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Game-Based Task Offloading of Multiple Mobile Devices
with QoS in Mobile Edge Computing Systems of Limited
Computation Capacity
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Mobile edge computing (MEC) is becoming a promising paradigm of providing computing servers, like cloud
computing, to Edge node. Compared to cloud servers, MECs are deployed closer to mobile devices (MDs)
and can provide high quality-of-service (QoS; including high bandwidth, low latency, etc) for MDs with
computation-intensive and delay-sensitive tasks. Faced with many MDs with high QoS requirements, MEC
with limited computation capacity should consider how to allocate the computing resources to MDs to max-
imize the number of served MDs. Besides, for each MD, he/she wants to minimize the energy consumption
within an acceptance delay range. To solve these issues, we propose a Game-based Computation Offload-
ing (GCO) algorithm including a task offloading profile of MEC and the transmission power controlling of
each MD. Specifically, we propose a Greedy-Pruning algorithm to determine the MDs that can offload the
tasks to MEC. Meanwhile, each MD competes the computing resources by using his/her transmission power-
controlling strategy. We illustrate the problem of task offloading for multi-MD as a non-cooperative game
model, in which the information of each player (MDs) is incomplete for others and each player wishes to
maximize his/her own benefit. We prove the existence of the Nash equilibrium solution of our proposed
game model. Then, it is proved that the transmission power solution sequence obtained from GCO algorithm
converges to the Nash equilibrium solution. Extensive simulated experiments are shown and the compari-
son experiments with the state-of-the-art and benchmark solutions validate and show the feasibility of the
proposed method.
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1 INTRODUCTION

1.1 Motivation

Presently, Mobile Devices (MDs) are an indispensable part in our daily life [1]. With the popularity
of smart MDs and new electronic products, many new computation-intensive and delay-sensitive
applications (e.g., face and voice recognition, virtual and augmented reality, human-computer in-
teraction) require high demands on quality of service (QoS; bandwidth, energy consumption, la-
tency, etc.) [24]. MDs have their own computation capacity (local computing), but sometimes the
limited resources, e.g., battery and computation capacity, cannot meet their own high-quality re-
quirements. In addition, MDs can also send requirements to cloud computing servers, but the long
distances between MDs and cloud computing center will cause the high latency, which can de-
crease the QoS and the user experience. In order to meet the ever-increasing MDs with high QoS
requirements, the concept of edge computing has been proposed, and it will gradually become a
trend in service computing.

Mobile edge computing (MEC) provides high-bandwidth, high-computing resources for nearby
MDs to meet the high QoS demands for computation-intensive and latency-sensitive applications
via edge network [5, 8, 23, 34]. With the popularization of 5G technology, the connection between
edge computing and 5G architecture can better realize the application of vehicle IoT, intelligent
transportation, artificial intelligence, and so on, and can provide power support for the realization
and popularization of driverless vehicles. Task computation requirements are as shown in Figure 1.
MEC can be viewed as a small cloud with limited resources (processing speed, CPU cycle). Fac-
ing with resource requests from numerous devices, MEC should formulate a resource allocation
mechanism to maximize the number of served MDs with QoS requirements. For each MD, he/she
desires to have a minimum energy consumption with an expected delay value. Here, we consider
that the transmission rate and the received computation resource of each MD are affected by oth-
ers. That is to say, if too many MDs request computing resources from MEC, some MDs will not
receive the computing resources or get relatively low transmission rates to result in high latency.
Therefore, each MD can compete for the computing resources of MEC by dynamically adjusting
the transmit power and the transmission rate to meet his/her own requirement.

As shown in Figure 1, we consider multiple mobile devices and multiple MEC systems. MDs
can offload the computation-intensive and time-sensitive tasks to MEC servers through wireless
channels, which can provide the computation resources to MDs and help them to improve the com-
putation performance while satisfying the time constraints. With finite computational resources,
MECs can not meet the requirements of all the MDs with QoS; therefore, MEC servers serve as
many tasks as possible offloaded from a number of MDs within the coverage of the base station.
Meanwhile, each MD minimizes his energy consumption under the conditions of competing for the
mutual computation resources and satisfying the deadline constraint. In our article, we study the
task offloading mechanism for MECs and multiple MDs with deadlines systems with the method
of non-cooperative games. We propose agame-based computation offloading (GCO) algorithm to
collectively optimize the task offloading scheduling and the transmission power controlling of the
system from the perspective of both MECs and each MD, alternately optimizing the number of
served MDs with deadlines and optimizing the energy consumption for MDs that their tasks are
executed on MECs.

1.2 Our Contributions

According to the MEC’s resource allocation rules, each MD selects an appropriate transmit power
in order to compete for computing resources of MECs so that the energy consumption is as low as
possible while meeting the deadline requirement. Since the transmission rate and the competing
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Fig. 1. A multi-device edge computing system.

resources between MDs are mutually influential, we establish a game model for task offloading of
multiple MDs. Every MD is a player, and every player will choose an optimal transit power in the
transmission power-controlling strategy set to maximize his own benefit. Eventually, the game
system will reach a point of equilibrium, i.e., Nash equilibrium. Our main contributions are listed
as follows:

—With the perspective of a non-cooperative game, a mechanism of task offloading for the
system of multiple MECs and multiple MDs with delay deadline constraints is constructed
to optimize the benefits of both MECs and each MD.

—Given the allocation of transmission power, a Greedy-Pruning algorithm is proposed to de-
termine the number of tasks executed on MECs. Each MD controls his/her transmission
power to complete the resource of MECs or minimize the energy consumption. We formu-
late a game model for illustrating the system and prove the existence of a Nash equilibrium
solution.

