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Multi-Attribute Cloud Resource Provision
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Abstract—The pricing mechanism of cloud-computing resources is an essential issue for both cloud customers and service providers,
especially from the point of multi-provider competition. Although various mechanisms for resource provision are proposed, few studies
have focused on multi-attribute resource provision with the objective of improving benefits of both cloud customers and service
providers. To address the issue, we propose a price bidding mechanism for multi-attribute cloud-computing resource provision from the
perspective of a non-cooperative game, in which the information of each player (customers and providers) is incomplete to others and
each player wishes to maximize his/her own benefit. More specifically, considering the fairness pricing competition, we propose a novel
and incentive resource provision model referring to the Quality-of-Service (QoS) and the bidding price. Then, combining with the
resource provision model, the problem of price bidding is formulated as a game to find a proper price for each cloud provider. We
demonstrate the existence of Nash equilibrium solution set for the formulated game model by assuming that the quantity function of
provided resources from every provider is continuous. To find a Nash equilibrium solution, we propose an Equilibrium Solution lterative
(ESI) algorithm, which is proved to converge to a Nash equilibrium. Finally, a Near-equalization Price Bidding (NPB) algorithm is
proposed to modify the obtained Nash equilibrium solution. Extensive simulated experiments results and the comparison experiments
with the state-of-the-art and benchmark solutions validate and show the feasibility of the proposed method.

Index Terms—Cloud computing, Nash equilibrium, non-cooperative game theory, price bidding strategy, resource provision
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1 INTRODUCTION

1.1 Motivation
BENEFITING from excellent computing power and elastic
resource allocation, cloud computing is widely applied
in various applications, such as Amazon EC2, Microsoft
Azure and Google AppEngine [1]. It offers an attractive par-
adigm for the dynamic provisioning of computing services
in a pay-as-you-go manner [2]. Customers use and pay for
services on-demand without considering the upfront infra-
structure costs and the subsequent maintenance costs [3],
while cloud providers are not concerned about the overpro-
visioning or underprovisioning. It is a significant issue on
how customers select resources combinations from cloud
providers to maximize their profits, while satisfying the
optimal profit of each provider at the same time.

For cloud customers, the profit is determined by the pro-
vided resources and the profit brought by each resource [4],
[5], [6], [7]. Cloud providers submit different multi-attribute
parameters and bidding prices for the resource provision
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competition. Each customer compares the Quality-of-Service
(QoS) in terms of multi-attribute, such as bandwidth, latency
and the reputation of the corresponding cloud provider.
Moreover, due to economic reasons, a rational customer
might not purchase all the cloud resources from the same
provider. If the ratio of the QoS to the price of a provider’s
cloud resource is relatively high, the customer will purchase
more resources from the provider. Otherwise, the customer
will buy less resources or refuse to buy them, even if the
quality of the resources is excellent. In addition, the resource
provision mechanism is affected by the bidding prices that
determine the profit of each provider. Besides, the resources
provided by each provider are affected by the decisions of
other ones. It is essential to propose an incentive resource
provision model and construct a pricing strategy to maxi-
mize each cloud provider’s profit and satisfy each customer’s
optimal profit [5], [7], [8], [9], [10], [11], [12].

In this paper, we mainly focus on maximizing the bene-
fits of both cloud customers and service providers. A cus-
tomer can purchase cloud resources from multiple cloud
providers instead of one. The non-cooperative game can be
described as each participant choosing his/her strategy
from the perspective of maximizing his/her own benefits
without considering the benefits of others or the overall sit-
uation. We hope to find a price equilibrium point to maxi-
mize the benefits of each participant (customers and
providers). Each participant updates his/her optimal strat-
egy based on information of the previous round until no
change occurs. That is, the optimal solution to the discussed
issue can be well calculated using an iterative algorithm.

Numerous studies have discussed the auction mecha-
nisms, which include the relationship between procurement
parties, supplier bidding behaviors and strategies, and the
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design of optimal mechanisms [5], [7], [8], [13], [14], [15],
[16], [17], [18]. These are all bidding mechanisms that con-
sist of a series of auction rules that determine who is the
winner and how much it should pay. Prasad and Rao [8]
proposed three kinds of auction mechanisms for achieving
automated procurement in cloud. These auction mecha-
nisms are suitable for a single resource, which is extended
in [18] for multiple resources from several cloud providers,
i.e., a combinatorial auction in hybrid cloud. However, the
existing results do not consider the cloud resource procure-
ment issue from the perspective of optimizing the benefits
of both cloud customers and service providers, but only
from the perspective of determining a winner for each cus-
tomer. In this work, we consider that a customer can be
served by multiple providers. Therefore, based on the non-
cooperative game theory, we propose an iterative algorithm
to optimize the benefits of both cloud customers and service
providers and give the convergence analysis of the iterative
algorithm solutions.

1.2 Our Contributions
In this paper, we focus on the price bidding mechanism for
cloud providers resource provision competition from the
perspective of non-cooperative game. Our main contribu-
tions are listed as follows:

e With the perspective of non-cooperative game, a
mechanism of pricing strategy for resource provision
is constructed to maximize the profits of both the
cloud customers and service providers.

e Regarding the quantity of the resource provision
from each provider as a fraction to get continuous
benefit functions, we prove the existence of Nash
equilibrium solution for the proposed game model.

e An ESI algorithm is proposed to compute the Nash
equilibrium solution, and the convergence of the
solution sequence obtained by the ESI algorithm is
analyzed.

e Anapproximate price bidding NPB algorithm is pro-
posed to modify the solutions. Two equilibrium sol-
utions obtained by the ESI and NPB algorithms are
compared respectively.

The remainder of the paper is organized as follows. In
Section 2, we introduce the related work. Section 3 describes
the system model and presents the problem that needs to be
solved. In Section 4, we consider the problem as a non-coop-
erative game. An ESI algorithm and a NPB algorithm are
proposed respectively. In Section 5, extensive experiments
and the comparison experiments results with others indi-
cate the feasibility of our algorithms. We conclude the
works of this paper in Section 6.

