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a b s t r a c t

To attract more customers, a cloud provider tends to give some discounts to a customer if he/she
rents a plenty of resources. Under this situation, a group of customers who need homogeneous cloud
instances with various deadlines are prone to purchasing resources in a collaborative manner, i.e.,
using a coalition game, to reduce purchase costs. It is essential to design a mechanism that enables
all customers to voluntarily and happily collaborate while ensuring that each customer pays at the
lowest cost possible. To address this issue, we propose a mechanism to show collaborative interactions
between customers and determine the number of service programs purchased from each provider to
charge each cloud customer a minimum cost. We establish a coalition game based on multi-customer
resource procurement and prove that there exists a unique optimal solution in the coalition game,
while satisfying individual stability and group stability. In addition, the optimal solution is a solution
in which the selected service program of each coalition optimizes the cost per customer and maximizes
resource utilization. We propose a heuristic Deadline-constrained Resource Coalition Allocation (DRCA)
algorithm to calculate the near-optimal solution. A backtracking algorithm is proposed to calculate
the pseudo maximum resource utilization of the provided programs by improving the rectangular
packing. Extensive experiments are performed to verify the feasibility and effectiveness of the proposed
algorithm.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Motivation

Benefiting from excellent computing power and elastic re-
ource allocation, cloud computing is widely applied in a variety
f applications, such as Amazon EC2, Microsoft Azure and Google
ppEngine [6]. It offers an attractive paradigm of dynamic pro-
isioning computing services in a pay-as-you-go manner [33].
n the real world, providers offer cloud service/computing re-
ources to customers at various prices, depending on the amount
f resources customers need and the length of the rental ser-
ice. In general, the longer the cloud service time or the more
loud instances the customer rents, the lower the rental price
er unit. Faced with a variety of service programs offered by
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providers at various prices, it is important to configure appro-
priate resource procurement strategies for multiple customers to
minimize overall purchasing costs.

In cloud scenario, cloud customers submit the computing re-
source requests to the cloud providers, and cloud providers make
resource allocation according to the resource requirements of
multiple cloud customers. According to customers’ different types
of task requirements, it is normal for each customer to have
an expected completion time, i.e., deadline constrain. Many cus-
tomers only need to rent resource services within a certain dead-
line, which is not less than the resource lease time. We can
find that many researchers studied the issues related to cloud
customers with different deadline constrains [11,15,26]. Besides,
each customer wants to reduce costs while his requirements
are met. Many customers reduce their costs through purchasing
cloud resources provided by the brokers [5,22,40], comparing
the prices of cloud resources provided by multiple providers, or
purchasing cloud resources in combination [39].

Therefore, suppose a customer wants to rent a relatively short-
term cloud service or a small amount of cloud instances before
a specified deadline. In this scenario, if he rents cloud instances
as an individual, the rental cost is high, and the customer is not
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omparison of cloud-computing-resource purchase models.
Model Object Deadline Incentive Method

ACR−MSC [31] MP No No CF
CCF [37] MC No No CF
C-DSIC,C-BIC,C-OPT [25] SCU No Yes auction
NPBA [17] MC No No NC
IEDA [36] MP No Yes auction
DRCA (our work) MC Yes Yes CF

MP: multi-provider, MC: multi-customer, SCU: single customer, CF: coalition
formation, NC: non-cooperative.

entitled to preferential treatment. The customer also wants to
pay a lower price as long as available service programs meet
his demands. As a solution, several customers can purchase a
low-cost service program in a cooperative way to reduce their
individual costs. It is essential for each customer to choose the
most appropriate customers to collaborate with and purchase
service programs from appropriate providers to minimize the cost
per customer.

In cloud computing, various mechanisms were have been pro-
osed to optimize the cost or benefit of providers [12,18,31,32,
6]. However, far fewer studies focus on the cost or benefits of
he customers [17,25]. Our work focuses on optimizing cost for
ustomers using a coalition game. In Table 1, the comparison of
he related cloud computing resource purchase models with some
roperties intuitively shows our motivation.

.2. Our contributions

In this paper, we focus on a multi-customer cooperative mech-
nism for leasing cloud resources and design a platform for cus-
omers to submit their resource purchase demands, including
uantity, rental time, and deadline. Based on the information pro-
ided by the platform, customers can determine the number of
ervice programs purchased from each provider and achieve the
owest cost. After formulating the proposed issue as a knapsack
acking problem, we propose an incentive backtracking algo-
ithm to show the cooperation configuration. Experiments are
onducted to show the cost difference between the states of a sin-
le resource purchase and collaboration. Our main contributions
re as follows.

• We propose a cooperation between cloud customers on
resource demands with different deadline constraints, and
design an incentive cooperation platform.
• We add a deadline constraint on the basis of the 2D rectan-

gular packing problem [10] and propose a heuristic
Deadline-constrained Resource Coalition Allocation (DRCA)
algorithm to calculate the near-optimal solution. The farther
the customer’s deadline, the higher the customer’s priority
and the lower the price.
• A backtracking algorithm based on the knapsack packing

problem is proposed to configure the customer cooperation
strategy, determine the number of service programs pur-
chased from each provider, and calculate the resource price
and the execution order of each customer to minimize the
cost of all cloud customers.
• Experiments are performed to evaluate the proposed al-

gorithm in terms of cost analysis of customers, deadline
analysis, and effectiveness evaluation.

The remainder of the paper is organized as follows: In
ection 2, we introduce the related work. Section 3 describes the
ystem model and the coalition formation game. In Section 4, we
rove the existence of the optimal solution of the coalition game.
n Section 5, a heuristic DRCA algorithm is proposed to calculate
2

the near-optimal solution. In Section 6, extensive experimental
results indicate the feasibility and effectiveness of our algorithm.
We conclude the works of this paper in Section 7.

2. Related work

Cloud computing technology has been rapidly developed and
widely used owing to its flexible resources and on-demand
payment models, and has attracted academic and industrial at-
tention. We present a review of the related work on cloud-
computing resource procurement, coalition games, and 2D
rectangle packing.

Resource procurement has been extensively studied in vari-
ous areas, such as edge computing [23], smart grids [27], and
cloud computing [4,13,16,25,31,37]. In [25], Prasad et al. proposed
mechanisms to help customers choose the appropriate providers
and purchase resources at reasonable prices. In [4], Baranwal
et al. proposed a multi-attribute combinatorial reverse auction for
cloud resource procurement, which considers both price and non-
price attributes. There are abundant studies on cloud computing
resource procurement based on customer groups [31,37]. In [31],
economic encounters between consumers and cloud providers
are modeled as a many-to-many negotiation. In addition, Sim
et al. devised a novel interaction protocol and a novel negotiation
strategy. In [37], Wang et al. designed an implementation scheme
to support group-buying on the cloud market with the method
of coalition formation game. Besides, numerous studies focused
on the behavior of providers in the face of multi-customer re-
source procurement [7,29,36]. However, previous efforts did not
consider multi-customer resource requirements under deadline
constraints. Our work highlights the cooperative resource pro-
curement among customers under deadline constraints to charge
the lowest cost for each customer.