—A GCO algorithm is proposed to compute the Nash equilibrium solution, and the conver-
gence of the solution sequence obtained by the GCO algorithm is analyzed.

—Simulated experiments evaluate the proposed algorithm in terms of effectiveness evalu-
ation. Besides, the comparison experiments with the method of random transmit power
solution validate and show the feasibility of the proposed method.

The remainder of the article is organized as follows. In Section 2, we introduce the related work.
Section 3 describes the system model and presents the problem that needs to be solved. In Section 4,
we consider the problem as a non-cooperative game and propose Algorithm GCO to compute the
Nash equilibrium solution. In Section 5, extensive experiments and the comparison experiments
results indicate the feasibility of our algorithms. We conclude the works of this article in Section 6.

2 RELATED WORK

We present a review of the related work centered around the task offloading of MEC, controlling
the transmission power, and a non-cooperative game.

Task offloading for user requirements in MEC has been studied by many scholars and most of the
studies are analyzed from computational offloading, latency, storage, and energy efficiency [19, 37,
38]. Some scholars considered from the view of optimizing the energy consumption of users [3, 33,
35]. In Ref. [3], Chen et al. computed the green energy harvesting for MEC to solve the multi-task
offloading problem by using the Lyaponuv Optimization method. In Ref. [35], Yang et al. proposed
an artificial fish swarm algorithm (AFSA) algorithm to minimize the overall energy consumption
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under the constraints of MEC’s limited computation capability and each MD’s deadline require-
ment. In Ref. [33], Wang et al. proposed a resource allocation mechanism to minimize the total
energy consumption of MEC in the system that multiple users can offload all or a portion of tasks
to MEC and each one has deadline constraint. Besides, some works and models were considered
from guaranteeing the deadline or minimizing average delay [2, 6, 12, 18, 29]. In Ref. [2], Chen
et al. transformed the task offloading issue as task placement and resource allocation sub-issues
and proposed an efficient offloading mechanism to minimize the delay while decreasing user’s
energy consumption based on the software defined ultra-dense network. Fan et al. formulated an
application-aware workload scheduling system for MEC-based Internet of Things to minimize the
latency of each application request in Ref. [6]. In Ref. [18], Liu et al. viewed the user’s task offload-
ing process as the Markov decision process and proposed a one-dimensional search approach to
solve the problem of power-constrained delay minimization. Besides, there are many works that
were considered from the tradeoff overhead on energy consumption and delay [4, 13, 16, 36]. In
Ref. [36], Zhang et al. combined with interior penalty function of difference programming (IPDC)
to propose an iterative search method to solve the mixed integer nonlinear (MINL) problem of
resource allocation and computation offloading, such that the entire system had a lower tradeoff
overhead. In Ref. [4], Chen et al. proved the existence of the solution of the established multi-user
non-cooperative game through the potential function game and the results obtained by his pro-
posed algorithm can reduce the total cost. The difference between our work and others is that
we first consider a more general multi-MD multi-MEC system, and all MDs dynamically adjust
power-controlling strategies to compete for the limited computation capacity with the method
of a non-cooperative game. The objective functions of optimizing average energy consumption,
average latency, tradeoff overhead on energy consumption, or delay in other papers are globally
optimized. However, for MDs with high requirements (such as deadline or energy consumption),
the average latency or average energy consumption can no longer meet their requirements. Thus,
different from all of them, we consider our problem from a more practical perspective to show the
non-cooperative game between MDs for computing resources.

Many works optimized the transmission to achieve the offloading balance in the MEC by con-
trolling the transmission power [15, 20, 27, 30]. In Ref. [15], Li et al. proposed an adaptive transmis-
sion mechanism with a software defined network and edge computing for Internet of Things. In
Ref. [27], Rodrigues et al. proposed an offloading-balance mechanism for cloudlets to minimize the
overhead by using Virtual Machine Migration (VMM) and Transmission Power Control (TPC). In
Ref. [20], Mao et al. alternately optimized the task offloading scheduling and transmission power
allocation for MEC and the multi-task system, and then obtained an optional solution. In Ref.
[30], Tao et al. applied KKT conditions to determine the optimal transmission rate, such that the
entire energy consumption is minimized. Heuristically, we consider the mutual influence of the
transmission rates of multiple MDs to achieve a balanced state for each MD.

Game theory plays an increasingly important method in MEC [4, 7, 9, 12–14, 17, 25, 26]. Since
there is channel competition and resource competition of MEC between users, each user is inde-
pendent of each other and affects each other. Therefore, it is impossible for each user to achieve
his/her optimality. Multiple users reach an equilibrium state in the process of mutual constraint,
i.e., a win-win situation. In Ref. [12], Li optimized the average response time of all tasks com-
putation offloading by constructing a non-cooperative game mechanism for a multi-MEC and
multi-UE environment, together with the M/G/1 queuing model. Then, in Ref. [13], Li expanded
to comprehensively study the computation offloading optimization problems from the perspec-
tive of the average delay with the power consumption constraint, the average power consump-
tion with the constraint of delay, the cost-performance ratio, and the power-time tradeof. In
Ref. [4], Chen et al. considered the multi-task offloading mechanism for MEC in the multi-channel
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Table 1. Comparisons between GCO and the State-of-the-Art Schemes

Involving Service Delay and Power Control

Schemes Environment Condition(s)
Delay

Deadline
Power

Control Objective(s)
Main

Method(s)

Kiani [11] 1. Multi-MD and One MEC
2. Multiple channels

No Yes Energy consumption Heuristic
algorithm

Liu [18] 1. One MD and one MEC
2. MD generates jobs with
varying time slot

No No Average delay with
power-constrained

Markov
chain model

Zhang [36] 1.Multi-MD and multi-MEC
2. Every job can be performed
on the MEC or local