2 RELATED WORK

We present a review of the related work centered around
cloud-computing resource provision, bidding price, and
non-cooperative game.

Resource provision has been extensively studied for cus-
tomers’ resource requirement in cloud computing [5], [7], [8],
[9]. In [5], the issue of online combinatorial auction was first
proposed for the cloud computing paradigm. In [7], Baranwal
etal. proposed a multi-attribute combinatorial reverse auction
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for cloud resource procurement, which considers both price
and non-price attributes. In [8], Prasad et al. proposed mecha-
nisms to help a user to choose an appropriate provider that
would offer resources with reasonable prices. Zhao et al. con-
sidered the significant cost of the high volume of data gener-
ated by cloud applications in terms of storage and transfer in
[9]. Similar works and models can be found in [10], [11], [12],
[13]. However, existing efforts did not consider the optimal
profits of both cloud customers and service providers. In con-
trast, our work addresses the problem by proposing a multi-
attribute resource provision model.

Bidding price of cloud resources [19] plays an important
role in increasing the profits of cloud customers and service
providers. It is widely used in various areas for effective
resource management, such as smart grid and cloud com-
puting [20], [21]. Numerous studies focused on bidding
price in cloud-computing resource provision schemes [13],
[14], [15], [16], [17], [22], [23]. In [13], a price formation
mechanism was proposed to make bidding and determine
eligible transaction relationship among providers and con-
sumers. In [14], two mechanisms, CA-LP (Linear Program-
ming) and CA-GREEDY, were introduced to solve the
problem of virtual machine allocation in cloud computing
environment as a combinational auction problem. In [15], a
distributed algorithm using a group formation game was
proposed to determine which users and providers will trade
resources through their cooperative decision. Similar works
and models can be found in [22], [23], [24]. In addition,
dynamic pricing mechanisms establish healthy competition
among cloud service providers and improve the overall
resource utilization [25]. Heuristically, our work introduces
a dynamic bidding price mechanism in the provision of
multi-attribute cloud-computing resources.

Game theory is the study of mathematical models of con-
flict and cooperation between intelligent rational decision-
makers. It plays an increasingly important role in computer
science [22], [26], [27], [28], [29], [30]. Cao et al. reviewed the
disadvantages of the leader-follower game and proposed a
cooperative game to provide a better solution for all players
[26]. Truong et al. formulated a non-cooperative stochastic
game to address the problem of providers competition,
which was modeled as a Markov decision process [29]. Liu
et al. focused on strategy configurations of multiple users to
make cloud reservation [22]. By considering the problem as
a non-cooperative game among the multiple cloud users,
they proved that there exists a Nash equilibrium solution
set for the formulated game. However, Ref. [22] did not con-
sider the resource multi-attribute problem and resource sat-
isfaction for every customer. In our system, we not only
consider these problems, but also show that it is an incen-
tive mechanism. Besides, different from most of the existing
cooperative or non-cooperative algorithms, we address the
price bidding problem in an iterative way, which achieved
a good effect in subsequent algorithm evaluation and per-
formance evaluation.

3 SysTeEm MODEL

3.1 Participants of Cloud Resource Provision

Our model can be applied to the multi-customer and multi-
provider condition. We focus on how customers purchase
multi-attribute resources provided by multiple providers,
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Fig. 1. Multi-attribute cloud resource provision model.

and how providers set pricing strategies to maximize the
benefits of both customers and providers. During the pur-
chasing process, there is no contact (cooperative or competi-
tion) among multiple customers. From the perspective of
maximizing the benefits of each provider, each provider
adopts different price strategies for each customer. In the
case of multi-customer and multi-provider, if the equilibri-
ums (resource procurement and prices) between each cus-
tomer and multiple providers maximize the benefits of
participants, then multi-customer and multi-provider con-
dition can be parallelized into one customer and multi-
provider condition satisfying that the benefits of both cus-
tomers and providers are maximized. Therefore, we focus
on the single customer (one customer) and multi-provider
condition in detail in the paper.

3.1.1 One Customer

The customer chooses m cloud resources from n cloud pro-
viders, considering k non-price attributes and price attrib-
utes of the resources. The index set of k resource attributes
can be denoted as K ={1,...,k}. We denote the set of
resource attribute values provided by cloud providers as
Q ={Q1,...,Qr}, which consists of k dimension vectors.
Then, the attribute values of resources are denoted as a vec-
tor ¢ = (q1,...,q;), where g € Q and ¢; € Q;. There are cus-
tomers with varying attribute preferences based on
different demands. The customer submits the highest reser-
vation price for one resource is p. However, due to the pri-
vacy consideration of each provider, customers do not
know the resource cost of each provider.

3.1.2 Multiple Cloud Providers

The set of n cloud providers is denoted as N = {1,...,n}.
For convenience, the ith cloud provider (i € ) is denoted as
CP,. CP, submits his/her attribute values and resource pri-
ces to the customer. We denote the attribute values of of the
resources provided by CP; as a vector ¢' = (qi,...,q}) and
the price of provider ¢ as p;. The price set of each CP; is P;
(pi € P,). Each CP, has areserved price r;, which is the lowest
acceptable price. According to the attribute values and the
price submitted by CP;, the customer decides to purchase m;
resources from C'P;, satisfying the condition of ) .\, m; = m.

Fig. 1 shows an example of the cloud resource provision
model with 3 CPs, the attributes of which are presented as
Table 1 in the following Section 3.2.1. After the customer

TABLE 1
Mapping of Multi-Attribute Values
C.Pl CPQ CP% D
Bandwidth (kpb) 300 20 500 40 800 50 [1-100]
Latency (ms) 10 50 5 80 20 30 [1-100]
Main Memory 4G 20 16G 60 8G 40 [1-100]

submitting his/her resource requirement and the number
m, the three CPs raise their resources with the correspond-
ing attributes and price. The three C'Ps constitute a resource
combination set, which consists of 2° scenarios. Then, the
customer can select one scenario and determine m;, ms and
mg, where m; (i € {1,2,3}) is the provided number of CP,.
Hence, the key problem is how the customer selects a subset
of the resources to maximize the profits of both the cloud
customer and providers.

