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1 A Game-Based Price Bidding Algorithm for
2 Multi-Attribute Cloud Resource Provision
3 Junyan Hu , Kenli Li , Senior Member, IEEE, Chubo Liu , and Keqin Li , Fellow, IEEE

4 Abstract—The pricing mechanism of cloud-computing resources is an essential issue for both cloud customers and service providers,

5 especially from the point of multi-provider competition. Although various mechanisms for resource provision are proposed, few studies

6 have focused on multi-attribute resource provision with the objective of improving benefits of both cloud customers and service

7 providers. To address the issue, we propose a price bidding mechanism for multi-attribute cloud-computing resource provision from the

8 perspective of a non-cooperative game, in which the information of each player (customers and providers) is incomplete to others and

9 each player wishes to maximize his/her own benefit. More specifically, considering the fairness pricing competition, we propose a novel

10 and incentive resource provision model referring to the Quality-of-Service (QoS) and the bidding price. Then, combining with the

11 resource provision model, the problem of price bidding is formulated as a game to find a proper price for each cloud provider. We

12 demonstrate the existence of Nash equilibrium solution set for the formulated game model by assuming that the quantity function of

13 provided resources from every provider is continuous. To find a Nash equilibrium solution, we propose an Equilibrium Solution Iterative

14 (ESI) algorithm, which is proved to converge to a Nash equilibrium. Finally, a Near-equalization Price Bidding (NPB) algorithm is

15 proposed to modify the obtained Nash equilibrium solution. Extensive simulated experiments results and the comparison experiments

16 with the state-of-the-art and benchmark solutions validate and show the feasibility of the proposed method.

17 Index Terms—Cloud computing, Nash equilibrium, non-cooperative game theory, price bidding strategy, resource provision

Ç

18 1 INTRODUCTION

19 1.1 Motivation

20 BENEFITING from excellent computing power and elastic
21 resource allocation, cloud computing is widely applied
22 in various applications, such as Amazon EC2, Microsoft
23 Azure and Google AppEngine [1]. It offers an attractive par-
24 adigm for the dynamic provisioning of computing services
25 in a pay-as-you-go manner [2]. Customers use and pay for
26 services on-demand without considering the upfront infra-
27 structure costs and the subsequent maintenance costs [3],
28 while cloud providers are not concerned about the overpro-
29 visioning or underprovisioning. It is a significant issue on
30 how customers select resources combinations from cloud
31 providers to maximize their profits, while satisfying the
32 optimal profit of each provider at the same time.
33 For cloud customers, the profit is determined by the pro-
34 vided resources and the profit brought by each resource [4],
35 [5], [6], [7]. Cloud providers submit different multi-attribute
36 parameters and bidding prices for the resource provision

37competition. Each customer compares the Quality-of-Service
38(QoS) in terms of multi-attribute, such as bandwidth, latency
39and the reputation of the corresponding cloud provider.
40Moreover, due to economic reasons, a rational customer
41might not purchase all the cloud resources from the same
42provider. If the ratio of the QoS to the price of a provider’s
43cloud resource is relatively high, the customer will purchase
44more resources from the provider. Otherwise, the customer
45will buy less resources or refuse to buy them, even if the
46quality of the resources is excellent. In addition, the resource
47provision mechanism is affected by the bidding prices that
48determine the profit of each provider. Besides, the resources
49provided by each provider are affected by the decisions of
50other ones. It is essential to propose an incentive resource
51provision model and construct a pricing strategy to maxi-
52mize each cloud provider’s profit and satisfy each customer’s
53optimal profit [5], [7], [8], [9], [10], [11], [12].
54In this paper, we mainly focus on maximizing the bene-
55fits of both cloud customers and service providers. A cus-
56tomer can purchase cloud resources from multiple cloud
57providers instead of one. The non-cooperative game can be
58described as each participant choosing his/her strategy
59from the perspective of maximizing his/her own benefits
60without considering the benefits of others or the overall sit-
61uation. We hope to find a price equilibrium point to maxi-
62mize the benefits of each participant (customers and
63providers). Each participant updates his/her optimal strat-
64egy based on information of the previous round until no
65change occurs. That is, the optimal solution to the discussed
66issue can be well calculated using an iterative algorithm.
67Numerous studies have discussed the auction mecha-
68nisms, which include the relationship between procurement
69parties, supplier bidding behaviors and strategies, and the
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70 design of optimal mechanisms [5], [7], [8], [13], [14], [15],
71 [16], [17], [18]. These are all bidding mechanisms that con-
72 sist of a series of auction rules that determine who is the
73 winner and how much it should pay. Prasad and Rao [8]
74 proposed three kinds of auction mechanisms for achieving
75 automated procurement in cloud. These auction mecha-
76 nisms are suitable for a single resource, which is extended
77 in [18] for multiple resources from several cloud providers,
78 i.e., a combinatorial auction in hybrid cloud. However, the
79 existing results do not consider the cloud resource procure-
80 ment issue from the perspective of optimizing the benefits
81 of both cloud customers and service providers, but only
82 from the perspective of determining a winner for each cus-
83 tomer. In this work, we consider that a customer can be
84 served by multiple providers. Therefore, based on the non-
85 cooperative game theory, we propose an iterative algorithm
86 to optimize the benefits of both cloud customers and service
87 providers and give the convergence analysis of the iterative
88 algorithm solutions.

89 1.2 Our Contributions

90 In this paper, we focus on the price bidding mechanism for
91 cloud providers resource provision competition from the
92 perspective of non-cooperative game. Our main contribu-
93 tions are listed as follows:

94 � With the perspective of non-cooperative game, a
95 mechanism of pricing strategy for resource provision
96 is constructed to maximize the profits of both the
97 cloud customers and service providers.
98 � Regarding the quantity of the resource provision
99 from each provider as a fraction to get continuous

100 benefit functions, we prove the existence of Nash
101 equilibrium solution for the proposed game model.
102 � An ESI algorithm is proposed to compute the Nash
103 equilibrium solution, and the convergence of the
104 solution sequence obtained by the ESI algorithm is
105 analyzed.
106 � An approximate price bidding NPB algorithm is pro-
107 posed to modify the solutions. Two equilibrium sol-
108 utions obtained by the ESI and NPB algorithms are
109 compared respectively.
110 The remainder of the paper is organized as follows. In
111 Section 2, we introduce the related work. Section 3 describes
112 the system model and presents the problem that needs to be
113 solved. In Section 4, we consider the problem as a non-coop-
114 erative game. An ESI algorithm and a NPB algorithm are
115 proposed respectively. In Section 5, extensive experiments
116 and the comparison experiments results with others indi-
117 cate the feasibility of our algorithms. We conclude the
118 works of this paper in Section 6.