Game theory is an important mathematical method for study-
ing conflicts and cooperation between intelligent rational
decision-makers [2,19,28,30]. Coalition games play an increas-
ingly important role in computer science [20,21,24,34,35]. In [35],
Tram et al. offered an optimal price policy for each provider
to maximize final revenue from the perspective of competition
and cooperation among providers. [20] proposed a game the-
ory framework (termed Cooper) for task collocation, in which
preserving performance was presented to find user collocation
preferences and determine stable matches among them. In [21],
Marinescu et al. formed dynamic rack-level coalitions of servers
and created a package of these coalitions to address resource
management issues for big data applications. In [24], Pillai pro-
posed a resource allocation mechanism to minimize wastage
and configure services before actual requests. In our work, we
heuristically formulate a coalition mechanism based on estab-
lished coalition rules to minimize the cost of each customer who
purchases resources with his deadline constraints.

The 2D rectangle packing problem is a subset of the classical
packing problem. Numerous algorithms, especially heuristic algo-
rithms, have been proposed in previous years [1,3,8]. In [3], Baker
et al. proposed the Bottom-Left (BL) heuristic algorithm that was
improved to create a Bottom-Left-Fill (BLF) algorithm [8]. In [1],
the Greedy Randomized Adaptive Search Procedure (GRASP) algo-
rithm was proposed for the constrained 2D nonguillotine cutting
problem to maximize the value of the cutting pieces. Huang
et al. proposed a heuristic algorithm based on two important
concepts: corner-occupying action and caving degree [10]. More
algorithms for 2D rectangular packing can be found in [14,38].
Heuristically, we approximately view the coalition system, where
a coalition purchases a service resource program is seen as a 2D
rectangular packing problem, and the optimal goal is to maximize
the resource utilization of the program. The difference between
our work and the existing works is that each customer needs to
consider his position constraint, i.e., deadline.
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onfiguration of an ECS instance of Alibaba Cloud [9].
District I/O CPU Memory System disk

NC1 ecs.g5.2xlarge 8cores 32G ultrahigh.io200GB

Table 3
Resource service programs of the ECS instance.
SPj,k Mj,k Tj,k (day) Pricej,k Real unit price

SP0
j,k 1 1 87.312 87.312

SP1
j,k 1 30 1039 34.633

SP2
j,k 3 90 8433 31.233

SP3
j,k 5 180 26580 29.533
· · · · · · · · · · · · · · ·

3. System model and coalition formation game

3.1. Cloud instance providers

A set of cloud service providers is denoted as N = {1, 2,
. . . ,N} and indexed by j. Provider j supports Kj resource types
which is indexed by k. The kth type of service resources provided
by the provider j is represented as SPj,k. There are Hj,k service
programs of resource SPj,k. The sth service program is denoted
as SP s

j,k = (Ms
j,k, T

s
j,k, P

s
j,k) (s ∈ {1, 2, . . . ,Hj,k}), where Ms

j,k, T
s
j,k, P

s
j,k

are the number of resources SPj,k, the available service time, and
the price of the service program, respectively. Additionally, we
suppose SP0

j,k = (1, 1, P0
j,k) as a standard service program with a

standard price P0
j,k. For example, the configuration of an Elastic

Compute Service (ECS) instance of Alibaba Cloud [9] and the
corresponding service resource programs are shown in Tables 2
and 3, respectively. The unit prices of SP1

j,k and SP2
j,k are 37.544

and 31.233, respectively, while the on demand standard service
price is 87.312. As the number of cloud instances or service time
increases, the price concession for service programs increases.

3.2. Cloud customers

A set of cloud service customers is denoted as M = {1, 2, . . . ,
M} and indexed by i. These customers can either be a set of
individuals or enterprises who have cloud resource demands with
various deadline constraints and want to cooperate with others
to minimize their costs. We assume that the customers are trust-
worthy and not malicious. The resource purchase demand ui of
customer i is defined as: ui = (ui,j,k), and ui,j,k = ⟨mi,j,k, ti,j,k, di,j,k⟩,
where mi,j,k is the number of resources of SPj,k required by the
customer i, ti,j,k is the rental time, and di,j,k is the corresponding
deadline. In addition, we denote the set of customers that require
SPj,k as Mj,k. The collection of demands of customers in Mj,k is
denoted as uMj,k . As an example, if customer 1 needs 5 VMs of
resource SP1,1 for 6 h and his deadline is 10 h, and the resource
configuration of this type is shown as Table 2. Therefore, his
resource purchase demand can be represented as u1 = (u1,1,1) =
⟨m1,1,1 = 5, t1,1,1 = 6, d1,1,1 = 10⟩.

The objective of a customer is to purchase resources to meet
his demand while minimizing the cost. Each customer can par-

ticipate in multiple programs at the same time. Therefore, the s

3

individual optimal purchasing strategy of customer i can be for-
mulated as an optimization problem:

min
∑
j,k,s

(xsi,j,kP
s
j,k + x0i,j,kP

0
j,k),

C1 : xsi,j,k ∈ N, x0i,j,k ∈ N,

C2 :
∑
s,r

ms,r
i,j,k = mi,j,k −

x0i,j,k
ti,j,k

,

C3 : if xsi,j,k > 0,∀r ∈ {1, . . . , xsi,j,k},

ms,r
i,j,k ≤ Ms

j,k, t
s,r
i,j,k ≤ min{T s

j,k, di,j,k}.

(1)

xi = (xsi,j,k)(j ∈ N , k ∈ Kj, s ∈ Hj,k) and x0i = (x0i,j,k) (C1) are
the purchase profiles of customer i and represent the number of
service programs SP s

j,k and SP0
j,k, respectively. m

s,r
i,j,k is the number

of resources and ts,ri,j,k is the time length that the customer i
uses in the rth service program SP s

j,k (r ∈ {1, . . . , xsi,j,k}). C2
shows that the total number of resource purchased by customer
i from SPj,k is equal to the resource requirement of customer i.
C3 guarantees that each service program selected by customer i
meets the requirements of customer i. Note ts,ri,j,k = ti,j,k.

3.3. An illustrating example for customers’ coalition

We give an example to illustrate customers’ coalition equilib-
rium state and their choice of programs. We denote the unit price
of a service program as the symbol up. In the provider profile
(shown in Table 4(a)), the first column lists the service programs
and the second column lists the corresponding service program
prices. In particular, the third column lists the corresponding unit
price up. We consider three customers M = {1, 2, 3}. As listed in
Table 4(b), the requirements of customer 1, 2, 3 are ⟨3, 5, 9⟩,
⟨2, 4, 5⟩ and ⟨4, 3, 8⟩, respectively.

All candidate coalitions formed by customers M = {1, 2, 3}
are enumerated in the first column of Table 4(c). The second
column shows the selected programs that achieve the total cost
minimum. The third column shows each customer’s cost by calcu-
lating the proportion in the corresponding coalition. For example,
the coalition {2, 3} selects the program 5 × 8 at the price 32.
Then the cost of customer 2 is equal to 2·4

2·4+4·3 · 32 = 12.8. The
ast column shows the total cost of all customers in the coalition.
rom Table 4(c), customers 1, 2 and 3 prefer to cooperate together
ecause it minimizes each customer’s cost as well as the overall
ost of all customers in the coalitions. In the current situation, no
ustomer wants to leave this coalition, and no other customers
ant to join so that it reaches a equilibrium situation.
As the number of customer increases, it is difficult for each

ustomer to find an appropriate coalition to get a lower price.
owever, coalition game can solve this problem well, because it
an formulate a series of rules to make the overall system reach
quilibrium state, i.e., individual stability and group stability.
n Sections 3.4 and 3.5, we introduce the cooperative purchase
latform and the coalition formation game in detail.