3.2 QoS Evaluation Function

The comparison of QoS parameters is an issue on multiple
resource attributes decision making. A simple additive
weighting (SAW) method is used in [18] to perform the
comparison of quality attributes.

3.2.1 Mapping of Multi-Attribute Values

Assume that provider CP; offers the resources at price p;
and resource attributes ¢° based on the resource purchase
requirements submitted by the customer. The attribute val-
ues are mapped to a unified non-dimensional interval D.
Let f;: Q; — D be the customer’s evaluation function for
the jth attribute value. Especially, if a customer does not
want to purchase any resource provided by service provider
i, then he/she can set fj(q;t) =0 (j € K). An example of the
mapping of multi-attribute values of the cloud-computing
resources is shown in Table 1.

3.2.2 Customer’s Resource Attribute Preferences
The customer’s QoS evaluation function for CP, is defined:

wip,q') = pifi(d),

jex

)]

where p = (p;,...,p;) is a vector of attribute preferences
that satisfy the condition that Zje,c pj=1,p; > 0. For fur-
ther simplicity, we use w; to indicate w(p, ¢').

To obtain an accurate attribute preferences p, we use the
Analytic Hierarchy Process (AHP) [18] to approximate the
calculation of attribute preferences. Based on resource
requirements provided by the customer, we can get a judg-
ment matrix A = (a;;) ., Where a;; (i,j € K) represents the
degree of importance of attribute i over attribute j. If attri-
bute i is more important than attribute j, a;; is an integer in
the range 1 < a;; <9, which increases with the degree of
importance of attribute ¢ over attribute j. Moreover,
Ay = 1/(1@', and a;; = 1.

The Square Root Method (SRM) is introduced in this
paper to qualitatively and simply approximate the attribute
preferences p. The SRM method involves two stages:

1)

Calculating the geometric mean p; of all the elements
in each row of the judgment matrix A, p; is defined:
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TABLE 2
Attribute Preferences of One Customer
Bandwidth Latency Main Memory
Bandwidth 1.000 5.000 8.000
Latency 0.200 1.000 1.600
Main Memory 0.125 0.625 1.000
1/k
p; = (H “t/) ieK, 2)
jek
where p = (p1,. -+, Pis- -+ Pp)-
(2) Standardizing the attribute preference p;, which is
defined:
p==tl ek, (3)
Zjelc Pj

where p = (p;, ps,...,p;) is the resource attribute
preferences.

We illustrate the QoS comparison with a simple numeri-
cal computation. The attribute values are assigned arbi-
trarily for illustration. In Table 1, the first column of each
provider represents his/her resource attributes and the sec-
ond column is the corresponding mapping values. Table 2
represents the attribute preference matrix A of one cus-
tomer. Therefore, the attribute preference is computed as
p = (0.75,0.15,0.10). The final QoS values of the resources
provided by three providers are 24.5, 47.9, and 46.0,
respectively.

3.3 Cloud-Computing Resource Provision Model
We consider the up-rounding and down-rounding method
in the cloud-computing resource provision model. Let
b; = (p;,w;) be the bid ordered pair of CP,. The cloud-com-
puting resource provision model is defined:

w

mm; (bi, b_;) :Luj

4)
Zje/\/ i

m,

where b_; is the cloud providers tuple without CP,, i.e.,
b—i = (bl7 bg, - abi—h bi+1, . , b“). Since the quantity of the
provided resources cannot be a fraction, m;(b;,b_;) is
rounded:

mi(biabfi) = {

\_mi(biybfi)Jl m; — ;] i (5)

[72:(bi, b-;)

where |z] denotes the largest integer not greater than or
equal to z, and [x] denotes the smallest integer greater than
or equal to =. From the following analysis and experimental
charts, we can know that the cloud provider with higher
QoS value has a higher bidding price and more benefits. It
presents that the proposed cloud-computing resource pro-
vision model is in line with the incentive mechanism.

3.4 Architecture Model and Problem Formulation
Based on the price bidding strategy, we structure the
resource provision model from the perspective of non-
cooperative game.

Based on the QoS evaluation function w; calculated from
the resource attribute values ¢', each CP; provides the
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resources with price p;. If p; > p, the customer will elimi-
nate CP;. In turn, if p; < r;, CP; will abandon the competi-
tion. At the beginning, we consider the number of resources
m; that will be offered by the ith provider as a fraction in
the resources provision model. Each m; is a continuous
function with respect to p; and w;. The resources provision
model is modified:

w;

ﬁm pi € [1i, D),

m; (b7> b77) = jeN Pj (6)

0 otherwise.

The customer has a benefit function u, which is the total
benefits from the resources provided by all of the cloud pro-
viders. In [8], Prasad assumed that cost and QoS are corre-
lated. Similarly, the benefit of the customer is correlated
with QoS. Because QoS is only determined by ¢, the revenue
function v of customer can represent as wv(g), where
v:Q — R (q € Q) is the customer’s revenue function with
respect to resource attribute values. The benefit function u
is defined:

(bisbirg') =D mi(b,b-5)(v; — py), ™

JEN

where v; =v(¢'). We assume that v; is monotonically
increasing with respect to ¢'.

It is reasonable to consider that each cloud customer is
selfish. When choosing cloud providers, the customer tends
to maximize his/her own interests. The customer’s resource
procurement strategy set of selecting providers is ®, where
© is a subset group of set \V, i.e, ® = 2. We denote J as a
set of the customer’s resource procurement strategy, i.e.,
J € ©. According to the selection of the provider, the cus-
tomer optimizes the objective function, which is defined:

max (b, boiq') =Y m(bj,b-) - (v —pj), ®
=1

st. pj€ Pj,qj € Q.

Every cloud provider CP, has a benefit function r;, which
is composed of revenues and costs. The cost function of CP,
with respect to resource attribute values is denoted as
¢: Q — R(q € Q). The benefit function 7r; (i € N) is defined:

mi(bibi, q') = m;(bi, b_i) (pi — i), 9)

where ¢; = ¢(¢'). It is reasonable that ¢; is monotonically
increasing with respect to ¢'.

