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The investigation in this article makes the following important contributions to combinatorial optimization

of computation offloading in fog computing. First, we rigorously define the two problems of optimal com-

putation offloading with energy constraint and optimal computation offloading with time constraint. We do

this in such a way that between execution time and energy consumption, we can fix one and minimize the

other. We prove that our optimization problems are NP-hard, even for very special cases. Second, we develop

a unique and effective approach for solving the proposed combinatorial optimization problems, namely, a

two-stage method. In the first stage, we generate a computation offloading strategy. In the second stage, we

decide the computation speed and the communication speeds. This method is applicable to both optimization

problems. Third, we use a simple yet efficient greedy method to produce a computation offloading strategy

by taking all aspects into consideration, including the properties of the communication channels, the power

consumption models of computation and communication, the tasks already assigned and allocated, and the

characteristics of the current task being considered. Fourth, we experimentally evaluate the performance

of our heuristic algorithms. We observe that while various heuristics do exhibit noticeably different perfor-

mance, there can be a single and simple heuristic that can perform very well. Furthermore, the method of

compound algorithm can be applied to obtain slightly improved performance. Fifth, we emphasize that our

problems and algorithms can be easily extended to study combined performance and cost optimization (such

as cost–performance ratio and weighted cost-performance sum optimization) and to accommodate more re-

alistic and complicated fog computing environments (such as preloaded mobile edge servers and multiple

users) with little extra effort. To the best of our knowledge, there has been no similar study in the existing

fog computing literature.
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1 INTRODUCTION

1.1 Challenges and Motivation

Computation offloading is an effective way to enhance both the computing power and the battery

lifetime of a mobile device in fog computing. By offloading computationally intensive tasks to

a mobile edge cloud (MEC) server, a user equipment (UE) can complete more tasks in the same

amount of time, thereby exhibiting stronger computing capabilities. Furthermore, by offloading

energy-hungry tasks to an MEC server, a UE can consume less energy in processing the same

group of tasks, resulting in longer battery durability.

Computation offloading optimization, which can be studied from different perspectives, has

been a very active research area in recent years. In this article, we consider the following appli-

cation scenario. A UE has a list of tasks to be processed. There are several MEC servers within

access of the UE. These MECs are heterogeneous in terms of their computation and communica-

tion speeds and characteristics of the communication channels. The problem that the UE needs to

resolve is how to offload the tasks to the MECs, such that the tasks can be completed as soon as

possible, with as much savings in energy consumption as possible.

Computation offloading in fog computing differs substantially from traditional task scheduling

in heterogeneous parallel and distributed computing systems [Xu et al. 2015] for two reasons: The

UE also has task processing capability and offloading incurs communication overhead. In particu-

lar, if the remote execution in an MEC server takes too much communication time or transmission

energy, then a UE should prefer to process a task locally. Computation offloading in fog computing

is also very different from traditional energy-efficient computing [Li 2012] and cloud computing

[Cao et al. 2014], in the sense that energy consumption for computing in an MEC server is irrele-

vant from the perspective of a UE. From a UE’s point of view, only its own energy consumption for

computation and communication is important and worthy of concern, reduction, and minimiza-

tion. The new features in fog computing introduce unique phenomena in dealing with the power

and performance tradeoff. For instance, increasing the transmission power of a communication

channel between a UE and an MEC only reduces the communication time of a task; the compu-

tation time of the task remains the same, since the UE cannot decide the computation speed of

the MEC. Taken to the extreme, even if the energy consumption for communication were to reach

infinity and the communication time were zero, the execution time is still bounded from below by

the computation time.

Thus, there are multiple challenges and difficulties in studying combinatorial optimization of

computation offloading in fog computing, including (1) reasonable definitions of optimization

problems, (2) effective methodologies to design and analyze algorithms, (3) efficient heuristic al-

gorithms to solve the problems, and (4) extensibility of the problems and algorithms.

—(Question 1) First, since the main purposes of fog computing are to enhance the computing

power and to extend the battery lifetime of a mobile device, both execution time and energy

consumption should be included in the optimization. If so, then how should the optimization

problems be formulated so that both execution time and energy consumption minimization

can be investigated?

—(Question 2) Second, there are several outputs to be determined, including a computation

offloading strategy, the computation speed of the UE, and the communication speeds of

the UE. It is not clear how these variables are decided. Are these output data to be found

together (i.e., interactively) or in a certain order (i.e., one depends on another) and in which

order?

—(Question 3) Third, a computation offloading strategy is actually a schedule of tasks, which

tells the location (either the UE or an MEC) to process a task. When a task is assigned

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 2, Article 11. Publication date: December 2020.



Heuristic Computation Offloading Algorithms for Mobile Users in Fog Computing 11:3

or allocated, how should we incorporate various aspects (such as the computation speeds,

the communication channels, the power consumption models, the tasks already assigned

and allocated, and the characteristics of the current task) into consideration so that a high-

quality solution can be reached?

—(Question 4) Finally, the proposed problems and algorithms should be easily extended to

more sophisticated situations, such as more involved optimization objectives, more compli-

cated environments, and multiple users. How is such extensibility exploited?

The motivation of this article is to address all the above challenges and difficulties. We aim

to conduct a systematic investigation of combinatorial optimization of computation offloading in

fog computing, to develop effective and extensible methodology, to exploit high-quality heuristic

algorithms, and to open new directions for future research.

1.2 Summary of Contributions

The investigation in this article makes the following important contributions to combinatorial

optimization of computation offloading in fog computing.

—First, to answer Question 1, we rigorously define the two problems of optimal computation

offloading with energy constraint and optimal computation offloading with time constraint.

We do this in such a way that between execution time and energy consumption, we can fix

one and minimize the other. We prove that our optimization problems are NP-hard, even

for very special cases.

—Second, to answer Question 2, we develop a unique and effective approach for solving the

proposed combinatorial optimization problems, namely, a two-stage method. In the first

stage, we generate a computation offloading strategy. In the second stage, we decide the

computation speed and the communication speeds. This method is applicable to both opti-

mization problems.

—Third, to answer Question 3, we use a simple yet efficient greedy method to produce a com-

putation offloading strategy by taking all aspects into consideration, including the proper-

ties of the communication channels, the power consumption models of computation and

communication, the tasks already assigned and allocated, and the characteristics of the cur-

rent task being considered.

—Fourth, we experimentally evaluate the performance of our heuristic algorithms. We ob-

serve that while various heuristics do exhibit noticeably different performance, there can

be a single and simple heuristic that can perform very well. Furthermore, the method of

compound algorithm can be applied to obtain slightly improved performance.

—Fifth, to answer Question 4, we emphasize that our problems and algorithms can be easily

extended to study combined performance and cost optimization (such as cost–performance

ratio and weighted cost–performance sum optimization), and to accommodate more real-

istic and complicated fog computing environments (such as preloaded mobile edge servers

and multiple users) with little extra effort.

To the best of our knowledge, there has been no similar study in the existing fog computing

literature for combinatorial optimization of computation offloading.

The rest of the article is organized as follows. In Section 2, we describe the models for

computation and communication and define our research problems. In Section 3, we conduct

some preliminary analysis and then develop our heuristic algorithms. In Section 4, we present

our experimental data in evaluating the performance of the proposed heuristics. In Section 5, we

discuss the extension of our problems and algorithms. In Section 6, we review related research
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in optimization of computation offloading. In Section 7, we conclude our work with pointers to

further research directions. The article also includes an appendix for proofs of all the theorems

and an appendix for our investigation on lower bounds.

2 PRELIMINARIES

In this section, we describe the models for computation and communication and define our re-

search problems. Appendix A provides a summary of notations and their definitions used in this

article.

2.1 Computation and Communication Models

In this section, we present our computation and communication models [Li 2012, Li 2018, Li 2019a,

Li 2019b, Singhal and De 2017, Zhang et al. 2016] so that optimal computation offloading can be

specified and studied rigorously.

The power consumption P (measured in watts) of a UE for computation includes two compo-

nents, i.e., dynamic and static power consumption. The dynamic component Pd is typically repre-

sented as Pd = ξsα
0 , where s0 is the computation speed (i.e., the processor execution speed, mea-

sured in GHz or the number of billion instructions that can be executed in 1 s) of the UE, and ξ and

α are technology-dependent constants. The static component Ps is typically a constant. Therefore,

we have P = Pd + Ps = ξsα
0 + Ps [Lin et al. 2020].

Assume that a task ti , where 1 ≤ i ≤ m, has execution requirement ri (measured in the number

of billion processor cycles or the number of billion instructions (BI) to be executed). Note that it

is a standard practice in scheduling research to assume that the execution requirement of a task is

known in advance, which can be obtained based on the execution time of a task at certain frequency

[Xie et al. 2019]. If ti is not offloaded, then the computation time (measured in seconds) of ti on

the UE is Tcomp,i,0 = ri/s0, and the energy consumption for computation (measured in joules) of

ti on the UE is Ecomp,i,0 = PTcomp,i,0 = (ξsα
0 + Ps ) (ri/s0) = ((ξsα

0 + Ps )/s0)ri . If ti is offloaded to an

MECj whose computation speed is sj , where 1 ≤ j ≤ n, then the computation time of ti on MECj

is Tcomp,i, j = ri/sj , and the energy consumption for computation of ti on MECj is not considered

from the UE’s point of view.

In addition to power consumption for computation, a UE also consumes power for communica-

tion. Let Pt, j be the transmission power (measured in watts) of the UE to MECj , where 1 ≤ j ≤ n.

The communication speed c j (i.e., the data transmission rate, measured in the number of million

bits that can be transmitted in 1 s) from the UE to MECj is c j = w j log2 (1 + Pt, jдj/(Ij + σ
2
j )), where

w j is the channel bandwidth,дj is the channel gain between the UE and MECj , Ij is the interference

on the communication channel caused by other devices’ data transmission to the same MEC, and

σ 2
j is the background noise power [Singhal and De 2017, Zhang et al. 2016]. We will simply write

c j = w j log2 (1 + βjPt, j ), where βj = дj/(Ij + σ
2
j ) is a combined quantity that summarizes various

factors. This way, we can focus on the impact of the transmission power Pt, j on the communication

speed c j .

