814 1.0386468 1.1819932
3 1.1108389 1.2494676 1.0674159 1.2306497 1.0479554 1.2207771
4 1.1195349 1.2633028 1.0725624 1.2440485 1.0515081 1.2326371
5 1.1232283 1.2708740 1.0749250 1.2505880 1.0531375 1.2394887
6 1.1256815 1.2736246 1.0763288 1.2524318 1.0541672 1.2428750
7 1.1263593 1.2759891 1.0768743 1.2565030 1.0544601 1.2447639
8 1.1286415 1.2738426 1.0771574 1.2545767 1.0551808 1.2436191
9 1.1289966 1.2757221 1.0774763 1.2568825 1.0552782 1.2447769

10 1.1292004 1.2766495 1.0776918 1.2572239 1.0555105 1.2442652
11 1.1291663 1.2781207 1.0783142 1.2570462 1.0556260 1.2471731
12 1.1293388 1.2786435 1.0784883 1.2569814 1.0559882 1.2457928
13 1.1294392 1.2786065 1.0786491 1.2577500 1.0560901 1.2458283
14 1.1291546 1.2797332 1.0786508 1.2576963 1.0561657 1.2480804
15 1.1294269 1.2792081 1.0787218 1.2584264 1.0561504 1.2476369

a99% confidence interval, ±0.375%.

In Table 1.2, we demonstrate numerical data for the expectation of the
performance bound BEE-A given in Theorem 1.11 and the expectation of the
performance bound CEE-A given in Theorem 1.12. The data are obtained
using a method similar to that of Table 1.1. It is observed that as n increases,
BEE-A (CEE-A, respectively) quickly approaches its stable value. Surprisingly,
both BEE-A and CEE-A decrease as α increases. It is clear that the asymptotic
performance of equal-energy algorithms is better than the performance of
equal-time algorithms, especially for large α.

1.4.7 Simulation Results

In this section, we demonstrate some experimental data. Our experimental per-
formance evaluation is based on two performance measures, namely, normalized
schedule length and normalized energy consumption.

Definition 1.5 The normalized schedule length NSLA of an algorithm A that
solves the problem of minimizing schedule length with energy consumption con-
straint is defined as

NSLA = TA

((m/E)(R/m)α)1/(α−1)
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According the the above definition, the normalized schedule length of the
equal-time algorithm ET-LS is

NSLET-LS = m
⌈ n

m

⌉ (
rα

1 + rα
2 + · · · + rα

n

Rα

)1/(α−1)

For an equal-energy algorithm EE-A, the normalized schedule length is

NSLEE-A = mn1/(α−1)A(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n )

Rα/(α−1)

For an equal-speed algorithm ES-A, the normalized schedule length is

NSLES-A = A(r1, r2, . . . , rn)

R/m

We notice that NSLA serves as a performance bound for the performance ratio
βA = TA/TOPT of any algorithm A that solves the problem of minimizing sched-
ule length with energy consumption constraint on a multiprocessor computer.
When the ri’s are random variables, TA, TOPT, βA, and NSLA all become ran-
dom variables. It is clear that for the problem of minimizing schedule length
with energy consumption constraint, we have βA ≤ NSLA, that is, the expected
performance ratio is no greater than the expected normalized schedule length.
(Recall that we use x to represent the expectation of a random variable x .)

Definition 1.6 The normalized energy consumption NECA of an algorithm A
that solves the problem of minimizing energy consumption with schedule length
constraint is defined as

NECA = EA

Rα/(mT )α−1

According the the above definition, the normalized energy consumption of the
equal-time algorithm ET-LS is

NECET-LS =
(
m

⌈ n

m

⌉)α−1
(

rα
1 + rα

2 + · · · + rα
n

Rα

)

For an equal-energy algorithm EE-A, the normalized energy consumption is

NECEE-A = n(mA(r
α/(α−1)

1 , r
α/(α−1)