119 2 RELATED WORK

120 We present a review of the related work centered around
121 cloud-computing resource provision, bidding price, and
122 non-cooperative game.
123 Resource provision has been extensively studied for cus-
124 tomers’ resource requirement in cloud computing [5], [7], [8],
125 [9]. In [5], the issue of online combinatorial auction was first
126 proposed for the cloud computing paradigm. In [7], Baranwal
127 et al. proposed amulti-attribute combinatorial reverse auction

128for cloud resource procurement, which considers both price
129and non-price attributes. In [8], Prasad et al. proposedmecha-
130nisms to help a user to choose an appropriate provider that
131would offer resources with reasonable prices. Zhao et al. con-
132sidered the significant cost of the high volume of data gener-
133ated by cloud applications in terms of storage and transfer in
134[9]. Similar works and models can be found in [10], [11], [12],
135[13]. However, existing efforts did not consider the optimal
136profits of both cloud customers and service providers. In con-
137trast, our work addresses the problem by proposing a multi-
138attribute resource provisionmodel.
139Bidding price of cloud resources [19] plays an important
140role in increasing the profits of cloud customers and service
141providers. It is widely used in various areas for effective
142resource management, such as smart grid and cloud com-
143puting [20], [21]. Numerous studies focused on bidding
144price in cloud-computing resource provision schemes [13],
145[14], [15], [16], [17], [22], [23]. In [13], a price formation
146mechanism was proposed to make bidding and determine
147eligible transaction relationship among providers and con-
148sumers. In [14], two mechanisms, CA-LP (Linear Program-
149ming) and CA-GREEDY, were introduced to solve the
150problem of virtual machine allocation in cloud computing
151environment as a combinational auction problem. In [15], a
152distributed algorithm using a group formation game was
153proposed to determine which users and providers will trade
154resources through their cooperative decision. Similar works
155and models can be found in [22], [23], [24]. In addition,
156dynamic pricing mechanisms establish healthy competition
157among cloud service providers and improve the overall
158resource utilization [25]. Heuristically, our work introduces
159a dynamic bidding price mechanism in the provision of
160multi-attribute cloud-computing resources.
161Game theory is the study of mathematical models of con-
162flict and cooperation between intelligent rational decision-
163makers. It plays an increasingly important role in computer
164science [22], [26], [27], [28], [29], [30]. Cao et al. reviewed the
165disadvantages of the leader-follower game and proposed a
166cooperative game to provide a better solution for all players
167[26]. Truong et al. formulated a non-cooperative stochastic
168game to address the problem of providers competition,
169which was modeled as a Markov decision process [29]. Liu
170et al. focused on strategy configurations of multiple users to
171make cloud reservation [22]. By considering the problem as
172a non-cooperative game among the multiple cloud users,
173they proved that there exists a Nash equilibrium solution
174set for the formulated game. However, Ref. [22] did not con-
175sider the resource multi-attribute problem and resource sat-
176isfaction for every customer. In our system, we not only
177consider these problems, but also show that it is an incen-
178tive mechanism. Besides, different from most of the existing
179cooperative or non-cooperative algorithms, we address the
180price bidding problem in an iterative way, which achieved
181a good effect in subsequent algorithm evaluation and per-
182formance evaluation.

1833 SYSTEM MODEL

1843.1 Participants of Cloud Resource Provision

185Our model can be applied to the multi-customer and multi-
186provider condition. We focus on how customers purchase
187multi-attribute resources provided by multiple providers,
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189 benefits of both customers and providers. During the pur-
190 chasing process, there is no contact (cooperative or competi-
191 tion) among multiple customers. From the perspective of
192 maximizing the benefits of each provider, each provider
193 adopts different price strategies for each customer. In the
194 case of multi-customer and multi-provider, if the equilibri-
195 ums (resource procurement and prices) between each cus-
196 tomer and multiple providers maximize the benefits of
197 participants, then multi-customer and multi-provider con-
198 dition can be parallelized into one customer and multi-
199 provider condition satisfying that the benefits of both cus-
200 tomers and providers are maximized. Therefore, we focus
201 on the single customer (one customer) and multi-provider
202 condition in detail in the paper.

203 3.1.1 One Customer

204 The customer chooses m cloud resources from n cloud pro-
205 viders, considering k non-price attributes and price attrib-
206 utes of the resources. The index set of k resource attributes
207 can be denoted as K ¼ 1; . . . ; kf g. We denote the set of
208 resource attribute values provided by cloud providers as
209 Q ¼ Q1; . . . ; Qkf g, which consists of k dimension vectors.
210 Then, the attribute values of resources are denoted as a vec-
211 tor q ¼ ðq1; . . . ; qkÞ, where q 2 Q and qj 2 Qj. There are cus-
212 tomers with varying attribute preferences based on
213 different demands. The customer submits the highest reser-
214 vation price for one resource is �p. However, due to the pri-
215 vacy consideration of each provider, customers do not
216 know the resource cost of each provider.

217 3.1.2 Multiple Cloud Providers

218 The set of n cloud providers is denoted as N ¼ 1; . . . ; nf g.
219 For convenience, the ith cloud provider ði 2 NÞ is denoted as
220 CPi. CPi submits his/her attribute values and resource pri-
221 ces to the customer. We denote the attribute values of of the
222 resources provided by CPi as a vector qi ¼ ðqi1; . . . ; qikÞ and
223 the price of provider i as pi. The price set of each CPi is Pi

224 (pi 2 Pi). EachCPi has a reserved price ri, which is the lowest
225 acceptable price. According to the attribute values and the
226 price submitted by CPi, the customer decides to purchasemi

227 resources fromCPi, satisfying the condition of
P

i2N mi ¼ m.
228 Fig. 1 shows an example of the cloud resource provision
229 model with 3 CPs, the attributes of which are presented as
230 Table 1 in the following Section 3.2.1. After the customer

231submitting his/her resource requirement and the number
232m, the three CPs raise their resources with the correspond-
233ing attributes and price. The three CPs constitute a resource
234combination set, which consists of 23 scenarios. Then, the
235customer can select one scenario and determine m1, m2 and
236m3, where mi (i 2 f1; 2; 3g) is the provided number of CPi.
237Hence, the key problem is how the customer selects a subset
238of the resources to maximize the profits of both the cloud
239customer and providers.

2403.2 QoS Evaluation Function

241The comparison of QoS parameters is an issue on multiple
242resource attributes decision making. A simple additive
243weighting (SAW) method is used in [18] to perform the
244comparison of quality attributes.

2453.2.1 Mapping of Multi-Attribute Values

246Assume that provider CPi offers the resources at price pi
247and resource attributes qi based on the resource purchase
248requirements submitted by the customer. The attribute val-
249ues are mapped to a unified non-dimensional interval D.
250Let fj : Qj ! D be the customer’s evaluation function for
251the jth attribute value. Especially, if a customer does not
252want to purchase any resource provided by service provider
253i, then he/she can set fjðqijÞ ¼ 0 ðj 2 KÞ. An example of the
254mapping of multi-attribute values of the cloud-computing
255resources is shown in Table 1.