Similar to the customers, the providers are also consid-
ered as selfish to maximize their benefits. Each provider
continually changes his/her strategy until reaching a steady
state. The strategy set of C'P, is BB;, where b; = (w;, p;) € B,.
According to the bidding price p;, CP; optimizes his/her
objective function, which is calculated:

max  7;(b;, b_i,q") = m;(bi,b_;) - (pi —
st. p, €Pig €Q.

a0

3.5 Calculation of Critical Price
Given the non-price attributes ¢’ of the resources provided
by CP,;, the cost ¢; of CP; and the customer’s benefits f; is
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Fig. 2. Game-based price bidding mechanism for cloud-computing resource provision.

evaluated. In every round of bidding, the price of CP; is
related to the quantity of the provided resources, which
affects the benefit functions of cloud customer and provider
i. At the beginning of the bidding price, the customer’s strat-
egy J =N. In each round, CP, submits the bid price p;
(pi < p). Without selecting CP,, we denote the benefit func-
tion of the customer:

u(b_;) = (11)

>

je\{i}

m(bj, b-) - (vj — p)),

where m/(bj, b_;) is the quantity of resources from CP;
(_] ;é i, and i,] € J) If u(b_t) > u(b“ b, qL), J — J\{’L}

To win the competition, the bid price p; (r; <p; < p) of
CP; satisfies the condition w(b;,b_;,q") > u(b_;). Without
selecting C'P; (i € J), the number of resources provision is
written:

ﬂ
m (b b ) = e . (12)
JuieI\{i}\"1 P =) ZkEJ\{i} p_:
Based on the condition u(b_;) < u(b;,b_;, ¢"), we obtain:
Sieniy o (05— py)
psv— == o (13)
ZjeJ\{i} i

The right side of the inequality is the critical price of CF;. In

addition to p; < p, the critical price of provider ¢ p| is

updated:

Yenii g (Wi i)
—py. a4

Z je€INi} pj

/ .
p; = ming v; —

If p; < r;, the provided resources m; of C'P, is zero.

4 GAME FORMULATION AND ANALYSES

4.1 Game Formulation

We give the definition of Nash equilibrium and three ele-
ments of the game on the proposed problem of cloud-

computing resource provision. We also propose a game-
based bidding price mechanism for cloud-computing
resource provision, as illustrated in Fig. 2. The cloud cus-
tomer submits the requirement of cloud resources, and pro-
viders compete for providing the resources to the customer.
Providers repetitive submit their prices to the customer,
which determines the resource provision. After a series of
price bidding iterations, it reaches a steady state. Namely, it
reaches a Nash equilibrium solution.

Definition 4.1 (Nash Equilibrium). In a strategy profile, all
participants are facing with a situation where the strategy is
the best one when others do not change their strategies.

The participants in our game model are one cloud cus-
tomer and n providers. The strategy and the benefit func-
tion of the customer are J and u(b;,b_;,q'), respectively.
Corresponding, the strategy and the benefit function of CP;
are B; and (b, b_;, ¢'). Considering the maximal benefits
of the customer, the bidding price for each cloud provider
keeps changing until it comes to an equilibrium. Since b; is
composed of p; and w;, and w; is represented by q, we
denote Eq. (9):

\I,Z(plapfmq?) = _ﬂi(bivbfiaqi)a (15)
where p_; is the bid price p; (p; € P;) of cloud provider
tuple without CP,, ie., p_; = (p1,P2,-- - Di—1,Pit1s---+Dn)-
We denote P =P; x Py x --- x P,. Then the benefit func-
tion of C'P; is modified:

i (c;—p;)

. i o p; € |r;, min p’.yﬁ ,
nun \Pi(pivpfia ql) = Zjelp_j l [ ' { ! }} (16)
0 otherwise,
s.t. <pz» > eP, q € Q.

The customer’s strategy set is ® and the benefit function
is u(b,b_i,¢"). We denote ¥ =W, x ¥y x---xW¥,. The
price bidding game is used to represent G, where
G = {P,0;¥,u}. We have the following definition.

407
408
409
410
411
412
413
414
415

416
417
418

419
420
421
422
423
424
425
426
427

429
430
431
432
433

435
436
437
438
439
440



441
442
443

445
446

448
449

450
451
452

453
454
455
456
457
458
459
460
461

463
464
465
466
467

468
469
470
471

472
473
474
475
476
477

479
480

482

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11,

Definition 4.2 (Nash Equilibrium of the Pricing
Model). A Nash equilibrium (p*,J*) of the game G =
{P,0;V¥, u} satisfies

p* € argmin¥;(pi,p_;,¢'), p* € P, (17)
Pi€P;
J* € argmaxu(b;,b_;, q'),J €0, 18)

Je®

for the customer and each provider.

For all cloud providers, p* = (p},p;,...,p}) is the best
countermeasure. That is to say, for CP and any p; € P;,
there is W;(pi, p*;, ¢') > Vi(p;, p*;, q')-

4.2 Nash Equilibrium Existence Analysis
There are many studies of equilibrium solution existence
analysis [31], [32]. [31] expanded the two-person games
to n-person games to find Nash equilibrium, which satis-
fies the conditions that P; is a compact convex set in an
euclidean space, ¥; is a continuous function on P, and
W, is a convex function on P; with respect to p;. In [32],
Facchinei et al. considered a generic convex optimization
problem:

minimize  f(z),

19
x ek, o

subject to

where f is called the objective function and K is the con-
straint set. There is a minimum principle that a feasible
point z* € K is an optimal solution if and only if
(y—2)'vf(a") 20, vy € K.

Theorem 4.1. Given the non-price resource attributes q (¢ € Q)
and p; < min{p}, p}, non-cooperative game strategies for n
cloud providers M = (N, {P;},{V;}) have a Nash equilib-
rium p* (p* € P).

