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number of parallel tasks of a large-scale parallel application simultaneously, we are facing the
problem of allocating the cores to the tasks and schedule the tasks, such that the system perfor-
mance is optimized or the energy consumption is minimized. The motivation of the present paper
is to investigate energy-efficient and high-performance processing of large-scale parallel applica-
tions on multicore processors in data centers. In particular, we address scheduling precedence
constrained parallel tasks on multicore processors with dynamically variable voltage and speed
as combinatorial optimization problems. We point out that our scheduling problems contain four
nontrivial subproblems, namely, precedence constraining, system partitioning, task scheduling,
and power supplying. We describe our methods to deal with precedence constraints, system par-
titioning, and task scheduling. We develop our optimal four-level energy/time/power allocation
scheme for minimizing schedule length and minimizing energy consumption, analyze the perfor-
mance of our heuristic algorithms, and derive accurate performance bounds. We demonstrate
simulation data, which validate our analytical results.

Keywords: Data center, energy-efficient scheduling, high-performance computing, multicore pro-
cessor, parallel task, performance analysis, precedence constraint.

∗The author can be reached at phone: (845) 257-3534, fax: (845) 257-3996.

1



Contents
1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 6

3 Preliminaries 7
3.1 Power and Task Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Heuristic Algorithms 10
4.1 Precedence Constraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 System Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Optimal Energy/Time/Power Allocation 14
5.1 Minimizing Schedule Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.1 Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.3 Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.4 Level 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Minimizing Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1 Level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.3 Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.4 Level 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Simulation Data 24

7 Summary and Future Research 31

2



1 Introduction

1.1 Motivation
Next generation supercomputers require drastically better energy efficiency to allow these systems
to scale to exaflop computing levels. Virtually all major processor vendors and companies such
as AMD, Intel, and IBM are developing high-performance and highly energy-efficient multicore
processors and dedicating their current and future development and manufacturing to multicore
products. It is conceivable that future multicore architectures can hold dozens or even hundreds of
cores on a single die [3]. For instance, Adapteva’s Epiphany scalable manycore architecture con-
sists of hundreds and thousands of RISC microprocessors, all sharing a single flat and unobstructed
memory hierarchy, which allows cores to communicate with each other very efficiently with low
core-to-core communication overhead. The number of cores in this new type of massively parallel
multicore architecture can be up to 4096 [1]. The Epiphany manycore architecture has been de-
signed to maximize floating point computing power with the lowest possible energy consumption,
aiming to deliver 100 and more gigaflops of performance at under 2 watts of power [4].

Multicore processors provide an ultimate solution to power management and performance
optimization in current and future high-performance computing. A multicore processor contains
multiple independent processors, called cores, integrated onto a single circuit die (known an a chip
multiprocessor or CMP). An m-core processor achieves the same performance of a single-core pro-
cessor whose clock frequency is m times faster, but consumes only 1/mφ−1 (φ ≥ 3) of the energy
of the single-core processor. The performance gain from a multicore processor is mainly from
parallelism, i.e., multiple cores’ working together to achieve the performance of a single faster and
more energy-consuming processor. A multicore processor implements multiprocessing in a sin-
gle physical package. It can implement parallel architectures such as superscalar, multithreading,
VLIW, vector processing, SIMD, and MIMD. Intercore communications are supported by message
passing or shared memory. The degree of parallelism can increase together with the number m of
cores. When m is large, a multicore processor is also called a manycore or a massively multicore
processor.

Modern information technology is developed into the era of cloud computing, which has re-
ceived considerable attention in recent years and is widely accepted as a promising and ultimate
way of managing and improving the utilization of data and computing resources and delivering
various computing and communication services. However, enterprise data centers will spend sev-
eral times as much on energy costs as on hardware and server management and administrative
costs. Furthermore, many data centers are realizing that even if they are willing to pay for more
power consumption, capacity constraints on the electricity grid mean that additional power is un-
available. Energy efficiency is one of the most important issues for large-scale computing systems
in current and future data centers. Cloud computing can be an inherently energy-efficient tech-
nology, due to centralized energy management of computations on large-scale computing systems,
instead of distributed and individualized applications without efficient energy consumption control
[10]. Moreover, such potential for significant energy savings can be fully explored with balanced
consideration of system performance and energy consumption.
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As in all computing systems, increasing the utilization of a multicore processor becomes a
critical issue, as the number of cores increases and as multicore processors are more and more
widely employed in data centers. One effective way of increasing the utilization is to take the ap-
proach of multitasking, i.e., allowing multiple tasks to be executed simultaneously in a multicore
processor. Such sharing of computing resources not only improves system utilization, but also
improves system performance, because more users’ requests can be processed in the same among
of time. Such performance enhancement is very important in optimizing the quality of service
in a data center for cloud computing, where multicore processors are employed as servers. Parti-
tioning and sharing of a large multicore processor among multiple tasks is particularly important
for large-scale scientific computations and business applications, where each computation or ap-
plication consists of a large number of parallel tasks, and each parallel task requires several cores
simultaneously for its execution.

When a multicore processor in a data center for cloud computing is shared by a large number
of parallel tasks of a large-scale parallel application simultaneously, we are facing the problem
of allocating the cores to the tasks and schedule the tasks, such that the system performance is
optimized or the energy consumption is minimized. Furthermore, such core allocation and task
scheduling should be conducted with energy constraints or performance constraints. Such opti-
mization problems need to be formulated and efficient algorithms need to be developed and their
performance need to be analyzed and evaluated. The motivation of the present paper is to in-
vestigate energy-efficient and high-performance processing of large-scale parallel applications on
multicore processors in data centers. In particular, we study low-power scheduling of precedence
constrained parallel tasks on multicore processors. Our approach is to define combinatorial op-
timization problems, develop heuristic algorithms, analyze their performance, and validate our
analytical results by simulations.

1.2 Our Contributions
In this paper, we address scheduling precedence constrained parallel tasks on multicore processors
with dynamically variable voltage and speed as combinatorial optimization problems. In partic-
ular, we define the problem of minimizing schedule length with energy consumption constraint
and the problem of minimizing energy consumption with schedule length constraint on multicore
processors. Our scheduling problems are defined in such a way that the energy-delay product is
optimized by fixing one factor and minimizing the other. The first problem emphasizes energy
efficiency, while the second problem emphasizes high performance.

We notice that energy-efficient and high-performance scheduling of parallel tasks with prece-
dence constraints has not been investigated before as combinatorial optimization problems. Fur-
thermore, all existing studies are on scheduling sequential tasks which require one processor to
execute, or independent tasks which have no precedence constraint. Our study in this paper makes
some initial attempt to energy-efficient and high-performance scheduling of parallel tasks with
precedence constraints on multicore processors with dynamic voltage and speed.

Our scheduling problems contain four nontrivial subproblems, namely, precedence constrain-
ing, system partitioning, task scheduling, and power supplying. Each subproblem should be solved
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efficiently, so that heuristic algorithms with overall good performance can be developed. These
subproblems and our strategies to solve them are described as follows.

• Precedence Constraining – Precedence constraints make design and analysis of heuristic al-
gorithms more difficult. We propose to use level-by-level scheduling algorithms to deal with
precedence constraints. Since tasks in the same level are independent of each other, they can
be scheduled by any of the efficient algorithms previously developed for scheduling indepen-
dent tasks. Such decomposition of scheduling precedence constrained tasks into scheduling
levels of independent tasks makes analysis of level-by-level scheduling algorithms much
easier and clearer than analysis of other algorithms.

• System Partitioning – Since each parallel task requests for multiple cores for its execution, a
multicore processor should be partitioned into clusters of cores to be assigned to the tasks.
We use the harmonic system partitioning and core allocation scheme, which divides a mul-
ticore processor into clusters of equal sizes and schedules tasks of similar sizes together to
increase core utilization.