.4. Cooperative Purchase Platform (CPP)

In real life, it is difficult for individual customers to find many
ollaborators. A Cooperative Purchase Platform (CPP) is devised
o allow customers to submit their resource purchase demands.
he main tasks of CPP include classifying customer purchase
nformation and calculating customer cooperation solutions. The
PP holds the following characteristics:
(1) Time-window-based purchase demands collection. Con-

idering that the purchase demands are arriving in a endless
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n illustrating example for customers’ coalition.
(a) provider profile

Program price up Program price up

1 × 1 P0
: 1 1 1 × 1 P0

: 1 1
5 × 5 P1

: 22.5 0.9 5 × 8 P4
: 32 0.8

8 × 8 P2
: 43.52 0.68 6 × 10 P5

: 42 0.7
10 × 10 P3

: 60 0.6 8 × 9 P6
: 46.8 0.65

(b) Customers’ requirement

Customer 1 2 3

Requirement ⟨3, 5, 9⟩ ⟨2, 4, 5⟩ ⟨4, 3, 8⟩

(c) Coalitional customer strategies and costs

Formed coalitions selected program (c1, c2, c3)
∑
i∈M

ci

{1}, {2}, {3} P0 , P0 , P0 15, 8, 12 35
{1, 2}, {3} P1 , P0 14.67, 7.83, 12 34.5
{1, 3}, {2} P4 , P0 17.78, 8, 14.22 40
{1}, {2, 3} P0 , P4 15, 12.8, 19.2 47
{1, 2, 3} P4 13.7, 7.3, 11.0 32

Fig. 1. Framework of cooperative purchase platform.

equence from different customers, CPP provides a time-window-
ased purchase demand collection mechanism. Let △T be the
ength of each time window. Customer purchase demands in the
ame time window will be involved in a coalition game.
(2) Profit-driven and social-driven operating patterns. CPP

upports two operating patterns: benefit-driven pattern and
ocial-driven pattern. Based on the benefit-driven pattern, CPP
aximizes the customers’ initial fee by providing convenience

o customers as a third-party agency. Based on the social-driven
attern, CPP can be seen as being provided by providers and free
o customers in order to attract more customers to purchase their
esources. We use the social-driven pattern in this paper.

(3) Group purchases in parallel by resource category. The CPP
atches the customer’s purchase demands with the provider’s
omputing resource categories, such as CPU, memory, and data
torage. Customers are divided into multiple groups according to
heir demands of computing resources, and each group can be
perated in parallel.
Fig. 1 is the framework of cooperative purchase platform. The

PP is refreshed every △T time. During this time, customers
ubmit their requirements to CPP, which then sorts and classifies
hese requirements. Further, the platform will show collaborative
nteractions between customers by using the method of formulat-
ng coalition rules, modifying knapsack packing, and maximizing
esource utilization to be introduced in the following section. At
ast, CPP informs customers of the result of the coalition.
4

3.5. A cloud-customer coalition formation game

To provide a stable coalition structure and purchasing strategy
for a group of selfish customers, cooperative game theory offers a
useful set analysis tools and algorithms [2,30]. The cloud resource
purchasing problem in our work can be formulated as a non-
transferable utility coalition formation game (M, uM, c), where
M is the collection of all customers, uM is the total demand of
ustomers in M, and c is a cost function for each coalition.
We set S = {Sj,k}, Sj,k = {Sl,j,k} and xS = {xsSl,j,k}, where S is

a set of customer coalitions, xS is the purchase cost profile of S ,
nd C4 :

⋃
l Sl,j,k = Mj,k. In addition, a collection is any family

S of mutual coalitions, and S is a partition of M. In addition, we
also consider the set of customers who purchase standard service
as a coalition and C4 : x0Sl,j,k ∈ N.

We take a set of customers who can jointly purchase a service
program SP s

j,k as a coalition. If a customer set collaborates to
purchase multiple programs, the set can further be split into two
or more coalitions. We can know that a coalition either purchases
a program (C4 : xsSl,j,k ∈ {0, 1} and

∑
s x

s
Sl,j,k
= 1) or standard

ervice (C4 :
∑

s x
s
Sl,j,k
= 0 and x0Sl,j,k =

∑
i∈Sl,j,k

m0
i,j,kti,j,k).

We establish a M-T plane coordinate system, where the m-
xis and t-axis represent the number of services and service time,
espectively. Supposing i ∈ Sl ⊂ Sj,k and xsSl = 1, the bottom
left and top coordinates of the customer i are (ms

li,Sl
, tli,Sl ) and

(ms
ri,Sl

, tri,Sl ), respectively. We denote the position of customer
i in the program SP s

j,k as ⟨ms
li,Sl

, tli,Sl , m
s
ri,Sl

, tri,Sl⟩, where ms
ri,Sl
−

ms
li,Sl
= ms

i,Sl
, tri,Sl − tli,Sl = ti,j,k. In other words, the regional

position of customer i can be simply denoted as Pos(us
i,Sl

) =
{ms

li,Sl
≤ m ≤ ms

ri,Sl
, tli,Sl ≤ t ≤ tri,Sl}. m

s
i,Sl,j,k

and m0
i,Sl,j,k

are
the number of resources in program SP s

j,k and SP0
j,k required by

the customer i (i ∈ Sl,j,k), respectively. For every customer i, the
sum of ms

i,Sl,j,k
and m0

i,Sl,j,k
should equal to his requirement mi,j,k,

i.e., C5 :
∑

s,Sl,j,k
xsSl,j,km

s
i,Sl,j,k
= mi,j,k−m0

i,j,k. In addition, customers

in Sl must meet the following conditions of SP s
j,k:

• C6 : ∀ i ∈ Sl, 0 ≤ ms
li,Sl

< ms
ri,Sl
≤ Ms

j,k, 0 ≤ tli,Sl < tri,Sl ≤
min{T s

j,k, di,j,k},
• C7 : ∀ i1, i2 ∈ Sl, Pos(us

i1,Sl
) ∩ Pos(us

i2,Sl
) = ∅.

Thus, the optimal purchase strategy for all customers can be
characterized by the following integer programming

min c(S, xS ) =
∑
l,j,k,s

(xsSl,j,kP
s
j,k + x0Sl,j,kP

0
j,k),

C4 : xsSl,j,k ∈ {0, 1}, x
0
Sl,j,k ∈ N,∑

s

xsSl,j,k ∈ {0, 1},
⋃
l

Sl,j,k =Mj,k,

C5 :
∑
s,Sl,j,k

xsSl,j,km
s
i,Sl,j,k = mi,j,k −m0

i,j,k,

C6 : if
∑
s

xsSl,j,k = 0, x0Sl,j,k =
∑
i∈Sl,j,k

m0
i,j,kti,j,k,

if xsSl,j,k = 1, x0Sl,j,k = 0, for ∀ i ∈ Sl,j,k,

0 ≤ ms
li,Sl,j,k < ms

ri,Sl,j,k ≤ Ms
j,k,

0 ≤ tli,Sl,j,k < tri,Sl,j,k ≤ min{T s
j,k, di,j,k},

C7 : for ∀ i1, i2 ∈ Sl,j,k, Pos(us
i1,Sl,j,k ) ∩ Pos(us

i2,Sl,j,k ) = ∅.

for ∀ i ∈ Sl1,j,k ∩ Sl2,j,k, tli,Sl1,j,k = tli,Sl2,j,k .