Yes Yes Overhead of the
weighted energy
consumption and latency

Iterative
search

Chen [4] 1.Multi-MD and one MEC
2. Every job can be transmitted
from different channels to MEC

Yes No Number of jobs whose
constraints (weighted
sum of delay and energy)
are satisfied

Non-
cooperative
game

Mao [20] 1. One MD and one MEC
2. MD associates with multiple
independent tasks

No Yes Overhead of the
weighted energy
consumption and latency

Convex
optimization

Tao [30] 1. Multi-MD and one MEC
2. Every job can be performed
proportionally in the MEC and
local

Yes No Energy consumption Optimization
(KKT
conditions)

Our GCO 1. Multi-MD and one MEC
2. Each MD has one
computation-intensive and
time-sensitive

Yes Yes 1. Number of tasks
with deadlines
2. Energy consumption
for each MD executed
on MEC

Non-
cooperative
game

wireless system from the perspective of multi-user game model. In Ref. [9], Hu et al. minimized
the MEC’s total transmit energy with the computational tasks constraints by MDs’ cooperative
communications. Heuristically, our work introduces an adaptive transmission power mechanism
in the competing process for limited-computation resources provided by MECs. We formulate a
non-cooperative game-based mechanism for MDs’ power-controlling strategies based on MEC’s
offloading decision-making mechanism.

Table 1 shows the comparisons between our proposed GCO algorithm and the state-of-the-art
schemes involving service delay and power control. These are all mechanisms from the perspec-
tive of MEC, e.g., number of tasks whose bounds are satisfied [4], or MDs, e.g., minimum aver-
age delay [18], minimum average energy consumption [11, 30], tradeoff energy-latency [20, 36].
Different from the others mentioned, our work considers not only from the view of serving the
maximum number of MDs with deadline constraints to formulate an MEC’s offloading decision-
making mechanism, but also from the perspective of each MD’s minimum energy consumption
to establish a game system. In this system, each MD is a player. Each player has his strategy set
and adjusts his optimal strategy based on the actions of others. The system reaches an equilibrium
state in the process of mutual interaction between the players.

3 SYSTEM MODEL

We represent the M MECs as the set ofM = {1, 2, . . . ,M } and the set of computational capacity
of MECs S is denoted as C = {C1,C2, . . . ,CM }, where each Cm (m ∈ {1, 2, . . . ,M }) is limited. We
denoteN = {1, 2, . . . ,N } as the set of N MDs and each MD has a computation-intensive and time-
sensitive task to be completed. Let τn be the task ofn, and the requirement of MD τn can be denoted
as a tuple (cn ,dn ,Tn ), where cn denotes the total number of required CPU cycles,dn denotes the size
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of the input task data, andTn denotes the expected time required to complete task τn . The task can
be computed either locally on the mobile device or remotely executed on MEC via computation
offloading. Therefore, we denote the decision profile X = {xn,m } (n ∈ N ,m ∈ M) as the set of
indicator function for N MDs, where xn,m ∈ {0, 1}. If the task of MD n is computed on MECM,
xn,m = 1; otherwise, xn,m = 0. Besides, we denote J = {J1, J2, . . . , JM } as the set of MD groups,
where Jm is the MD group of offloading their tasks to MEC m and Jm = {n |xn,m = 1}. If an MD
prepares to offload his task to MEC S, the energy and time consumption of communication and
computation are considered.

3.1 Communication Model

Since non-orthogonal multiple access (NOMA) [10, 11] can effectively meet the requirements of 5G
wireless networks to provide massive connectivity of mobile devices and meet the demand for low
latency, we consider the communication process for wireless access with the NOMA technique in
the MEC system. The NOMA technique allows multiple MDs to share the same resources in one
channel condition. Power-domain NOMA utilizes superposition coding (SC) at the transmitter and
successive interference cancellation (SIC) at the receiver to detect the desired signals. If MD n is
selected to offload his task τn to edge computing m, the input data dn should be transmitted to
MEC servers of m. For every MEC, the channel bandwidth is B. Gn,m is the channel gain in the
process of transmission from MD n to MEC m. In the channel of MEC m, we define the order set
O = {O1,O2, . . . ,OM }, where Om = {1, 2, . . . , |Jm |} is the set of orders in set Jm . Here, |Jm | is the
number of Jm .Gn,m is the channel gain in the process of transmission, and it is related to the envi-
ronment and the distance between MD n and MECm. η0 is the background noise power. We repre-
sent the signal noise ratio of MD n in the wireless channel of MECm as Sn,m . Let mapping function
be a(i,m) → (n,m) : O ⊗M → N ⊗M, which represents that the ith MD in set Jm is MD n. Be-
sides, for each MECm, the channel gains satisfy the condition 0 < Sa (1,m) ≤ Sa (2,m) ≤ · · · Sa ( | Jm |,m) ,
which indicates that mobile device a(i,m) holds the ith weakest instantaneous channel. Besides,
we denote β i

n,m as the indicator variable to indicate the ith order in set Jm to MD n. Therefore, the
communication rate of MD n (n ∈ N ) via the wireless channel can be denoted as

rn =
∑

m∈M
xn,m

∑
i ∈Om

β i
n,mB log2

���1 +
pnGn,m

η0 +
∑

k ∈N\{n }
∑ | Jm |

l=i+1 β
l
k,m

pkGk,m

��� . (1)

P = {p1,p2, . . . ,pN } is the transmission power profile of all MDs, and each pn can be chosen
from the internal [pn ,pn], in which pn and pn are the minimum and maximum powers that
MD n can accept, respectively. η0 is the background noise power. In Equation (1), we denote
In,m =

∑
k ∈N\{n }

∑ | Jm |
l=i+1 β

l
k,m

pkGk,m as the sum of interference from other MDs in set Jm .
Here, we focus on exploring the computation offloading and power control problems, which

enable MECs S to serve as many MDs as possible under limited resource conditions and minimize
the energy consumption for the MDs in J . Note that the transmission rate of MD n in Jm is not
only related to his own transmit power but also related on the transmit powers of other MDs in
Jm , i.e., the transmission rate of each MD in Jm is mutually influential. Therefore, we consider the
distributed power control of the interference-aware multi-device MEC system from the perspective
of the non-cooperative game theory.