• Task Scheduling – Parallel tasks are scheduled together with system partitioning and prece-
dence constraining, and it is NP-hard even scheduling independent sequential tasks without
system partitioning and precedence constraint. Our approach is to divide a list (i.e., a level)
of tasks into sublists, such that each sublist contains tasks of similar sizes which are sched-
uled on clusters of equal sizes. Scheduling such parallel tasks on clusters is no more difficult
than scheduling sequential tasks and can be performed by list scheduling algorithms.

• Power Supplying – Tasks should be supplied with appropriate powers and execution speeds,
such that the schedule length is minimized by consuming given amount of energy or the
energy consumed is minimized without missing a given deadline. We adopt a four-level
energy/time/power allocation scheme for a given schedule, namely, optimal energy/time al-
location among levels of tasks (Theorems 6 and 10), optimal energy/time allocation among
sublists of tasks in the same level (Theorems 5 and 9), optimal energy allocation among
groups of tasks in the same sublist (Theorems 4 and 8), and optimal power supplies to tasks
in the same group (Theorems 3 and 7).

The above decomposition of our optimization problems into four subproblems makes design and
analysis of heuristic algorithms tractable. A unique feature of our work is to compare the perfor-
mance of our algorithms with optimal solutions analytically and validate our results experimentally,
not to compare the performance of heuristic algorithms among themselves only experimentally.
Such an approach is consistent with traditional scheduling theory.

The remainder of the paper is organized as follows. In Section 2, we review related research
in the literature. In Section 3, we present background information, including the power and task
models, definitions of our problems, and lower bounds for optimal solutions. In Section 4, we de-
scribe our methods to deal with precedence constraints, system partitioning, and task scheduling.
In Section 5, we develop our optimal four-level energy/time/power allocation scheme for minimiz-
ing schedule length and minimizing energy consumption, analyze the performance of our heuristic
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algorithms, and derive accurate performance bounds. In Section 6, we demonstrate simulation
data, which validate our analytical results. In Section 7, we summarize the paper and give further
research directions.

2 Related Work
Increased energy consumption causes severe economic, ecological, and technical problems. Power
conservation is critical in many computation and communication environments and has attracted
extensive research activities. Reducing processor energy consumption has been an important and
pressing research issue in recent years. There has been increasing interest and importance in de-
veloping high-performance and energy-efficient computing systems [15, 16, 17]. There exists an
explosive body of literature on power-aware computing and communication. The reader is referred
to [5, 9, 45, 46] for comprehensive surveys.

Software techniques for power reduction are supported by a mechanism called dynamic volt-
age scaling [2]. Dynamic power management at the operating system level refers to supply volt-
age and clock frequency adjustment schemes implemented while tasks are running. These energy
conservation techniques explore the opportunities for tuning the energy-delay tradeoff [44]. In a
pioneering paper [47], the authors first proposed the approach to energy saving by using fine grain
control of CPU speed by an operating system scheduler. In a subsequent work [49], the authors
analyzed offline and online algorithms for scheduling tasks with arrival times and deadlines on a
uniprocessor computer with minimum energy consumption. These research have been extended
in [7, 12, 25, 33, 34, 35, 50] and inspired substantial further investigation, much of which focus
on real-time applications. In [6, 20, 21, 24, 27, 36, 37, 38, 39, 40, 42, 43, 48, 52, 53, 54, 55] and
many other related work, the authors addressed the problem of scheduling independent or prece-
dence constrained tasks on uniprocessor or multiprocessor computers where the actual execution
time of a task may be less than the estimated worst-case execution time. The main issue is energy
reduction by slack time reclamation.

There are two considerations in dealing with the energy-delay tradeoff. On the one hand,
in high-performance computing systems, power-aware design techniques and algorithms attempt
to maximize performance under certain energy consumption constraints. On the other hand, low-
power and energy-efficient design techniques and algorithms aim to minimize energy consumption
while still meeting certain performance goals. In [8], the author studied the problems of minimiz-
ing the expected execution time given a hard energy budget and minimizing the expected energy
expenditure given a hard execution deadline for a single task with randomized execution require-
ment. In [11], the author considered scheduling jobs with equal requirements on multiprocessors.
In [14], the authors studied the relationship among parallelization, performance, and energy con-
sumption, and the problem of minimizing energy-delay product. In [18], the authors addressed
joint minimization of carbon emission and maximization of profit. In [23, 26], the authors at-
tempted joint minimization of energy consumption and task execution time. In [41], the authors
investigated the problem of system value maximization subject to both time and energy constraints.
In [56], the authors considered task scheduling on clusters with significant communication costs.
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In [28, 29, 30, 31, 32], we addressed energy and time constrained power allocation and task
scheduling on multiprocessors with dynamically variable voltage and frequency and speed and
power as combinatorial optimization problems. In [28, 31], we studied the problems of scheduling
independent sequential tasks. In [29, 32], we studied the problems of scheduling independent
parallel tasks. In [30], we studied the problems of scheduling precedence constrained sequential
tasks. In this paper, we study the problems of scheduling precedence constrained parallel tasks.

3 Preliminaries
In this section, we present background information, including the power and task models, defini-
tions of our problems, and lower bounds for optimal solutions.

3.1 Power and Task Models
Power dissipation and circuit delay in digital CMOS circuits can be accurately modeled by simple
equations, even for complex microprocessor circuits. CMOS circuits have dynamic, static, and
short-circuit power dissipation; however, the dominant component in a well designed circuit is
dynamic power consumption p (i.e., the switching component of power), which is approximately
p = aCV 2 f , where a is an activity factor, C is the loading capacitance, V is the supply voltage,
and f is the clock frequency [13]. In the ideal case, the supply voltage and the clock frequency are
related in such a way that V ∝ f φ for some constant φ > 0 [51]. The processor execution speed s is
usually linearly proportional to the clock frequency, namely, s ∝ f . For ease of discussion, we will
assume that V = b f φ and s = c f , where b and c are some constants. Hence, we know that power
consumption is p = aCV 2 f = ab2C f 2φ+1 = (ab2C/c2φ+1)s2φ+1 = ξ sα , where ξ = ab2C/c2φ+1

and α = 2φ + 1. For instance, by setting b = 1.16, aC = 7.0, c = 1.0, φ = 0.5, α = 2φ + 1 =
2.0, and ξ = ab2C/cα = 9.4192, the value of p calculated by the equation p = aCV 2 f = ξ sα is
reasonably close to that in [22] for the Intel Pentium M processor.

Assume that we are given a parallel computation or application with a set of n precedence
constrained parallel tasks. The precedence constraints can be specified as a partial order ≺ over
the set of tasks {1,2, ...,n}, or a task graph G = (V,E), where V = {1,2, ...,n} is the set of tasks
and E is a set of arcs representing the precedence constraints. The relationship i≺ j, or an arc (i, j)
from i to j, means that task i must be executed before task j, i.e., task j cannot be executed until
task i is completed. A parallel task i, where 1 ≤ i ≤ n, is specified by πi and ri explained below.
The integer πi is the number of cores requested by task i, i.e., the size of task i. It is possible that in
executing task i, the πi cores may have different execution requirements (i.e., the numbers of core
cycles or the numbers of instructions executed on the cores) due to imbalanced load distribution.
Let ri represent the maximum execution requirement on the πi cores executing task i. The product
wi = πiri is called the work of task i.

We are also given a multicore processor with m homogeneous and identical cores. To execute
a task i, any πi of the m cores of the multicore processor can be allocated to task i. Several tasks can
be executed simultaneously on the multicore processor, with the restriction that the total number
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of active cores (i.e., cores allocated to tasks being executed) at any moment cannot exceed m.
In a more general setting, we can consider scheduling u parallel applications represented by

task graphs G1,G2, ...,Gu respectively, on v multicore processors P1,P2, ...,Pv in a data center with
m1,m2, ...,mv cores respectively (see Figure 1). Notice that multiple task graphs can be viewed
as a single task graph with disconnected components. Therefore, our task model can accom-
modate multiple parallel applications. However, scheduling on multiple multicore processors is
significantly different from scheduling on a single multicore processor. In this paper, we focus on
scheduling parallel applications on a single multicore processor, and leave the study of scheduling
parallel applications on multiple multicore processors as a further research topic.