2563.2.2 Customer’s Resource Attribute Preferences

257The customer’s QoS evaluation function for CPi is defined:

wðr; qiÞ ¼
X
j2K

rjfjðqijÞ; (1)

259259

260where r ¼ ðr1; . . . ; rkÞ is a vector of attribute preferences
261that satisfy the condition that

P
j2K rj ¼ 1; rj � 0. For fur-

262ther simplicity, we use wi to indicate wðr; qiÞ.
263To obtain an accurate attribute preferences r, we use the
264Analytic Hierarchy Process (AHP) [18] to approximate the
265calculation of attribute preferences. Based on resource
266requirements provided by the customer, we can get a judg-
267ment matrix A ¼ ðaijÞk�k, where aij ði; j 2 KÞ represents the
268degree of importance of attribute i over attribute j. If attri-
269bute i is more important than attribute j, aij is an integer in
270the range 1 � aij � 9, which increases with the degree of
271importance of attribute i over attribute j. Moreover,
272aji ¼ 1=aij; and aii ¼ 1.
273The Square Root Method (SRM) is introduced in this
274paper to qualitatively and simply approximate the attribute
275preferences r. The SRMmethod involves two stages:

276(1) Calculating the geometric mean �ri of all the elements
277in each row of the judgment matrix A, �ri is defined:

Fig. 1. Multi-attribute cloud resource provision model.

TABLE 1
Mapping of Multi-Attribute Values

CP1 CP2 CP3 D

Bandwidth (kpb) 300 20 500 40 800 50 [1-100]
Latency (ms) 10 50 5 80 20 30 [1-100]
Main Memory 4G 20 16G 60 8G 40 [1-100]

HU ET AL.: A GAME-BASED PRICE BIDDING ALGORITHM FOR MULTI-ATTRIBUTE CLOUD RESOURCE PROVISION 3
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Y
j2K

aij

 !1=k

i 2 K; (2)

279279

280 where �r ¼ ð�r1; . . . ; �ri; . . . ; �rkÞ.
281 (2) Standardizing the attribute preference ri, which is
282 defined:

ri ¼
�riP
j2K �rj

i 2 K; (3)

284284

285 where r ¼ ðr1; r2; . . . ; rkÞ is the resource attribute
286 preferences.
287 We illustrate the QoS comparison with a simple numeri-
288 cal computation. The attribute values are assigned arbi-
289 trarily for illustration. In Table 1, the first column of each
290 provider represents his/her resource attributes and the sec-
291 ond column is the corresponding mapping values. Table 2
292 represents the attribute preference matrix A of one cus-
293 tomer. Therefore, the attribute preference is computed as
294 r ¼ ð0:75; 0:15; 0:10Þ. The final QoS values of the resources
295 provided by three providers are 24.5, 47.9, and 46.0,
296 respectively.

297 3.3 Cloud-Computing Resource Provision Model

298 We consider the up-rounding and down-rounding method
299 in the cloud-computing resource provision model. Let
300 bi ¼ pi; wih i be the bid ordered pair of CPi. The cloud-com-
301 puting resource provision model is defined:

mi bi; bb�ið Þ ¼
wi
piP

j2N
wj

pj

�m; (4)

303303

304 where bb�i is the cloud providers tuple without CPi, i.e.,
305 bb�i ¼ ðb1; b2; . . . ; bi�1; biþ1; . . . ; bnÞ. Since the quantity of the
306 provided resources cannot be a fraction, mi bi; bb�ið Þ is
307 rounded:

miðbi; bb�iÞ ¼ mi bi; bb�ið Þb c mi � mib c < 0:5;
mi bi; bb�ið Þd e mi � mib c � 0:5;

�
(5)

309309

310 where bxc denotes the largest integer not greater than or
311 equal to x, and dxe denotes the smallest integer greater than
312 or equal to x. From the following analysis and experimental
313 charts, we can know that the cloud provider with higher
314 QoS value has a higher bidding price and more benefits. It
315 presents that the proposed cloud-computing resource pro-
316 vision model is in line with the incentive mechanism.

317 3.4 Architecture Model and Problem Formulation

318 Based on the price bidding strategy, we structure the
319 resource provision model from the perspective of non-
320 cooperative game.
321 Based on the QoS evaluation function wi calculated from
322 the resource attribute values qi, each CPi provides the

323resources with price pi. If pi > �p, the customer will elimi-
324nate CPi. In turn, if pi < ri, CPi will abandon the competi-
325tion. At the beginning, we consider the number of resources
326mi that will be offered by the ith provider as a fraction in
327the resources provision model. Each mi is a continuous
328function with respect to pi and wi. The resources provision
329model is modified:

miðbi; bb�iÞ ¼
wi
piP
j2N

wj
pj

�m pi 2 ½ri; �p�;
0 otherwise:

8<
: (6)

331331

332

333The customer has a benefit function u, which is the total
334benefits from the resources provided by all of the cloud pro-
335viders. In [8], Prasad assumed that cost and QoS are corre-
336lated. Similarly, the benefit of the customer is correlated
337with QoS. Because QoS is only determined by q, the revenue
338function v of customer can represent as vðqÞ, where
339v : Q ! R ðq 2 QÞ is the customer’s revenue function with
340respect to resource attribute values. The benefit function u
341is defined:

uðbi; bb�i; qiÞ ¼
X
j2N

mjðbj; bb�jÞðvj � pjÞ; (7)

343343

344where vi ¼ vðqiÞ. We assume that vi is monotonically
345increasing with respect to qi.
346It is reasonable to consider that each cloud customer is
347selfish. When choosing cloud providers, the customer tends
348to maximize his/her own interests. The customer’s resource
349procurement strategy set of selecting providers is Q, where
350Q is a subset group of set N , i.e., Q ¼ 2N . We denote J as a
351set of the customer’s resource procurement strategy, i.e.,
352J 2 Q. According to the selection of the provider, the cus-
353tomer optimizes the objective function, which is defined:

max uðbi; bb�i; qiÞ ¼
Xn
j¼1

mjðbj; bb�jÞ � ðvj � pjÞ;

s.t. pj 2 Pj; q
j 2 Q:

(8)

355355

356

357Every cloud provider CPi has a benefit function pi, which
358is composed of revenues and costs. The cost function of CPi

359with respect to resource attribute values is denoted as
360c : Q ! R ðq 2 QÞ. The benefit function pi ði 2 NÞ is defined:

piðbi; bb�i; qiÞ ¼ miðbi; bb�iÞðpi � ciÞ; (9)
362362

363where ci ¼ cðqiÞ. It is reasonable that ci is monotonically
364increasing with respect to qi.
365Similar to the customers, the providers are also consid-
366ered as selfish to maximize their benefits. Each provider
367continually changes his/her strategy until reaching a steady
368state. The strategy set of CPi is Bi, where bi ¼ hwi; pii 2 Bi.
369According to the bidding price pi, CPi optimizes his/her
370objective function, which is calculated:

max piðbi; bb�i; qiÞ ¼ miðbi; bb�iÞ � ðpi � ciÞ;
s.t. pi 2 Pi; q

i 2 Q: (10) 372372

373

3743.5 Calculation of Critical Price

375Given the non-price attributes qi of the resources provided
376by CPi, the cost ci of CPi and the customer’s benefits fi is