3.2 Computation Model

If task τn of mobile device n is offloaded to MECm to execute and the order in Jm is i , i.e., xn,m = 1,
β i

n .m = 1, the completion time will contain communication time and computation time. We define

ACM Transactions on Embedded Computing Systems, Vol. 19, No. 4, Article 29. Publication date: July 2020.



Game-Based Task Offloading of Multiple MDs with QoS in MEC Systems 29:7

the completion time as

tn,of f =
dn

rn
+
cn

fn
=

dn

B log2

(
1 + pnGn,m

η0+In,m

) + cn

fn
, (2)

where fn is the computation capability (i.e., CPU cycles per second) assigned to MD n by the MEC
m. Therefore, the energy consumption can be denoted as

En,of f =
pndn

rn
,

=
pndn

B log2

(
1 + pnGn,m

η0+In,m

) . (3)

We extend function En,of f to the interval pn ≥ 0. The function can be written as

En,of f =

⎧⎪⎪⎨⎪⎪⎩
pndn

B log2

(
1+

pn Gn,m
η0+In,m

) β i
n,m = 1,

M β i
n,m = 0,

(4)

where M is assumed to be an infinite value.
We then introduce the local computation model. The completion time of MD n is defined as

tn,loc =
cn

f loc
n

, (5)

where f loc
n is the local computation capability of MD n. Let ln be the local power consumption per

CPU cycle for MD n. If task τn is executed locally, the energy consumption can be denoted as

En,loc (X ,P ) = lncn . (6)

We extend function En,loc (X ,P ) to the interval pn ≥ 0. The function can be written as

En,loc (X ,P ) =

{
M

∑
m∈M xn,m = 1,

lncn xn = 0.
(7)

According to Equations (5) and (6), if task τn is executed locally, the energy consumption is a
fixed value. Generally speaking, each MD possesses relatively few local computation resources
(f loc

n is small), and tn,loc is not likely to meet his expected deadline Tn .

—For MDs whose local execution time tn,loc can not satisfy tn,loc ≤ Tn , they are more willing
to choose MEC to meet their expected deadlines.

—If tn,loc ≤ Tn and En,of f < En,loc , MD n may also choose MEC to minimize the energy con-
sumption.

Therefore, if task τn of MD is offloaded on MEC and one of the above cases is satisfied, we call MD
n a beneficial MD.

3.3 MEC’s Resource Allocation Strategy

Since we consider that the computation capacity of each MEC is limited, the objective function for
all MECs is to provide the service computing for MDs as much as possible when the computation
capacity can not meet the demands of all MDs. We denote |J | as the number of elements in set
J . Thus, the objective function can be represented as maximizing

∑
m∈M |Jm |. For each MEC m,

the QoS requirements of each MD in Jm need to be met, that is, xn,mtn ≤ Tn (xn,m = 1). With the
limit of computation capacity of each MEC, the sum of computation capacity assigned to MD n
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in Jm can not be greater than Cm , that is,
∑

n∈Jm
xn,m fn ≤ Cm . We propose a distributed resource

allocation problem with constraints and model it as follows

max
X

∑
m∈M

|Jm |,

s.t. xn,mtn ≤ Tn ,n ∈ Jm ,∑
n∈Jm

xn,m fn ≤ Cm ,

(8)

Theorem 1. The problem maxX
∑

m∈M |Jm | that maximizes the number of tasks with QoS exe-

cuted on MECs is NP-hard.

Proof. Given the power profile P, a decision profile X is available if the condition tn ≤ Tn

for each MD n in set Jm (xn,m = 1,n ∈ J and xn,m = 0,n � Jm ) is satisfied. So, given the P, the
available X, and based on tn ≤ Tn , the computation capability fn (Jm ) (n ∈ Jm ) assigned to MD n
should satisfy the constraint

fn (Jm ) ≥ cn

Tn − dn

γn

= f ′n (Jm ). (9)

Let f ′n (Jm ) be the critical point of computation capability that MD n needs. The sum of critical
points of all MDs in Jm should satisfy the constraint of

∑
n∈Jm

f ′n ≤ Cm .
Therefore, the problem maxX

∑
m∈M |Jm | can be viewed as the maximum cardinality bin packing

problem, which is NP-hard. Thus, the problem maxX
∑

m∈M |Jm | that serves the maximal number
of MDs under constraints is also NP-hard. The proof has been completed. �

Since Theorem 1 proves that the problem is NP-hard, we intend to propose a heuristic algorithm
to solve our problem. Each addition or deletion of a mobile device will affect the transmission rate
of other devices. The best case is that the computation capacity of MECs can meet the requirements
of all mobile devices. Because the considered computation capacity of the MECs are limited, we
choose to delete some mobile devices until the computation capacity of the MECs can meet all
the requirements of the remaining mobile devices. Every time we delete a mobile device, we will
show that the deleted mobile device is optimal under the current situation. The greedy pruning
algorithm can solve our problem most directly.