We use pi to represent the power supplied to task i and si to represent the speed to execute
task i. It is noticed that the constant ξ in pi = ξ sα

i only linearly scales the value of pi. For ease
of discussion, we will assume that pi is simply sα

i , where si = p1/α

i is the execution speed of task
i. The execution time of task i is ti = ri/si = ri/p1/α

i . Note that all the πi cores allocated to task
i have the same speed si for duration ti, although some of the πi cores may be idle for some time.
The energy consumed to execute task i is ei = πi piti = πiri p

1−1/α

i = πirisα−1
i = wisα−1

i , where
wi = πiri is the amount of work to be performed for task i.

3.2 Problems
Our combinatorial optimization problems to be solved in this paper are formally defined as follows.

Given n parallel tasks with precedence constraints ≺, task sizes π1, π2, ..., πn, and task execu-
tion requirements r1, r2, ..., rn, the problem of minimizing schedule length with energy consumption
constraint E on an m-core processor is to find the power supplies p1, p2, ..., pn (equivalently, the
task execution speeds s1, s2, ..., sn) and a nonpreemptive schedule of the n tasks on the m-core
processor, such that the schedule length is minimized and that the total energy consumed does
not exceed E. This problem aims at achieving energy-efficient processing of large-scale parallel
applications with the best possible performance.

Given n parallel tasks with precedence constraints ≺, task sizes π1, π2, ..., πn, and task ex-
ecution requirements r1, r2, ..., rn, the problem of minimizing energy consumption with schedule
length constraint T on an m-core processor is to find the power supplies p1, p2, ..., pn (equivalently,
the task execution speeds s1, s2, ..., sn) and a nonpreemptive schedule of the n tasks on the m-core
processor, such that the total energy consumption is minimized and that the schedule length does
not exceed T . This problem aims at achieving high-performance processing of large-scale parallel
applications with the lowest possible energy consumption.

The above two problems are NP-hard even when the tasks are independent (i.e., ≺= /0) and
sequential (i.e., πi = 1 for all 1 ≤ i ≤ n) [28]. Thus, we will seek fast heuristic algorithms with
near-optimal performance.

3.3 Lower Bounds
Let W = w1 + w2 + · · ·+ wn = π1r1 + π2r2 + · · ·+ πnrn denote the total amount of work to be
performed for the n parallel tasks. We define T ∗ to be the length of an optimal schedule, and E∗ to
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Table 1. Summary of Our Methods to Solve the Subproblems.

Subproblem Method

precedence constraining level-by-level scheduling algorithms

system partitioning harmonic system partitioning and core allocation scheme

task scheduling list scheduling algorithms

power supplying four-level energy/time/power allocation scheme

be the minimum amount of energy consumed by an optimal schedule.
The following theorem gives a lower bound for the optimal schedule length T ∗ for the problem

of minimizing schedule length with energy consumption constraint.

Theorem 1 For the problem of minimizing schedule length with energy consumption constraint in
scheduling parallel tasks, we have the following lower bound,

T ∗ ≥
(

m
E

(
W
m

)α)1/(α−1)

for the optimal schedule length.

The following theorem gives a lower bound for the minimum energy consumption E∗ for the
problem of minimizing energy consumption with schedule length constraint.

Theorem 2 For the problem of minimizing energy consumption with schedule length constraint in
scheduling parallel tasks, we have the following lower bound,

E∗ ≥ m
(

W
m

)α 1
T α−1

for the minimum energy consumption.

The above lower bound theorems were proved for independent parallel tasks [29], and there-
fore, are also applicable to precedence constrained parallel tasks. The significance of these lower
bounds is that they can be used to evaluate the performance of heuristic algorithms when their
solutions are compared with optimal solutions (see Subsections 5.1.4 and 5.2.4).

4 Heuristic Algorithms
In this section, we describe our methods to deal with precedence constraints, system partitioning,
and task scheduling, i.e., our methods to solve the first three subproblems. Table 1 gives a summary
of our strategies to solve the subproblems.
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4.1 Precedence Constraining
Recall that a set of n parallel tasks with precedence constraints can be represented by a partial order
≺ on the tasks, i.e., for two tasks i and j, if i ≺ j, then task j cannot start its execution until task
i finishes. It is clear that the n tasks and the partial order ≺ can be represented by a directed task
graph, in which, there are n vertices for the n tasks and (i, j) is an arc if and only if i≺ j. We call j
a successor of i and i a predecessor of j. Furthermore, such a task graph must be a directed acyclic
graph (dag). An arc (i, j) is redundant if there exists k such that (i,k) and (k, j) are also arcs in the
task graph. We assume that there is no redundant arc in the task graph.

A dag can be decomposed into levels, with v being the number of levels. Tasks with no
predecessors (called initial tasks) constitute level 1. Generally, a task i is in level l if the number
of nodes on the longest path from some initial task to task i is l, where 1 ≤ l ≤ v. Note that all
tasks in the same level are independent of each other, and hence, they can be scheduled by any of
the algorithms (e.g., those from [29, 32]) for scheduling independent parallel tasks. Algorithm LL-
Hc-A, where A is a list scheduling algorithm, standing for level-by-level scheduling with algorithm
Hc-A, schedules the n tasks level by level in the order level 1, level 2, ..., level v. Tasks in level
l + 1 cannot start their execution until all tasks in level l are completed. For each level l, where
1 ≤ l ≤ v, we use algorithm Hc-A developed in [29] to generate its schedule (see Figure 2).

The details of algorithm Hc-A is given in the next two subsections.

4.2 System Partitioning
Our algorithms for scheduling independent parallel tasks are called Hc-A, where “Hc" stands for
the harmonic system partitioning scheme with parameter c to be presented below, and A is a list
scheduling algorithm to be presented in the next subsection.

To schedule a list of independent parallel tasks in level l, algorithm Hc-A divides the list into
c sublists (l,1),(l,2), ...,(l,c) according to task sizes (i.e., numbers of cores requested by tasks),
where c≥ 1 is a positive integer constant. For 1≤ j≤ c−1, we define sublist (l, j) to be the sublist
of tasks with m

j +1
< πi ≤

m
j
,

i.e., sublist (l, j) contains all tasks whose sizes are in the interval I j = (m/( j +1),m/ j]. We define
sublist (l,c) to be the sublist of tasks with 0 < πi ≤m/c, i.e., sublist (l,c) contains all tasks whose
sizes are in the interval Ic = (0,m/c]. The partition of (0,m] into intervals I1, I2, ..., I j, ..., Ic is called
the harmonic system partitioning scheme whose idea is to schedule tasks of similar sizes together.
The similarity is defined by the intervals I1, I2, ..., I j, ..., Ic. For tasks in sublist (l, j), core utilization
is higher than j/( j +1), where 1 ≤ j ≤ c−1. As j increases, the similarity among tasks in sublist
(l, j) increases and core utilization also increases. Hence, the harmonic system partitioning scheme
is very good at handling small tasks.

Algorithm Hc-A produces schedules of the sublists sequentially and separately (see Figure 2).
To schedule tasks in sublist (l, j), where 1 ≤ j ≤ c, the m cores are partitioned into j clusters and
each cluster contains m/ j cores. Each cluster of cores is treated as one unit to be allocated to one
task in sublist (l, j). This is basically the harmonic system partitioning and core allocation scheme.
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The justification of the scheme is from the observation that there can be at most j parallel tasks from
sublist (l, j) to be executed simultaneously. Therefore, scheduling parallel tasks in sublist (l, j) on
the j clusters, where each task i has core requirement πi and execution requirement ri, is equivalent
to scheduling a list of sequential tasks on j processors where each task i has execution requirement
ri. It is clear that scheduling of a list of sequential tasks on j processors (i.e., scheduling of a sublist
(l, j) of parallel tasks on j clusters) can be accomplished by using algorithm A, where A is a list
scheduling algorithm to be elaborated in the next subsection.