2 , . . . , r
α/(α−1)
n ))α−1

Rα

For an equal-speed algorithm ES-A, the normalized energy consumption is

NECES-A =
(

A(r1, r2, . . . , rn)

R/m

)α−1
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TABLE 1.3 Simulation Results for the Expected NSLa

n ET-LS EE-SRF EE-LS EE-LRF ES-SRF ES-LS ES-LRF

30 1.4160086 1.5788606 1.5358982 1.1830203 1.2950870 1.2777859 1.0570897
40 1.4162681 1.4614432 1.4275593 1.1598898 1.2209157 1.2095402 1.0326068
50 1.4160963 1.3939270 1.3671321 1.1476734 1.1778906 1.1681927 1.0210129
60 1.4142811 1.3501833 1.3289118 1.1419086 1.1484774 1.1398580 1.0147939
70 1.4145643 1.3183999 1.2995623 1.1387841 1.1277784 1.1188316 1.0106644
80 1.4137537 1.2940370 1.2787042 1.1364289 1.1116303 1.1047328 1.0081871
90 1.4141781 1.2760247 1.2622851 1.1350882 1.0990160 1.0933288 1.0065092

a99% confidence interval, ±0.355%.

TABLE 1.4 Simulation Results for the Expected NECa

n ET-LS EE-SRF EE-LS EE-LRF ES-SRF ES-LS ES-LRF

30 2.0166361 2.4942799 2.3687384 1.3987777 1.6795807 1.6387186 1.1184317
40 2.0141396 2.1375327 2.0427624 1.3452555 1.4955667 1.4714876 1.0671827
50 2.0101674 1.9436148 1.8768266 1.3208927 1.3900636 1.3667759 1.0421333
60 2.0079074 1.8256473 1.7667130 1.3062980 1.3195213 1.2992718 1.0294409
70 2.0065212 1.7388610 1.6960039 1.2976417 1.2720398 1.2538434 1.0214559
80 2.0112500 1.6743670 1.6388005 1.2911207 1.2366120 1.2199077 1.0165503
90 2.0061604 1.6282674 1.5961585 1.2881397 1.2087291 1.1947753 1.0129208

a99% confidence interval, ±0.720%.

It is noticed that NECA is a performance bound for the performance ratio γA =
EA/EOPT of any algorithm A that solves the problem of minimizing energy
consumption with schedule length constraint on a multiprocessor computer. It is
also clear that for the problem of minimizing energy consumption with schedule
length constraint, we have γ A ≤ NECA, that is, the expected performance ratio
is no greater than the expected normalized schedule length.

Notice that for a given power allocation and task scheduling algorithm A, the
expected normalized schedule length NSLA and the expected normalized energy
consumption NECA are determined by m , n , α, and the probability distribution
of the ri’s. In our simulations, the number of processors is set as m = 10. The
number of tasks is in the range n = 30, 40, . . . , 90. The parameter α is set as 3.
The ri’s are i.i.d. random variables with a uniform distribution in [0, 1].

In Tables 1.3 and 1.4, we show our simulation results. For each combination
of n and algorithm A ∈ {ET-LS, EE-SRF, EE-LS, EE-LRF, ES-SRF, ES-LS,
ES-LRF}, we generate 5000 sets of n tasks, produce their schedules by using
algorithm A, calculate their NSLA (or NECA), and report the average of NSLA

(or NECA), which is the experimental value of NSLA (or NECA). The 99%
confidence interval of all the data is also given in the same table. We observe
the following facts:
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• The equal-time algorithm ET-LS exhibits quite stable performance. The
expected normalized schedule length NSLET-LS (the expected normalized
energy consumption NECET-LS, respectively) is almost identical to the
expected performance bound BET-LS (CET-LS, respectively) given in
Table 1.1.