The code for mobile device grouping and the computation resource allocation is summarized
in Algorithm 1. As shown in this algorithm, we carry out the mobile device grouping, comput-
ing resource allocation for each group, and checking the remaining computing resources in three
separated phases. In the grouping phase (lines 2–6), we follow a grouping method based on the
channel conditions for each mobile device. That is to say, each mobile device chooses the MEC
that will make him receive the maximum channel gain. Then, we sort each grouping in ascending
order based on computing Sn,m . In the second phase (lines 8–17), we allocate computing resources
to mobile devices in each grouping. For each MEC m, assuming

∑
n∈Groupm

f ′n (Groupm ) ≤ Cm ,
then there is Jm = Groupm . Otherwise, MEC m needs to filter out some MDs to maximize the
number of beneficial MDs with QoS. In Algorithm 1, Jm is the set of MDs to be selected, and
J1 is the set of MDs in Groupm to be filtered out. In the outer while loop of lines 11–17, once∑

k ∈Jm
f ′
k

(Jm ) > Cm , an appropriate MD will be added to J1 to check whether the condition∑
k ∈ J̃ f

′
k

( J̃ ) ≤ Cm is satisfied, where J̃ is the updated Jm . In each round of preparation to remove

a MD to J1, we use min
∑

j ∈ J̃ f
′

j ( J̃ ) as the objective function. But removing MD i in Jm that mini-
mizes

∑
j ∈Jm\{i } f

′
j (Jm\{i}) directly does not guarantee that updated Jm is globally optimal. If there

is always

l = arg min
i

∑
j ∈( Jm∪{l })\{i }

f ′j ((Jm ∪ {l })\{i}), (10)
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ALGORITHM 1: Greedy-Pruning algorithm

Require: N , P, G, B, C.
Ensure: J , fn (J ).

1: Mobile Device Group
2: Group ← {∅, . . . , ∅};
3: for n ∈ N do

4: k ← arg max
m∈M

Gn,m ;

5: Groupk ← Groupk
⋃{n};

6: Sort the MDs in Groupm such that 0 < Sa (1,m) ≤ Sa (2,m) ≤ · · · Sa ( | Jm |,m) ;
7: Resource allocation
8: form ∈ M do

9: Jm ← Groupm , J1 ← ∅, J2 ← ∅;
10: Calculate each f ′n (Jm ) (n ∈ Jm ) based on, Equation (9);
11: while (

∑
k ∈Jm

f ′
k

(Jm ) > Cm) do

12: J1 ← J1
⋃{arg min

i ∈Jm

∑
j ∈Jm\{i }

f ′j (Jm\{i})};

13: while (J1 � J2) do

14: J2 ← J1;
15: for (l ∈ J2) do

16: J1 ← (J1\{l })
⋃{ arg min

i ∈�J1\{l }
Gr oupm

∑
j ∈�J1\{l }

Gr oupm
\{i }

f ′j (�J1\{l }
Groupm

\{l })};

17: Jm ← Groupm\J1;
18: Check Remaining Computing Resources
19: form ∈ {k |Jk = Groupk } do

20: while (
∑

j ∈Jm

f ′j (Jm ) < Cm ) do

21: l ← arg min
n∈N\{⋃ J }

∑
j ∈Jm

⋃{n } f
′

j (Jm
⋃{n});

22: if (
∑

j ∈Jm
⋃{n } f

′
j (Jm

⋃{n}) ≤ Cm) then

23: Jm ← Jm
⋃{l },

24: return J , fn (J ).

for any MD (l ∈ Groupm\Jm ), Jm is optimal. The while loop of lines 13–16 guarantees that Jm is
the optimal in every round of filtering out a MD. In the third phase (lines 19–23), we check if there
is any MEC that has redundant computing resources. For an MEC m with Jk = Groupm , it may
have computation capacity (

∑
j ∈Jm

f ′j (Jm ) < Cm) to others’ mobile devices who are not assigned
to computing resources. In order to add more mobile devices, we choose the mobile device n that
minimizes

∑
j ∈Jm

⋃{n } f ′j (Jm
⋃{n}) every time, where n ∈ N\{⋃ J }. MEC m can keep adding the

mobile devices until
∑

j ∈Jm
f ′j (Jm ) ≥ Cm .

3.4 Power Control Strategy of Mobile Device

If the task of an MD is executed locally, the energy supply of MDs may not meet his energy con-
sumption. Besides, if the task is uploaded to the cloud computing for execution, there will be a high
delay due to the distance. Compared with the above two, MEC makes up for the shortcomings,
which can reduce MDs’ energy consumption and enable MDs to get faster feedback. Therefore,
MDs are more willing to upload tasks to edge computing to execute. From the MDs’ perspective,
MDs expect lower latency and low power consumption simultaneously. However, it is known from
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the literature that MDs cannot guarantee the lowest energy consumption with the lowest delay.
Here, we consider that how each MD minimizes his own energy consumption within the expected
delay range based on the computation resource allocation in Algorithm 1.

From Equation (2), we can know that tn,of f decreases as pn increases. Given F and the deadline
constraint Tn , tn,of f ≤ Tn can be further written as follows

pn ≥ ��2
dn

(Tn− cn
fn

)B − 1��
(
η0 + In,m
Gn,m

)
= p ′n . (11)

Let p ′n be the critical power of MD n. If p ′n > pn , MD n will not want to transmit his task τn to MEC
m. We consider the case p ′n ≤ pn and analyze the energy consumption of MD n in the internal
[max{p ′n ,pn },pn].

In each round, for MD n in Groupm who doesn’t belong to Jm , if he wants to enhance his own
competitiveness, he can increase pn . This leads to two outcomes—removing one of the other MDs
in Jm or adding to the set Jm directly.