4.3 Task Scheduling
When a multicore processor with m cores is partitioned into j ≥ 1 clusters, scheduling tasks in
sublist (l, j) is essentially dividing sublist (l, j) into j groups (l, j,1),(l, j,2), ...,(l, j, j) of tasks,
such that each group of tasks are executed on one cluster (see Figure 2). Such a partition of sublist
(l, j) into j groups is essentially a schedule of the tasks in sublist (l, j) on m cores with j clusters.
Once a partition (i.e., a schedule) is determined, we can use the methods in the next section to find
optimal energy/time allocation and power supplies.

We propose to use the list scheduling algorithm and its variations to solve the task scheduling
problem. Tasks in sublist (l, j) are scheduled on j clusters by using the classic list scheduling
algorithm [19] and by ignoring the issue of power supplies and execution speeds. In other words,
the task execution times are simply the task execution requirements r1, r2, ..., rn, and tasks are
assigned to the j clusters (i.e., groups) by using the list scheduling algorithm, which works as
follows to schedule a list of tasks 1, 2, 3 ....

• List Scheduling (LS): Initially, task k is scheduled on cluster (or group) k, where 1 ≤ k ≤ j,
and tasks 1, 2, ..., j are removed from the list. Upon the completion of a task k, the first
unscheduled task in the list, i.e., task j + 1, is removed from the list and scheduled to be
executed on cluster k. This process repeats until all tasks in the list are finished.

Algorithm LS has many variations, depending on the strategy used in the initial ordering of the
tasks. We mention several of them here.

• Largest Requirement First (LRF): This algorithm is the same as the LS algorithm, except
that the tasks are arranged such that r1 ≥ r2 ≥ ·· · ≥ rn.

• Smallest Requirement First (SRF): This algorithm is the same as the LS algorithm, except
that the tasks are arranged such that r1 ≤ r2 ≤ ·· · ≤ rn.

• Largest Size First (LSF): This algorithm is the same as the LS algorithm, except that the
tasks are arranged such that π1 ≥ π2 ≥ ·· · ≥ πn.

• Smallest Size First (SSF): This algorithm is the same as the LS algorithm, except that the
tasks are arranged such that π1 ≤ π2 ≤ ·· · ≤ πn.

• Largest Task First (LTF): This algorithm is the same as the LS algorithm, except that the
tasks are arranged such that π

1/α

1 r1 ≥ π
1/α

2 r2 ≥ ·· · ≥ π
1/α
n rn.
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Table 2. Overview of the Optimal Energy/Time/Power Allocation Scheme.

Level Method Theorems

1 optimal power supplies to tasks in the same group 3 and 7

2 optimal energy allocation among groups of tasks in the same sublist 4 and 8

3 optimal energy/time allocation among sublists of tasks in the same level 5 and 9

4 optimal energy/time allocation among levels of tasks 6 and 10

• Smallest Task First (STF): This algorithm is the same as the LS algorithm, except that the
tasks are arranged such that π

1/α

1 r1 ≤ π
1/α

2 r2 ≤ ·· · ≤ π
1/α
n rn.

We call algorithm LS and its variations simply as list scheduling algorithms.

5 Optimal Energy/Time/Power Allocation
In this section, we develop our optimal four-level energy/time/power allocation scheme for min-
imizing schedule length and minimizing energy consumption, i.e., our method to solve the last
subproblem. We also analyze the performance of our heuristic algorithms and derive accurate
performance bounds.

Once the n precedence constrained parallel tasks are decomposed into v levels, 1, 2, ..., v, and
tasks in each level l are divided into c sublists (l,1),(l,2), ...,(l,c), and tasks in each sublist (l, j)
are further partitioned into j groups (l, j,1),(l, j,2), ...,(l, j, j), power supplies to the tasks which
minimize the schedule length within energy consumption constraint or the energy consumption
within schedule length constraint can be determined. We adopt a four-level energy/time/power
allocation scheme for a given schedule, namely,

• Level 1 – optimal power supplies to tasks in the same group (l, j,k) (Theorems 3 and 7);

• Level 2 – optimal energy allocation among groups (l, j,1),(l, j,2), ...,(l, j, j) of tasks in the
same sublist (l, j) (Theorems 4 and 8);

• Level 3 – optimal energy/time allocation among sublists (l,1),(l,2), ...,(l,c) of tasks in the
same level l (Theorems 5 and 9);

• Level 4 – optimal energy/time allocation among levels 1, 2, ..., l of tasks of a parallel appli-
cation (Theorems 6 and 10).

Table 2 gives an overview of our energy/time/power allocation scheme. We will give the details of
the above optimal four-level energy/time/power allocation scheme for the two optimization prob-
lems separately.
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5.1 Minimizing Schedule Length
5.1.1 Level 1

We first consider optimal power supplies to tasks in the same group. Notice that tasks in the same
group are executed sequentially. In fact, we consider a more general case, i.e., n parallel tasks with
sizes π1,π2, ...,πn and execution requirements r1,r2, ...,rn to be executed sequentially one by one.
Let us define

M = π
1/α

1 r1 +π
1/α

2 r2 + · · ·+π
1/α
n rn.

The following result [29] gives the optimal power supplies when the n parallel tasks are scheduled
sequentially.

Theorem 3 When n parallel tasks are scheduled sequentially, the schedule length is minimized
when task i is supplied with power pi = (E/M)α/(α−1)/πi, where 1 ≤ i ≤ n. The optimal schedule
length is T = Mα/(α−1)/E1/(α−1).

5.1.2 Level 2

Now, we consider optimal energy allocation among groups of tasks in the same sublist. Again, we
discuss group level energy allocation in a more general case, i.e., scheduling n parallel tasks on m
cores, where πi ≤ m/ j for all 1 ≤ i ≤ n with j ≥ 1. In this case, the m cores can be partitioned
into j clusters, such that each cluster contains m/ j cores. Each cluster of cores are treated as one
unit to be allocated to one task. Assume that the set of n tasks is partitioned into j groups, such
that all the tasks in group k are executed on cluster k, where 1 ≤ k ≤ j. Let Mk denote the total
π

1/α

i ri of the tasks in group k. For a given partition of the n tasks into j groups, we are seeking
an optimal energy allocation and power supplies that minimize the schedule length. Let Ek be the
energy consumed by all the tasks in group k. The following result [29] characterizes the optimal
energy allocation and power supplies.

Theorem 4 For a given partition M1, M2, ..., M j of n parallel tasks into j groups on a multicore
processor partitioned into j clusters, the schedule length is minimized when task i in group k is
supplied with power pi = (Ek/Mk)α/(α−1)/πi, where

Ek =

(
Mα

k
Mα

1 +Mα
2 + · · ·+Mα

j

)
E,

for all 1 ≤ k ≤ j. The optimal schedule length is

T =
(Mα

1 +Mα
2 + · · ·+Mα

j

E

)1/(α−1)

,

for the above energy allocation and power supplies.
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5.1.3 Level 3

To use algorithm Hc-A to solve the problem of minimizing schedule length with energy consump-
tion constraint E, we need to allocate the available energy E to the c sublists. We use E1, E2,
..., Ec to represent an energy allocation to the c sublists, where sublist j consumes energy E j, and
E1 +E2 + · · ·+Ec = E. By using any of the list scheduling algorithms to schedule tasks in sublist j,
we get a partition of the tasks in sublist j into j groups. Let R j be the total execution requirement of
tasks in sublist j, and R j,k be the total execution requirement of tasks in group k, and M j,k be the to-
tal π

1/α

i ri of tasks in group k, where 1≤ k ≤ j. Theorem 5 [29] provides optimal energy allocation
to the c sublists for minimizing schedule length with energy consumption constraint in scheduling
parallel tasks by using scheduling algorithms Hc-A, where A is a list scheduling algorithm.