• The performance of equal-energy algorithms improves as n increases. The
expected normalized schedule length NSLEE-A (the expected normalized
energy consumption NECEE-A, respectively) decreases as n increases, that is,
R/r∗ increases, and eventually approaches the expected performance bound
BEE-A (CEE-A, respectively) given in Table 1.2. The speed of convergence
depends on algorithm A. It is clear that algorithm LRF leads to faster speed
of convergence than LS and SRF.

• The performance of equal-speed algorithms improves as n increases. The
expected normalized schedule length NSLES-A and the expected normal-
ized energy consumption NECES-A decrease as n increases, that is, R/r∗
increases, and eventually approaches 1, as claimed in Theorems 1.13 and
1.14. Again, algorithm LRF leads to faster speed of convergence than LS
and SRF.

• The performance of the three list scheduling algorithms are ranked as SRF,
LS, LRF, from the worst to the best. Algorithm EE-LRF performs notice-
ably better than EE-SRF and EE-LS. Similarly, Algorithm ES-LRF performs
noticeably better than ES-SRF and ES-LS. This is not surprising since LRF
schedules tasks with long execution times earlier and cause less imbalance
of task distribution among the processors. On the other hand, SRF schedules
tasks with short execution times earlier, and tasks with long execution times
scheduled later cause more imbalance of task distribution among the proces-
sors. It is known that LRF exhibits better performance in other scheduling
environments.

• The equal-time algorithm ET-LS performs better than equal-energy algo-
rithms EE-SRF and EE-LS for small n . As n gets larger, ET-LS performs
worse than EE-A and ES-A for all A. The equal-speed algorithm ES-A per-
forms better than the equal-energy algorithm EE-A for all A. For large n ,
the performance of the seven pre-power-determination algorithms are ranked
as ET-LS, EE-SRF, EE-LS, EE-LRF, ES-SRF, ES-LS, ES-LRF, from the
worst to the best.

1.5 POST-POWER-DETERMINATION ALGORITHMS

1.5.1 Overview

As mentioned earlier, both the problem of minimizing schedule length with
energy consumption constraint and the problem of minimizing energy consump-
tion with schedule length constraint on a multiprocessor computer are equivalent
to the sum of powers problem in the sense that they can be solved by finding
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a partition R1, R2, . . . , Rm of the n tasks into m groups such that the sum
of powers Rα

1 + Rα
2 + · · · + Rα

m is minimized. Such a partition is essentially a
schedule of the n tasks on m processors. Once a partition (i.e., a schedule) is
determined, Theorems 1.2 and 1.4 can be used to decide actual power supplies,
which minimize either schedule length or energy consumption. This is exactly the
idea of post-power-determination algorithms, where we first schedule the tasks
and then determine power supplies, that is, power supplies p1, p2, . . . , pn are
determined after a schedule of the n tasks on the m processors is decided, and a
schedule is produced without knowing the actual task execution times but based
only on task execution requirements.

Again, we can decompose our optimization problems into two subproblems,
namely, scheduling tasks and determining power supplies. We use the notation
A1-A2 to represent a post-power-determination algorithm, where A1 is an algo-
rithm for task scheduling and A2 is an algorithm for power allocation. Algorithm
A1-A2 works as follows: First, algorithm A1 is used to produce a schedule of
the n tasks (whose execution times are unknown) by using r1, r2, . . . , rn as task
execution times. Second, algorithm A2 is used to assign powers to the n tasks on
the m processors. We propose to use the list scheduling algorithm and its vari-
ations to solve the scheduling problem (i.e., the sum of powers problem). Since
our power allocation algorithms based on Theorems 1.2 and 1.4 yields optimal
solutions, we have post-power-determination algorithm LS-OPT, SRF-OPT, and
LRF-OPT.

1.5.2 Analysis of List Scheduling Algorithms

1.5.2.1 Analysis of Algorithm LS. Let PLS be the sum of powers of the
partition of a list of tasks into m groups produced by algorithm LS, and POPT
be the minimum sum of powers of an optimal partition of the list of tasks. The
following theorem characterizes the performance of algorithm LS in solving the
sum of powers problem.