(2)

We use c to represent the cost set for all customers.
We note that this integer programming problem generates

a classic NP-hard problem: a rectangular packing problem with
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eadline constraints. To address this problem, each customer
oalition has to apply certain problem solvers. We assume that
he computing power of any coalition is the same, and they adopt
he same problem solver: Pseudo Maximal Resource Utilization
ith Deadline (PMRUD). The output of PMRUD is not required
o be perfectly optimal. In Section 5.1.2, we introduce a depth-
irst method (backtracking) for this solver. The outcome of the
oalition game consists of the coalitions formed by all customers,
heir purchase strategies, and the corresponding costs.

efinition 1. The coalition formation game (M, uM, c) is a tuple
S, xS, c), where S is the set of all candidate coalitions of the
ustomers, xS is the purchase cost profile of S and

⋃
l Sl,j,k =

j,k, and c is the cost set for all customers.

. Optimal solution of the coalition game

In this section, we establish three coalition rules for the cus-
omer coalition game and prove that there is a unique optimal
olution satisfying both individual stability and group stability.
n addition, the optimal solution is proved to be equivalent to
he system, where each coalition’s selected program can optimize
he cost for each customer and achieves maximum resource
tilization.

.1. Definitions

In a cooperative game, there are two conditions for the exis-
ence of a coalition game. For each coalition, the overall return
f the coalition is higher than the sum of each member’s return.
ithin the coalition, each member obtains more revenue than
e does not join the coalition. Besides, the equilibrium of a
ooperative game is to make the game reach individual stable and
roup stable. For the convenience of the proof of the theorem in
ection 4.2, we give the following definitions.

efinition 2. An outcome of the set of all candidate coalitions of
ustomers S is individually rational (IR) if ci(S) ≤ ci({i}) for all
i ∈M.

IR means that each customer is at least as well as doing it
alone.

Definition 3. An outcome of the set of all candidate coalitions of
customers S is Contractually Group Stable (CGS) if there do not
exist S1, S2 ∈ Sj,k and S ′ ⊆ S1 such that ci(S2 ∪ S ′) ≤ ci(S) for all
∈ S2 ∪ S ′ with at least one inequality holding strictly for i ∈ S ′,

and ci(S1 \ S ′) ≤ ci(S) for all i ∈ S1 \ S ′.

If S ′ is a singleton coalition formed by each customer in Mj,k,
then the outcome S is Contractually Individually Stable (CIS),
i.e., CGS implies CIS.

Definition 4. The outcome S is Dcp-stable if 1) for any collection
set (

⋃
S) of coalitions (S ∈ S), ci(

⋃
S) ≥ ci(S) for at least a certain

coalition S, 2) for any coalition S ∈ S and any partition πS of set
S, ci(πS) ≥ ci(S) for all i ∈ S.

S is Dcp-stable if no group of customers is interested in leaving
S.

4.2. Rules of merge, split, and transfer

We first introduce a concept of the comparison relation ▷.
Comparison relation ▷: Given two collections A and B that are
partitions in the same set K , such that K =

⋃
A =

⋃
B, A ▷ B

indicates that c (A) ≤ c (B) for all customers in K and at least one
i i

5

inequality holds strictly. Then, given two joint coalitions A and B,
i.e., A ∩ B ̸= ∅, A ▷ B means that ci(A) ≤ ci(B) for all customers
ui ∈ A ∩ B. We introduce three irreversible rules:

(1) Merge rule: If {
⋃I

i=1 Si} ▷ {S1, . . . , SI}, then {S1, . . ., SI} →
{
⋃I

i=1 Si}.
(2) Split rule:

• If {S1, . . . , SI} ▷ {
⋃I

i=1 Si}, then {
⋃I

i=1 Si} → {S1, . . ., SI};
• If {A} ▷ {A ∪ B} ▷ {B}, then {A ∪ B} → {A, B}.

(3) Transfer rule: Subset S ′ in the coalition S1 can join into
another disjoint coalition S2 or become a single coalition:

• If {S1 \ S ′, S2 ∪ S ′}▷ {S1, S2}, then {S1, S2} → {S1 \ S ′, S2 ∪ S ′};
• If {S1 \S ′}▷{S1, S2}▷{S2∪S ′}, then {S1, S2} → {S1 \S ′, S2, S ′};
• If {S2∪S ′}▷{S1, S2}▷{S1\S ′}, then {S1, S2} → {S1\S ′, S2∪S ′}.

Note that the customers are selfish in the above rules. Ac-
cording to the merge rule, only when the cost of each customer
in the newly synthesized coalition is reduced are two customer
sets merged. According to the split and transfer rules, once the
customer set S forms a coalition or merges into other coalitions at
a lower cost, the set S will leave the original coalition regardless
of the cost changes that the remaining customers would face.

Theorem 1. For a set of customers who initially form singleton
coalitions and iteratively apply the merge, split, and transfer rules,
the coalition formation game (S, xS, c) has an optimal solution
(S∗, x∗S, c∗) that satisfies IR, CGS and Dcp-stable simultaneously.

Proof. The cost for each customer involved in the coalition is
lower than the cost if he were to purchase the resources by him-
self. Otherwise, the customers would prefer to purchase resources
alone. Thus, the coalition formation game satisfies IR.

A set of customers initially forms singleton coalitions and
obtains a coalition collection (S1, S2, . . .) by using the merge rule.
Then, we apply the split and transfer rules after each step. As each
customer is selfish, each operation reduces the cost for at least
one customer but there is no guarantee that the cost of other
customers will be reduced.

Assuming that there are two identical coalitions Sk1 = Sk2 and
k1 < k2, there must exist a coalition S in Sk1 that performs one of
the three rules and reforms the coalition S in Sk2 in the opposite
direction. Since these rules are irreversible, it can be proven that
the coalitions in sequence (S1, S2, . . .) are pairwise different. In
addition, the total number of partitions for a finite customer set
is finite. Thus, the customer coalition sequence formed by these
rules must have a finite length. Therefore, we can say that the
coalition game (S, xS, c) has an optimal solution (S∗, x∗S, c∗) by
applying the merge, split, and transfer rules.

Given S1, S2 ∈ Sj,k ⊂ S and S ′ ∈ S1, if there exists a S ′ ∈ S1
such that ci(S2∪ S ′) ≤ ci(S) for all i ∈ S2∪ S ′ and ci(S1 \ S ′) ≤ ci(S)
for all i ∈ S1 \ S ′, then {S1, S2} → {S1 \ S ′, S2 ∪ S ′} based on the
transfer rule. Thus, (S∗, x∗S, c∗) satisfies the definition of CGS.

Finally, no coalitions in (S∗, x∗S, c∗) satisfy the conditions in the
merge, split, and transfer rules, i.e., (S∗, x∗S, c∗) coincides with the
definition of Dcp-stable. □

Theorem 2. The optimal solution (S∗, x∗S, c∗) obtained by applying
the merge, split, and transfer rules is equivalent to the system,
where the selected program SP s

j,k (xsS∗l,j,k
= 1) of each coalition S∗l,j,k

can optimize the cost for each customer and maximize resource
utilization.