Theorem 5 For a given partition M j,1, M j,2, ..., M j, j of the tasks in sublist j into j groups produced
by a list scheduling algorithm A, where 1 ≤ j ≤ c, and an energy allocation E1, E2, ..., Ec to the c
sublists, the length of the schedule produced by algorithm Hc-A is

T =
c

∑
j=1

(
Mα

j,1 +Mα
j,2 + · · ·+Mα

j, j

E j

)1/(α−1)

.

The energy allocation E1, E2, ..., Ec which minimizes T is

E j =

 N1/α

j

N1/α

1 +N1/α

2 + · · ·+N1/α
c

E,

where N j = Mα
j,1 +Mα

j,2 + · · ·+Mα
j, j, for all 1 ≤ j ≤ c, and the minimized schedule length is

T =
(N1/α

1 +N1/α

2 + · · ·+N1/α
c )α/(α−1)

E1/(α−1) ,

by using the above energy allocation.

5.1.4 Level 4

To use a level-by-level scheduling algorithm to solve the problem of minimizing schedule length
with energy consumption constraint E, we need to allocate the available energy E to the v levels.
We use E1, E2, ..., Ev to represent an energy allocation to the v levels, where level l consumes
energy El , and E1 +E2 + · · ·+Ev = E.

Let Rl, j,k be the total execution requirement of tasks in group (l, j,k), i.e., group k of sublist
(l, j) of level l, and Rl, j be the total execution requirement of tasks in sublist (l, j) of level l, and
R j be the total execution requirement of tasks in sublist (l, j) of all levels, and Ml, j,k be the total
π

1/α

i ri of tasks in group (l, j,k), where 1 ≤ l ≤ v and 1 ≤ j ≤ c and 1 ≤ k ≤ j.
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By Theorem 5, for a given partition Ml, j,1, Ml, j,2, ..., Ml, j, j of the tasks in sublist (l, j) of level
l into j groups produced by a list scheduling algorithm A, where 1 ≤ l ≤ v and 1 ≤ j ≤ c, and an
energy allocation El,1, El,2, ..., El,c to the c sublists of level l, where

El, j =

 N1/α

l, j

N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c

El,

with Nl, j = Mα
l, j,1 + Mα

l, j,2 + · · ·+ Mα
l, j, j, for all 1 ≤ l ≤ v and 1 ≤ j ≤ c, the scheduling algorithm

Hc-A produces schedule length

Tl =
(N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c )α/(α−1)

E1/(α−1)
l

,

for tasks in level l, where 1≤ l ≤ v. Since the level-by-level scheduling algorithm produces sched-
ule length T = T1 +T2 + · · ·+Tv, we have

T =
v

∑
l=1

(N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c )α/(α−1)

E1/(α−1)
l

.

Let Sl = (N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c )α , for all 1 ≤ l ≤ v. By the definition of Sl , we obtain

T =
(

S1

E1

)1/(α−1)

+
(

S2

E2

)1/(α−1)

+ · · ·+
(

Sv

Ev

)1/(α−1)

.

To minimize T with the constraint F(E1,E2, ...,Ev) = E1 + E2 + · · ·+ Ev = E, we use the
Lagrange multiplier system

∇T (E1,E2, ...,Ev) = λ∇F(E1,E2, ...,Ev),

where λ is the Lagrange multiplier. Since ∂T/∂El = λ∂F/∂El , that is,

S1/(α−1)
l

(
− 1

α −1

)
1

E1/(α−1)+1
l

= λ ,

1 ≤ l ≤ v, we get

El = S1/α

l

(
1

λ (1−α)

)(α−1)/α

,

which implies that

E = (S1/α

1 +S1/α

2 + · · ·+S1/α
v )

(
1

λ (1−α)

)(α−1)/α

,
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and

El =

(
S1/α

l

S1/α

1 +S1/α

2 + · · ·+S1/α
v

)
E,

for all 1 ≤ l ≤ v. By using the above energy allocation, we have

T =
v

∑
l=1

(
Sl

El

)1/(α−1)

=
v

∑
l=1

S1/(α−1)
l((

S1/α

l

S1/α

1 +S1/α

2 + · · ·+S1/α
v

)
E

)1/(α−1)

=
v

∑
l=1

S1/α

l (S1/α

1 +S1/α

2 + · · ·+S1/α
v )1/(α−1)

E1/(α−1)

=
(S1/α

1 +S1/α

2 + · · ·+S1/α
v )α/(α−1)

E1/(α−1) .

For any list scheduling algorithm A, we have Rl, j,k ≤Rl, j/ j+r∗, for all 1≤ l ≤ v and 1≤ j≤ c
and 1 ≤ k ≤ j, where r∗ = max(r1,r2, ...,rn) is the maximum task execution requirement. Since
πi ≤ m/ j for every task i in group (l, j,k) of sublist (l, j) of level l, we get

Ml, j,k ≤
(

m
j

)1/α

Rl, j,k ≤
(

m
j

)1/α(Rl, j

j
+ r∗

)
.

Therefore,

Nl, j ≤ m
(

Rl, j

j
+ r∗

)α

,

and

N1/α

l, j ≤ m1/α

(
Rl, j

j
+ r∗

)
,

and

N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c ≤ m1/α

((
c

∑
j=1

Rl, j

j

)
+ cr∗

)
.

Consequently,

Sl ≤ m

((
c

∑
j=1

Rl, j

j

)
+ cr∗

)α

,

and

S1/α

l ≤ m1/α

((
c

∑
j=1

Rl, j

j

)
+ cr∗

)
,
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and

S1/α

1 +S1/α

2 + · · ·+S1/α
v ≤ m1/α

((
c

∑
j=1

R j

j

)
+ cvr∗

)
,

which implies that

T ≤ m1/(α−1)

((
c

∑
j=1

R j

j

)
+ cvr∗

)α/(α−1)
1

E1/(α−1) .

We define the performance ratio as β = T/T ∗ for heuristic algorithms that solve the problem
of minimizing schedule length with energy consumption constraint on a multicore processor. By
Theorem 1, we get

β =
T
T ∗ ≤

(((
c

∑
j=1

R j

j

)
+ cvr∗

)/(
W
m

))α/(α−1)

.

Theorem 6 provides optimal energy allocation to the v levels for minimizing schedule length
with energy consumption constraint in scheduling precedence constrained parallel tasks by using
level-by-level scheduling algorithms LL-Hc-A, where A is a list scheduling algorithm.

Theorem 6 For a given partition Ml, j,1, Ml, j,2, ..., Ml, j, j of the tasks in sublist (l, j) of level l into
j groups produced by a list scheduling algorithm A, where 1≤ l ≤ v and 1≤ j ≤ c, and an energy
allocation E1, E2, ..., Ev to the v levels, the level-by-level scheduling algorithm LL-Hc-A produces
schedule length

T =
v

∑
l=1

(N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c )α/(α−1)

E1/(α−1)
l

,

where Nl, j = Mα
l, j,1 + Mα

l, j,2 + · · ·+ Mα
l, j, j, for all 1 ≤ l ≤ v and 1 ≤ j ≤ c. The energy allocation

E1, E2, ..., Ev which minimizes T is

El =

(
S1/α

l

S1/α

1 +S1/α

2 + · · ·+S1/α
v

)
E,

where Sl = (N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c )α , for all 1 ≤ l ≤ v, and the minimized schedule length is

T =
(S1/α

1 +S1/α

2 + · · ·+S1/α
v )α/(α−1)

E1/(α−1) ,

by using the above energy allocation. The performance ratio is

β ≤

(((
c

∑
j=1

R j

j

)
+ cvr∗

)/(
W
m

))α/(α−1)

,

where r∗ = max(r1,r2, ...,rn) is the maximum task execution requirement.
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Theorems 4 and 5 and 6 give the power supply to the task i in group (l, j,k) as

1
πi

(
El, j,k

Ml, j,k

)α/(α−1)

=
1
πi

((
Mα

l, j,k

Mα
l, j,1 +Mα

l, j,2 + · · ·+Mα
l, j, j

)
 N1/α

l, j

N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c

( S1/α

l

S1/α

1 +S1/α

2 + · · ·+S1/α
v

)
E

Ml, j,k

α/(α−1)

,

for all 1 ≤ l ≤ v and 1 ≤ j ≤ c and 1 ≤ k ≤ j.
We notice that the performance bound given in Theorem 6 is loose and pessimistic mainly

due to the overestimation of the πi’s in sublist (l, j) to m/ j. One possible remedy is to use the
value of (m/( j + 1)+ m/ j)/2 as an approximation to πi. Also, as the number of tasks gets large,
the term cvr∗ may be removed. This gives rise to the following performance bound for β :((

c

∑
j=1

R j

j

(
2 j +1
2 j +2

)1/α
)/(

W
m

))α/(α−1)

. (1)

Our simulation shows that the modified bound in (1) is more accurate than the performance bound
given in Theorem 6.