TABLE 2
Attribute Preferences of One Customer

Bandwidth Latency Main Memory

Bandwidth 1.000 5.000 8.000
Latency 0.200 1.000 1.600
Main Memory 0.125 0.625 1.000

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. X, XXXXX 2018
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377 evaluated. In every round of bidding, the price of CPi is
378 related to the quantity of the provided resources, which
379 affects the benefit functions of cloud customer and provider
380 i. At the beginning of the bidding price, the customer’s strat-
381 egy J ¼ N . In each round, CPi submits the bid price pi
382 ðpi � �pÞ. Without selecting CPi, we denote the benefit func-
383 tion of the customer:

uðbb�iÞ ¼
X

j2Jnfig
m0jðbj; bb�jÞ � ðvj � pjÞ; (11)

385385

386 where m0jðbj; bb�jÞ is the quantity of resources from CPj

387 ðj 6¼ i; and i; j 2 JÞ. If uðbb�iÞ > uðbi; bb�i; qiÞ, J  Jnfig.
388 To win the competition, the bid price pi ðri � pi � �pÞ of
389 CPi satisfies the condition uðbi; bb�i; qiÞ � uðbb�iÞ. Without
390 selecting CPi ði 2 JÞ, the number of resources provision is
391 written:

m0j;j2Jnfigðbj; bb�jÞ ¼
wj

pjP
k2Jnfig

wk
pk

�m: (12)

393393

394 Based on the condition uðbb�iÞ � uðbi; bb�i; qiÞ, we obtain:

pi � vi �
P

j2Jnfig
wj

pj
� ðvj � pjÞP

j2Jnfig
wj

pj

: (13)

396396

397 The right side of the inequality is the critical price of CPi. In
398 addition to pi � �p, the critical price of provider i p0i is
399 updated:

p0i ¼ min vi �
P

j2Jnfig
wj

pj
� ðvj � pjÞP

j2Jnfig
wj

pj

; �p

8<
:

9=
;: (14)

401401

402 If p0i < ri, the provided resourcesmi of CPi is zero.

403 4 GAME FORMULATION AND ANALYSES

404 4.1 Game Formulation

405 We give the definition of Nash equilibrium and three ele-
406 ments of the game on the proposed problem of cloud-

407computing resource provision. We also propose a game-
408based bidding price mechanism for cloud-computing
409resource provision, as illustrated in Fig. 2. The cloud cus-
410tomer submits the requirement of cloud resources, and pro-
411viders compete for providing the resources to the customer.
412Providers repetitive submit their prices to the customer,
413which determines the resource provision. After a series of
414price bidding iterations, it reaches a steady state. Namely, it
415reaches a Nash equilibrium solution.

416Definition 4.1 (Nash Equilibrium). In a strategy profile, all
417participants are facing with a situation where the strategy is
418the best one when others do not change their strategies.

419The participants in our game model are one cloud cus-
420tomer and n providers. The strategy and the benefit func-
421tion of the customer are J and uðbi; bb�i; qiÞ, respectively.
422Corresponding, the strategy and the benefit function of CPi

423are Bi and piðbi; bb�i; qiÞ. Considering the maximal benefits
424of the customer, the bidding price for each cloud provider
425keeps changing until it comes to an equilibrium. Since bi is
426composed of pi and wi, and wi is represented by qi, we
427denote Eq. (9):

Ciðpi; pp�i; qiÞ ¼ �piðbi; bb�i; qiÞ; (15)

429429

430where pp�i is the bid price pi ðpi 2 PiÞ of cloud provider
431tuple without CPi, i.e., pp�i ¼ ðp1; p2; . . . ; pi�1; piþ1; . . . ; pnÞ.
432We denote P ¼ P1 � P2 � � � � � Pn. Then the benefit func-
433tion of CPi is modified:

min Ciðpi; pp�i; qiÞ ¼
wi
pi
�m�ðci�piÞP

j2J
wj
pj

pi 2 ½ri;minfp0i; �pg�;
0 otherwise;

8<
:

s.t. hpi; pp�ii 2 P; qi 2 Q:
(16)

435435

436

437The customer’s strategy set is Q and the benefit function
438is uðbi; bb�i; qiÞ. We denote C ¼ C1 �C2 � � � � �Cn. The
439price bidding game is used to represent G, where
440G ¼ fP;Q;C; ug. We have the following definition.

Fig. 2. Game-based price bidding mechanism for cloud-computing resource provision.

HU ET AL.: A GAME-BASED PRICE BIDDING ALGORITHM FOR MULTI-ATTRIBUTE CLOUD RESOURCE PROVISION 5
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441 Definition 4.2 (Nash Equilibrium of the Pricing
442 Model). A Nash equilibrium hpp	; J	i of the game G ¼
443 fP;Q;C; ug satisfies

pp	 2 argmin
pi2Pi

Ciðpi; pp�i; qiÞ; pp	 2 P; (17)
445445

446

J	 2 argmax
J2Q

uðbi; bb�i; qiÞ; J	 2 Q; (18)

448448

449 for the customer and each provider.

450 For all cloud providers, pp	 ¼ ðp	1; p	2; . . . ; p	nÞ is the best
451 countermeasure. That is to say, for CPi and any pi 2 Pi,
452 there isCiðpi; pp	�i; qiÞ � Ciðp	i , pp	�i; qiÞ:

453 4.2 Nash Equilibrium Existence Analysis

454 There are many studies of equilibrium solution existence
455 analysis [31], [32]. [31] expanded the two-person games
456 to n-person games to find Nash equilibrium, which satis-
457 fies the conditions that Pi is a compact convex set in an
458 euclidean space, Ci is a continuous function on P, and
459 Ci is a convex function on Pi with respect to pi. In [32],
460 Facchinei et al. considered a generic convex optimization
461 problem:

minimize fðxÞ;
subject to x 2 K; (19)

463463

464 where f is called the objective function and K is the con-
465 straint set. There is a minimum principle that a feasible
466 point x	 2 K is an optimal solution if and only if
467 ðy� x	ÞTÏfðx	Þ � 0, 8y 2 K:
468 Theorem 4.1. Given the non-price resource attributes q ðq 2 QÞ
469 and pi � minfp0i; �pg, non-cooperative game strategies for n
470 cloud providers M¼ ðN ; fPig; fCigÞ have a Nash equilib-
471 rium pp	 ðpp	 2 PÞ.
472 Proof. First, for each CPi; Pi is a one-dimensional closed
473 interval. Thus, Pi is compact. For any x1; x2 2 Pi, there is
474 �x1 þ ð1� �Þx2 2 Pi; for any � 2 ½0; 1�. And Pi is consid-
475 ered as a convex set. Second, when ri � pi � minfp0i; �pg,
476 we can know Ci is a continuous function on Pi. The Ci is
477 expanded to obtain:

Ciðpi; pp�i; qiÞ ¼
wi
pi
�m � ðci � piÞP

j2N
wj

pj

;

¼
wi
pi
�mciP
j2N

wj

pj

� wi �mP
j2N

wj

pj

:

(20)

479479

480 Taking a derivative with respect to pi yields:

@Ci

@pi
¼
� wicim

p2
i

P
j2N

wj

pj

� �
þ w2

i
cim

p3
iP

j2N
wj

pj

� �2 �
w2
i
m

p2
iP

j2N
wj

pj

� �2 ;

¼
� wicim

p2
i

P
j2Nnfig

wj

pj

� �
� w2

i
m

p2
iP

j2N
wj

pj

� �2 < 0: (21)

482482

483Taking the second derivative with respect to pi obtains:

@2Ci

@p2i
¼

P
j2Nnfig

wj

pj

� �
� 2wicim

p3
i

þ 2w2
i m

p3
iP

j2N
wj

pj

� �2

�
2w2

i
cim

p4
i

P
j2Nnfig

wj

pj

� �
þ 2w3

i
m

p4
iP

j2N
wj

pj

� �3 ;

¼
2wicim

p3
i

P
j2Nnfig

wj

pj

� �2
þ 2w2

i
m

p3
i

P
j2Nnfig

wj

pj

� �
P

j2N
wj

pj

� �3
> 0:

(22)

485485

486Then we can know thatCiðpi; pp�i; qiÞ is a convex function

487on Pi. At last, due to the Eq. (21), @Ci
@pi

< 0 for 8pi 2 Pi. To

488satisfy the condition that ðpi � p	i ÞTÏCiðpi; pp�i; qiÞ � 0 for

8pi 2 Pi and pi � minfp0i; �pg, then p	i is the maximum

value in the intersection of Pi and interval ½0;minfp0i; �pg�.
The proof of the theorem has been completed. tu

489Based on Theorem 4.1, we can prove that there exists a
490Nash equilibrium for the game G ¼ fP;Q;C; ug.
491Theorem 4.2. Given the non-price resource attributes q ðq 2 QÞ
492and the bidding price pp ðpp 2 PÞ, there exists a Nash equilib-
493rium solution set for formulated game G ¼ fP;Q;C; ug.
494Proof. At the beginning, we set the initial value of J to N .
495According to Theorem 4.1, there exists a Nash equilib-
496rium pp	 for M¼ ðN ; fPig; fCigÞ. If the bidding price p	i
497of each CPi satisfies ri � p	i � �p, the customer’s optimal
498choice is J ¼ N . That is to say, game G ¼ fP;Q;C; ug has
499reached the Nash equilibrium. Otherwise, the customer
500can update J ¼ Jnfig to maximize the revenue, mean-
501while, p	i ¼ 0. Based on Theorem 4.1, the customer
502updates J until J does not change. Then the Nash equilib-
503rium for game G ¼ fP;Q;C; ug is obtained. The proof of
504the theorem has been completed. tu
505The profit of the customer is increased or not reduced
506based on the analysis in Section 3.5. Besides, the profit of
507each service provider will be reduced whether he/she
508intentionally bids a high or low price from Theorem 4.1.
509From selfishness and rationality, each player will not make
510a deceptive strategy to decrease his/her profit.

5114.3 Nash Equilibrium Solution Computation

512An Equilibrium Solution Iterative algorithm is presented to
513find the equilibrium solution. The initial value of customer’s
514resource procurement strategy J is equal to the set of cloud
515providers N . After each cloud provider bidding, the pro-
516vider CPi has a critical price p

0
i. Each CPi ði 2 JÞ bids contin-

517ually until the change of p0i is less than a threshold.
518Assuming that the maximum price offered by the customer
519is �p, if p0i > �p, we set p0i ¼ �p, and p0i ¼ �p is the best choice for
520CPi. Then we can assume that p0i � �p. As mentioned in
521Section 4.2,C0i < 0 andC00i > 0, we can know that:

522(1) If there is ri � p0i � �p for each CPi ði 2 JÞ, it is true
523that
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p0i ¼ vi �
P

j2Jnfig
wj

p0
j
� ðvj � p0jÞP

j2Jnfig
wj

p0
j

: (23)

525525

526 The equilibrium solution of the modelM¼ ðJ; fPig;
527 fCigÞ is p	 ¼ ðp	1; p	2; . . . ; p	nÞ, where p	i ¼ p0i. The
528 optimal strategy for the customer is J ¼ N . The
529 equilibrium solution of the formulated game G ¼
530 fP;Q;C; ug is hp	; Ji.
531 (2) If there are providers that each CPi of them satisfies
532 ri > p0i, p	i ¼ 0: We update J ¼ Jnfig, which is
533 obtained by removing CPi. In addition, we repeat
534 update J until J does not change. The value of p	 in
535 the equilibrium solution is calculated:

p	i ¼
vi �

P
j2Jnfig

wj

p	
j
�ðvj�p	j ÞP

j2Jnfig
wj

p	
j

i 2 Jri � p	i � �p;

�p i 2 Jp	i > �p;

0 i 2 NnJ:

8>>>><
>>>>:

(24)

537537

538

539 The detailed steps of the ESI algorithm are described in
540 Algorithm 1.

541 Algorithm 1. Equalization Solution Iterative Algorithm

542 Input: N , A, Qn�k, f , v, r, �.
543 Output: ppN , J .
544 1: calculate the attribute preference r rðAÞ;
545 2: calculate the QoS function w wðr; Qn�kÞ;
546 3: initialize pi for each cloud provider CPi;
547 4: r 0;
548 5: Jð0Þ  N ;
549 6: for each cloud provider CPi 2 J do
550 7:

p
ðrþ1Þ
i  min vi �

P
j2JðrÞnfig

wj

p
ðhÞ
j

ðvj � p
ðrÞ
j ÞP

j2JðrÞnfig
wj

p
ðrÞ
j

; �p

8><
>:

9>=
>;;

552552

553

554 8: Jðrþ1Þ  JðrÞ;
555 9: if (p

ðrþ1Þ
i < ri, i 2 J) then

556 10: p
ðrþ1Þ
i  0;

557 11: Jðrþ1Þ  JðrÞnfig;
558 12: r rþ 1;
559 13: if (J ðrÞ is not equal to Jðr�1Þ or ppJðrÞ � ppJðr�1Þ

�� �� > �) then
560 14: repeat steps 7 to 12;
561 15: return pp

ðrÞ
N and J .

562 The input of Algorithm 1 is {N ; A; Qn�k; f; v; r; �},
563 where N is a set of n cloud providers, A is the judgment
564 matrix of the customer to the resources, Qn�k is the resource
565 attribute values of the providers. f is the customer’s func-
566 tion tuple with respect to Qn�k, and v; r are the customer’s
567 revenue function tuple with respect to a resource attribute
568 value and the reservation price of the provider, respectively.
569 � is an arbitrarily small number.
570 The algorithm begins to iterate from the 7. In each itera-
571 tion, the system computes the critical price of each provider
572 at first, and then determines whether the critical price of
573 each provider to meet the condition that ri � p

ðrþ1Þ
i . If not,

574 the system updates the bidding price and customer’s strat-
575 egy by lines 6 to 12. The iteration loop will continue until

576the conditions J ðrÞ ¼ Jðr�1Þ and kppðrÞJ � pp
ðr�1Þ
J k � � are

577satisfied.