Let di be the amount of data (measured in the number of million bits (MB)) to be communicated

between the UE and an MEC for task ti . Then, the communication time (measured in seconds)

of ti from the UE to MECj is Tcomm,i, j = di/c j . (Note: It is known that wireless communication

may encounter extra communication latency that is independent of the amount of data and the

communication speed. However, we do not include this part of the communication time, to be

consistent with the existing literature.) The energy consumption for communication (measured

in joules) of ti from the UE to MECj is Ecomm,i, j = Pt, jTcomm,i, j = Pt, j (di/c j ) = (Pt, j/c j )di , where

Pt, j = (2c j /w j − 1)/βj , for all 1 ≤ j ≤ n.
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The above discussion can be summarized as follows. If ti is not offloaded and executed on the UE,

then the execution time isTi,0 = Tcomp,i,0 = ri/s0, and the energy consumption is Ei,0 = Ecomp,i,0 =

((ξsα
0 + Ps )/s0)ri . If ti is offloaded and executed on MECj , then the execution time is Ti, j =

Tcomp,i, j +Tcomm,i, j = ri/sj + di/c j , and the energy consumption is Ei, j = Ecomm,i, j = (Pt, j/c j )di , for

all 1 ≤ j ≤ n.

2.2 Problem Definition

In this section, we formally define our combinatorial optimization problems.

Let L = (t1, t2, . . . , tm ) be a list of independent tasks generated on a UE= (s0, ξ ,α , Ps ), where ti =
(ri ,di ), for all 1 ≤ i ≤ m. Assume that there are n MECs: MEC1, MEC2, . . . ,MECn , where MECj =

(sj , c j ,w j , βj ), for all 1 ≤ j ≤ n. A computation offloading strategy is a schedule (i.e., a partition) of L
into (n + 1) sublists S = (L0,L1,L2 . . . ,Ln ), such that all tasks in L0 are not offloaded and executed

on the UE, and all tasks in Lj are offloaded to MECj and executed on MECj , where 1 ≤ j ≤ n. Define

R j =
∑

ti ∈Lj
ri to be the total execution requirement of tasks offloaded to MECj , for all 0 ≤ j ≤ n,

and D j =
∑

ti ∈Lj
di to be the total amount of data of tasks offloaded to MECj , for all 1 ≤ j ≤ n.

The execution time of all tasks in L0 is T0 = R0/s0. The energy consumption of all tasks in L0 is

E0 = ((ξsα
0 + Ps )/s0)R0. The execution time of all tasks in Lj isTj = R j/sj + D j/c j , for all 1 ≤ j ≤ n.

The energy consumption of all tasks in Lj is Ej = (Pt, j/c j )D j , for all 1 ≤ j ≤ n. The execution time

of all tasks in L (i.e., the schedule length) is T = max(T0,T1,T2, . . . ,Tn ), that is,

T = max

(
R0

s0
,
R1

s1
+
D1

c1
,
R2

s2
+
D2

c2
, . . . ,

Rn

sn
+
Dn

cn

)
.

The energy consumption of all tasks in L is E = E0 + E1 + E2 + · · · + En , that is,

E =

(
ξsα

0 + Ps

s0

)
R0 +

n∑
j=1

(
2c j /w j − 1

βjc j

)
D j .

T and E are the main performance and cost metrics.

We are now ready to define our combinatorial optimization problems for computation offloading

optimization in fog computing.

Problem 1. (Optimal Computation Offloading with Energy Constraint). Given a list of

tasks L = (t1, t2, . . . , tm ), where ti = (ri ,di ), for all 1 ≤ i ≤ m, a UE = (ξ ,α , Ps ), n MECs: MEC1,

MEC2, . . . , MECn , where MECj = (sj ,w j , βj ), for all 1 ≤ j ≤ n, and an energy constraint Ẽ, find a

computation offloading strategy S = (L0,L1,L2, . . . ,Ln ), the computation speed s0, and the commu-

nication speed c j , for all 1 ≤ j ≤ n, such that T is minimized and E does not exceed Ẽ.

Problem 2. (Optimal Computation Offloading with Time Constraint). Given a list of tasks

L = (t1, t2, . . . , tm ), where ti = (ri ,di ), for all 1 ≤ i ≤ m, a UE = (ξ ,α , Ps ), n MECs: MEC1, MEC2,

. . . , MECn , where MECj = (sj ,w j , βj ), for all 1 ≤ j ≤ n, and a time constraint T̃ , find a computation

offloading strategy S = (L0,L1,L2, . . . ,Ln ), the computation speed s0, and the communication speed

c j , for all 1 ≤ j ≤ n, such that E is minimized and T does not exceed T̃ .

The two problems are defined in such a way that between execution time and energy con-

sumption, we can fix one and minimize the other. We believe that this is an effective way to deal

with the performance and cost tradeoff, which is certainly different from joint performance and

cost (i.e., multi-objective) optimization and combined performance and cost (e.g., weighted cost–

performance sum, cost–performance ratio) optimization. (Note: We make the reasonable assump-

tion that all the input data to our problems remain relatively stable for a reasonable period of time,
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although some parameters such as βj may exhibit uncertainty and change relatively quickly in

wireless networks.)

We mention that both of our combinatorial optimization problems are NP-hard, even for very

special cases.

Theorem 2.1. The problem of optimal computation offloading with energy constraint is NP-hard

even for one MEC.

Theorem 2.2. The problem of optimal computation offloading with time constraint is NP-hard

even for one MEC.

The proofs of the above two theorems rely on the discussion (but not the heuristic algorithms)

in Section 3, and will be postponed to Appendix B.

3 HEURISTIC ALGORITHMS

In this section, we conduct some preliminary analysis and then develop our heuristic algorithms.

3.1 Analysis

The following result provides a lower bound for the computation speed s0, a lower bound for the

energy consumption of computation E0, and an upper bound for the computation time T0 on the

UE.

Theorem 3.1. For the UE, we must have the following bounds: s0 ≥ s∗0 = (Ps/ξ (α − 1))1/α , and

E0 ≥ E∗0 = R0P
1−1/α
s ξ 1/αα/(α − 1)1−1/α , and T0 ≤ T ∗0 = R0 (ξ (α − 1)/Ps )1/α .

Proof. The proof is given in Appendix B. �

From the proof of Theorem 3.1, we know that for given energy consumption E0 ∈ [E∗0,∞), and

equivalently s0 ∈ [s∗0 ,∞),T0 = R0/s0 is a decreasing function of E0 and s0 in the range (0,T ∗0 ]. Fur-

thermore, for given execution time T0 ∈ (0,T ∗0 ], s0 = R0/T0, and

E0 = R0 (ξsα−1
0 + Ps/s0) = ξRα

0 /T
α−1
0 + PsT0

are decreasing functions of T0 in the ranges s0 ∈ [s∗0 ,∞) and E0 ∈ [E∗0,∞), respectively.

The following result provides a lower bound for the energy consumption of communication Ej

between the UE and MECj and a lower bound for the execution timeTj on MECj , for all 1 ≤ j ≤ n.

Theorem 3.2. Ej is an increasing function of c j , and when c j approaches 0, Ej approaches E∗j =
ln 2/(w jβj )D j . Hence, we must have the following bounds: Ej > E∗j = (ln 2/w jβj )D j , and Tj > T

∗
j =

R j/sj , for all 1 ≤ j ≤ n.

Proof. The proof is given in Appendix B. �

From the proof of Theorem 3.2, we know that for given energy consumption Ej ∈ (E∗j ,∞),

and equivalently c j ∈ (0,∞), Tj = R j/sj + D j/c j is a decreasing function of Ej and c j in the range

(R j/sj ,∞). Furthermore, for given execution time Tj ∈ (R j/sj ,∞), c j = D j/(Tj − R j/sj ), and

Ej = Pt, j

(
D j

c j

)
=

2c j /w j − 1

βj

(
Tj −

R j

sj

)
,

which is actually

Ej =
2(D j /w j )/(Tj−Rj /sj ) − 1

βj

(
Tj −

R j

sj

)
,

are decreasing functions of Tj in the ranges c j ∈ (0,∞) and (E∗j ,∞), respectively.
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For a fixed T , let us consider E (Lj ) defined as follows:

E (L0) = ξ
Rα

0

T α−1
+ PsT

and

E (Lj ) =
2(D j /w j )/(T−Rj /sj ) − 1

βj

(
T −

R j

sj

)
,

for all 1 ≤ j ≤ n. If a new task ti is added into L0, then the UE needs to complete more computation

ri in the same amount of time T . Thus, s0 = (R0 + ri )/T and Pd are increased, which results in

increased E (L0) = PT . If a new task ti is added into Lj , where 1 ≤ j ≤ n, then the UE needs to

complete more communication (since di is added) in shorter time (since more time ri/sj is spent on

computation). Thus, c j and Pt, j are increased. However, since the communication time is reduced

by ri/sj , it is not clear whether the energy consumption for communication E (Lj ) = Pt, j (D j +

di )/c j is increased or decreased. The following result answers this question.

Theorem 3.3. For a fixed T , if a task is added into Lj , E (Lj ) is increased, for all 0 ≤ j ≤ n.

Proof. The proof is given in Appendix B. �

3.2 Algorithms

Theorems 3.1 and 3.2 imply that for the problem of optimal computation offloading with energy

constraint, the energy constraint must satisfy

Ẽ > E∗0 +
n∑

j=1

E∗j ,

that is,

Ẽ > R0P
1−1/α
s ξ 1/α α

(α − 1)1−1/α
+

n∑
j=1

(
ln 2

w jβj

)
D j .