Proof. First, for each CP;, P; is a one-dimensional closed
interval. Thus, P; is compact. For any z, 2, € P;, there is
Az1 + (1 — XN)zg € Py, for any A € [0, 1]. And P; is consid-
ered as a convex set. Second, when r; < p; < min{p,, p},
we can know V; is a continuous function on P;. The V; is
expanded to obtain:

o oteme (¢ —pi)
Vi(pip i) = B
Z]‘e/\/ I
20)
h ITZ e w; - m
- w; w; ¢
Zje/\/ p_j Z]EN p_]j-
Taking a derivative with respect to p; yields:
_wigm Z wj +’w?(’,1-m u‘?m
o, ( JEN p; ) o P’
3]?; o w; 2 w; 27
| (Sievit) (Tievit)
2
w;c;m wj wim
= (Zje/v\{i} F) -7
=0 ) @1)
ﬁ
(ZJEN Pvz‘)

NO. X, XXXXX 2018

Taking the second derivative with respect to p; obtains:

2
DITISY, 0"
L 2wieim 2win

>, (ZjEN\{i} 1’7) v v
ap? w;) 2
| (Ziex )
2w?e;m w;j 2wdm
i —1 i
” (Zje/\f\{i} p])* ol
3 )
uv]'
(Ziet$)
2 2
Qwicim wj 2wim wj
;,;;’ (Zje/\/’\{i} pj) +_,f;§ (EjeN\{v?} Pj)

(o).

(22)

> 0.

Then we can know that W;(p;, p_;, ¢') is a convex function

on P;. At last, due to the Eq. (21), ‘% < 0forVp; € P;. To

satisfy the condition that (p; — pj)Tv‘IQ (pi,p_i»q') > 0 for
Vp; € P; and p; < min{p},p}, then p; is the maximum
value in the intersection of P; and interval [0, min{p}, p}].
The proof of the theorem has been completed. 0

Based on Theorem 4.1, we can prove that there exists a
Nash equilibrium for the game G = {P, O; ¥, u}.

Theorem 4.2. Given the non-price resource attributes q (q € Q)
and the bidding price p (p € P), there exists a Nash equilib-
rium solution set for formulated game G = {P,0; ¥, u}.

Proof. At the beginning, we set the initial value of J to N.
According to Theorem 4.1, there exists a Nash equilib-
rium p* for M = (N, {P;},{¥;}). If the bidding price p;
of each CP; satisfies ; < p; < p, the customer’s optimal
choice is J = N. That is to say, game G = {P, ®; ¥, u} has
reached the Nash equilibrium. Otherwise, the customer
can update J = J\{i} to maximize the revenue, mean-
while, pf =0. Based on Theorem 4.1, the customer
updates J until J does not change. Then the Nash equilib-
rium for game G = {P, ®; ¥, u} is obtained. The proof of
the theorem has been completed. 0

The profit of the customer is increased or not reduced
based on the analysis in Section 3.5. Besides, the profit of
each service provider will be reduced whether he/she
intentionally bids a high or low price from Theorem 4.1.
From selfishness and rationality, each player will not make
a deceptive strategy to decrease his/her profit.

4.3 Nash Equilibrium Solution Computation

An Equilibrium Solution Iterative algorithm is presented to
find the equilibrium solution. The initial value of customer’s
resource procurement strategy .J is equal to the set of cloud
providers V. After each cloud provider bidding, the pro-
vider CP, has a critical price p}. Each CP; (i € J) bids contin-
ually until the change of p, is less than a threshold.
Assuming that the maximum price offered by the customer
is p, if p; > p, we set p, = p, and p/ = p is the best choice for
CP,. Then we can assume that p, < p. As mentioned in
Section 4.2, ¥, < 0and ¥, > 0, we can know that:

(1)  If there is r; < p} < p for each CP,; (i € J), it is true

that
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Yenty i - (vi =)
P =vi— R (23)
Yjenii g
The equilibrium solution of the model M = (J,{P;},
{W:}) is p" = (pi,p3,--.,p;), where p=pi. The

optimal strategy for the customer is J =N. The
equilibrium solution of the formulated game G =
{P,O; ¥, u} is (p*, J).

(2)  If there are providers that each C'P; of them satisfies
r; > pi, pi =0. We update J = J\{i}, which is
obtained by removing CP;. In addition, we repeat
update J until J does not change. The value of p* in
the equilibrium solution is calculated:

D ieni@ip)
v = S e g < pr <Py
P: — ZJEJ\{V'}E (24)
D 1€ Jp; > p;
0 i€ M\J.

The detailed steps of the ESI algorithm are described in
Algorithm 1.

Algorithm 1. Equalization Solution Iterative Algorithm

IIlPllt N A ank'/ fr v, T, €
Output: py, J.

1: calculate the attribute preference p < p(A);

2: calculate the QoS function w < w(p, Quxr);

3: initialize p; for each cloud provider CF;

4: r —0;

5. JO — N

6: for each cloud provider CP, € J do

7

Wi (o (r)
Z]'e.]( N{i} (k) (UJ p; )
(r+1) . P; _
p; < mms v; w yP s
200Gy o7
J

8: ](7+1) — ](7');

9: 1f( (r+l) r;, 1 € J) then
10: pErH) —0;
11: JU+HD — JON\{5;
12: r—r+1;
13: if (J is not equal to J" Y or ||p ;) — p,e—1)|| > € then

14:  repeat steps 7 to 12;
15: return pX}) and J.

The input of Algorithm 1 is {N, A, Quui, f, v, 7, €},
where N is a set of n cloud providers, A is the judgment
matrix of the customer to the resources, @Q,,« is the resource
attribute values of the providers. f is the customer’s func-
tion tuple with respect to @Q;,xx, and v, r are the customer’s
revenue function tuple with respect to a resource attribute
value and the reservation price of the provider, respectively.
¢ is an arbitrarily small number.

The algorithm begins to iterate from the 7. In each itera-
tion, the system computes the critical price of each provider
at first, and then determines whether the critical price of
each provider to meet the condition that r; < pETH . If not,
the system updates the bidding price and customer’s strat-
egy by lines 6 to 12. The iteration loop will continue until

the conditions J) = Jr=1 (r 1)

satisfied.

and || <e are

P} —p

4.4 Convergence of the Iterative Algorithm
Depending on the Algorithm 1, we verify that whether the
obtained solution sequences converge to the Nash equilib-
rium. If the solution sequences are proved to be monotonic
and bounded, we can draw the conclusion that the solution
sequences must converge to an equilibrium.