Removing one of the other MDs in Jm : Increasing pn to p1
n and satisfying the conditions

arg min
k

∑
j ∈J3

f ′j (J3\{k }) � n, (J3 = Jm ∪ {n}),

min
k

∑
j ∈J3

f ′j (J3\{k }) ≤ Cm .
(12)

Adding to the set Jm directly: Increasing pn to p2
n and satisfying the condition∑

j ∈Jm∪{n }
f ′j (Jm ∪ {n}) = Cm . (13)

Considering the energy consumption and pn ≤ pn , we define p̃n = min{p1
n ,p

2
n ,pn }, where p̃n is

the updated pn in next round. Let P̃ = (p̃1, p̃2, . . . , p̃N ) be the updated power profile of all MDs.
We propose a binary search algorithm (Calculate_P̃(·), Algorithm 2) to update pn .

4 GAME FORMULATION AND ANALYSES

4.1 Game Formulation

In this article, we consider the distributed computation offloading decision-making problem and
power control problem among the MDs. We also propose a non-cooperative game-based mecha-
nism for MDs’ power-controlling decision-making based on the resource allocation mechanism of
MEC. The MDs submit their requirements of tasks, and MEC S maximizes the number of benefi-
cial MDs with QoS by allocating the computation capacity to MDs. The MDs repetitively submit
their transmission powers to MECs S, which arrange the computation offloading profile. After a
series of interaction iterations, it reaches a steady state. Namely, it reaches a Nash equilibrium.

Let P−n = (p1, . . . ,pn−1,pn+1, . . . ,p | Jm | ) be the transmission power profile of all MDs in Jm ex-
cept MD n, where Pn is the set of power decision-making strategies of MD n, i.e., pn ∈ Pn . Given
other MDs’ transmission power profile P−n, MD n would like to select a proper decision pn to
compete the computation resource of MEC m and minimize his own energy consumption, under
the condition of deadline. The objective function of MD n can be written as follows

min En =

{
M

∑
m∈M xn,m = 0, tn,loc ≤ Tn ,

En,of f (X ,P )
∑

m∈M xn,m = 1, tn,of f ≤ Tn ,
(14)
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ALGORITHM 2: Calculate_P̃(·)
Require: N , P, G, B, C, J , ε .
Ensure: P̃.

1: form ∈ M do

2: for n ∈ Jm do

3: p̃n = pn ;
4: for n ∈ Groupm\Jm do

5: l1pn ← pn , r1pn ← pn ;
6: l2pn ← pn , r2pn ← pn ;
7: while (|r1pn − l1pn > ε |) do

8: mid1 ← l1pn+r1pn

2 ;
9: if Conditions in Equation (12) are satisfied then

10: r1pn ←mid1;
11: else

12: l1pn ←mid1;
13: p1

n ← r1pn ;
14: while (|r2pn − l2pn > ε |) do

15: mid2 ← l2pn+r2pn

2 ;
16: if Condition in Equation (13) is satisfied then

17: r2pn ←mid2;
18: else

19: l2pn ←mid2;
20: p2

n ← r2pn ;
21: p̃n = min{p1

n ,p
2
n ,pn };

22: return P̃.

whereM is an infinite constant. The strategy set of MECsM isX and the objective function is max-
imizing the beneficial number of MDs

∑
m∈M |Jm |. Then, the multi-device computation offloading

game can be represented as G, where G = {(Pn )n∈N ,X; (En )n∈N ,
∑

m∈M |Jm |}.

Definition 1 (Nash equilibrium of computation offloading). A Nash equilibrium strategy profile
P∗m = {p∗1, . . . ,p∗|Groupm | }, X

∗
m = {x∗1,m ,x∗2,m , . . . ,x∗|Groupm |,m } of game Gm = {(Pn )n∈Groupm

,Xm ;
(En )n∈Groupm

, |Jm |} satisfies

P∗m = arg min
pn∈Pn

En ,p
∗
n
∈ Pn , (15)

X ∗m = arg max
Xm ∈Xm

|Jm |,X ∗m ∈ Xm , (16)

for the MECm and each MD in Jm .

For all MDs in Jm , P∗m = {p∗1, . . . ,p∗|Groupm | } is the optimal countermeasure strategy. That is to
say, for MD n in Jm and any pn ∈ Pn , there is En (pn ,P∗−n

) ≥ En (p∗n ,P∗−n
). For MEC m and any

Xm = (x1,x2, . . . ,x |Groupm | ), |Jm (X ∗m ) | ≥ |Jm (Xm ) |.

4.2 Nash Equilibrium Existence Analysis

There are many studies of equilibrium solution existence analysis [21, 22, 28, 31, 32]. In Ref. [22],
John used the fixed point theorem to prove the existence of equilibrium points and expanded the
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two-person games to n-person games. In Ref. [28], Scutari considered a generic optimization prob-
lem with the minimization f (x ) form under the constraint of x ∈ K , where K is a constraint set.
There is an optimal solution x∗ ∈ K if and only if (y − x∗)T � f (x∗) ≥ 0 ∀y ∈ K . In Ref. [21],
Musku provided the efficient use of system resources in next generation systems that require con-
trol of both data transmission rate and power for mobile terminals. Tsiropoulou [31] solved the
problem of efficient distributed power control in the uplink of CDMA wireless networks support-
ing multiple services to find and determine the Nash equilibrium point via convex pricing of users’
transmission power. In Ref. [32], Tsiropoulou further considered heterogeneous services with var-
ious transmission rates and requirements in the efficient use of wireless system resources. The
similarity between our article and these research works on game-theoretic analysis is that we
analyze the objective function and variable of each player. Then, by proving that the objective
function is a convex function and the interaction between players, it can be proved that the pro-
posed Game exists Nash equilibrium solution. Finally, we prove the convergence of the solution
sequence obtained by the proposed algorithm. The following is the existence of a Nash equilibrium
about our problem.