For the problem of optimal computation offloading with time constraint, the time constraint must

satisfy

T̃ > max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ) = max

(
R1

s1
,
R2

s2
, . . . ,

Rn

sn

)
.

(However, all the above conditions depend on the computation offloading strategy to be

determined.)

3.2.1 Optimal Computation Offloading with Energy Constraint. Our algorithms are developed

in two stages. In the first stage (which is actually the second stage of our algorithm), we discuss

for a given computation offloading strategy S = (L0,L1,L2, . . . ,Ln ), how to decide the computation

speed s0, and the communication speed c j , for all 1 ≤ j ≤ n. In the second stage (which is actually

the first stage of our algorithm), we discuss how to generate a computation offloading strategy S .

First, we discuss for a given computation offloading strategy how to decide the computa-

tion speed and the communication speeds. One simple principle is that all MECs and the UE

should complete their tasks at the same time, i.e., T0 = T1 = T2 = · · · = Tn = T , which gives rise

to s0 = R0/T and c j = D j/(T − R j/sj ) for all 1 ≤ j ≤ n; otherwise, we can shift some energy from

an MEC/UE that completes the earliest to an MEC/UE that completes the latest, reducing T with-

out increasing E. However, this is not always possible. We need to consider different cases (see

Figures 1–3 for illustrations).
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Fig. 1. Illustration of Case 1.

Fig. 2. Illustration of Case 2.

Case 1. If T ∗0 ≤ max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ), then we cannot achieve T0 = T1 = T2 = · · · = Tn , since T0 ≤

T ∗0 and Tj > T
∗
j , for all 1 ≤ j ≤ n. Thus, the best we can hope is T1 = T2 = · · · = Tn = T , where T

satisfies
n∑

j=1

2(D j /w j )/(T−Rj /sj ) − 1

βj

(
T −

R j

sj

)
= Ẽ − E∗0, (1)

which can be found numerically by using bisection search ([Burden et al. 1981], p. 22) in the interval

[max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ),ub], where ub is sufficiently large, by noticing that the left-hand side of the

above equation is a decreasing function of T .

Case 2. If T ∗0 > max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ) and

Ẽ < Ē = E∗0 +
n∑

j=1

2(D j /w j )/(T ∗0 −Rj /sj ) − 1

βj

(
T ∗0 −

R j

sj

)
,
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Fig. 3. Illustration of Case 3.

where Ē is the amount of energy just enough to realize T0 = T1 = T2 = · · · = Tn = T
∗
0 , then we

have T0 = T
∗
0 and Tj > T

∗
0 , for all 1 ≤ j ≤ n, that is, T0 already takes its maximum value, and the

UE already consumes the minimum energy and cannot shift any energy to any MECj . Thus, the

best we can hope is T1 = T2 = · · · = Tn = T > T
∗
0 , where T satisfies

n∑
j=1

2(D j /w j )/(T−Rj /sj ) − 1

βj

(
T −

R j

sj

)
= Ẽ − E∗0, (2)

which can be found numerically by using bisection search in the interval [T ∗0 ,ub], where ub is

sufficiently large, by noticing that the left-hand side of the above equation is a decreasing function

of T .

Case 3. If T ∗0 > max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ) and Ẽ ≥ Ē, then we can realize T0 = T1 = T2 = · · · = Tn =

T ≤ T ∗0 , where T satisfies

ξ
Rα

0

T α−1
+ PsT +

n∑
j=1

2(D j /w j )/(T−Rj /sj ) − 1

βj

(
T −

R j

sj

)
= Ẽ, (3)

which can be found numerically by using bisection search in the interval [max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ),T ∗0 ],

by noticing that the left-hand side of the above equation is a decreasing function of T .

Second, our key challenge now is to find a partition S = (L0,L1,L2, . . . ,Ln ), such that for a given

Ẽ, T is minimized. This is the heart of our algorithm and determines the performance.

Remark 1. The above discussion forms the basis of the proof of the NP-hardness of the problem

of optimal computation offloading with energy constraint.

Let T (L0,L1,L2, . . . ,Ln ) be the T obtained by solving Equations (1)–(3). Our algorithm to solve

the problem of optimal computation offloading with energy constraint is presented in Algorithm 1,

which contains two stages, i.e., the first stage in lines (1)–(14) and the second stage in lines (15)–

(20).
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ALGORITHM 1: Optimal Computation Offloading with Energy Constraint

Input: L = (t1, t2, . . . , tm ), where ti = (ri ,di ), for all 1 ≤ i ≤ m, UE= (ξ ,α , Ps ), MECj = (sj ,w j , βj ),

for all 1 ≤ j ≤ n, and Ẽ.

Output: S = (L0,L1,L2, . . . ,Ln ), s0, c j for all 1 ≤ j ≤ n, and T .

//Stage 1

Initialize the list L; (1)

for (j = 0; j ≤ n; j++) do (2)

Lj ← ∅; (3)

end do; (4)

for (i = 1; i ≤ m; i++) do (5)

smallest← ∞; (6)

for (j = 0; j ≤ n; j++) do (7)

v ← T (L0,L1, . . . ,Lj ∪ {ti }, . . . ,Ln ); (8)

if (v < smallest) then (9)

k ← j; smallest ← v ; (10)

end if; (11)

end do; (12)

Lk ← Lk ∪ {ti }; (13)

end do; (14)

//Stage 2

Get T by solving Equations (1)–(3); (15)

s0 ← max(s∗0 ,R0/T ); (16)

for (j = 1; j ≤ n; j++) do (17)

c j ← D j/(T − R j/sj ); (18)

end do; (19)

return S , s0, c j for all 1 ≤ j ≤ n, and T . (20)

The first stage adopts a greedy method. By Theorem 3.3, if a new task is added into Lj , then the

originalT cannot satisfy Equations (1)–(3) any more, since E (Lj ) is increased. The value ofT must

increase, so that all the E (Lj )’s decrease and Equations (1)–(3) can again be satisfied. The key idea

of the algorithm is to allocate the tasks to the UE and the MECs in such a way thatT grows at the

slowest pace. The most important part of the algorithm is in the nested for-loops in lines (5)–(14),

which is to find the computation offloading strategy S = (L0,L1,L2, . . . ,Ln ). The list L of tasks are

scanned one by one (line (5)). For each task ti , the value of k is determined in such a way that if ti is

added into Lk , theT obtained by solving Equation (1) is minimized (lines (6)–12)). (Note that in line

(8), the algorithm may report failure if Ẽ is too small, i.e., the condition Ẽ > E∗0 + E
∗
1 + E

∗
2 + · · · + E∗n

is violated for S = (L0,L1, . . . ,Lj ∪ {ti }, . . . ,Ln ).) Task ti is then added into Lk (line (13)).

The second stage contains straightforward computations. Line (15) computesT . Lines (16)–(19)

decides the computation speed s0 and the communication speeds c j for all 1 ≤ j ≤ n.

The most time-consuming parts of the algorithm are the nested for-loops in lines (5)–(14). The

outer for-loop is repeatedm times (line (5)). The inner for-loop is repeated (n + 1) times (line (7)).

Lines (8) and (15) solve Equations (1)–(3) by using the bisection method, which needs to reduce a

search internal of length I to shorter than ϵ , which requiresO (log(I/ϵ )) repetitions. Each repetition

needs to calculate the left-hand side of Equations (1)–(3), which requiresO (n) time. Therefore, the

overall time complexity of Algorithm 1 is O (mn2 log(I/ϵ )), which scales linearly with the number

of tasks (typically large) and quadratically with the number of MECs (typically small). For latency

sensitive applications, the time overhead of our fast heuristic algorithm is negligible.
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There is still one important thing not mentioned yet, i.e., line (1) (including its content and

complexity), which will be discussed in Section 4.1.

3.2.2 Optimal Computation Offloading with Time Constraint. We follow the same procedure as

the last section. Again, we consider different cases.

Case 1. If T ∗0 ≤ max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ), then the time constraint T̃ must satisfy T̃ >

max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ), which gives

E = E∗0 +
n∑

j=1

2(D j /w j )/(T̃−Rj /sj ) − 1

βj

(
T̃ −

R j

sj

)
.

Case 2. If T ∗0 > max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ) and T̃ > T ∗0 , then we have

E = E∗0 +
n∑

j=1

2(D j /w j )/(T̃−Rj /sj ) − 1

βj

(
T̃ −

R j

sj

)
.

Case 3. If T ∗0 > max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ) and T̃ ≤ T ∗0 and T̃ > max(T ∗1 ,T

∗
2 , . . . ,T

∗
n ), then we have

E = ξ
Rα

0

T̃ α−1
+ PsT̃ +

n∑
j=1

2(D j /w j )/(T̃−Rj /sj ) − 1

βj

(
T̃ −

R j

sj

)
.

The above three cases can be unified as

E = E0 +

n∑
j=1

2(D j /w j )/(T̃−Rj /sj ) − 1

βj

(
T̃ −

R j

sj

)
, (4)

where

E0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

E∗0 = R0P
1−1/α
s ξ 1/α α

(α−1)1−1/α , if T̃ > T ∗0 ,

ξ
Rα

0

T̃ α−1
+ PsT̃ , if T̃ ≤ T ∗0 .

Remark 2. The above discussion forms the basis of the proof of the NP-hardness of the problem

of optimal computation offloading with time constraint.

Therefore, our key challenge now is to find a partition S = (L0,L1,L2, . . . ,Ln ), such that for a

given T̃ , E is minimized.