Theorem 1.15 By using algorithm LS to solve the sum of powers problem for a
list of tasks, we have PLS/POPT ≤ BLS, where the performance bound is

BLS = max
1≤m′≤m−1
0≤r≤1/m′

⎧⎪⎪⎨
⎪⎪⎩

(m − m′)
(

1 − m′r
m

)α

+ m′
(

1 − m′r
m

+ r

)α

(
r ≤ 1

m

)
?

1

mα−1
: rα + (m − 1)

(
1 − r

m − 1

)α

⎫⎪⎪⎬
⎪⎪⎭

(Note: An expression in the form (c) ? u : v means that if a boolean condition c is
true, the value of the expression is u; otherwise, the value of the expression is v.)

The proof of the above theorem is lengthy and sophisticated. The interested
reader is referred to Reference 49 for the proof.
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1.5.2.2 Analysis of Algorithm LRF. Let PLRF be the sum of powers of
the partition of a list of tasks into m groups produced by algorithm LRF. The
following theorem characterizes the performance of algorithm LRF in solving
the sum of powers problem.

Theorem 1.16 By using algorithm LRF to solve the sum of powers problem for
a list of tasks, we have PLRF/POPT ≤ BLRF, where the performance bound is

BLRF = mα−1
(

max
1≤m′≤m−1

{
(m − m′)

(
m + 1 − m′

m(m + 1)

)α

+ m′
(

2m + 1 − m′

m(m + 1)

)α})

The above theorem can be proved by following the same reasoning in the
proof of Theorem 1.15. Again, the interested reader is referred to Reference 49
for the proof.

1.5.3 Application to Schedule Length Minimization

Theorem 1.15 can be used to analyze the performance of algorithm LS-OPT,
which solves the problem of minimizing schedule length with energy consump-
tion constraint on a multiprocessor computer. By Theorem 1.2, the schedule
length produced by algorithm LS-OPT is TLS−OPT = (

PLS/E
)1/(α−1)

, where PLS
is the sum of powers of the partition produced by algorithm LS. Also, the optimal
schedule length is TOPT = (

POPT/E
)1/(α−1)

, where POPT is the minimum sum of
powers of an optimal partition. Hence, we get

βLS−OPT = TLS−OPT

TOPT
=

(
PLS

POPT

)1/(α−1)

≤ B
1/(α−1)

LS

Notice that the condition R/r∗ → ∞ is equivalent to r → 0 in Theorem 1.15,
and it is easy to see that limr→0 BLS = 1. Thus, we have β∞

LS−OPT = limR/r∗→∞
βLS−OPT ≤ limr→0 B

1/(α−1)

LS = 1.

Theorem 1.17 By using algorithm LS-OPT to solve the problem of minimizing
schedule length with energy consumption constraint on a multiprocessor com-
puter, the schedule length is

TLS−OPT =
(

PLS

E

)1/(α−1)

The performance ratio is βLS−OPT ≤ BLS−OPT = B
1/(α−1)

LS , where BLS is given by
Theorem 1.15. As R/r∗ → ∞, the asymptotic performance ratio is β∞

LS−OPT = 1.

The following theorem can be obtained in a way similar to that of Theorem
1.17.
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Theorem 1.18 By using algorithm LRF-OPT to solve the problem of minimizing
schedule length with energy consumption constraint on a multiprocessor com-
puter, the schedule length is

TLRF−OPT =
(

PLRF

E

)1/(α−1)

The performance ratio is βLRF−OPT ≤ BLRF−OPT = B
1/(α−1)
LRF , where BLRF is

given by Theorem 1.16. As R/r∗ → ∞, the asymptotic performance ratio is
β∞

LRF−OPT = 1.