Theorem 1. Given Groupm , Gm , B, Cm , and pn ≥ max{p ′n ,pn }, non-cooperative game strategies

for |Groupm | MDs and MEC m H = (Groupm , {Pn }n∈Groupm
, {En,of f };MEC m,Xm , |Jm |) have a

Nash equilibrium 〈P∗m ,X ∗m〉, (p∗n ∈ Pn ,X
∗
m ∈ Xm ).

Proof. Based on Equation (1), we do the derivation of transmission rate of MD n rn to pn , and
the result is Equation (17):

∂rn

∂pn
=

BGn,m

(η0 + In,m + pnGn,m ) ln 2
. (17)

According to Equation (3), the energy consumption of MD n En takes a derivative with respect to
pn , and the result is Equation (18):

∂En,of f

∂pn
=
dnrn − pndn

∂rn

∂pn

r 2
n

,

=
dnB (log2

η0+In,m+pnGn,m

η0+In,m
− pnGn,m

(η0+In,m+pnGn,m ) ln 2 )

r 2
n

.

(18)

Let

h = log2
η0 + In,m + pnGn

η0 + In,m
+

η0 + In,m
(η0 + In,m + pnGn ) ln 2

− 1

ln 2
. (19)

We consider the function д(x ) = log2 x +
1

x ln 2 , and its derivative with respect to x is д′(x ) =
1

x ln 2 −
1

x 2 ln 2 =
x−1

x 2 ln 2 . We can know that when x > 1, д′(x ) > 0, and it shows that function д(x )

is monotonically increasing with x (x > 1). Because η0+In,m+pnGn,m

η0+In,m
≥ 1 (pn ≥ 0), we can know

that h(X ,P ) is monotonically increasing with pn (pn ≥ 0). Therefore, when pn = 0, h has the min-

imal value, and minh = 0 (pn ≥ 0). Further, whenpn ∈ [max{p ′n ,pn },pn],
∂En,of f

∂pn
> 0. It shows that

En,of f increases as pn increases in the internal [max{p ′n ,pn },pn].
Then, we consider the second derivative of En,of f . Based on Equations (1) and (17), we can

obtain that

∂2rn

∂p2
n

= −
BG2

n,m

(η0 + In,m + pnGn,m )2 ln 2
. (20)
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En,of f has taken the second derivative with respect to pn , and it yields that

∂2En,of f

∂p2
n

=
dn

r 3
n

��−pn
∂2rn

∂p2
n

rn − 2rn
∂rn

∂pn
+ 2pn

(
∂rn

∂pn

)2�� ,
=

dnB
2Gn,m

(η0 + In,m )μr 3
n ln 2

[(
−1 − 1

μ

)
log2 μ +

2

ln 2

(
1 − 1

μ

)]
,

(21)

where μ =
η0+In+pnGn,m

η0+In
and μ > 1.

Let function д(x ) = (−1 − 1
x

) log2 x +
2

ln 2 (1 − 1
x

). We analyze function д(x ), and its derivative
for x is

д′(x ) =
−x + ln 2 log2 x + 1

x2 ln 2
. (22)

Let function s (x ) = −x + ln 2 log2 x . When x ≥ 1, s (x ) is monotonically decreasing, and s (x ) ≤
s (1) = 0. Therefore, when x ≥ 1, д′(x ) < 0, д(x ) is monotonically decreasing, and д(x ) ≤ д(1) =
0. Because μ > 1, the second derivative of En,of f with respect to pn is always less than 0, i.e.,
∂2En,of f

∂p2
n
≤ 0 (pn ≥ max{p ′n ,pn }). Based on

∂En,of f

∂pn
> 0 and the power variable of each MD that is

a closed interval, En,of f takes the minimal value when pn = max{p ′n ,pn }. Thus, p∗n = max{p ′n ,pn },
and for any pn ≥ p∗n , there always is En (pn ,P∗−n

) ≥ En (p∗n ,P∗−n
).

For MEC m, J ∗m is the first set in Algorithm Greedy-pruning that satisfies the following condi-
tions: (1)

∑
k ∈J ∗m f ′

k
(J ∗m ) ≤ Cm ; (2) for any MD l ∈ Groupm\J ∗m , there is always

l = arg min
i

∑
j ∈( J ∗m∪{l })\{i }

f ′j ((J ∗m ∪ {l })\{i}).

Then, the maximum number of beneficial MDs with QoS will no longer decrease. Therefore, for any
offloading scheduling profile Xm ∈ Xm satisfying the conditions tn ≤ Tn ,n ∈ Jm and

∑
n∈Jm

fn ≤
Cm , there always will be |Jm (Xm ) | = ∑

n∈Groupm
xn,m ≤ |Jm (X ∗m ) | = ∑

n∈Groupm
x∗n,m . �

Theorem 2. Given N , G, B, C, and the pn (pn ∈ Pn ), there exists a Nash equilibrium solution set

for the formulated game G = {(Pn )n∈N ,X; (En )n∈N ,
∑

m∈M |Jm |}.