5.2 Minimizing Energy Consumption
5.2.1 Level 1

The following result [29] gives the optimal power supplies when n parallel tasks are scheduled
sequentially.

Theorem 7 When n parallel tasks are scheduled sequentially, the total energy consumption is
minimized when task i is supplied with power pi = (M/T )α/πi, where 1 ≤ i ≤ n. The minimum
energy consumption is E = Mα/T α−1.

5.2.2 Level 2

The following result [29] gives the optimal energy allocation and power supplies that minimize
energy consumption for a given partition of n tasks into j groups on a multicore processor.

Theorem 8 For a given partition M1, M2, ..., M j of n parallel tasks into j groups on a multi-
core processor partitioned into j clusters, the total energy consumption is minimized when task
i in group k is executed with power pi = (Mk/T )α/πi, where 1 ≤ k ≤ j. The minimum energy
consumption is

E =
Mα

1 +Mα
2 + · · ·+Mα

j

T α−1 ,

for the above energy allocation and power supplies.
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5.2.3 Level 3

To use algorithm Hc-A to solve the problem of minimizing energy consumption with schedule
length constraint T , we need to allocate the time T to the c sublists. We use T1, T2, ..., Tc to
represent a time allocation to the c sublists, where tasks in sublist sublist j are executed within
deadline Tj, and T1 + T2 + · · ·+ Tc = T . Theorem 9 [29] provides optimal time allocation to the c
sublists for minimizing energy consumption with schedule length constraint in scheduling parallel
tasks by using scheduling algorithms Hc-A, where A is a list scheduling algorithm.

Theorem 9 For a given partition M j,1, M j,2, ..., M j, j of the tasks in sublist j into j groups produced
by a list scheduling algorithm A, where 1 ≤ j ≤ c, and a time allocation T1, T2, ..., Tc to the c
sublists, the amount of energy consumed by algorithm Hc-A is

E =
c

∑
j=1

(
Mα

j,1 +Mα
j,2 + · · ·+Mα

j, j

T α−1
j

)
.

The time allocation T1, T2, ..., Tc which minimizes E is

Tj =

 N1/α

j

N1/α

1 +N1/α

2 + · · ·+N1/α
c

T,

where N j = Mα
j,1 +Mα

j,2 + · · ·+Mα
j, j, for all 1 ≤ j ≤ c, and the minimized energy consumption is

E =
(N1/α

1 +N1/α

2 + · · ·+N1/α
c )α

T α−1 ,

by using the above time allocation.

5.2.4 Level 4

To use a level-by-level scheduling algorithm to solve the problem of minimizing energy consump-
tion with schedule length constraint T , we need to allocate the time T to the v levels. We use T1,
T2, ..., Tv to represent a time allocation to the v levels, where tasks in level l are executed within
deadline Tl , and T1 +T2 + · · ·+Tv = T .

By Theorem 9, for a given partition Ml, j,1, Ml, j,2, ..., Ml, j, j of the tasks in sublist (l, j) of level
l into j groups produced by a list scheduling algorithm A, where 1 ≤ l ≤ v and 1 ≤ j ≤ c, and a
time allocation Tl,1, Tl,2, ..., Tl,c to the c sublists of level l, where

Tl, j =

 N1/α

l, j

N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c

Tl,

with Nl, j = Mα
l, j,1 + Mα

l, j,2 + · · ·+ Mα
l, j, j, for all 1 ≤ l ≤ v and 1 ≤ j ≤ c, the scheduling algorithm

Hc-A consumes energy

El =
(N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c )α

T α−1
l

,
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for tasks in level l, where 1≤ l ≤ v. Since the level-by-level scheduling algorithm consumes energy
E = E1 +E2 + · · ·+Ev, we have

E =
v

∑
l=1

(N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c )α

T α−1
l

.

By the definition of Sl , we obtain

E =
S1

T α−1
1

+
S2

T α−1
2

+ · · ·+ Sv

T α−1
v

.

To minimize E with the constraint F(T1,T2, ...,Tv) = T1 + T2 + · · ·+ Tv = T , we use the La-
grange multiplier system

∇E(T1,T2, ...,Tv) = λ∇F(T1,T2, ...,Tv),

where λ is the Lagrange multiplier. Since ∂E/∂Tl = λ∂F/∂Tl, that is,

Sl

(
1−α

T α
l

)
= λ ,

1 ≤ l ≤ v, we get

Tl = S1/α

l

(
1−α

λ

)1/α

,

which implies that

T = (S1/α

1 +S1/α

2 + · · ·+S1/α
v )

(
1−α

λ

)1/α

,

and

Tl =

(
S1/α

l

S1/α

1 +S1/α

2 + · · ·+S1/α
v

)
T,

for all 1 ≤ l ≤ v. By using the above time allocation, we have

E =
v

∑
l=1

Sl

T α−1
l

=
v

∑
l=1

Sl((
S1/α

l

S1/α

1 +S1/α

2 + · · ·+S1/α
v

)
T

)α−1

=
v

∑
l=1

S1/α

l (S1/α

1 +S1/α

2 + · · ·+S1/α
v )α−1

T α−1

=
(S1/α

1 +S1/α

2 + · · ·+S1/α
v )α

T α−1 .
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Similar to the derivation in Subsection 5.1.4, we have

S1/α

1 +S1/α

2 + · · ·+S1/α
v ≤ m1/α

((
c

∑
j=1

R j

j

)
+ cvr∗

)
,

which implies that

E ≤ m

((
c

∑
j=1

R j

j

)
+ cvr∗

)α

1
T α−1 .

We define the performance ratio as β = E/E∗ for heuristic algorithms that solve the problem
of minimizing energy consumption with schedule length constraint on a multicore processor. By
Theorem 2, we get

β =
E
E∗ ≤

(((
c

∑
j=1

R j

j

)
+ cvr∗

)/(
W
m

))α

.

Theorem 10 provides optimal time allocation to the v levels for minimizing energy consump-
tion with schedule length constraint in scheduling precedence constrained parallel tasks by using
level-by-level scheduling algorithms LL-Hc-A, where A is a list scheduling algorithm.