Proof. According to Theorem 1, (S∗, x∗S, c∗) satisfies CGS and is
Dcp-stable. Assuming that S∗1 , S

∗

2 ∈ S∗j,k ⊂ S∗ and there exists a
customer set S in coalition S∗ that can be merged with another
1
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Fig. 2. The framework for multi-customer cooperative in purchasing service.

coalition S∗2 to reduce the cost for each customer in S, ci(S∪S∗2 ) ≤
i(S∗1 ) for all i ∈ S and ci(S∪ S∗2 ) ≤ ci(S∗2 ) for all i ∈ S∗j according to
the merge rule. However, this contradicts the fact that (S∗, x∗S, c∗)
satisfies CGS. Therefore, (S∗, x∗S, c∗) makes the selected program
SP s

j,k (xsS∗l,j,k
= 1) of each coalition S∗l,j,k optimize the cost for each

customer in their own coalitions.
Assuming that there exists a program SP s

j,k selected by coali-
tion S ∈ Sj,k that does not reach the maximum resource utiliza-
tion, at least one customer set S can be added to SP s

j,k according
to the merge rule to increase the resource utilization of SP s

j,k.
However, this contradicts the fact that (S∗, x∗S, c∗) satisfies CGS
and is Dcp-stable. Therefore, (S∗, x∗S, c∗) makes the selected pro-
gram SP s

j,k (xsS∗l,j,k
= 1) for each coalition S∗l,j,k maximize resource

utilization.
In turn, a solution found as (S∗, x∗S, c∗) is the optimal solution

if the selected program SP s
j,k (xsS∗l,j,k

= 1) has the lowest cost for

each customer and the maximum resource utilization. □

4.3. Resource utilization

If xsSl,j,k = 1, the resource utilization rate of service program
SP s

j,k is the ratio between the sum of the resources actually re-
quired by all customers in the set Sl,j,k and the resource capacity
of the provided service SP s

j,k. We denote the resource utilization
rate of coalition Sl,j,k ∈Mj,k in SP s

j,k as U s
Sl,j,k

:

U s
Sl,j,k =

∑
i∈Sl,j,k

ms
i,Sl,j,k
· ti,j,k

Ms
j,k · T

s
j,k

. (3)

Therefore, the real price of each customer in Sl,j,k is defined as:

P s
Sl,j,k =

upsj,k
U s
Sl,j,k

. (4)

There are several choices for SP s
j,k to choose appropriate cus-

tomers from the customer set Mj,k. SP s
j,k composed of various

customer sets will have different resource utilization rates. Obvi-
ously, the larger the resource utilization, the lower the real price
for customer set Sl,j,k. Therefore, it is vital for SP s

j,k to choose an ap-
propriate customer set Sl,j,k to maximize the resource utilization
U s
Sl,j,k

. In addition, we denote the maximum resource utilization
rate of SP s

j,k composed of Sl,j,k as maxU s
Sl,j,k

.
Fig. 2 illustrates a framework in which multiple customers

purchase various cloud instance service programs provided by
multiple providers. Customers are grouped according to the type
of resource service required, and the customers in each group
cooperative with each other. The center part of Fig. 2 shows the
formation of coalitions based on multiple programs provided by
providers.
6

Fig. 3. An example of the corner-occupying action.

5. A deadline-constrained resource coalition allocation
method

In this section, we propose the maximal resource utilization
model and the Pseudo Maximum Resource Utilization (PMRU)
algorithm. Based on the Algorithm PMRU, we propose the heuris-
tic Deadline-constrained Resource Coalition Allocation (DRCA)
algorithm to calculate the near-optimal solution.

5.1. Modeling maximal resource utilization

Given a program SP s
j,k, we should find coalition S (S ∈ Mj,k)

that maximizes the resource utilization of SP s
j,k to satisfy the

deadline constraints of customers in coalition S. The modeling for
finding Sl,j,k to maximize the resource utilization of SP s

j,k is defined
as:

Sl,j,k = argmax
S

U s
S = argmax

S

∑
i∈S

ms
i,S ti,S

Ms
j,kT

s
j,k

,

C8 : 0 ≤ ms
li,S < ms

ri,S ≤ Ms
j,k,

0 ≤ tli,S < tri,S ≤ min{T s
j,k, di,j,k}.

C9 : for ∀ i1, i2 ∈ Sl,j,k,
Pos(ui1,S) ∩ Pos(ui2,S) = ∅.

(5)

Here, C8 represents that service program Sl,j,k meets the re-
quirements of all customers in coalition S. C9 guarantees that
there are no overlapping positions between any two customers
in coalition Sl,j,k.

5.1.1. Fundamental conceptions and strategies
(1) Corner-Occupying Action (COA): Tuple (m̂, t̂, Act , ui,j,k) rep-

resents a COA, where ui,j,k is the demand of customer i re-
lated to the corresponding COA, Act is one of the corner shapes
{⌈, ⌉}, and (m̂, t̂) is the coordinate of the top-left corner cor-
responding to shape ⌈ or the top-right corner corresponding
to shape ⌉. Customer to be packed occupies a corner formed
by those two previously packed customers or the sides of the
service program. In addition, customer i to be packed should
satisfy all the constraints in Eq. (5). Note that the top posi-
tion of ui,j,k is equal to min{t̂, di,j,k}. If Act is ⌈, pos(ui,j,k) =
(m̂,min{t̂, di,j,k} − ti,j,k, m̂ + mi,j,k,min{t̂, di,j,k}), and if Act is ⌉,
pos(ui,j,k) = (m̂ − mi,j,k,min{t̂, di,j,k} − ti,j,k, m̂,min{t̂, di,j,k}). In
addition, (m̂, t̂, Act, ui1,j,k) and (m̂, t̂, Act, ui2,j,k) are regarded as
two COAs. An available COA means that at least one customer can
be packed into the service program based on the corresponding
corner position and Act . We denote a set of all available COAs as
SC.

When the customer i is packed into the service program, the
corners that are no longer available will be deleted and all new
available corners formed by customer i and previous customers
will be added.

As shown in Fig. 3, customers 1, 2, and i1 have been packed in
SP s

j,k. In the set of remaining customers, i2 can be placed in Act ⌈
ˆ ˆ ˆ ˆ
with coordinates (m, t). COA: (m, t, ⌈, ui,j,k) is an available COA.
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Fig. 4. Distance between one customer and neighbors.

(2) Distance between two customers. For two given customers
1 and i2, distance d̂i1 i2 between them is defined as:

d̂i1i2 =max
{
|mci1 −mci2 | −

mi1,j,k +mi2,j,k

2
, 0

}
+ max

{
|tci1 − tci2 | −

ti1,j,k + ti2,j,k

2
, 0

}
,

(6)

where (mci1 , tci1 ) and (mci2 , tci2 ) are the central coordinates of
customers i1 and i2, respectively. As shown in Fig. 3, d̂i1i2 =
|mci1 −mci2 | −

mi1,j,k+mi2,j,k
2 .

The upper and lower sides of a service program (M × T ) can
be viewed as customers packed into the program with resource
request (M, 0), and the left and right sides of (M × T ) can be
considered customers with resource request (0, T ). For a given
customer i and some customers packed in the service program
{i1|i1 ∈ {1, 2, . . .}}, the distance between i and other customers
is defined as d̂i = min d̂il + min d̂iu + min d̂ir , where min d̂il,
min d̂iu, and min d̂ir are the minimum distance between customer
i and the customer set on the left, upper, and right of customer i,
respectively. Moreover, at least one of min d̂il and min d̂ir is 0.