1.5.4 Application to Energy Consumption Minimization

Theorem 1.15 can be used to analyze the performance of algorithm LS-OPT,
which solves the problem of minimizing energy consumption with schedule
length constraint on a multiprocessor computer. By Theorem 1.4, the energy
consumption of the schedule produced by algorithm LS-OPT is ELS−OPT =
PLS/T α−1, where PLS is the sum of powers of the partition produced by algo-
rithm LS. Also, the minimum energy consumption of an optimal schedule is
EOPT = POPT/T α−1, where POPT is the minimum sum of powers of an opti-
mal partition. Hence, we get γLS−OPT = ELS−OPT/EOPT = PLS/POPT ≤ BLS. The
asymptotic performance ratio γ ∞

LS−OPT can be obtained in a way similar to that
of Theorem 1.17.

Theorem 1.19 By using algorithm LS-OPT to solve the problem of minimizing
energy consumption with schedule length constraint on a multiprocessor com-
puter, the energy consumed is

ELS−OPT = PLS

T α−1

The performance ratio is γLS−OPT ≤ CLS−OPT = BLS, where BLS is given by
Theorem 1.15. As R/r∗ → ∞, the asymptotic performance ratio is γ ∞

LS−OPT = 1.

The following theorem can be obtained in a way similar to that of Theorem
1.19.

Theorem 1.20 By using algorithm LRF-OPT to solve the problem of minimizing
energy consumption with schedule length constraint on a multiprocessor com-
puter, the energy consumed is

ELRF−OPT = PLRF

T α−1

The performance ratio is γLRF−OPT ≤ CLRF−OPT = BLRF, where BLRF is given by
Theorem 1.16. As R/r∗ → ∞, the asymptotic performance ratio is γ ∞

LRF−OPT = 1.
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TABLE 1.5 Numerical Data for the Performance Bounds BLS−OPT and CLS−OPT

α = 3 α = 4 α = 5

m BLS−OPT CLS−OPT BLS−OPT CLS−OPT BLS−OPT CLS−OPT

2 1.3660254 1.8660254 1.3999105 2.7434735 1.4212571 4.0802858
3 1.4168919 2.0075827 1.4721932 3.1907619 1.5098182 5.1963533
4 1.4517046 2.1074462 1.4886206 3.2987700 1.5361359 5.5682478
5 1.5235253 2.3211293 1.5274255 3.5635275 1.5430156 5.6686715
6 1.5653646 2.4503664 1.5695451 3.8665303 1.5814389 6.2547465
7 1.6075236 2.5841321 1.5955042 4.0615694 1.6094683 6.7101114
8 1.6621450 2.7627259 1.6149005 4.2115046 1.6277417 7.0200781
9 1.7031903 2.9008574 1.6495521 4.4884680 1.6399180 7.2325010

10 1.7406107 3.0297256 1.6757104 4.7054035 1.6627810 7.6443430

TABLE 1.6 Numerical Data for the Performance Bounds BLRF−OPT and
CLRF−OPT

α = 3 α = 4 α = 5

m BLRF−OPT CLRF−OPT BLRF−OPT CLRF−OPT BLRF−OPT CLRF−OPT

2 1.1547005 1.3333333 1.1885514 1.6790123 1.2141069 2.1728395
3 1.1858541 1.4062500 1.2382227 1.8984375 1.2806074 2.6894531
4 1.2165525 1.4800000 1.2568900 1.9856000 1.3012612 2.8672000
5 1.2360331 1.5277778 1.2893646 2.1435185 1.3286703 3.1165123
6 1.2453997 1.5510204 1.3018050 2.2061641 1.3496519 3.3180818
7 1.2593401 1.5859375 1.3116964 2.2568359 1.3585966 3.4069214
8 1.2636090 1.5967078 1.3236611 2.3191587 1.3675714 3.4978408
9 1.2727922 1.6200000 1.3284838 2.3446000 1.3781471 3.6073000

10 1.2771470 1.6311044 1.3351801 2.3802336 1.3833651 3.6622436

1.5.5 Numerical Data

In Table 1.5, we demonstrate numerical data for the performance bounds in
Theorems 1.17 and 19. For each combination of α = 3, 4, 5 and m = 2, 3, . . . ,

10, we show BLS−OPT and CLS−OPT.
In Table 1.6, we demonstrate numerical data for the performance

bounds in Theorems 1.18 and 20. For each combination of α = 3, 4, 5 and
m = 2, 3, . . . , 10, we show BLRF−OPT and CLRF−OPT.