Theorem 10 For a given partition Ml, j,1, Ml, j,2, ..., Ml, j, j of the tasks in sublist (l, j) of level l into
j groups produced by a list scheduling algorithm A, where 1 ≤ l ≤ v and 1 ≤ j ≤ c, and a time
allocation T1, T2, ..., Tv to the v levels, the level-by-level scheduling algorithm LL-Hc-A consumes
energy

E =
v

∑
l=1

(N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c )α

T α−1
l

,

where Nl, j = Mα
l, j,1 +Mα

l, j,2 + · · ·+Mα
l, j, j, for all 1 ≤ l ≤ v and 1 ≤ j ≤ c. The time allocation T1,

T2, ..., Tv which minimizes E is

Tl =

(
S1/α

l

S1/α

1 +S1/α

2 + · · ·+S1/α
v

)
T,

where Sl = (N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c )α , for all 1≤ l ≤ v, and the minimized energy consumption
is

E =
(S1/α

1 +S1/α

2 + · · ·+S1/α
v )α

T α−1 ,

by using the above time allocation. The performance ratio is

β ≤

(((
c

∑
j=1

R j

j

)
+ cvr∗

)/(
W
m

))α

,

where r∗ = max(r1,r2, ...,rn) is the maximum task execution requirement.
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Theorems 8 and 9 and 10 give the power supply to the task i in group (l, j,k) as

1
πi

(
Ml, j,k

Tl, j

)α

=
1
πi

N1/α

l,1 +N1/α

l,2 + · · ·+N1/α

l,c

N1/α

l, j

(S1/α

1 +S1/α

2 + · · ·+S1/α
v

S1/α

l

)
Ml, j,k

T

α

,

for all 1 ≤ l ≤ v and 1 ≤ j ≤ c and 1 ≤ k ≤ j.
Again, we adjust the performance bound given in Theorem 10 to((

c

∑
j=1

R j

j

(
2 j +1
2 j +2

)1/α
)/(

W
m

))α

. (2)

Our simulation shows that the modified bound in (2) is more accurate than the performance bound
given in Theorem 10.

6 Simulation Data
To validate our analytical results, extensive simulations have been conducted. In this section, we
demonstrate some numerical and experimental data for several example task graphs. The following
task graphs are considered in our experiments.

• Tree-Structured Computations. Many computations are tree-structured, including backtrack-
ing search, branch-and-bound computations, game-tree evaluation, functional and logical
programming, and various numeric computations. For simplicity, we consider CT(b,h), i.e.,
complete b-ary trees of height h (see Figure 3 where b = 2 and h = 4). It is easy to see
that there are v = h + 1 levels numbered as 0, 1, 2, ..., h, and nl = bl for 0 ≤ l ≤ h, and
n = (bh+1−1)/(b−1).

• Partitioning Algorithms. A partitioning algorithm PA(b,h) represents a divide-and-conquer
computation with branching factor b and height (i.e., depth of recursion) h (see Figure 4
where b = 2 and h = 3). The dag of PA(b,h) has v = 2h + 1 levels numbered as 0, 1, 2,
..., 2h. A partitioning algorithm proceeds in three stages. In levels 0,1, ...,h− 1, each task
is divided into b subtasks. Then, in level h, subproblems of small sizes are solved directly.
Finally, in levels h + 1,h + 2, ...,2h, solutions to subproblems are combined to form the
solution to the original problem. Clearly, nl = n2h−l = bl , for all 0 ≤ l ≤ h−1, nh = bh, and
n = (bh+1 +bh−2)/(b−1).

• Linear Algebra Task Graphs. A linear algebra task graph LA(v) with v levels (see Figure 5
where v = 5) has nl = v− l +1 for l = 1,2, ...,v, and n = v(v+1)/2.

• Diamond Dags. A diamond dag DD(d) (see Figure 6 where d = 4) contains v = 2d−1 levels
numbered as 1, 2, ..., 2d−1. It is clear that nl = n2d−l = l, for all 1≤ l ≤ d−1, nd = d, and
n = d2.
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Figure 3: CT(b,h): a complete binary tree with b = 2 and h = 4.

Table 3A. Simulation Data for Expected NSL on CT(2,12).

uniform binomial geometric
π̄ simulation analysis simulation analysis simulation analysis

10 1.1772602 1.1850145 1.1127903 1.0635657 1.2695944 1.3183482
20 1.1609754 1.1485746 1.1046696 1.0817685 1.2527372 1.2739448
30 1.2032217 1.2026955 1.1401395 1.1407631 1.2827662 1.3051035
40 1.3783493 1.4501456 1.2111586 1.2364135 1.2959831 1.3174113
50 1.3977418 1.4592250 1.2498124 1.2784298 1.2998132 1.3175610
60 1.3278814 1.3437082 1.2799084 1.3180794 1.3030358 1.3200509

(99% confidence interval ±0.365%)

Table 3B. Simulation Data for Expected NEC on CT(2,12).

uniform binomial geometric
π̄ simulation analysis simulation analysis simulation analysis

10 1.3816853 1.4002241 1.2386909 1.1314678 1.6180743 1.7403012
20 1.3471473 1.3204301 1.2223807 1.1720051 1.5698000 1.6194065
30 1.4504859 1.4461415 1.2989038 1.2983591 1.6412385 1.6968020
40 1.9023971 2.1084568 1.4683900 1.5308593 1.6805737 1.7387274
50 1.9592480 2.1352965 1.5604366 1.6323378 1.6883269 1.7364845
60 1.7623788 1.8044903 1.6405732 1.7409541 1.6957874 1.7386959

(99% confidence interval ±0.687%)
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JĴ

J
JĴ
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Figure 4: PA(b,h): a partitioning algorithm with b = 2 and h = 3.

Table 4A. Simulation Data for Expected NSL on PA(2,12).

uniform binomial geometric
π̄ simulation analysis simulation analysis simulation analysis

10 1.1940250 1.1841913 1.1287074 1.0635894 1.2918262 1.3185661
20 1.1710935 1.1489358 1.1120907 1.0822820 1.2628233 1.2735483
30 1.2121712 1.2032254 1.1414699 1.1396784 1.2893692 1.3044971
40 1.3838241 1.4505296 1.2130609 1.2377678 1.3006607 1.3152063
50 1.4034276 1.4608829 1.2497254 1.2777187 1.3052527 1.3182187
60 1.3319146 1.3448578 1.2799201 1.3177687 1.3067475 1.3179615

(99% confidence interval ±0.284%)

Table 4B. Simulation Data for Expected NEC on PA(2,12).

uniform binomial geometric
π̄ simulation analysis simulation analysis simulation analysis

10 1.4280855 1.4053089 1.2756771 1.1309478 1.6643757 1.7374005
20 1.3687912 1.3196764 1.2362757 1.1716339 1.5959196 1.6185853
30 1.4680717 1.4464946 1.3037462 1.3007006 1.6629560 1.7012833
40 1.9143602 2.1021764 1.4697836 1.5294041 1.6933298 1.7328875
50 1.9717267 2.1383667 1.5614395 1.6318344 1.7026727 1.7361106
60 1.7748939 1.8095803 1.6402284 1.7397315 1.7084739 1.7376521

(99% confidence interval ±0.565%)
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Figure 5: LA(v): a linear algebra task graph with v = 5.

Table 5A. Simulation Data for Expected NSL on LA(2000).

uniform binomial geometric
π̄ simulation analysis simulation analysis simulation analysis

10 1.1392509 1.1841096 1.0771624 1.0638363 1.2300726 1.3179978
20 1.1430859 1.1491148 1.0989144 1.0823187 1.2321125 1.2722681
30 1.1954796 1.2028781 1.1372623 1.1399934 1.2686012 1.3032303
40 1.3729227 1.4497884 1.2109722 1.2375699 1.2858406 1.3161030
50 1.3964647 1.4610101 1.2488649 1.2779096 1.2930727 1.3191233
60 1.3272967 1.3445859 1.2802743 1.3187192 1.2959390 1.3182489

(99% confidence interval ±0.085%)

Table 5B. Simulation Data for Expected NEC on LA(2000).

uniform binomial geometric
π̄ simulation analysis simulation analysis simulation analysis

10 1.2974381 1.4020482 1.1602487 1.1313969 1.5137571 1.7379887
20 1.3062497 1.3200333 1.2076518 1.1715685 1.5175999 1.6178453
30 1.4292225 1.4470430 1.2933014 1.2994524 1.6099920 1.6995260
40 1.8847470 2.1014650 1.4664142 1.5315937 1.6530311 1.7317472
50 1.9501571 2.1348479 1.5596494 1.6330611 1.6715971 1.7392715
60 1.7624447 1.8088376 1.6389275 1.7388263 1.6797186 1.7382355

(99% confidence interval ±0.204%)

27



m
m m

m m m
m m m m

m m m
m m

m

�
���

H
HHj

�
���

�
���

H
HHj

H
HHj

�
���

�
���

�
���

H
HHj

H
HHj

H
HHj

H
HHj

H
HHj

H
HHj

�
���

�
���

�
���

H
HHj

H
HHj

�
���

�
���

H
HHj

�
���

Figure 6: DD(d): a diamond dag with d = 4.