As shown in Fig. 4, min d̂il = d̂i1, min d̂iu = d̂i2, and min d̂ir =
d̂i3. If COA is (m̂, t̂, ⌈, ui,j,k), d̂i1 = 0 and d̂i2 = t̂ −min{t̂, di,j,k}.

(3) Caving degree of COA and the first strategy for the max-
imum caving degree. Customer i is packed into SP s

j,k based on a
feasible COA and the distance d̂i. The caving degree Ci of the COA
is defined as:

Ci = 1−
d̂i

√
mi,j,kti,j,k

. (7)

According to Eq. (7), Ci ≤ 1 and the closer Ci is 1, the closer
customer i is located at his nearest customer or side (excluding
the customers and sides that form the corner). During the packing
process, we always select the COA with the largest caving degree
and pack the corresponding customer into SP s

j,k.
(4) Order section. During the packing process, if there are mul-

tiple COAs with the same maximum caving degree, we have the
following selection order: Select the COA whose Act coordinate is
the optimal (Act1(m̂1, t̂1) is better than Act2 (m̂2, t̂2) if t̂1 > t̂2, or
t̂1 = t̂2, m̂1 < m̂2). Select the COA with the lowest index of the
corresponding customer.

(5) Split of customer demands. The demand of a customer
can be split into multiple sub-demands to purchase as long as
those service resources collectively meet the customer’s demand
(i.e., same starting time, sufficient, deadline). Considering the
continuity of service time and the complexity of task migration,
customer’s demand is split according to the number of resources
rather than service time. However, if the demand of each cus-
tomer is split, the amount of calculations of the whole system
will be huge. Thus, we split the following two situations.

Case 1: Before the cooperation, if any SP s
j,k cannot meet the

demand ui,j,k of customer i, we split the customer’s demand. We
find out the program with the maximal service time Tmax:

Tmax = max{T s
j,k}. (8)
s∈Hj,k

7

Then, we find out the program SP s
j,k with the largest number of

resources Mmax that satisfies ti,j,k ≤ T s
j,k, where

Mmax = max
s∈Hj,k
{Ms

j,k|ti,j,k ≤ T s
j,k}. (9)

If mi,j,k > Mmax, ui,j,k is split into multiple demands (ui×r,j,k). The
splitting process is described in Algorithm 1.

Algorithm 1 Splitting the customers’ demands in case 1.

Require: Mj,k, uMj,k , SPj,k.
Ensure: uMj,k .
1: for (i ∈Mj,k) do
2: r ← 0;
3: Start.ui,j,k ←∞;
4: while (mi,j,k > Mmax) do
5: r ← r + 1;
6: ui×r,j,k ← ⟨Mmax, ti,j,k, di,j,k⟩;
7: Start.ui×r,j,k ← Start.ui,j,k;
8: mi,j,k ← mi,j,k −Mmax;
9: ui×(r+1),j,k ← mi,j,k, ti,j,k, di,j,k⟩;

10: return uMj,k .

Considering that the splitting of customer’s demand does not
affect the customer’s resource usage, we need to ensure that the
service resources from different coalitions will be delivered to
the customer i at the same time. Therefore, we add a start time
constraint for each customer and the start time is initially set
to ∞. Once one of the split demands ui×r,j,k of customer i is
scheduled to a certain position, the start time of the remaining
split demands of the customer i coincides with the start time of
ui×r,j,k.

Case 2: In the case of cooperative resource procurement, there
are still some available spaces in the program SP s

j,k after the
current optimal program SP s

j,k and the corresponding coalition
Sl,j,k are selected. In fact, the resource utilization of SP s

j,k reaches
a pseudo optimal. As shown in Fig. 5, we first obtain the pseudo-
optimal coalition strategy Sj,k without splitting the demands of
ustomers, and RPS1,j,k ≤ RPS2,j,k ≤ · · · ≤ P0

j,k. The selected
rograms of the coalition S1,j,k with the lowest real price has
ome spaces available for other customers to place a part of their
esource demands. For each space in S1,j,k, the position of the
pace can be represented as space = ⟨m′l,m

′
r , t
′

l , t
′
r⟩, where (m′l, t

′

l )
nd (m′r , t

′
r ) are the coordinates of the lower-left corner and top-

ight corner of the space, respectively. If the customer i (i /∈ S1,j,k)
ants to join S1,j,k by splitting his resource demand, ti,j,k and di,j,k

should satisfy ti,j,k ≤ t ′r − t ′l and t ′l + ti,j,k ≤ di,j,k. ui×1,j,k =

m′r−m′l, ti,j,k, di,j,k⟩ and ui×2,j,k = ⟨mi,j,k− (m′r−m′l), ti,j,k, di,j,k⟩. If
cost(ui×1,j,k)+ cost(ui×2,j,k) < cost(ui,j,k), then the demand ui,j,k is
split to ui×1,j,k and ui×2,j,k. S1,j,k and uS1,j,k are updated, and S1,j,k ←
S1,j,k ∪ {i} and uS1,j,k ← uS1,j,k ∪ ui×1,j,k. In the splitting process, if
there are multiple customers competing for a space, we choose
the customer with the largest ratio of mi×1,j,k

mi,j,k
. If no customer joins

the coalition S1,j,k, the resource utilization of the program selected
by the coalition S1,j,k reaches the maximum value. Then, uMj,k and
Mj,k are updated by removing the demands uS1,j,k . The updated
uMj,k and Mj,k participate in the next round of calculations until
uMj,k = ∅ and Mj,k = ∅.

5.1.2. The PMRUD algorithm
First, we consider the situation where customers’ demands

are not split in the process of multi-customer cooperation. We
propose a greedy algorithm based on the above concepts and
strategies. Packing the (q+ 1)th demand with deadline (q) is de-
noted as PCD(·) and q indicates that there are already q demands

s
placed in SPj,k.
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Algorithm 2 PCD(·) algorithm.

Require: M, uMj,k , SP
s
j,k, q, Configuration(q), Slq.

Ensure: USPsj,k
, Sl,j,k, Configurations

Sl,j,k
.

1: while SC ̸= ∅ and q < |uMj,k | do
2: Minc←∞; u

′

Mj,k
← uMj,k \ uSlq ;

3: for every (m, t, Act, ui×r,j,k) ∈ SC (ui×r,j,k ∈ u
′

Mj,k
) do

4: Calculate the caving degree Ci based on Eqs. (6) and (7);
5: if (Minc> Ci) then
6: SC ′ ← {(m, t, Act, ui×r,j,k)};
7: else
8: if (Minc= Ci) then
9: SC ′ ← SC ′ ∪ {(m, t, Act, ui×r,j,k)};

10: if |SC ′|> 1 then
11: Select a single COA according to the selecting order (1) to

(2);
12: if (m, t, Act, ui×r,j,k) is the selected COA then
13: Slq ← Slq ∪ {i};
14: Configuration(q+ 1)← Configuration(q)∪ Pos(ui×r,j,k);
15: q← q+ 1; Update the available SC;
16: Calculate the resource utilization USPsj,k

;
17: return USPsj,k

, Sl,j,k, Configurations
Sl,j,k

.