5784.4 Convergence of the Iterative Algorithm

579Depending on the Algorithm 1, we verify that whether the
580obtained solution sequences converge to the Nash equilib-
581rium. If the solution sequences are proved to be monotonic
582and bounded, we can draw the conclusion that the solution
583sequences must converge to an equilibrium.

584Theorem 4.3. Supposing the Nash equilibrium solution of
585non-cooperative game strategies for n cloud providers M¼
586ðJ; fPig; fCigÞ as pp	 ðpp	 2 PÞ, sequence solutions ppðhÞ obtained
587by the proposed ESI algorithm converge to pp	.

588Proof. Here, an inductive method is utilized to prove the
589theorem. First, we know that the price sequence of each
590provider CPi is bounded. Second, we prove its monoto-
591nicity as shown below.
592The initial value is given as p

ð0Þ
i ¼ �p. We know that

593p
ð1Þ
i � �p ¼ p

ð0Þ
i : Then, supposing h ¼ s satisfies p

ðsÞ
i �

594�p ¼ p
ðs�1Þ
i , we need to prove p

ðsþ1Þ
i � �p ¼ p

ðsÞ
i in the next

595iteration. At last, if p
ðsÞ
i ¼ �p, p

ðsþ1Þ
i � �p ¼ p

ðsÞ
i . Otherwise,

596Eq. (14) is written:

pi ¼ vi �
X

j2Jnfig

1

Hj
; (25)

598598

599where

Hj ¼
P

k2Jnfi;jg
wk
pk

wjvj
pj
� wj

þ 1

vj � pj
: (26)

601601

602We observe pi as a continuous function of pj ðj 2 JnfigÞ.
603Taking the derivative ofHj with respect to pj, we get

@Hj

@pj
¼
P

k2Jnfi;jg
wk
pk
wjvj

ðwjvj � wjpjÞ2
þ 1

ðvj � pjÞ2
> 0: (27)

605605

606We take derivative of pi with the respect to pj, and we
607have

@pi
@pj
¼

X
k2Jnfig

1

H2
j

@Hj

@pj
> 0: (28)

609609

610That is to say, pi increases with pj. Since p
ðsþ1Þ
i is calcu-

611lated by p
ðsÞ
j ðj 2 JnfigÞ and p

ðsÞ
i � p

ðs�1Þ
i ði 2 JÞ, we can

612obtain p
ðsþ1Þ
i � p

ðsÞ
i ði 2 JÞ. tu

6134.5 Near-Equilibrium Price Bidding Algorithm

614Based on the ESI algorithm for the Nash equilibrium solu-
615tion, we propose a Near-equilibrium price bidding algo-
616rithm for the cloud-computing resource provision model.
617As mentioned in Section 3.3, we view mi ði 2 NÞ as a frac-
618tion. However, mi should be an integer. And, according to
619Eq. (5), the quantity of the resources available to the cus-
620tomer might not be equal to m. To get the desired result, we
621revise the model based on the ESI algorithm and propose a
622near-equilibrium price bidding algorithm. We propose a
623Resource Quantity Calculation (RQC) algorithm to compute
624the quantity of resource provision mi. The calculation pro-
625cess of the quantity of cloud resources mi is defined as
626Calculate mi(J ,m, wii, pii, �p), as described in Algorithm 2.

HU ET AL.: A GAME-BASED PRICE BIDDING ALGORITHM FOR MULTI-ATTRIBUTE CLOUD RESOURCE PROVISION 7
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628 Input: J ,m, wii, pii, �p.
629 Output:mii.
630 1: flag truetrue;
631 2: s 0; ms  m;mJ  m;
632 3: while (flag andmJ is not equal to 0) do
633 4: initializemi  0 for each cloud provider;
634 5: mðsÞ  0;
635 6: for each provider CPi do
636 7: m

ðsÞ
i  Eq. (5);

637 8: mi  mi þm
ðsÞ
i ;

638 9: mðsÞ  mðsÞ þm
ðsÞ
i ;

639 10: mJ  mJ �mðsÞ;
640 11: if (mðsÞ equals to 0) then
641 12: flag falsefalse;
642 13: else s sþ 1;
643 14: returnmii.

644 We develop a calculation process of the resource price to
645 modify the benefits of CPi. The resource Bidding Price Cal-
646 culation (RBPC) algorithm is executed in each iteration pro-
647 cess. The calculation process of the bidding price pi in the
648 current iteration is defined as Calculate pii(J , m, wii, �p), as
649 described in Algorithm 3.
650 Next, we focus on the approximate calculation of bidding
651 price pi. Combining with Algorithm 2, we propose Algo-
652 rithm 3 to find the equilibrium price in J . In Algorithm 3,
653 we first use Algorithm 2 to compute mii, and further calcu-
654 latemi

jj for each i 2 J , wheremi
jj is a vector of the quantity of

655 cloud-computing resource provisions for every CPj

656 ðj 2 J ðrÞnfigÞ. In the inner while loop, we use the dichotomy
657 to compute p

ðhÞ
i of each CPi. We set pl and pr to the left and

658 right borders, respectively. The outer while loops are exe-
659 cuted until reach the condition of ppðhÞ � ppðh�1Þ

�� �� � �.
660 Wemodify the ESI algorithm according toAlgorithm3 and
661 require a NPB algorithm. The improvement of Algorithm 4 is
662 to update the bidding price in line 7. Assuming that the com-
663 putation time of the RQC algorithm is OðaÞ, the while loop of
664 the RBPC algorithm isOðbÞ, and the iterative RBPC algorithm
665 is OðdÞ. The one computation iteration time of the NPB algo-
666 rithm in theworst case isOðnaþ b log pÞ. The time complexity
667 of theNPB algorithm in theworst case isOðdðnaþ b log pÞÞ.

668 5 EXPERIMENTS

669 Related models are compared with our proposed ESI and
670 NPB algorithms from some properties in Table 3. Due to the
671 different selected parameters of various models, we com-
672 pare the main features of various models from 7 aspects
673 and to highlight the difference in our model. In the

674following sections, we draw the graphs from the ESI and
675NPB algorithms and comparison experiments with three
676mechanisms in [8] to validate the above theoretical analysis
677based on the data analysis.