Theorem 4.3. Supposing the Nash equilibrium solution of
non-cooperative game strategies for n cloud providers M =
(J,{P;},{¥:}) asp* (p* € P), sequence solutions p\") obtained
by the proposed ESI algorithm converge to p*.

Proof. Here, an inductive method is utilized to prove the
theorem. First, we know that the price sequence of each
provider C'P; is bounded. Second, we prove its monoto-
nicity as shown below.

The initial value is given as pf = p. We know that
p( J<p= p< ). Then, supposing h = s satisfies ngs) <
D= Eg Y we need to prove pf“’“) <p= p(‘q) in the next
iteration. At last, if pz( =P, pf”” <p= p . Otherwise,
Eq. (14) is written:

1
pi =vi — H (25)
SO
where !
Dke\ i) b 1
Hy = S DI (26)

— W —n;
pj J P

We observe p; as a continuous function of p; (j € J\{i}).
Taking the derivative of H; with respect to p;, we get

TH;  Dkenfig) g WiV N 1

oty 27
—wp)® (v —py)

> 0.

Wi (wju

We take derivative of p; with the respect to p;, and we
have
apl- 1 8H

= — > 0. (28)
O

That is to say, p; increases with p;. Since p,(-SH)

; is calcu-
(j € J\{i}) and p(é < p(b Y (i € J), we can

obtain p{**) < p¥ (i € J). O

lated by pés)

4.5 Near-Equilibrium Price Bidding Algorithm

Based on the ESI algorithm for the Nash equilibrium solu-
tion, we propose a Near-equilibrium price bidding algo-
rithm for the cloud-computing resource provision model.
As mentioned in Section 3.3, we view m; (i € N) as a frac-
tion. However, m; should be an integer. And, according to
Eq. (5), the quantity of the resources available to the cus-
tomer might not be equal to m. To get the desired result, we
revise the model based on the ESI algorithm and propose a
near-equilibrium price bidding algorithm. We propose a
Resource Quantity Calculation (RQC) algorithm to compute
the quantity of resource provision m;. The calculation pro-
cess of the quantity of cloud resources m; is defined as
Calculate-m;(J, m, w;, pi, p), as described in Algorithm 2.
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TABLE 3
Comparison of Cloud-Computing-Resource Provision Models

Model Auction  Multi-attribute QoS  Incentive ~ Game theory  Allocation/Provision  Algorithm
CA18] yes no yes no no allocation

FMCDAM [16] yes yes yes no no allocation

C-DsSIC, C-BIC, C-OPT [8] yes yes yes yes no provision

Chonho et al. [15] no no yes yes yes provision heuristic
NPBA[22] no no no no yes allocation iterative
ESI and NPB no yes yes yes yes provision iterative

Algorithm 2. Resource Quantity Calculation Algorithm

Input: J, m, w;, pi, p.
Output: m;.
1: flag < true;
2: s 0,mg < m,my < m;
3: while (flag and m is not equal to 0) do
4 initialize m; « O for each cloud provider;
5 mb) — 0;
6:  for each provider CP; do
7: mz@ — Eq. (5);
8: m; —m; +m;”;
9: m® — mb) 4 mgs);
10:  my — my—m;
11:  if (m® equals to 0) then
12: flag — false;
13: else s «— s+ 1;
14: return m;.

We develop a calculation process of the resource price to
modify the benefits of C'P;. The resource Bidding Price Cal-
culation (RBPC) algorithm is executed in each iteration pro-
cess. The calculation process of the bidding price p; in the
current iteration is defined as Calculate_p;(J, m, w;, p), as
described in Algorithm 3.

Next, we focus on the approximate calculation of bidding
price p;. Combining with Algorithm 2, we propose Algo-
rithm 3 to find the equilibrium price in J. In Algorithm 3,
we first use Algorithm 2 to compute m;, and further calcu-
late 1] for each i € J, where m/, is a vector of the quantity of
cloud-computing resource provisions for every CP;
(j € J"N\{i}). In the inner while loop, we use the dichotomy
to compute p") of each CP;. We set pl and pr to the left and
right borders, respectively. The outer while loops are exe-
cuted until reach the condition of ||p") — p!"V|| <'e.

We modify the ESI algorithm according to Algorithm 3 and
require a NPB algorithm. The improvement of Algorithm 4 is
to update the bidding price in line 7. Assuming that the com-
putation time of the RQC algorithm is O(a), the while loop of
the RBPC algorithm is O(b), and the iterative RBPC algorithm
is O(d). The one computation iteration time of the NPB algo-
rithm in the worst case is O(na + b log p). The time complexity
of the NPB algorithm in the worst case is O(d(na + b log p)).

5 [EXPERIMENTS

Related models are compared with our proposed ESI and
NPB algorithms from some properties in Table 3. Due to the
different selected parameters of various models, we com-
pare the main features of various models from 7 aspects
and to highlight the difference in our model. In the

following sections, we draw the graphs from the ESI and
NPB algorithms and comparison experiments with three
mechanisms in [8] to validate the above theoretical analysis
based on the data analysis.