Table 6A. Simulation Data for Expected NSL on DD(2000).

uniform binomial geometric
π̄ simulation analysis simulation analysis simulation analysis

10 1.1393071 1.1842982 1.0770276 1.0636933 1.2303693 1.3183983
20 1.1429980 1.1490295 1.0989960 1.0822466 1.2316570 1.2714949
30 1.1955924 1.2030593 1.1372779 1.1400176 1.2690205 1.3039776
40 1.3726198 1.4493161 1.2109189 1.2375156 1.2859527 1.3162776
50 1.3962951 1.4607530 1.2487413 1.2777190 1.2932855 1.3193741
60 1.3274819 1.3447974 1.2803877 1.3189128 1.2962310 1.3186892

(99% confidence interval ±0.054%)

Table 6B. Simulation Data for Expected NEC on DD(2000).

uniform binomial geometric
π̄ simulation analysis simulation analysis simulation analysis

10 1.2978774 1.4023671 1.1597583 1.1313744 1.5144683 1.7391638
20 1.3063526 1.3202184 1.2076968 1.1715103 1.5179540 1.6182936
30 1.4292362 1.4470899 1.2934523 1.2996875 1.6099667 1.6996302
40 1.8840943 2.1007925 1.4659063 1.5308111 1.6536717 1.7325694
50 1.9501477 2.1345382 1.5596254 1.6330039 1.6719013 1.7398729
60 1.7625789 1.8090184 1.6405736 1.7412621 1.6799813 1.7386383

(99% confidence interval ±0.155%)
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Since each task graph has at least one parameter, we are actually dealing with classes of task
graphs.

We define the normalized schedule length (NSL) as

NSL =
T(

m
E

(
W
m

)α)1/(α−1) .

When T is the schedule length produced by a heuristic algorithm LL-Hc-A according to Theorem 6,
the normalized schedule length is

NSL =

(
(S1/α

1 +S1/α

2 + · · ·+S1/α
v )α

m
(

W
m

)α

)1/(α−1)

.

NSL is an upper bound for the performance ratio β = T/T ∗ for the problem of minimizing schedule
length with energy consumption constraint on a multicore processor. When the πi’s and the ri’s are
random variables, T , T ∗, β , and NSL all become random variables. It is clear that for the problem
of minimizing schedule length with energy consumption constraint, we have β̄ ≤ NSL, i.e., the
expected performance ratio is no larger than the expected normalized schedule length. (We use x̄
to represent the expectation of a random variable x.)

We define the normalized energy consumption (NEC) as

NEC =
E

m
(

W
m

)α 1
T α−1

.

When E is the energy consumed by a heuristic algorithm LL-Hc-A according to Theorem 10, the
normalized energy consumption is

NEC =
(S1/α

1 +S1/α

2 + · · ·+S1/α
v )α

m
(

W
m

)α .

NEC is an upper bound for the performance ratio β = E/E∗ for the problem of minimizing en-
ergy consumption with schedule length constraint on a multicore processor. For the problem of
minimizing energy consumption with schedule length constraint, we have β̄ ≤ NEC.

Notice that for a given task graph, the expected normalized schedule length NSL and the
expected normalized energy consumption NEC are determined by A, c, m, α , and the probability
distributions of the πi’s and the ri’s. In our simulations, the algorithm A is chosen as LS; the
parameter c is set as 20; the number of cores is set as m = 128; and the parameter α is set as
3. The particular choices of these values do not affect our general observations and conclusions.
For convenience, the ri’s are treated as independent and identically distributed (i.i.d.) continuous
random variables uniformly distributed in [0,1). The πi’s are i.i.d. discrete random variables. We
consider three types of probability distributions of task sizes with about the same expected task
size π̄ . Let ab be the probability that πi = b, where b ≥ 1.
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• Uniform distributions in the range [1..u], i.e., ab = 1/u for all 1 ≤ b ≤ u, where u is chosen
such that (u+1)/2 = π̄ , i.e., u = 2π̄ −1.

• Binomial distributions in the range [1..m], i.e.,

ab =

(
m
b

)
pb(1− p)m−b

1− (1− p)m ,

for all 1 ≤ b ≤ m, where p is chosen such that mp = π̄ , i.e., p = π̄/m. However, the actual
expectation of task sizes is

π̄

1− (1− p)m =
π̄

1− (1− π̄/m)m ,

which is slightly greater than π̄ , especially when π̄ is small.

• Geometric distributions in the range [1..m], i.e.,

ab =
q(1−q)b−1

1− (1−q)m ,

for all 1 ≤ b ≤ m, where q is chosen such that 1/q = π̄ , i.e., q = 1/π̄ . However, the actual
expectation of task sizes is

1/q− (1/q+m)(1−q)m

1− (1−q)m =
π̄ − (π̄ +m)(1−1/π̄)m

1− (1−1/π̄)m ,

which is less than π̄ , especially when π̄ is large.

In Tables 3–6, we show and compare the analytical results with simulation data. For each task
graph in { CT(2,12), PA(2,12), LA(2000), DD(2000) }, and each π̄ in the range 10, 20, ..., 60, and
each probability distribution of task sizes, we generate rep sets of tasks, produce their schedules by
using algorithm LL-Hc-LS, calculate their NSL (or NEC) and the bound (1) (or bound (2)), report
the average of NSL (or NEC) which is the experimental value of NSL (or NEC), and report the
average of bound (1) (or bound (2)) which is the numerical value of analytical results. The number
rep is large enough to ensure high quality experimental data. The 99% confidence interval of all
the data in the same table is also given.

We have the following observations from our simulations.

• NSL is less than 1.41 and NEC is less than 1.98. Therefore, our algorithms produce solutions
reasonably close to optimum. In fact, NSL and NEC reported here are very close to those
for independent parallel tasks reported in [29].

• The performance of algorithm LL-Hc-A for A other than LS is very close (within ±1%) to
the performance of algorithm LL-Hc-LS. Since these data do not provide further insight,
they are not shown here.

• The performance bound (1) is very close to NSL and the performance bound (2) is very close
to NEC.
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7 Summary and Future Research
We have emphasized the significance of investigating energy-efficient and high-performance pro-
cessing of large-scale parallel applications on multicore processors in data centers. We addressed
scheduling precedence constrained parallel tasks on multicore processors with dynamically vari-
able voltage and speed as combinatorial optimization problems. We pointed out that our scheduling
problems contain four nontrivial subproblems, namely, precedence constraining, system partition-
ing, task scheduling, and power supplying. We described our methods to deal with precedence
constraints, system partitioning, and task scheduling, and developed our optimal four-level en-
ergy/time/power allocation scheme for minimizing schedule length and minimizing energy con-
sumption. We also analyzed the performance of our heuristic algorithms, and derived accurate
performance bounds. We demonstrated simulation data, which validate our analytical results.

Further research can be directed toward employing more effective and efficient algorithms to
deal with independent tasks in the same level. Notice that the approach in this paper (i.e., algorithm
LL-Hc-A) belongs to the class of post-power-determination algorithms. Such an algorithm first
generates a schedule, and then determines power supplies [31, 32]. The classes of pre-power-
determination and hybrid algorithms are worth of investigation [30]. Our study in this paper can
also be extended to multiple multicore/manycore processors in data centers and discrete speed
levels.
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