Let E (Lj ) be defined such that

E (L0) =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

E∗0, if T̃ > T ∗0 ,

ξ
Rα

0

T̃ α−1
+ PsT̃ , if T̃ ≤ T ∗0 ;

and

E (Lj ) =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

2(D j /w j )/(T̃−Rj /sj ) − 1

βj

(
T̃ −

R j

sj

)
, if

R j

sj
< T̃ ,

∞, otherwise;

for all 1 ≤ j ≤ n. Our algorithm to solve the problem of optimal computation offloading with time

constraint is presented in Algorithm 2, which contains two stages, i.e., the first stage in lines (1)–

(14) and the second stage in lines (15)–(20).
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ALGORITHM 2: Optimal Computation Offloading with Time Constraint

Input: L = (t1, t2, . . . , tm ), where ti = (ri ,di ), for all 1 ≤ i ≤ m, UE= (ξ ,α , Ps ), MECj = (sj ,w j , βj ),

for all 1 ≤ j ≤ n, and T̃ .

Output: S = (L0,L1,L2, . . . ,Ln ), s0, c j for all 1 ≤ j ≤ n, and E.

//Stage 1

Initialize the list L; (1)

for (j = 0; j ≤ n; j++) do (2)

Lj ← ∅; (3)

end do; (4)

for (i = 1; i ≤ m; i++) do (5)

smallest← ∞; (6)

for (j = 0; j ≤ n; j++) do (7)

v ← E (Lj ∪ {ti }) − E (Lj ); (8)

if (v < smallest) then (9)

k ← j; smallest ← v ; (10)

end if; (11)

end do; (12)

Lk ← Lk ∪ {ti }; (13)

end do; (14)

//Stage 2

Compute E by using Equation (4); (15)

s0 ← max(s∗0 ,R0/T̃ ); (16)

for (j = 1; j ≤ n; j++) do (17)

c j ← D j/(T̃ − R j/sj ); (18)

end do; (19)

return S , s0, c j for all 1 ≤ j ≤ n, and E. (20)

Algorithm 2 also adopts a greedy method to find a computation offloading strategy. By The-

orem 3.3, if a new task is added into Lj , then E (Lj ) is increased. The key idea of the algorithm

is to allocate the tasks to the UE and the MECs in such a way that E grows at the slowest pace.

The most important part of the algorithm is the nested for-loops (lines (5)–(14)), which is to find

the computation offloading strategy S = (L0,L1,L2, . . . ,Ln ). The list L of tasks are scanned one by

one (line (5)). For each task ti , the value of k is determined in such a way that if ti is added into

Lk , the extra energy consumption E (Lk ∪ {ti }) − E (Lk ) (which is also the increased energy con-

sumption obtained by using Equation (4)) is minimized (lines (6)–(12)). Task ti is then added into

Lk (line (13)). Notice that in line (8), if MECj cannot accommodate ti , i.e., (R j + ti )/sj ≥ T̃ , then

E (Lj ∪ {ti }) = ∞. Also notice that (at least theoretically) the UE can accommodate unlimited tasks,

since s0 can be increased without any upper bound. In other words, for any time constraint T̃ , a

computation offloading strategy S = (L0,L1,L2, . . . ,Ln ) will be produced by lines (5)–(14). Line

(15) computes E. Lines (16)–(19) decide the computation speed s0 and the communication speeds

c j for all 1 ≤ j ≤ n.

The most time-consuming parts of the algorithm are the nested for-loops in lines (5)–(14). The

outer for-loop is repeated m times (line (5)). The inner for-loop is repeated (n + 1) times (line

(7)). The loop body in lines (8)–(11) takes constant time. Therefore, the overall time complexity of

Algorithm 2 is O (mn), a low time overhead, which scales linearly with both the number of tasks

and the number of MECs.
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4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our heuristic algorithms.

4.1 Heuristics

There is still one significant issue that has not been addressed yet, i.e., in line (1) of Algorithms 1

and 2, how to initialize L, or in particular, how to arrange the order of tasks in L? It is clear that

the quality of the heuristic solutions depends on the initial order.

In this article, we consider the following heuristics for the initial order of L = (ti1 , ti2 , . . . , tim
).

—Original Order (ORG): Tasks are arranged in their original order.

—Smallest Requirement First (SRF): Tasks are arranged such that ri1 ≤ ri2 ≤ · · · ≤ rim
.

—Largest Requirement First (LRF): Tasks are arranged such that ri1 ≥ ri2 ≥ · · · ≥ rim
.

—Smallest Data First (SDF): Tasks are arranged such that di1 ≤ di2 ≤ · · · ≤ dim
.

—Largest Data First (LDF): Tasks are arranged such that di1 ≥ di2 ≥ · · · ≥ dim
.

—Smallest Requirement-Data-Ratio First (SRD): Tasks are arranged such that ri1/di1 ≤
ri2/di2 ≤ · · · ≤ rim

/dim
.

—Largest Requirement-Data-Ratio First (LRD): Tasks are arranged such that ri1/di1 ≥
ri2/di2 ≥ · · · ≥ rim

/dim
.

—Best of k Random Orders (RANk): Tasks are arranged in k random orders and the best

of the k solutions are taken. We set k = 20, 50.

—Compound Algorithm (CMP): Several heuristics (e.g., SRF+LDF+SRD for Problem 1, and

LRF+SDF+LRD for Problem 2) are executed and the best solution is returned.

With the initial ordering of the tasks in line (1) that takesO (m logm) time, the time complexities

of Algorithms 1 and 2 are adapted toO (m logm +mn2 log(I/ϵ )) andO (m logm +mn), respectively.

Remark 3. Although it is strongly believed that there is an initial task ordering that results in an

optimal solution, it is not clear how to prove this claim.

4.2 Experimental Data

In this section, we present our experimental data in evaluating the performance of the proposed

heuristics.

We consider a fog computing environment with n = 7 MECs. The parameters of MECj are set

as follows: sj = 3.1 − 0.1j BI/s, w j = 2.9 + 0.1j MB/s, βj = 2.1 − 0.1j W−1, for all 1 ≤ j ≤ n. The

parameters of the UE are set as follows: ξ = 0.1, α = 2.0, Ps = 0.05 W. (These parameters are set

in a way similar to existing studies [Li 2018, Li 2019a, Li 2019b].)

Tasks are randomly generated with the ri ’s identically and independently and uniformly dis-

tributed in the range [1.5, 5.0] and thedi ’s identically and independently and uniformly distributed

in the range [1.0, 3.0].

In Table 1, we demonstrate our experimental data for optimal computation offloading with en-

ergy constraint (i.e., the execution times based on experiments of our heuristic algorithms). The

number of tasks is m = 10, 20, . . . , 70. The energy constraint is Ẽ = 6 + 3(m/10) joules. For each

m, we generate M = 500 lists of m random tasks. (Since our tasks are randomly generated, they

include any and all tasks in real applications.) For each list of tasks, we apply ten algorithms, i.e.,

Algorithm 1 with ORG, SRF, LRF, SDF, LDF, SRD, LRD, RAN20, RAN50, and CMP. The average of

the M results (i.e., the mean execution time measured in seconds) of each algorithm is displayed

in the table. The maximum 99% confidence interval (C.I.) of all the data in the table is ±1.25721%.
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Table 1. Experimental Data for Optimal Computation Offloading

with Energy Constraint (99% C.I. = ±1.25721%)

m ORG SRF LRF SDF LDF SRD LRD RAN20 RAN50 CMP

10 1.99653 2.00658 1.84365 2.05475 1.93606 1.94300 1.92923 1.76802 1.73798 1.87987

20 4.08147 3.88107 4.19107 4.27196 3.91894 3.85964 4.17209 3.77203 3.71472 3.75999

30 6.28973 5.95365 6.50345 6.69005 6.00590 5.85459 6.71140 5.98485 5.92711 5.81402

40 8.75236 8.10278 9.11682 9.37453 8.30030 7.98324 9.43829 8.35939 8.28119 7.96427

50 11.35319 10.39758 12.13961 12.30221 10.69845 10.20747 12.53659 10.85839 10.76168 10.19922

60 14.10737 12.72706 14.96590 15.35889 13.20254 12.50671 15.73473 13.45777 13.34820 12.50012

70 16.93052 15.16564 17.96551 18.63518 15.84776 14.89330 19.11277 16.20441 16.06697 14.88801

Table 2. Experimental Data for Optimal Computation Offloading

with Time Constraint (99% C.I. = ±3.63795%)

m ORG SRF LRF SDF LDF SRD LRD RAN20 RAN50 CMP

10 7.14079 9.89960 4.93981 7.23727 7.17556 8.85314 5.69594 5.27379 5.06844 4.93435

20 10.54453 12.72669 9.26562 10.59471 11.12415 12.38476 9.48823 9.10222 8.92180 9.18744

30 14.08962 15.92559 13.22027 14.13317 14.90138 16.12847 13.60171 13.07825 12.92065 13.16436

40 18.03214 19.95238 17.22439 17.96314 19.14816 20.53841 17.83075 17.11970 16.98427 17.18377

50 21.86956 23.83112 21.13370 21.66368 23.19791 24.85211 22.01894 21.05023 20.91222 21.08493

60 25.67054 27.96957 25.03026 25.37076 27.26874 29.23434 26.13319 24.89599 24.77725 24.95140

70 29.90603 32.56413 29.34491 29.55240 31.88287 34.13583 30.66954 29.16125 29.04126 29.22962

We have the following observations from Table 1.

—SRF performs better than LRF, LDF performs better than SDF, SRD performs better than

LRD.

—LRF, SDF, and LRD perform even worse than ORG. In other words, we would rather have

no heuristic than a poor heuristic.

—SRD is the best among SRF, LRF, SDF, LDF, SRD, LRD.

—RAN20 and RAN50, although have extensive execution times based on uninformed and un-

knowledgeable random task orderings, do not seem to be able to improve the performance

as compared with SRD.

—CMP=SRF+LDF+SRD can further slightly improve the performance as compared with SRD

and has the overall best performance among the ten algorithms.

—The performance difference between the best algorithm and the worst algorithm can be

significant. For instance, when m = 70, the relative difference between CMP and LRD is

(19.11277 − 14.88801)/14.88801 = 28.4%.