In Algorithm 2, q indicates that all q demands in Slq (Slq ∈
Mj,k) have been packed into the service program SP s

j,k, and the
current position status is represented by Configuration (q). The
COAs with the largest caving degree are recorded in the set SC and
the optimal COA is selected according to the selection order in
Section 5.1.1. When there are no available COAs or all customers
in Mj,k have been positioned into SP s

j,k, the algorithm loop stops.
Then, the resource utilization of SP s

j,k is calculated.
We know that the resource utilization obtained by Algorithm

PCD(·) is not globally optimal. Based on Algorithm PCD(·), we use
the depth-first method (backtracking) to propose Algorithm 3-
Pseudo Maximal Resource Utilization with a Deadline, which is
denoted as PMRUD.

Algorithm PMRUD ensures that in the process of selecting
customers at each step, each selected customer obtained by the
while loop is optimal in the current situation. As shown in Fig. 6,
in each while loop, every available COA tries to be placed in SP s

j,k,
and Algorithm PCD(.) is called to calculate resource utilization
USPsj,k

. Subsequently, the selected COA is removed of the list. In
addition, the algorithm selects the COA set with the highest
resource utilization, then selects the optimal COA according to the
selection order, and places the corresponding customer into SP s

j,k.
Finally, configurations and COA set SC are updated.
Sl,j,k

8

Algorithm 3 PMRUD algorithm.

Require: M, uMj,k .
Ensure: USPsj,k

, Sl,j,k, Configurations
Sl,j,k

.
1: q← 0; Configuration(q)← ∅; Sl,j,k ← ∅;
2: while SC ̸= ∅ and q < |uMj,k | do
3: Ŝl,j,k ← Sl,j,k; ŜC ← SC; SC ′′ ← ∅;
4: Configuration← Configuration(q); MaxU← 0;
5: for each (m, t, Act, ui×r,j,k) ∈ SC do
6: q̂ ← q + 1; Configuration(q) ← Configuration(q)∪

Pos(ui×r,j,k); Update SC;
7: Call PCD(q̂);
8: if (MaxU < USPsj,k

) then
9: SC ′′ ← {(m, t, Act, ui×r,j,k)};

10: else
11: if (MaxU = USPsj,k

) then
12: SC ′′ ← SC ′′ ∪ {(m, t, Act, ui×r,j,k)};
13: if |SC ′′|> 1 then
14: Select a single COA according to the selecting order (1) to

(2);
15: if (m, t, Act, ui×r,j,k) is the selected COA then
16: Sl,j,k ← Ŝl,j,k ∪ {i};
17: q← q+ 1;
18: Configuration(q)← Configuration ∪ Pos(ui,j,k);
19: Update the available SC;
20: Calculate the resource utilization USPsj,k

;
21: return USPsj,k

, Sl,j,k, Configurations
Sl,j,k

.

Fig. 6. Illustration of Algorithm PMRUD.

5.2. The DRCA algorithm

In this section, we propose the heuristic Deadline-constrained
Resource Coalition Allocation (DRCA) algorithm. The detailed
steps of the DRCA algorithm are shown in Algorithm 4.

First, uMj,k is updated by splitting the customer demands
according to Case 1 in Section 5.1.1. The inner while loop from line
5 to line 21 obtains the pseudo-optimal coalitions for the current
customer set Mj,k and the corresponding demands uMj,k . In each
update of the outer while loop, uMj,k is split again according to
ase 2 in Section 5.1.1 in order to obtain the lth optimal coalition

l,j,k and the corresponding SP ĥl
j,k. If no customer in the current

coalition can find another coalition to reduce costs, then this
coalition is the best choice for all customers involved in the coali-
tion. Additionally, the resource utilization of the service program
is maximized, which means that no suitable customers can join
the coalition. The remaining demand mi,j,k of each customer i in
Sl,j,k is updated, and the set S̈ is denoted as a set of customers
satisfying mi,j,k ̸= 0, from line 24 to 27. As mentioned above,
the customers are selfish, so the coalition Sl,j,k \ S̈ will leave the
customer set Mj,k, and Mj,k will be updated to Mj,k = (Mj,k \

Sl,j,k)
⋃

S̈. uMj,k is also updated to uMj,k \ uSl,j,k . Algorithm DRCA
repeats until M and u are empty sets.
j,k Mj,k
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Fig. 7. Optimal customer cooperation configuration for given service programs.
We know that M and N are the number of customers and
providers, respectively. We set K = maxj∈N {Kj} and H =

maxj∈N ,k∈Kj{Hj,k}. In Algorithm 1, we set mmax = maxi∈Mj,k mi,
hen the computational overhead of Algorithm 1 is O(M mmax

Mmax
)

= O(M). In Algorithm 2, q customers have been scheduled, and
there are |uMj,k | − q customers left to be scheduled. In each
process of selecting an appropriate customer, the required update
time is O(b). Thus, the computational overheads of Algorithm 2 is
O((|uMj,k |−q)b). Since the out-of-loop consumption is the same in
Algorithms 3 and 4, every while loop in Algorithm 3 (the PMRUD
algorithm) except calling PCD(q̂) is represented as O(c), and the
for loop in Algorithm 4 (the DRCA algorithm) except calling
PMRUD is O(e). Then, the computation overheads of Algorithm
3 (PMRUD) in the worst case is O(M(M+1)

2 b+Mc) = O(M2b). Fur-
hermore, the time overheads of the inner while loop in Algorithm
is O(M(M+1)(2M+1)

6 Hb + Me) = O(M3Hb) and the computational
verheads of Algorithm 4 is O( [M(M+1)]2

2 Hb) = O(M4Hb). At last,
the overheads of the whole system is O(M4HKNb).

6. Experiments

6.1. Experiment setup

To validate the feasibility and effectiveness of our DRCA al-
gorithm, we have performed extensive simulations and experi-
ments. Our simulation environment is an Intel(R) core(TM) i5-
6200U 2cores CPU@2.3 GHz 2.4 GHz with Windows version 10.
The simulation program is written in Python supported by the
Pycharm 2017.3.2 IDE. We consider the general-purposed com-
puting service research ECS provided by the Alibaba company [9].
The product configuration of the service programs is listed in
Table 2 in Section 3.1. The product has two types of payment
prices, annual or monthly and on demand, as listed in Table 5(a).
If a customer rents the service on a monthly basis for less than
one year, the price of 1 ∼ 2, 3 ∼ 5, and 6 ∼ 9 months are
039, 937, and 886 per server per month, respectively. If the
ustomer rents on an annual basis, the price is 824.25 for the
irst year, 661 for two years, and 494 for three years. However,
f the customer rents the service for less than one month, the
ustomer’s service price on demand is 2619.36 (87.312 per day).
o highlight the applicability of our algorithm, we assume that
ore product service programs are based on Table 5(a). As given

n Table 5(b), we have added preferential strategies for renting
9

Table 5
Resource dataset from Alibaba Cloud used in the experiments.
(a) The price of the service program, unit: per service per day

1∼2 months 3∼5 months 6∼9 months

Annual or monthly 1039 937 886
On demand 2619.36 2619.36 2619.36

1 year 2 years 3 years

Annual or monthly 824.25 661 494
On demand 2619.36 2619.36 2619.36

(b) The prices of programs

M\T (month) 1 2 3 6 12 · · ·

5 5195 10390 14055 26580 49455
10 10390 20780 28110 53160 98910
15 15585 31170 42165 79740 148365
20 20780 41560 56220 106320 197820
· · · · · · · · · · · · · · · · · · · · ·

multiple cloud instance programs. The first column represents the
number of cloud instances, and the first row indicates the renting
time (unit of month). The number in row i and column j (i, j ̸= 1)
represents the total cost of corresponding program with renting
M instances and T months.