It is clear that algorithm LRF leads to improved performance compared with
algorithm LS. Tighter performance bounds can be obtained by more involved
analysis.

1.5.6 Simulation Results

In this section, we demonstrate some experimental data.
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TABLE 1.7 Simulation Results for the Expected NSLa

n SRF-OPT LS-OPT LRF-OPT

30 1.0535521 1.0374620 1.0024673
40 1.0303964 1.0214030 1.0008078
50 1.0195906 1.0134978 1.0003326
60 1.0136363 1.0092786 1.0001669
70 1.0100516 1.0068138 1.0000894
80 1.0076977 1.0052356 1.0000527
90 1.0060781 1.0041218 1.0000335

a99% confidence interval, ±0.058%.

For a post-power-determination algorithm A-OPT, where A is a list scheduling
algorithm, the normalized schedule length is

NSLA−OPT =
(

Rα
1 + Rα

2 + · · · + Rα
m

m(R/m)α

)1/(α−1)

where R1, R2, . . . , Rn is a partition into m groups produced by algorithm A for
n tasks. The normalized energy consumption is

NECA−OPT = Rα
1 + Rα

2 + · · · + Rα
m

m(R/m)α

In Tables 1.7 and 1.8, we show our simulation results. For each combination
of n and algorithm A ∈ { SRF-OPT, LS-OPT, LRF-OPT }, we generate 5000
sets of n tasks, produce their schedules by using algorithm A, calculate their
NSLA (or NECA), and report the average of NSLA (or NECA), which is the
experimental value of NSLA (or NECA). The 99% confidence interval of all the
data in the same table is also given. We observe the following facts:

• The performance of the three post-power-determination algorithms are
ranked as SRF-OPT, LS-OPT, LRF-OPT, from the worst to the best.

• The post-power-determination algorithms perform better (as measured by
NSLA and NECA) than the pre-power-determination algorithms, although
there is no direct comparison among the performance bounds given in
Theorems 1.9, 1.11, 1.13, 1.17, and 1.18, and the performance bounds given
in Theorems 1.10, 1.12, 1.14, 1.19, and 1.20.

1.6 SUMMARY AND FURTHER RESEARCH

We have investigated nonpreemptive offline non-clairvoyant scheduling of inde-
pendent sequential static tasks on a single computing system of homogeneous
processors with continuous and unbounded and regular voltage/frequency/
speed/power levels and without overheads for voltage/frequency/speed/power
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TABLE 1.8 Simulation Results for the Expected NECa

n SRF-OPT LS-OPT LRF-OPT

30 1.1102206 1.0765611 1.0051583
40 1.0619973 1.0427680 1.0016418
50 1.0395262 1.0268312 1.0006819
60 1.0274261 1.0187010 1.0003373
70 1.0201289 1.0136876 1.0001829
80 1.0154632 1.0104982 1.0001088
90 1.0122283 1.0082873 1.0000684

a99% confidence interval, ±0.117%.

adjustment and idle processors. We have developed and analyzed pre-power-
determination and post-power-determination algorithms, which solve the
problems of minimizing schedule length with energy consumption constraint
and minimizing energy consumption with schedule length constraint. The
performance of all our algorithms is compared with optimal solutions. It is found
that the best algorithm among all our algorithms in this chapter is LRF-OPT,
whose performance ratio is very close to optimal.

Possible further research can be directed toward precedence constrained tasks,
parallel tasks, discrete and/or bounded voltage/frequency/speed/power levels, het-
erogeneous processors, and online scheduling. These extensions to our study in
this chapter are likely to yield analytically tractable algorithms.
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