In Table 2, we demonstrate our experimental data for optimal computation offloading with time

constraint (i.e., the energy consumptions based on experiments of our heuristic algorithms). The

number of tasks ism = 10, 20, . . . , 70. The time constraint is T̃ = 2(m/10) s. For eachm, we generate

M = 500 lists of m random tasks. For each list of tasks, we apply 10 algorithms, i.e., Algorithm 2

with ORG, SRF, LRF, SDF, LDF, SRD, LRD, RAN20, RAN50, and CMP. The average of the M results

(i.e., the mean energy consumption measured in joules) of each algorithm is displayed in the table.

The maximum 99% C.I. of all the data in the table is ±3.63795%.

We have the following observations from Table 2.

—LRF performs better than SRF, SDF performs better than LDF, and LRD performs better than

SRD.
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—SRF, LDF, and SRD perform even worse than ORG. In other words, we would rather have

no heuristic than a poor heuristic.

—LRF is the best among SRF, LRF, SDF, LDF, SRD, and LRD.

—With extensive execution times, RAN20 and RAN50 can slightly improve the performance

as compared with LRF. RAN50 has the overall best performance among the ten algorithms.

—CMP=LRF+SDF+LRD can further slightly improve the performance as compared with LRF.

—The performance difference between the best algorithm and the worst algorithm can be

significant. For instance, when m = 70, the relative difference between RAN50 and SRD is

(34.13583 − 29.04126)/29.04126 = 17.5%.

5 EXTENSIONS

In this section, we discuss the extension of our problems and algorithms.

5.1 Combined Performance and Cost Optimization

In this section, we study combined performance and cost optimization.

There are well known combined performance and cost metrics. One is the cost–performance

ratio (or, energy-time product) defined as CPR = ET . The other is the weighted cost-performance

sumCPS = γE + (1 − γ )T for some 0 ≤ γ ≤ 1. It is already known that as E approach E∗, T ap-

proaches infinity; and as E approach infinity,T approaches max(T ∗1 ,T
∗
2 , . . . ,T

∗
n ). Hence, there must

be an optimal combination of E and T , such that CPR or CPS is minimized. This motivates us to

study the following optimization problem.

Problem 3 (Optimal Computation Offloading with CPR/CPS Minimization). Given a list

of tasks L = (t1, t2, . . . , tm ), where ti = (ri ,di ), for all 1 ≤ i ≤ m, a UE = (ξ ,α , Ps ), n MECs: MEC1,

MEC2, . . . , MECn , where MECj = (sj ,w j , βj ), for all 1 ≤ j ≤ n, find a computation offloading strategy

S = (L0,L1,L2, . . . ,Ln ), the computation speed s0, and the communication speed c j , for all 1 ≤ j ≤ n,

such that CPR or CPS is minimized.

We notice that both CPR and CPS are convex functions of E, i.e., both ∂CPR/∂E and ∂CPS/∂E
are increasing functions of E. Consequently, the minimum CPR or CPS can be found by a bisection

search of E such that ∂CPR/∂E = 0 or ∂CPS/∂E = 0. For a given E, we can find T by using Algo-

rithm 1. Since there is no analytical form of CPR or CPS, we can use the following approximations:

∂CPR

∂E
=

CPR(E + Δ) − CPR(E)

Δ

and
∂CPS

∂E
=

CPS(E + Δ) − CPS(E)

Δ
,

where both CPR and CPS are viewed as functions of E and Δ is a very small quantity.

However, Algorithm 1 only gives a heuristic solution of T , which implies that the CPR/CPS

curve produced by Algorithm 1 is not smooth. One effective way to find a heuristic solution to the

optimal CPR/CPS is to use a set of discrete values of E, e.g., E = E1 + (E2 − E1)/N , which gives N
equally separated values of E in an appropriately chosen interval [E1,E2], and to choose the E that

minimizes CPR or CPS.

5.2 Preloaded MECs

In this section, we discuss the extension of our problems and algorithms to accommodate more

realistic and complicated fog computing environments. One instance is the situation where each

mobile edge server has preloaded tasks offloaded by other mobile users.
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Assume that MECj has existing tasks offloaded by other mobile users and these tasks require

T ′j time to complete before MECj can execute tasks offloaded by the UE. We outline the changes

to our algorithms, which only involve the following minor modifications. The execution time of

all tasks in Lj is Tj = T
′
j + R j/sj + D j/c j , and the lower bound for Tj is T ∗j = T

′
j + R j/sj , and c j =

D j/(Tj −T ′j − R j/sj ), and the energy consumption of all tasks in Lj is

Ej =
2(D j /w j )/(Tj−T ′

j
−Rj /sj ) − 1

βj

(
Tj −T ′j −

R j

sj

)
,

for all 1 ≤ j ≤ n.

5.3 Multiple UEs

In this section, we discuss the extension of our problems and algorithms to computation offloading

with multiple UEs [Chen et al. 2019]. Assume that there are M UEs: UE1, UE2, . . . , UEM . We have

two different ways to study computation offloading with multiple UEs.

The first way is to consider the UEs one by one, which are arranged in the decreasing order of

priority. The M UEs, i.e., UE1, UE2, . . . , UEM , perform offloading in this order. This implies that UEb

must wait for UE1, UE2, . . . , UEb−1 to offload their tasks, and then offloads its own tasks, where

1 ≤ b ≤ M . It is clear that when UEb offloads its tasks, the MECs are already preloaded with tasks

from UE1, UE2, . . . , UEb−1. Thus, the method in the last subsection is applicable here.

The second way is to let all the UEs perform offloading simultaneously. Such a scenario causes

competition among the UEs. Therefore, a non-cooperative game can be formulated for the UEs.

One interesting aspect of such a game is that the payoff function of a UE is calculated by a heuris-

tic algorithm (i.e., the method in the last subsection) for combinatorial optimization, which does

not necessarily produce an optimal solution (i.e., the best response of a UE to the current situa-

tion). Thus, it is not clear at all whether such a non-cooperative game has a Nash equilibrium.

This is definitely an inspiring study, where the method in the last subsection plays a critical

role.

6 RELATED RESEARCH

In this section, we review related research in optimization of computation offloading. Computation

offloading in fog computing and mobile edge computing has been a very active research area in

recent years, and there exists a huge body of literature. The reader is referred to Bhattacharya and

De [2017], Khan [2015], Kumar et al. [2013], Mach and Becvar [2017], and Shiraz et al. [2015] for

recent comprehensive surveys.

Computation offloading with one single MEC has been extensively investigated by numerous

researchers. For a single UE with multiple tasks, Mao et al. investigated a green MEC system with a

single energy harvesting device and developed an effective computation offloading strategy, where

the execution cost includes both execution latency and task failure, by proposing a dynamic com-

putation offloading algorithm, which jointly decides the offloading decision, the CPU frequencies

for mobile execution, and the transmit power for computation offloading [Mao et al. 2016a]. Mao

et al. jointly optimized task offloading scheduling and transmit power allocation for an MEC sys-

tem with multiple independent tasks from a single-user [Mao et al. 2017]. Shah-Mansouri et al.

formulated a utility maximization problem for a single mobile device, which takes energy con-

sumption, delay, and price of cloud service into account, where a mobile device is characterized by

two M/G/1 queuing systems, one for the local CPU and another for the wireless interface [Shah-

Mansouri et al. 2017].
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For multiple UEs, where each has multiple tasks, Chen et al. constructed a non-cooperative game

model to find an optimal computation offloading policy for each UE to minimize a weighted sum

of energy consumption and time consumption. The method adopted is discrete and combinatorial

optimization, not continuous and stochastic optimization [Chen et al. 2020]. Mao et al. investigated

the tradeoff between two critical but conflicting objectives in multi-user MEC systems, namely, the

power consumption of mobile devices and the execution delay of computation tasks, by consider-

ing a stochastic optimization problem, for which, the CPU frequency, the transmit power, as well

as the bandwidth allocation should be determined for each device in each time slot [Mao et al.

2016b].

Computation offloading with multiple MECs has been investigated by several researchers. Tran

and Pompili studied the problem of joint task offloading and resource allocation in a multi-cell

and multi-server MEC system to maximize users’ task offloading gains, which are measured by

the reduction in task completion time and energy consumption, by considering task offloading de-

cision, uplink transmission power of mobile users, and computing resource allocation in the MEC

servers. However, although this work even considered multiple UEs, each UE has only one task

[Tran and Pompili 2017]. Li investigated a single UE with multiple (actually, infinite) tasks in a

multiple MECs environment. The performance and cost metrics are the average response time of

all tasks (offloadable and non-offloadable) generated on the UE and the average power consump-

tion of the UE for both computation and communication, as well as the cost–performance ratio,

i.e., the product of the above two metrics. The problems addressed include minimization of average

response time with average power consumption constraint, minimization of average power con-

sumption with average response time constraint, and minimization of cost–performance ratio (i.e.,

power-time product). However, these optimizations are continuous and stochastic multi-variable

optimizations based on queueing models of the UE and the MECs, not discrete and combinatorial

optimizations [Li 2019a].

A number of researchers have studied discrete and combinatorial computation offloading opti-

mization for a UE with multiple tasks in a multiple MECs fog computing environment. Kao et al.

formulated an NP-hard problem and proposed a fully polynomial time approximation scheme for

a single user with precedence constrained tasks to find a task assignment strategy on multiple

devices, such that the cost constrained latency is minimized [Kao et al. 2017]. Tan et al. devel-

oped an online job dispatching and scheduling algorithm for a single user to minimize the total

weighted response time of jobs with release times on multiple edge servers [Tan et al. 2017]. Tong

et al. considered workload placement on multiple edge servers by a single user with multiple com-

puting tasks to minimize the total computation and communication times of all tasks [Tong et al.

2016]. However, in all the above studies, the computation and communication speeds are fixed.

Furthermore, there is no power consumption model for computation and communication specifi-

cally related to fog computing.