678Algorithm 3. Resource Bidding Price Calculation
679Algorithm

680Input: J ,m, wii, �p.
681Output: pii.
6821: J  N ;
6832: h 0;
6843: initialize p

ð0Þ
i  �p for each cloud provider CPi;

6854: while (k ppðhÞ � ppðh�1Þ k> �) do
6865: for (each provider CPi 2 J ) do
6876: mi

jj  Calculate mjðJ ðrÞnfig;m;wjj; p
ðh�1Þ
jj ; �pÞ;

6887: for (each provider CPi 2 J ) do
6898: pl 0; pr �p;
6909: pð0Þ  �p; pð1Þ  ðplþ prÞ=2;
69110: r 1;
69211: while (k pðrÞ � pðr� 1Þ k> �) do
69312: mii  Calculate miðJ;m;wii; hpðh�1Þ�i�i ; pðrÞi; �pÞ;
69413: u1 uðbb�iÞ;
69514: u2 uðhpðrÞ; wii; bb�iÞ;
69615: if (u1 > u2) then
69716: pr pðrÞ;
69817: if ðu1 < u2Þ then
69918: pl pðrÞ;
70019: r rþ 1;
70120: pðrÞ  ðplþ prÞ=2;
70221: p

ðhÞ
i  pðrÞ;

70322: h hþ 1;
70423: return p

ðhÞ
ii .

7055.1 Experiment Setup

706In the following simulation experiments, the number of
707cloud providers is varied in the range of 10 to 100. Table 4
708lists the entire system parameters and the corresponding
709functions. The number of resource attributes k is varied from
7100 to 100 with increment 5 when we analyse the influence of
711multi-attribute. The customer gives the relative importance
712of the k attributes, where að1; :Þ is the importance of the first
713attribute relative to other attributes. The resource attribute
714mapping value of each provider is varied from 1 to 100. We
715assume that the customer’s revenue and the cost of providers
716are in exponential form.m is set as 1000. Besides, the parame-
717ter of controlling the iteration is set at 0.01.

7185.2 Algorithm Evaluation

719Table 5 lists the specific parameters of an example to vali-
720date our conclusions.

TABLE 3
Comparison of Cloud-Computing-Resource Provision Models

Model Auction Multi-attribute QoS Incentive Game theory Allocation/Provision Algorithm

CA [18] yes no yes no no allocation
FMCDAM [16] yes yes yes no no allocation
C-DSIC, C-BIC, C-OPT [8] yes yes yes yes no provision
Chonho et al. [15] no no yes yes yes provision heuristic
NPBA [22] no no no no yes allocation iterative
ESI andNPB no yes yes yes yes provision iterative
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721 Algorithm 4. Near-Equalization Price Bidding
722 Algorithm

723 Input: N , A, Qn�k, f , v, r, �.
724 Output: ppN , J .
725 1: calculate the attribute preferences r rðAÞ;
726 2: calculate the QoS function w wðr; Qn�kÞ;
727 3: initialize pi for each cloud provider CPi;
728 4: r 0;
729 5: Jð0Þ  N ;
730 6: p

ðrÞ
ii  Calculate piiðJðrÞ;m;wii; �pÞ;

731 7: Jðrþ1Þ  JðrÞ;
732 8: if (p

ðrÞ
i < ri, i 2 J) then

733 9: p
ðrÞ
i  0;

734 10: Jðrþ1Þ  Jðrþ1Þnfig;
735 11: r rþ 1;
736 12: if (J ðrÞ is not equal to Jðr�1Þ or kppðrÞ

JðrÞ � pp
ðr�1Þ
Jðr�1Þ k > �) then

737 13: repeat steps 7 to 11.

738 14: return pp
ðrÞ
N and J .

739 5.2.1 Convergence of Algorithm ESI and NPB

740 Parameters from the project described in Table 5 are used in
741 the experiments. The experimental results are presented in
742 Figs. 3 and 4.
743 Figs. 3a and 3b show the convergence process of bidding
744 price by executing ESI and NPB algorithms, respectively.
745 As the number of iterations increases, the bidding price of
746 each cloud provider is decreasing and tends to a relatively
747 stable state in two algorithms. In the iterative process, some
748 providers withdraw the competition when the condition
749 satisfies pi < ri. Fig. 3 shows that the iterative process and
750 results in ESI close to the ones in the NPB algorithm. More-
751 over, it can be seen that the bidding prices reach a stable
752 state after 10 iterations, which shows high efficiency of our
753 developed algorithms.
754 Fig. 4 analyzes the iterative process of two randomly
755 selected CPs (CP5, CP16) between two algorithms, individu-
756 ally. In the iterative process, the descent speed of bidding

757price and the reached stable value of each CP are consistent
758in both algorithms. The maximal pricing error ranges of
759CP5 and CP16 are 1.52 and 2.76 percent, respectively, which
760show that how close the convergence of two algorithms is.

7615.2.2 Comparison of Algorithm ESI and NPB

762To illustrate how close a near-equilibrium solution found by
763our proposed NPB algorithm to the solution computed by
764ESI, experiments are performed for the ESI and NPB algo-
765rithms. The parameters are outlined in Table 5. The experi-
766mental results are presented in Fig. 5.
767Fig. 5 analyzes the comparison the ESI and NPB algo-
768rithms from four different views. The blue and orange col-
769umns represent the values calculated by ESI and NPB,
770respectively. The selected providers are CP2, CP5, CP7, CP9,
771and CP12. Meanwhile, bidding prices of other providers are
772zero. The maximal error of two algorithms in Fig. 5a is 1.10
773percent. The values of resources provided by each CP
774between two algorithms are very close, whose maximal
775error is 1.30 percent. In Fig. 5c, obviously, the former is the
776benefit value computed from the Nash equilibrium solution
777and smaller than that of the latter. Specifically, differences
778of bidding prices between ESI and NPB are in the range
779from 0 to 0.46 percent. Similarly, Fig. 5d shows that the bid-
780ding prices between two algorithms are close. Based on the
781comparison of the convergence process and four different
782views, the percent differences are extremely small, which
783reflect that our NPB algorithm can obtain a very well near-
784optimal solution.

7855.3 Profits Analysis of One Customer and Providers

7865.3.1 Multi-Attribute Analysis

787The values of resource multi-attribute are relevant to QoS,
788the cost of each CP , and the benefit of customers. To illus-
789trate that how multiple attributes influence on the selected
790CPs, the parameters are selected as follows. Assuming that
791n ¼ 200, the attribute projection evaluation value of each CP

TABLE 4
System Parameters

System parameters Variable range

Quantity of resource attributes ðkÞ [0, 100]
Comparison of the first attribute with
other attributes ðað1; :ÞÞ

random in [1, 9]

Number of cloud providers ðnÞ [10, 100]
Evaluation function ðfjÞ random in [1, 100]

Customer’s revenue function ðviÞ
P

j2K a � ðqijÞb=k
Cost function of provider i ðciÞ

P
j2K uðqijÞh=k

Conservative bidding price ðriÞ �ci
Quantity of resources required ðmÞ 1000
Other parameter (�) 0.01

TABLE 5
Specific Parameters for an Example

Parameter n k a b h u � �p

Value 20 10 0.8 0.7 1.0 0.4 1.5 7.9

Fig. 3. Bidding prices process of cloud providers.