Algorithm 3. Resource Bidding Price Calculation
Algorithm

Input: J, m, w;, p.
Output: p;.
1. J—N;
2: h«0;
3: initialize pEO) — p for each cloud provider CP;;
4: while (|| p™ — p"=1'|| > €) do

5. for (each provider CP; € J) do
6: m; — C(Ll(,"lLl(Lte_Tl’L]'(J(T)\{i}, m, wj, p;hfl) ,D);
7. for (each provider CP; € J) do
8: pl «— 0;pr — p;
9 p(0) — prp(1) — (pl + pr)/2;
10: r—1;
11: while (|| p(r) — p(r — 1) || > ¢) do
12: m; «— Calculate_m;(J, m, w;, <pfi_1),p(7')>,]’));
13: ul — u(b_;);
14: u2 — u({p(r), w;), b_;);
15: if (ul > u2) then
16 pr e p(r);
17: if (ul < u2) then
18: Pl p(r);
19: r—r+1;
20: pr) = (pl+pr)/2;
21: plY e p(r);
22: h+—h+1;
23: return pgh).
5.1 Experiment Setup

In the following simulation experiments, the number of
cloud providers is varied in the range of 10 to 100. Table 4
lists the entire system parameters and the corresponding
functions. The number of resource attributes k is varied from
0 to 100 with increment 5 when we analyse the influence of
multi-attribute. The customer gives the relative importance
of the k attributes, where a(1, :) is the importance of the first
attribute relative to other attributes. The resource attribute
mapping value of each provider is varied from 1 to 100. We
assume that the customer’s revenue and the cost of providers
are in exponential form. m is set as 1000. Besides, the parame-
ter of controlling the iteration is set at 0.01.

5.2 Algorithm Evaluation

Table 5 lists the specific parameters of an example to vali-
date our conclusions.
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TABLE 4
System Parameters

System parameters Variable range

[0, 100]
random in [1, 9]

Quantity of resource attributes (k)
Comparison of the first attribute with
other attributes (a(1,:))

Number of cloud providers (n) [10, 100]
Evaluation function ( f;) random in [1, 100]
Customer’s revenue function (v;) Djecd: (q§)ﬁ /k
Cost function of provideri (¢;) ZJE K G(qj)” /k

Conservative bidding price (r;) Ac

Quantity of resources required (m) 1000
Other parameter (¢) 0.01
Algorithm 4. Near-Equalization Price Bidding

Algorithm

Input: N, A, Quxr, f, v, 7, €.

Output: py, J.

: calculate the attribute preferences p <« p(A);
: calculate the QoS function w « w(p, Quxk);
: initialize p; for each cloud provider CP;
7« 0;

JO — A

pgr) — Calculate_p;(J), m, w;, p);

2 Jrh) g,

s if (p§r> < 1,1 € J) then

p =0

J(7'+1) - J(7+1)\{Z}/

tre—r+1;

: if (JO) is not equal to J" 1) or \|p(]'2,.> - p(;,l])) | > ¢ then
repeat steps 7 to 11. ’ '

O NS Ul A WN =

i g g

: return pﬁy and J.

5.2.1 Convergence of Algorithm ESI and NPB

Parameters from the project described in Table 5 are used in
the experiments. The experimental results are presented in
Figs. 3 and 4.

Figs. 3a and 3b show the convergence process of bidding
price by executing ESI and NPB algorithms, respectively.
As the number of iterations increases, the bidding price of
each cloud provider is decreasing and tends to a relatively
stable state in two algorithms. In the iterative process, some
providers withdraw the competition when the condition
satisfies p; < r;. Fig. 3 shows that the iterative process and
results in ESI close to the ones in the NPB algorithm. More-
over, it can be seen that the bidding prices reach a stable
state after 10 iterations, which shows high efficiency of our
developed algorithms.

Fig. 4 analyzes the iterative process of two randomly
selected CPs (CP;, CPy¢) between two algorithms, individu-
ally. In the iterative process, the descent speed of bidding

TABLE 5
Specific Parameters for an Example
Parameter n k o B n 0 A P
Value 20 10 08 07 10 04 15 79

—_
=)

=

o

“ 8 b o
: AN Sy = =======°=]
2 L6 -2 ﬁ p
53 == ||
24 £ 24
= == \
Z 2 Z 2 \
4] Vo
0 0
1 5 7 9 11 13
Iterations 1 3 Peraffons® 11 13

(a) ESI algorithm (b) NPB algorithm

Fig. 3. Bidding prices process of cloud providers.

price and the reached stable value of each CP are consistent
in both algorithms. The maximal pricing error ranges of
CP; and CPys are 1.52 and 2.76 percent, respectively, which
show that how close the convergence of two algorithms is.

5.2.2 Comparison of Algorithm ESI and NPB

To illustrate how close a near-equilibrium solution found by
our proposed NPB algorithm to the solution computed by
ESI, experiments are performed for the ESI and NPB algo-
rithms. The parameters are outlined in Table 5. The experi-
mental results are presented in Fig. 5.

Fig. 5 analyzes the comparison the ESI and NPB algo-
rithms from four different views. The blue and orange col-
umns represent the values calculated by ESI and NPB,
respectively. The selected providers are CP,, CP5, CP;, CP,,
and CPj;. Meanwhile, bidding prices of other providers are
zero. The maximal error of two algorithms in Fig. 5a is 1.10
percent. The values of resources provided by each CP
between two algorithms are very close, whose maximal
error is 1.30 percent. In Fig. 5¢, obviously, the former is the
benefit value computed from the Nash equilibrium solution
and smaller than that of the latter. Specifically, differences
of bidding prices between ESI and NPB are in the range
from 0 to 0.46 percent. Similarly, Fig. 5d shows that the bid-
ding prices between two algorithms are close. Based on the
comparison of the convergence process and four different
views, the percent differences are extremely small, which
reflect that our NPB algorithm can obtain a very well near-
optimal solution.

5.3 Profits Analysis of One Customer and Providers
5.3.1  Multi-Attribute Analysis

The values of resource multi-attribute are relevant to QoS,
the cost of each CP, and the benefit of customers. To illus-
trate that how multiple attributes influence on the selected
CPs, the parameters are selected as follows. Assuming that
n = 200, the attribute projection evaluation value of each CP

8 10
CP5 . CP16
o 54
275 =
£ 2
o~ o0
o 2 a4
£ 7 =
= < 2
= =}
2 =]
65 o
1 3 5 7 9 11 13 1 3 5 7 9 11 13
Iterations Iterations
—®—ES| —o—NPB —9—ES| —o—NPB
(a) (b)

Fig. 4. Bidding price process of CP; and C'Pg.
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Number of providers

is randomly chosen from the interval of 1 to 100, and &
increases by 5 from 5 to 100. The experimental results are
presented in Figs. 6a and 6b.