Some researchers have discussed computation offloading from other perspectives. He et al. pro-

posed an integrated framework that can enable dynamic orchestration of deep reinforcement

learning, MEC offloading, edge caching, and computing resources virtualization to improve the

performance of applications for smart cities [He et al. 2017]. Mitsis et al. studied the joint problem

of optimal MEC server selection and data offloading by end-users, as well as optimal price settings

by MEC servers, in a multiple end-users and multiple MEC servers environment, to maximize the

profit of the MEC servers [Mitsis et al. 2019].

To the best of the author’s knowledge, the problem of discrete and combinatorial computation

offloading optimization for a UE with multiple tasks in a multiple MECs fog computing envi-

ronment with variable computation and communication speeds has rarely been formulated and

solved. This is precisely what we have conducted in this article.
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7 CONCLUDING REMARKS

7.1 Conclusions

We have developed heuristic algorithms for optimal computation offloading in fog computing.

From our analytical and experimental performance studies, we can make the following conclu-

sions. First, various heuristics do exhibit noticeably different performance. Therefore, it requires

careful investigation of heuristic algorithms to achieve optimal computation offloading in fog com-

puting. Second, there can be a single and simple heuristic (such as SRD for Problem 1 and LRF for

Problem 2) that can perform very well. It deserves more attention to find better heuristics. Third,

in real applications, the method of compound algorithm can be applied to obtain slightly improved

performance. Fourth, if more time is allowed, a compound algorithm can also be augmented with

RANk for appropriate k with possibly enhanced performance.

7.2 Further Research

There are several further research directions.

First, as in traditional research for heuristic algorithms, the performance of a heuristic algorithm

should be compared with that of an optimal algorithm. Such a study requires the knowledge and

understanding of an optimal solution. We have conducted some preliminary investigation and

reported our findings in Appendix C of the article. However, much more efforts are necessary to

make substantial progress in this direction.

Second, the tasks in this article are assumed to be independent of each other. Typically, a mobile

application can be decomposed into numerous tasks with precedence constraints that can be arbi-

trarily complicated. Optimal computation offloading for precedence constrained tasks with energy

or time constraint is certainly more interesting and important for real mobile applications. How-

ever, it is conceivable that such investigation is much more challenging and requires new insight.

Third, our ability to deal with MECs with existing tasks offloaded by other UEs motivates us to

consider multiple competitive, selfish, and non-cooperative UEs. In such a fog computing environ-

ment, each UE attempts to optimize its own objective function (i.e., a performance metric, a cost

metric, or a combined performance-cost metric) while other UEs are also doing so. This inspires

a game theoretic approach [Chen et al. 2020, Hu et al. 2020, Li 2018, Li 2019b, Liu et al. 2019a, Liu

et al. 2019b]. However, since the strategy set of a UE is discrete, and each UE only finds a heuristic

solution and is unable to find an optimal solution (i.e., its best response to the current situation), it

is unclear whether such a non-cooperative game will converge to a stable situation. Furthermore,

the MECs can also join the game to optimize their objective functions. All these issues deserve

careful formulation and investigation.

APPENDICES

A NOTATIONS AND DEFINITIONS

We give a summary of notations and their definitions used in the article.

Notation Definition

m the number of tasks

n the number of MECs

L a list of independent tasks

L0 a sublist of tasks not offloaded and executed on the UE

(Continued)
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Notation Definition

Lj a sublist of tasks offloaded to and executed on MEC j

S = (L0,L1,L2, . . . ,Ln ), a computation offloading strategy

ti a task

ri the execution requirement of task ti
di the amount of data to be communicated between the UE and an MEC for task ti
s0 the computation speed of the UE

s∗0 a lower bound for the computation speed s0

sj the computation speed of MEC j

c j the communication speed from the UE to MEC j

R0 the total execution requirement of tasks executed on the UE

R j the total execution requirement of tasks offloaded to MEC j

R = R0 + R1 + R2 + · · · + Rn

D j the total amount of data of tasks offloaded to MEC j

D = D1 + D2 + · · · + Dn

T0 the execution time of all tasks in L0

T ∗0 an upper bound for the execution time T0 on the UE

Tj the execution time of all tasks in Lj

T ∗j a lower bound for the execution time Tj on MEC j

T the execution time of all tasks in L

T̃ a time constraint

E0 the energy consumption of computation of all tasks in L0

E∗0 a lower bound for the energy consumption of computation E0

Ej the energy consumption of communication of all tasks in Lj

E∗j a lower bound for the energy consumption of communication Ej

E the energy consumption of all tasks in L

Ẽ an energy constraint

Pd = ξsα
0 , the dynamic component of power consumption of a UE for computation

Ps the static component of power consumption of a UE for computation

P = Pd + Ps , power consumption of a UE for computation

Pt, j = (2c j /w j − 1)/βj , the transmission power of the UE to MEC j

w j the channel bandwidth

βj a combined quantity that summarizes various factors

C = (R0,R1,R2, . . . ,Rn ,D1,D2, . . . ,Dn ), a configuration

B PROOFS OF THE THEOREMS

In this appendix, we prove Theorems 2.1–2.2 (the NP-hardness of our combinatorial optimization

problems), as well as Theorems 3.1–3.3.

Proof of Theorem 2.1. We make a reduction from the well-known partition problem, which is

defined as follows. Given a set of integers X = {x1,x2, . . . ,xm }, decide whether there is a partition

of X into two disjoint subsets X1 and X2 such that
∑

xi ∈X1
xi =

∑
xi ∈X2

xi = R/2, where R = x1 +

x2 + · · · + xm . It is already known that the partition problem is NP-hard [Garey and Johnson 1979].

Given an instanceX = {x1,x2, . . . ,xm } of the partition problem, we construct an instance of the

problem of optimal computation offloading with energy constraint as follows. There is one UE

and one MEC. The UE has parameters α = 2, Ps = 0, and an appropriately chosen ξ . The MEC1
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Fig. 4. T vs. R1 in the proof of Theorem 2.1 (R = 5, Ẽ = 10, and ξ = 5).

has parameters s1 = w1 = β1 = 1. The list of tasks L = (t1, t2, . . . , tm ) contains ti = (ri ,di ), where

ri = xi and di = 2xi , for all 1 ≤ i ≤ m. The energy constraint is Ẽ = 2R.

From Section 3.2.1, we know that the optimal solution must satisfy Equations (1)–(3). Since

T ∗0 = ∞, we must go to Case 3 in Section 3.2.1. Equation (3) becomes

ξ
Rα

0

T α−1
+

2(D1/w1 )/(T−R1/s1 ) − 1

β1

(
T − R1

s1

)
= Ẽ

and can be simplified as

ξ
Rα

0

T α−1
+ (4R1/(T−R1 ) − 1) (T − R1) = Ẽ,

where we notice thatD1 = 2R1 and s1 = w1 = β1 = 1. Since R1 + R2 = R and Ẽ = 2R, we can rewrite

the last equation as

ξ
(R − R1)2

T
+ (4R1/(T−R1 ) − 1) (T − R1) = 2R.

The above equation implies thatT (R1) can be considered as a function of R1. The optimal solution

essentially is to find R1 such that T (R1) is minimized. We can verify that there is a ξ such that

T (R1) is minimized when R0 = R1 = R/2. (See Figure 4 for an illustration of T (R1), where R = 5,

Ẽ = 10, and ξ = 5.) Furthermore, such a ξ can be easily obtained by a simple numerical procedure.

From the above discussion, we can conclude thatX has a partition if and only if the minimizedT
is exactly T (R/2). If there is a polynomial time algorithm for the problem of optimal computation

offloading with energy constraint, then we can run the algorithm and check the resultT . We claim

that there is a partition of X if and only if T = T (R/2). This means that we can also solve the

partition problem in polynomial time. This completes the proof. �

Proof of Theorem 2.2. Again, we make a reduction from the partition problem. Given an in-

stance of the partition problem, an instance of the problem of optimal computation offloading

with time constraint is constructed in the same way as that in the proof of Theorem 2.1. The time

constraint is T̃ = 2R.
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Fig. 5. E vs. R1 in the proof of Theorem 2.2 (R = 5, T̃ = 10, and ξ = 4.8).

From Section 3.2.2, we know that the optimal solution must satisfy Equation (4), which becomes

E = ξ
R2

0

T̃
+ (4R1/(T̃−R1 ) − 1) (T̃ − R1)

= ξ
(R − R1)2

2R
+ (4R1/(2R−R1 ) − 1) (2R − R1).

The above equation implies that E (R1) can be considered as a function of R1. The optimal solution

essentially is to find R1 such that E (R1) is minimized. We can verify that there is a ξ such that E (R1)
is minimized when R0 = R1 = R/2. (See Figure 5 for an illustration of E (R1), where R = 5, Ẽ = 10,

and ξ = 4.8.) Furthermore, such a ξ can be easily obtained by a simple numerical procedure. The

theorem is proven. �

Proof of Theorem 3.1. Recall that E0 = (ξsα−1
0 + Ps/s0)R0. We observe that

∂E0

∂s0
= R0

(
ξ (α − 1)sα−2

0 − Ps

s2
0

)
.

Hence, when ∂E0/∂s0 = 0, that is, ξ (α − 1)sα−2
0 = Ps/s

2
0 , which implies that when

s0 = s
∗
0 =

(
Ps

ξ (α − 1)

)1/α

,

E0 has its minimum value of

E∗0 = R0

(
ξ (s∗0 )α−1 +

Ps

s∗0

)
,

which is actually

E∗0 = R0P
1−1/α
s ξ 1/α α

(α − 1)1−1/α
.