6.2. Customer cost analysis

We select 50 customers and randomly generate the demands
for each customer, where the number of resources is gradually set
from 1 to 10, the rental time is gradually set from 1 to 60, and the
deadline ranges from the value of the corresponding rental time
to 180.

Fig. 7 shows the selected service programs and the config-
uration of each customer. The blank area in a service program
indicates that the server is idle. Table 6 lists the resource uti-
lization of each selected service program and the real price of
each customer in the selected service program. In addition, Fig. 8
shows a comparison of the cost of purchasing service resources
individually and the cost each customer participates in a coalition
to purchase them, the values of which are represented by the
orange and blue marks, respectively. The cost of each customer
is reduced and the reduction ratio can reach as much as 63.6%,
which indicates the feasibility of the proposed mechanism.
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Algorithm 4 Heuristic DRCA algorithm.

Require: Mj,k, uMj,k , SPj,k.
Ensure: Sj,k, xSj,k .
1: Update uMj,k by splitting the demands of customers according

to case 1 (by calling Algorithm 1 in Section 5.1.1);
2: l← 0;
3: while uMj,k ̸= ∅ do
4: l ← l + 1; Šl ← ∅; S̈ ← ∅; w ← 0; ũMj,k ← uMj,k ;

s← |SPj,k|; M̃j,k ←Mj,k;
5: while ũMj,k ̸= ∅ do
6: w← w + 1; S ← ∅;
7: for s from |SPj,k| to 1 do
8: minp← P0

j,k; hw ←∞, S̃ ← ∅;
9: Find Sw ⊆ Mj,k for service programs SP s

j,k such that
the resource utilization U s

Sw is maximized (by calling
PMRUD algorithm in Section 5.1.2);

0: if (RP s
Sw < minp) then

1: minp← RP s
S ; hw ← s, S̃ ← S;

2: if (minp < P0
j,k) then

3: Sw ← S̃; xhw
Sw ← 1;

4: else
5: if (minp = P0

j,k) then
6: Sw ← M̃j,k, hw ← 0;
7: for (i ∈ Sw) do
8: m̃i,j,k ← m̃i,j,k −mhw

i,Sw ;
9: if (m̃i,j,k ̸= 0) then
0: S ← S

⋃
{i};

1: M̃j,k ← (M̃j,k\Sw)
⋃

S, ũMj,k ← ũMj,k \ uSw ;
22: Split uMj,k according to case 2 and obtain the split customer

set Šl and demand set uŠl
(Section 5.1.1);

3: ĥl ← h1,Sl,j,k ← S1
⋃

Šl, uSl,j,k ← uS1
⋃

uŠl
;

4: for (i ∈ Sl,j,k) do
5: mi,j,k ← mi,j,k −mĥl

i,Sl,j,k
;

6: if (mi,j,k ̸= 0) then
7: S̈ ← S̈

⋃
{i};

8: Mj,k ← (Mj,k\Sl,j,k)
⋃

S̈, uMj,k ← uMj,k \ uSl,j,k ;
9: return Sj,k, xSj,k .

Fig. 8. Comparison of the cost of each customer. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

6.3. Impact of deadline on procurement price

We validate the heuristic DRCA algorithm by analyzing the
rice for each customer affected by the deadline. We select four
ustomers from 100 customers. They are customer 1, 2, 3, and 4.
ach customer has a deadline from 50 to 180 with an increment
10
Table 6
Resource utilization of each selected service program.
Program U RP Program U RP

(a) 20 × 120 0.98375 31.749 (e) 10 × 90 0.981 31.835
(b) 10 × 120 0.98 31.871 (f) 5 × 90 0.886 35.226
(c) 20 × 90 0.985 31.691 (g) 15 × 60 0.837 41.340
(d) 15 × 90 0.951 32.839 On demand 87.312

Program: M × T (day), RP: per service per day.

Fig. 9. Impact of deadline on customer price.

of 10. In addition, when analyzing the impact of the deadline
on a customer, the procurement demands and deadlines of other
customers remain unchanged.

Fig. 9(a) shows the impact of the deadline constraints on the
purchase price, and Fig. 9(b) shows the order of the corresponding
customers are selected in the coalition game. As the deadline
increases, the real price for each customer shows a downward
trend. As shown in Fig. 9(b), the larger the customer’s deadline,
the easier it is for the customer to associate with others. As a
result, we can know that the customers with farther deadline are
more likely arranged with high priority and lower price, but their
start times of using resource are late, which also provides conve-
nience for the customers with short deadline (urgent customers)
to use resources as early as possible.

6.4. Effectiveness and performance evaluation

6.4.1. Effectiveness evaluation
To illustrate how the scale of the customers and service pro-

grams affects the entire system, we analyze the time overheads
and the percentage of total customer cooperative savings. The
number of customersM increases from 100 to 7000 in increments
of 100, and the number of programs ranges from 10 to 450
with an increment of 10. The experiment results are presented
in Figs. 10 and 11.
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Fig. 10. Effectiveness of the DRCA algorithm.

Given 12 service programs, Fig. 10(a) shows the percentage
urve of customer cooperative savings as the number of cus-
omers increases. Fig. 10(b) shows the effect of the number of
rograms on the savings for a given 1000 customers. As the
umber of customers increases, the trend of the line increases
nd reaches a value of 34%, and the curve in Fig. 10(b) increases
o a relatively stable value of 42%. Fig. 10 shows the effectiveness
nd practicality of our algorithm to help customers reduce their
osts. The more customers and programs, the higher the overall
ercentage of customer cooperative savings.

.4.2. Performance evaluation
In the experiments, we adjust the number of customers and

ervice programs and record the execution time of the entire
ystem. Fig. 11(a) and (b) show the execution time curves of
he system as the number of customers and programs increases,
espectively.

In Fig. 11(a), as the scale of customers increases, the time curve
ncreases in a polynomial. The blue dashed line is the trend line
f the time curve, which is a fourth-order polynomial. The fitting
egree of the trend line and the time curve is 0.9622. As shown in
ig. 11(b), the time curve of the entire system increases linearly.
he dashed line is the trend line of the curve with a fitness of
.9636. Fig. 11(a) and (b) verify the time overhead we evaluated
n Section 5.2. The system can determine the time interval △T
ased on the size of customers, providers, and programs.

. Conclusions

Our study focused on the problem of using multi-customer
ollaboration strategies to configure appropriate resources to
eet the needs of each customer, thereby minimizing customer
osts. We established a coalition game system based on three
oalition rules and proved that there is a unique and optimal
olution in the coalition game that satisfies individual stability
nd group stability. The optimal solution proved to be equal to
11
Fig. 11. Time overheads of customers and service programs.

the system where the selected service program can reduce the
costs of customers in their own coalitions and achieve maximum
resource utilization. A heuristic DRCA algorithm was proposed
to calculate the optimal solution. Extensive experiments were
simulated to validate the feasibility and effectiveness of the
proposed algorithm.
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