Figs. 6a and 6b show the range of each selected provider’s
resource cost and one customer’s benefit with the increment
of k, respectively. The general trend of the blue line is
decreasing, whereas the orange line is increasing. The aver-
age value maintains at a relatively stable state. This phenom-
enon reflects that the more attributes one customer
considers, the narrower the range of cost of the selected pro-
viders is, and it is earlier to select the appropriate providers.

5.3.2 Analysis of the Different Quantities of Providers

We illustrate the relevance between the number of pro-
viders and profits of customer and providers. Assuming
that £ = 10, n is a variable, which fetches the value from 20
to 100 with the increment of 10. The experimental results
are presented in Fig. 7.

Fig. 7 shows the influence of increasing the number of pro-
viders. Total profits of CPs decrease to a stable value, whereas
the benefit of customer increases at first and reaches a

NO. X, XXXXX 2018
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relatively stable state. When the number of providers n
increases, providers are posing growing competition for
resource provision, which results in decrease of the fraction of
selected C'Ps. Despite the fraction of selected C'Ps decreases,
the number of selected C'Ps tends to be stable. This is the rea-
son that the benefits of total profits of providers and the cus-
tomer’s profit tend to a relatively stable state, respectively.

5.4 Performance Evaluation
The time performance of the proposed algorithms is evalu-
ated in terms of execution time. The variables are the num-
ber of attributes k£ and providers n. The other parameters
are the same as in Table 5. We denote the case of k attributes
and n providers as k x n. The variables of k£ and n increase
by 10 from 20 to 100, respectively. The experimental results
are presented in Figs. 8, 9a, 9b, and 10, respectively.

Fig. 8 shows the time curve of each iteration for each
k x n. On the whole, the iteration time of each curve is rela-
tively large at the beginning, then reaches a stable state after
a certain number of iteration. In Fig. 8, it is shown that the
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Fig. 11. Comparison of NPB, C-DSIC, C-BIC and C-OPT.

larger the values of k and n, the longer each iteration time,
excluding the case of 90 x 90. The reason is that in the term
of 90 x 90, the number of providers in bidding is small after
several iterations. This results in very little time overhead of
each iteration.

We give an example of 40 x 40 to analyze the time perfor-
mance in detail. Fig. 9a presents the number of providers in
bidding with the increase in number of iterations. The curve
is monotonically decreasing at the beginning, and finally
reaches a steady value of 7 after almost 28 iterations. Fig. 9b
shows the execution time of each iteration. The red dotted
line represents a linear time with a slope of 145, which is the
first execution time. It is observed that the time growth ratio
is gradually reduced as the number of iterations increases.
This phenomenon can also explain that the time of each iter-
ation is monotonically decreasing to a steady state in Fig. 8.

Fig. 10 shows the time growth ratio of each iteration for
each case of k x n. As the number of iterations increases, the
time growth ratio of each curve is gradually decreasing and
stabilizes to the value of 1, which explains the curve change
of Fig. 9b in detail.

Generally speaking, the near-equilibrium solution
obtained by our proposed NPB is extremely close to the
equilibrium solution obtained by ESI. Second, the conver-
gence rate of the two algorithms is very fast. Again, the ben-
efits of the customer and providers are affected by the
multiple attributes and the number of providers. At last, the
time complexity of algorithms is less than linear, which is
much better than the worst case time.

5.5 Comparison with C-DSIC, C-BIC and C-OPT
Prasad and Rao [8] proposed a multi-attribute cloud resource
procurement approach, where three possible auction mecha-
nisms (C-DSIC, C-BIC, and C-OPT) were presented. All of
these mechanisms consider the multi-attribute cloud reso-
urce provision from a cost perspective. In C-DSIC and C-BIC
mechanisms, the cloud resource provider that charges the
lowest cost per unit QoS is declared the winner. The C-OPT
overcomes the limitation of C-DSIC that is not balanced bud-
get and the limitation of C-BIC that is not individually ratio-
nal. The cloud vendor with the least virtual cost is declared
the winner. The virtual cost considers the reverse hazard rate
related to cost and QoS i) and is defined as

fi()
)
fi@)”

Hi(ci,qi) = ¢i +

where ¢; is the bidding cost of each cloud vendor, g; is the
mapping value of the promised QoS parameters, F(.) is the
cumulative distribution function (CDF), and f(.) is the den-
sity of the marginal function. Different from these mecha-
nisms, in our work, we consider the same issue from the
perspective of profit. We focus on improving the benefits of
both cloud customers and service providers instead of just
customers.

To perform the comparison experiments, we made some
modifications to the three mechanism algorithms. In C-
DSIC and C-BIC, the cloud vendor who charges the largest
profit multiplied by QoS is declared the winner. In C-OPT,
the cloud vendor with the most virtual profit is declared the
winner. In the comparison experiments, assuming that
k=10, m = 1000, and n is a variable, which fetches the
value from 20 to 100 with the increment of 20. Besides, the
distribution of random variables in C-BIC and C-OPT is uni-
formly distributed. The comparison between NPB algo-
rithm and the three mechanisms is shown in Fig. 11.

In Fig. 11, as the number of providers increases, the profit
trend of the cloud customer in each algorithm first rises and
then stays steady. In addition, the profit of NPB is higher
than that of C-DSIC and C-BIC, and the variance of NPPB
and C-OPT is small. In terms of customer benefits, the algo-
rithms ESI and NPB have absolute advantages. In addition,
we also maximize the benefit of each provider through com-
petition between service providers, which is not considered
in algorithms C-DSIC, C-BIC, and C-OPT.

6 CONCLUSIONS

Our study focuses on the problem of multi-attribute cloud
resource provision about pricing strategy for profit maximi-
zation consisting of both cloud customers and service pro-
viders from the perspective of non-cooperative game
theoretical method. The existence of Nash equilibrium solu-
tion is proved. To calculate the solution, we propose ESI
and NPB algorithms, which are proved to converge to a
Nash equilibrium. Extensive simulated experiments results
and the comparison experiments with the state-of-the-art
and benchmark solutions validate and show the feasibility
of the proposed method.
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