It is clear that when 0 < s0 ≤ s∗0 , we have ∞ > E0 ≥ E∗0 and E0 is a decreasing function of s0; and

when s0 ≥ s∗0 , we have E0 ≥ E∗0 and E0 is an increasing function of s0. Therefore, for any s0 ∈ (0, s∗0],

there is s0 ∈ [s∗0 ,∞), such that E0 has the same value. This means that a slower speed in (0, s∗0] can

be replaced by a faster speed in [s∗0 ,∞) that leads to reduced execution time T0 without any extra

energy consumption. Thus, we should have s0 ≥ s∗0 and E0 ≥ E∗0 and T0 ≤ T ∗0 = R0/s
∗
0 . �
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Proof of Theorem 3.2. Recall that Ej = ((2c j /w j − 1)/βjc j )D j . Let us examine the function y =
(2c j /w j − 1)/c j , which is actually

y =
ln 2

w j
· e

(ln 2)(c j /w j ) − 1

(ln 2) (c j/w j )
=

ln 2

w j
· e

x − 1

x
,

where x = (ln 2) (c j/w j ). Since ex =
∑∞

k=0 x
k/k!, we have

y =
ln 2

w j

∞∑
k=1

xk−1

k!
.

Therefore, y is an increasing function of x , and when x = 0, we get y = ln 2/w j . The above discus-

sion implies that Ej is an increasing function of c j , and when c j approaches 0, Ej approaches

E∗j =

(
ln 2

w jβj

)
D j .

The claim for Tj is obvious. �

Proof of Theorem 3.3. The claim is obvious for j = 0. For 1 ≤ j ≤ n, let us consider the func-

tion f (x ) = (b1/x − 1)x , where b = 2D j /w j and x = T − R j/sj and x ∈ (0,∞). We observe that

limx→0 (b1/x − 1)x = limx→0 (b1/x − 1)/(1/x ) = limy→∞ (by − 1)/y = ∞, and limx→∞ (b1/x − 1)x =

limx→∞ (b1/x − 1)/(1/x ) = limy→0 (by − 1)/y = limy→0 b
y lnb = lnb. Furthermore, let us examine

f ′(x ) = b1/x (1 − lnb/x ) − 1. Notice that f ′′(x ) = b1/x (lnb)2/x3 > 0. Hence, f ′(x ) is an increas-

ing function of x . Since limx→∞ f ′(x ) = 0, we know that f ′(x ) < 0, which implies that f (x ) is a

decreasing function of x ∈ (0,∞). If a task is added into Lj ,then R j is increased by ri , i.e., x is re-

duced by ri/sj , thus, E (Lj ) is increased. Actually, we notice that b is also increased, because D j is

increased by di . �

C LOWER BOUNDS

In this appendix, we study lower bounds for optimal solutions of our optimization problems.

C.1 The Methodology

Let R =
∑

ti ∈L ri , and D =
∑

ti ∈L di . We callC = (R0,R1,R2, . . . ,Rn ,D1,D2, . . . ,Dn ) a configuration,

if Ri ≥ 0 for all 0 ≤ i ≤ n, Di ≥ 0 for all 1 ≤ i ≤ n, R0 + R1 + R2 + · · · + Rn = R and D1 + D2 + · · · +
Dn ≤ qD, where 0 ≤ q ≤ 1. Notice that a configuration is not the same as the result of a computa-

tion offloading strategy, but includes the latter as a special case. While a computation offloading

strategy is a partition of a list of tasks, where Ri and Di are related and correlated, a configuration

is purely mathematical abstraction with little physical meaning, where Ri and Di are unrelated

and independent.

The parameterq is introduced to indicate the percentage of data actually communicated between

the UE and the MECs. The value ofq in an optimal solution is certainly unknown. To derive a lower

bound, the choice ofq is a subtle issue. Ifq is too large, then a too-high lower bound will be derived,

which may be even greater than the result of a heuristic algorithm and becomes meaningless. Ifq is

too small, then a too-low lower bound will be derived, which makes the performance judgment of

a heuristic algorithm less informative and meaningful. However, if the result of a heuristic algorithm

is indeed close to the lower bound derived for a small q, it does indicate that the algorithm performs

very well and the lower bound is very tight.

We view T obtained by solving Equations (1)–(3) as a function of R0,R1,R2, . . . ,
Rn ,D1,D2, . . . ,Dn . We are interested in the minimum value T ∗ of T for all configurations. Such

a minimum value can be treated as a lower bound for the optimal solution of the problem of
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optimal computation offloading with energy constraint. Similarly, we view E obtained by using

Equation (4) as a function of R0,R1,R2, . . . ,Rn ,D1,D2, . . . ,Dn . We are interested in the minimum

value E∗ of E for all configurations. Such a minimum value can be treated as a lower bound for

the optimal solution of the problem of optimal computation offloading with time constraint. As

we will see below, the optimal configurations that yield the minimum values are unlikely to be

realized by real computation offloading strategies. Therefore, our lowers bounds are indeed less

than the optimal solutions of our optimization problems.

It is noticed that T is only implicitly given by Equations (1)–(3). The explicit expression of

T as a function of R0,R1,R2, . . . ,Rn ,D1,D2, . . . ,Dn is not available due to the sophistication of

Equations (1)–(3). However, Equation (2) provides an explicit expression of E as a function of

R0,R1,R2, . . . ,Rn ,D1,D2, . . . ,Dn . Thus, we will first find a lower bound for optimal computation

offloading with time constraint.

We mention that for a given Ẽ, we obtainT by solving Equations (1)–(3) based on certain config-

urationC , if and only if for a given T̃ = T , the E obtained by using Equation (4) based on the same

configuration C is exactly Ẽ. Therefore, C∗ is an optimal configuration that yields the minimum

T ∗ for a given Ẽ, if and only if C∗ is an optimal configuration that yields the minimum E∗ = Ẽ for

a given T̃ = T ∗. Thus, a lower bound for optimal computation offloading with energy constraint

can be obtained based on a lower bound for optimal computation offloading with time constraint.

C.2 A Lower Bound for Optimal Computation Offloading with Time Constraint

For a time constraint T̃ , a lower bound E∗ for the optimal solution of the problem of optimal

computation offloading with time constraint can be derived and calculated as follows.

Let us consider E obtained by using Equation (4). For given R0,R1,R2, . . . ,Rn , we can minimize E
subject to the constraint F = D1 + D2 + · · · + Dn = qD by using the following Lagrange multiplier

system ∇E = ϕ∇F , where ϕ is a Lagrange multiplier (see [Stewart 1991], Section 12.8). Notice that

∂E

∂D j
= 2(D j /w j )/(T̃−Rj /sj )

(
ln 2

w jβj

)
=
∂F

∂D j
= ϕ,

for all 1 ≤ j ≤ n. Consequently, we have

2(D j /w j )/(T̃−Rj /sj ) = (log2 e )w jβjϕ,

for all 1 ≤ j ≤ n, and

D j = w j (T̃ − R j/sj ) log2 ((log2 e )w jβjϕ),

for all 1 ≤ j ≤ n. The value of the Lagrange multiplierϕ can be obtained by following the constraint

D1 + D2 + · · · + Dn = qD, i.e., by solving the following equation:

n∑
j=1

w j (T̃ − R j/sj ) log2 ((log2 e )w jβjϕ) = qD,

which gives rise to the value of the Lagrange multiplier:

ϕ = exp

(
(ln 2) ×

qD −∑n
j=1w j (T̃ − R j/sj ) log2 ((log2 e )w jβj )∑n

j=1w j (T̃ − R j/sj )

)
.

Based on the above derivation, Equation (4) becomes

E = E0 +

n∑
j=1

(log2 e )w jβjϕ − 1

βj

(
T̃ −

R j

sj

)
.
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The optimal configuration C∗ can be constructed by further finding R0,R1,R2, . . . ,Rn . To this

end, we set R0 = R − (R1 + R2 + · · · + Rn ), and view E as a function of R1,R2, . . . ,Rn . Notice that

∂E

∂R j
= −∂E0

∂R0
+

( n∑
k=1

(log2 e )wk

(
T̃ − Rk

sk

))
∂ϕ

∂R j
−

(log2 e )w jβjϕ − 1

sjβj
,

where

∂E0

∂R0
=

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

P1−1/α
s ξ 1/α α

(α−1)1−1/α , if T̃ > T ∗0 ,

ξα (R0/T̃ )α−1, if T̃ ≤ T ∗0 ,
and

∂ϕ

∂R j
= ϕ (ln 2)

(
log2 ((log2 e )w jβj )∑n
k=1

wk (T̃ − Rk/sk )

+
(D −∑n

k=1
wk (T̃ − Rk/sk ) log2 ((log2 e )wkβk ))

(
∑n

k=1
wk (T̃ − Rk/sk ))2

)
(w j/sj ),

for all 1 ≤ j ≤ n. We need to solve the system of n nonlinear equations, i.e., ∂E/∂R j = 0, for all

1 ≤ j ≤ n.

We mention that a configuration cannot guarantee T̃ = R j/sj + D j/c j for all 1 ≤ j ≤ n anymore,

since R j and D j are independent variables in a configuration. To see this, we notice that

T̃ − R j/sj − D j/c j = (T̃ − R j/sj ) (1 − (w j/c j ) log2 ((log2 e )w jβjϕ)),

which cannot be zero for all 1 ≤ j ≤ n simultaneously due to the heterogeneity of the MECs.

Unfortunately, there has been no effective way to solve the system of nonlinear equations. In

the following, we show our solutions for the cases of small values of n.

When n = 1, E can be viewed as a function of R1, and we only need to solve one equation, i.e.,

∂E/∂R1 = 0. It is observed that ∂E/∂R1 is an increasing function of R1. Therefore, R1 can be found

by using the bisection search method (see [Burden et al. 1981], p. 22).

When n = 2, E can be treated as a function of R2 for a fixed value of R1, and we only need to

solve one equation, i.e., ∂E/∂R2 = 0. It is observed that ∂E/∂R2 is an increasing function of R2.

Therefore, R2 can be found by using the bisection search method. The obtained E∗ becomes a

function of R1. It is observed that E∗ is a decreasing function of R1, i.e., E∗ is minimized when R1

reaches its maximum value, i.e., s1T̃ .