Fig. 4. Bidding price process of CP5 and CP16.
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792 is randomly chosen from the interval of 1 to 100, and k
793 increases by 5 from 5 to 100. The experimental results are
794 presented in Figs. 6a and 6b.
795 Figs. 6a and 6b show the range of each selected provider’s
796 resource cost and one customer’s benefit with the increment
797 of k, respectively. The general trend of the blue line is
798 decreasing, whereas the orange line is increasing. The aver-
799 age value maintains at a relatively stable state. This phenom-
800 enon reflects that the more attributes one customer
801 considers, the narrower the range of cost of the selected pro-
802 viders is, and it is earlier to select the appropriate providers.

803 5.3.2 Analysis of the Different Quantities of Providers

804 We illustrate the relevance between the number of pro-
805 viders and profits of customer and providers. Assuming
806 that k ¼ 10, n is a variable, which fetches the value from 20
807 to 100 with the increment of 10. The experimental results
808 are presented in Fig. 7.
809 Fig. 7 shows the influence of increasing the number of pro-
810 viders. Total profits ofCPs decrease to a stable value, whereas
811 the benefit of customer increases at first and reaches a

812relatively stable state. When the number of providers n
813increases, providers are posing growing competition for
814resource provision, which results in decrease of the fraction of
815selected CPs. Despite the fraction of selected CPs decreases,
816the number of selected CPs tends to be stable. This is the rea-
817son that the benefits of total profits of providers and the cus-
818tomer’s profit tend to a relatively stable state, respectively.

8195.4 Performance Evaluation

820The time performance of the proposed algorithms is evalu-
821ated in terms of execution time. The variables are the num-
822ber of attributes k and providers n. The other parameters
823are the same as in Table 5. We denote the case of k attributes
824and n providers as k� n. The variables of k and n increase
825by 10 from 20 to 100, respectively. The experimental results
826are presented in Figs. 8, 9a, 9b, and 10, respectively.
827Fig. 8 shows the time curve of each iteration for each
828k� n. On the whole, the iteration time of each curve is rela-
829tively large at the beginning, then reaches a stable state after
830a certain number of iteration. In Fig. 8, it is shown that the

Fig. 5. Comparison of algorithms ESI and NPB.

Fig. 6. Influence of different scales of attributes.

Fig. 7. Influence of different quantities of providers.

Fig. 8. Iterative times of different scales of resource attributes and
providers.

Fig. 9. Number of selected providers and execution time.

Fig. 10. Time growth ratio of different scales of resource attributes and
providers.
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of831 larger the values of k and n, the longer each iteration time,

832 excluding the case of 90� 90. The reason is that in the term
833 of 90� 90, the number of providers in bidding is small after
834 several iterations. This results in very little time overhead of
835 each iteration.
836 We give an example of 40� 40 to analyze the time perfor-
837 mance in detail. Fig. 9a presents the number of providers in
838 bidding with the increase in number of iterations. The curve
839 is monotonically decreasing at the beginning, and finally
840 reaches a steady value of 7 after almost 28 iterations. Fig. 9b
841 shows the execution time of each iteration. The red dotted
842 line represents a linear time with a slope of 145, which is the
843 first execution time. It is observed that the time growth ratio
844 is gradually reduced as the number of iterations increases.
845 This phenomenon can also explain that the time of each iter-
846 ation is monotonically decreasing to a steady state in Fig. 8.
847 Fig. 10 shows the time growth ratio of each iteration for
848 each case of k� n. As the number of iterations increases, the
849 time growth ratio of each curve is gradually decreasing and
850 stabilizes to the value of 1, which explains the curve change
851 of Fig. 9b in detail.
852 Generally speaking, the near-equilibrium solution
853 obtained by our proposed NPB is extremely close to the
854 equilibrium solution obtained by ESI. Second, the conver-
855 gence rate of the two algorithms is very fast. Again, the ben-
856 efits of the customer and providers are affected by the
857 multiple attributes and the number of providers. At last, the
858 time complexity of algorithms is less than linear, which is
859 much better than the worst case time.

860 5.5 Comparison with C-DSIC, C-BIC and C-OPT

861 Prasad andRao [8] proposed amulti-attribute cloud resource
862 procurement approach, where three possible auction mecha-
863 nisms (C-DSIC, C-BIC, and C-OPT) were presented. All of
864 these mechanisms consider the multi-attribute cloud reso-
865 urce provision from a cost perspective. In C-DSIC and C-BIC
866 mechanisms, the cloud resource provider that charges the
867 lowest cost per unit QoS is declared the winner. The C-OPT
868 overcomes the limitation of C-DSIC that is not balanced bud-
869 get and the limitation of C-BIC that is not individually ratio-
870 nal. The cloud vendor with the least virtual cost is declared
871 the winner. The virtual cost considers the reverse hazard rate
872 related to cost andQoS Fið:Þ

fið:Þ and is defined as

Hiðci; qiÞ ¼ ci þ
FiðciqiÞ
fiðciqiÞ

;
874874

875where ci is the bidding cost of each cloud vendor, qi is the
876mapping value of the promised QoS parameters, F ð:Þ is the
877cumulative distribution function (CDF), and fð:Þ is the den-
878sity of the marginal function. Different from these mecha-
879nisms, in our work, we consider the same issue from the
880perspective of profit. We focus on improving the benefits of
881both cloud customers and service providers instead of just
882customers.
883To perform the comparison experiments, we made some
884modifications to the three mechanism algorithms. In C-
885DSIC and C-BIC, the cloud vendor who charges the largest
886profit multiplied by QoS is declared the winner. In C-OPT,
887the cloud vendor with the most virtual profit is declared the
888winner. In the comparison experiments, assuming that
889k ¼ 10, m ¼ 1000, and n is a variable, which fetches the
890value from 20 to 100 with the increment of 20. Besides, the
891distribution of random variables in C-BIC and C-OPT is uni-
892formly distributed. The comparison between NPB algo-
893rithm and the three mechanisms is shown in Fig. 11.
894In Fig. 11, as the number of providers increases, the profit
895trend of the cloud customer in each algorithm first rises and
896then stays steady. In addition, the profit of NPB is higher
897than that of C-DSIC and C-BIC, and the variance of NPB
898and C-OPT is small. In terms of customer benefits, the algo-
899rithms ESI and NPB have absolute advantages. In addition,
900we also maximize the benefit of each provider through com-
901petition between service providers, which is not considered
902in algorithms C-DSIC, C-BIC, and C-OPT.

9036 CONCLUSIONS

904Our study focuses on the problem of multi-attribute cloud
905resource provision about pricing strategy for profit maximi-
906zation consisting of both cloud customers and service pro-
907viders from the perspective of non-cooperative game
908theoretical method. The existence of Nash equilibrium solu-
909tion is proved. To calculate the solution, we propose ESI
910and NPB algorithms, which are proved to converge to a
911Nash equilibrium. Extensive simulated experiments results
912and the comparison experiments with the state-of-the-art
913and benchmark solutions validate and show the feasibility
914of the proposed method.
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