We consider a fog computing environment with n MECs. The parameters of MECj are set as

follows: sj = 3.1 − 0.1j BI/s, w j = 2.9 + 0.1j MB/s, βj = 2.1 − 0.1j W−1, for all 1 ≤ j ≤ n. The pa-

rameters of the UE are set as follows: ξ = 0.1, α = 2.0, Ps = 0.05 W.

Tasks are randomly generated with the ri ’s identically and independently and uniformly dis-

tributed in the range [1.5, 5.0] and thedi ’s identically and independently and uniformly distributed

in the range [1.0, 3.0].

In Table 3, we demonstrate the experimental data of our lower bounds for optimal computation

offloading with time constraint when n = 1. The number of tasks is m = 40. The time constraint

is T̃ = 8, 9, . . . , 16 s. The quantity q is 0.05, 0.10, . . . , 0.45. For each combination of T̃ and q, we

generate M = 500 lists ofm random tasks. For each list of tasks, we calculate our lower bound E∗.
The average of the M results is displayed in the table. Similarly, for each T̃ , we generate M = 500

lists ofm random tasks. For each list of tasks, we apply the CMP algorithm and get E. The average of

the M results is displayed in the table. It is observed that the performance of the CMP algorithm is

comparable to the lower bounds with very small values ofq, where, as T̃ increases,q also increases.

In particular, we define b such that the performance of CMP is the same as the lower bound with
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Table 3. Lower Bounds for Optimal Computation Offloading

with Time Constraint (n = 1, 99% C.I. = ±1.64679%)

T̃ q = 0.05 q = 0.10 q = 0.15 q = 0.20 q = 0.25 q = 0.30 q = 0.35 q = 0.40 q = 0.45 CMP b

8 145.52579 151.52319 155.42134 160.95112 167.10498 171.43853 177.40419 181.79885 188.34128 149.44965 1

9 123.55554 126.93687 131.91441 137.95578 141.42155 146.76646 151.03347 155.89175 161.45017 130.08455 2

10 106.45420 110.05153 114.07977 117.90454 122.23349 125.64930 130.83626 136.30816 140.88564 111.92042 2

11 90.80293 93.35994 98.54679 101.49661 106.64304 110.84929 114.21117 119.58642 122.33763 97.06720 2

12 77.71087 81.80598 85.40495 90.06275 93.06561 96.76570 100.24499 105.30091 108.69817 86.39045 3

13 68.18710 71.88009 75.52024 78.87049 81.86158 85.03967 88.37204 92.65701 96.18232 75.52122 3

14 59.46399 62.13054 66.16169 69.82307 72.65366 75.90666 80.20100 83.05271 86.35364 67.88190 3

15 52.03048 55.89789 58.62922 61.63167 65.12988 68.10901 71.24860 74.43303 77.33099 60.82631 3

16 46.26209 49.37218 51.41186 55.38928 57.86936 60.81339 63.71665 67.33488 69.88226 54.80236 3

Table 4. Lower Bounds for Optimal Computation Offloading

with Time Constraint (n = 2, 99% C.I. = ±3.19241%)

T̃ q = 0.05 q = 0.10 q = 0.15 q = 0.20 q = 0.25 q = 0.30 q = 0.35 q = 0.40 q = 0.45 CMP b

8 90.58464 95.74594 98.98752 103.09674 107.77021 111.77576 116.95331 121.33794 125.64499 104.25869 4

9 71.37851 73.75859 77.73448 82.48218 85.77651 89.30923 93.20375 96.69599 101.38719 84.45041 4

10 54.87362 57.67592 61.61356 64.57871 67.68651 71.87221 75.03341 79.18281 82.80515 70.71648 5

11 42.75607 45.97774 47.63939 52.24614 55.66319 58.12980 61.74303 64.69828 67.66079 58.17081 6

12 33.09607 35.72131 38.56915 41.36372 44.40963 46.78481 50.49861 53.12370 56.29609 49.02967 6

13 25.33289 28.32520 30.88043 32.96644 35.84287 38.23536 40.93119 44.21202 46.63726 41.71824 7

14 19.29503 21.79391 23.66018 26.43324 28.35395 31.37634 33.98209 36.40563 38.57706 36.03908 7

15 14.69090 16.70726 19.09004 20.97048 23.17803 25.32328 27.49322 30.24063 32.29381 30.90099 8

16 10.99724 12.98656 14.80123 16.71574 18.67677 20.93285 22.92336 25.27288 27.18393 27.09962 8

q in the range 0.05b ≤ q ≤ 0.05(b + 1). The value of b is given in the last column, which increases

as T̃ increases.

In Table 4, we demonstrate the experimental data of our lower bounds for optimal computation

offloading with time constraint when n = 2. The method to generate the table is the same as that

of Table 3. It is observed that the performance of the CMP algorithm is comparable to the lower

bounds with small values of q (but greater than those in Table 3 due to more MECs), where, as T̃
increases, q and the value of b also increase.

C.3 A Lower Bound for Optimal Computation Offloading with Energy Constraint

For an energy constraint Ẽ, a lower bound T ∗ for the optimal solution of the problem of optimal

computation offloading with energy constraint can be found by using the method of bisection

search to confirm that ifT ∗ is used as the time constraint, our lower bound for the optimal solution

of the problem of optimal computation offloading with time constraint is exactly Ẽ.

In Table 5, we demonstrate the experimental data of our lower bounds for optimal computation

offloading with energy constraint when n = 1. The number of tasks is m = 40. The energy con-

straint is Ẽ = 50, 60, . . . , 130 joules. The quantity q is 0.05, 0.10, . . . , 0.45. For each combination of Ẽ
and q, we generate M = 500 lists ofm random tasks. For each list of tasks, we calculate our lower

boundT ∗. The average of the M results is displayed in the table. Similarly, for each Ẽ, we generate

M = 500 lists of m random tasks. For each list of tasks, we apply the CMP algorithm and get T .
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Table 5. Lower Bounds for Optimal Computation Offloading

with Energy Constraint (n = 1, 99% C.I. = ±0.98195%)

Ẽ q = 0.05 q = 0.10 q = 0.15 q = 0.20 q = 0.25 q = 0.30 q = 0.35 q = 0.40 q = 0.45 CMP b

50 15.30185 15.76038 16.23488 16.84966 17.29639 17.86549 18.34371 18.76430 19.19268 17.46413 5

60 14.00123 14.33234 14.79941 15.19583 15.69542 16.03016 16.52053 17.11100 17.48847 15.58633 4

70 12.80214 13.15080 13.49829 13.95070 14.26403 14.75539 15.23653 15.55727 15.97834 14.04732 4

80 11.75371 12.16799 12.40688 12.85926 13.14659 13.58951 13.92011 14.25599 14.62252 12.86053 4

90 11.03394 11.31062 11.56169 11.89597 12.21658 12.55360 12.94498 13.25784 13.63127 11.88331 3

100 10.30619 10.63821 10.91789 11.12242 11.44412 11.73880 12.13677 12.32375 12.64234 11.03745 3

110 9.69389 10.00738 10.18863 10.47962 10.70855 10.98843 11.23092 11.60774 11.82213 10.24197 3

120 9.19425 9.37420 9.62380 9.88064 10.12637 10.37825 10.65144 10.90706 11.15359 9.65175 3

130 8.70035 8.89208 9.10807 9.36446 9.61237 9.80730 10.10806 10.27116 10.54391 9.07937 2

Table 6. Lower Bounds for Optimal Computation Offloading

with Energy Constraint (n = 2, 99% C.I. = ±0.93690%)

Ẽ q = 0.05 q = 0.10 q = 0.15 q = 0.20 q = 0.25 q = 0.30 q = 0.35 q = 0.40 q = 0.45 CMP b

50 10.33819 10.54731 10.89166 11.17555 11.39483 11.71933 12.02430 12.35041 12.59970 12.28589 7

60 9.59342 9.83856 10.07518 10.33640 10.54692 10.81536 11.09155 11.35359 11.61847 11.12928 7

70 8.94459 9.19017 9.47652 9.65403 9.87615 10.12073 10.34450 10.60839 10.81118 10.32955 6

80 8.48208 8.67962 8.87195 9.08102 9.30869 9.46003 9.71667 9.89914 10.13034 9.60803 6

90 8.01272 8.16409 8.39357 8.54372 8.70904 8.95609 9.15158 9.33475 9.54361 9.00339 6

100 7.58213 7.77903 7.96771 8.12230 8.30931 8.49086 8.66760 8.85215 9.06737 8.49545 6

110 7.24422 7.44066 7.56864 7.67937 7.88991 8.11228 8.26050 8.41458 8.61303 7.95818 5

120 6.94035 7.05045 7.24664 7.36376 7.54587 7.67880 7.89232 8.01244 8.14661 7.61467 5

130 6.65395 6.75910 6.92048 7.06863 7.23066 7.35410 7.50668 7.67013 7.84286 7.24203 5

The average of the M results is displayed in the table. It is observed that the performance of the

CMP algorithm is comparable to the lower bounds with small values of q, where, as Ẽ increases, q
and the value of b (which is defined in the same way as that in Tables 3 and 4) decrease.

In Table 6, we demonstrate the experimental data of our lower bounds for optimal computation

offloading with energy constraint when n = 2. The method to generate the table is the same as that

of Table 5. It is observed that the performance of the CMP algorithm is comparable to the lower

bounds with small values of q (but greater than those in Table 5 due to more MECs), where, as Ẽ
increases, q and the value of b decrease.

C.4 Conclusions

We can make the following conclusions from our analytical derivation and experimental data in

this section. First, our lower bounds are very effective to be used in evaluating the performance

of heuristic algorithms. Second, our heuristic algorithms have truly remarkable performance with

results very close to the lower bounds.

More efforts are required to solve the system of nonlinear equations for n ≥ 3 and ultimately

confirm the effectiveness of our methodology.
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