Proof. First, the initial value of pn is set as pn . Based on Algorithm 1 (Greedy-pruning), Al-

gorithm 2 (Calculate_P̃(·)), and Theorem 1, there exists a Nash equilibrium 〈P∗,X ∗〉 for H =
(N , {Pn }n∈N , {En,of f };S,X, |J |). If the transmission power p∗n of each MD n satisfies pn ≤ p∗n ≤
pn and E∗{n,of f } ≤ E {n,loc } , 〈P∗,X ∗〉 is the Nash equilibrium solution of game G = {(Pn )n∈N ,X;

(En )n∈N , |J |}. That is, game G has reached the Nash equilibrium. Otherwise, the MD will not
choose MEC m to execute his task τn ; meanwhile, p∗n = 0 and Groupm = Groupm\{n}. Based
on Theorem 1, each MEC m and each MD n update Jm and pn , respectively, until Jm and
each pn don’t change simultaneously. Then, we can find the Nash equilibrium for game G =
{(Pn )n∈N ,X; (En )n∈N ,

∑
m∈M |Jm |}}. �

4.3 Nash Equilibrium Solution Computation

We propose a GCO algorithm to find the equilibrium solution. The initial transmission power value
pn of each MD’s power strategy is equal to pn , respectively. After the Greedy-Pruning algorithm,
each MECm can achieve an optimalXm and profile fn (Jm ). Then, each MDn (n ∈ Groupm ) updates
his transmission power p̃n by Algorithm 2 (Calculate_P̃(·)). Each player (MECm and MD) adjusts
his strategy continuously to optimal. For each MD n (n ∈ Jm ), if En,of f > En,loc and tn,loc ≤ Tn ,N
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will be updated to G̃roupm = Groupm\{n}. Then, we update the set of MD (players Groupm) until
it does not change anymore. The detailed steps of the GCO algorithm are described in Algorithm 3.

ALGORITHM 3: Game-based Computation Offloading (GCO)

Require: N , P, P, G, B, C, ε , δ .
Ensure: P, J ,X .

1: N (0) ← N ;
2: s ← 1;
3: pn (0) ← P (N (s − 1));
4: 〈J (0), fn (J (0))〉 ← GP(N (0),pn (0),G,B,C);
5: t ← 0;
6: while |P (t + 1) − P (t ) | < δ do

7: pn (t + 1) ← Calculate_P̃(N (t ),pn (t ),G,B,C, J (t ), ε);
8: 〈J (t + 1), fn (J (t + 1))〉 ← GP(N (s ),pn (t + 1),G,B,C);
9: t ← t + 1;

10: J ← J (t );
11: N (s ) ← N (s − 1);
12: for (n ∈ J ) do

13: if (En,of f (X ,P (t )) > En,loc (X ,P (t )) and tn,loc ≤ Tn ) then

14: N (s ) ← N (s )\{n};
15: while (N (s ) � N (s − 1)) do

16: s ← s + 1;
17: Repeat steps 3 to 14;
18: return P, J ,X .

We know that M and N are the number of MECs and mobile devices, respectively. We set
amaxN = maxm∈M{Groupm }, where amax ≤ 1. Assuming h(n), д(n) are the number of while loops
and computation overhead of every while loop required for a group with n MDs. Then, the com-
putational overheads of Algorithm 1 is O (

∑
m∈M h( |Groupm |)д( |Groupm |)). The worst case is

O (Mh(amaxN )д(amaxN )). The computation overhead of Algorithm 2 isO (MamaxN lg P ). Assum-
ing the number of convergence times of Algorithm GCO isO (k ), then the computational overhead
of Algorithm GCO in the worst case isO (kMh(amaxN )д(amaxN ) + kMamaxN lg P ). From the anal-
ysis of Section 5.2.2, we can know that h(amaxN ) = O (N ) and д(amaxN ) = O (N 2). Therefore, the
computational overhead of Algorithm GCO is O (kMN 3 + kMN lg P ).

4.4 Convergence of the GCO Algorithm

We should verify that whether the obtained solution sequence from the Algorithm GCO converges
to the Nash equilibrium. If a sequence is monotonic and bounded, then the sequence is convergent.

Theorem 3. Assuming the Nash equilibrium solution of non-cooperative game strategies for N
MDs and M MECs H = (N , {Pn }n∈N , {En,of f };S,X, |J |) as 〈P∗,X ∗〉, sequence solution p (t ) ob-

tained by the proposed GCO algorithm converges to 〈P∗,X ∗〉.

Proof. For MD n, the transmission power sequence is bounded because pn ≤ pn ≤ pn . Then,
we prove the transmission power sequence obtained from the while loop (lines 6–9) in algorithm
GCO is monotonicity.

It is assumed that the loop has iterated t times, that is, Pn (t ), J (t ), and fn (t ) have been calculated.
J (t ), fn (t ) are updated based on Pn (t ). For MD n (n ∈ N (s )), n ∈ J (t ) or n � J (t ).
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Table 2. System Parameters

System parameters Variable range
Number of MDs (N ) [15–70]
Number of MECs (M) [1–3]
Input task data size (dn ) (0,2]MB
Workload requirement (wn ) [100,500]cycles/bit
Expected Time (Tn ) (0,3]s
Transmission power range (pn ) 100-[1000,3000]mWatts
Computational capacity of S (C) 1GHz
Local computation capability (f loc

n ) {0.05, 0.1, 0.15, 0.2}GHz
Channel bandwidth (B) 10MHz
Background noise power (η0) −100dBm
Distance between n to S (disn) (0,50]m
Path loss factor (α ) −4

(1) n � J (t ): MD n can increase pn to provide his own competitiveness. Then, pn (t + 1) =
min{p1

n ,p
2
n ,pn } ≥ pn (t ).

(2) n ∈ J (t ): The computation capability fn (t ) assigned to MD n by the MEC S satisfies tn ≤
Tn , that is, pn (t ) ≥ p ′n . Based on Algorithm 2, pn (t + 1) = pn (t ).

In summary, each MD’s transmission power sequence satisfies pn ≤ · · · ≤ pn (t − 1) ≤ pn (t ) ≤
pn . �

5 SIMULATIONS

5.1 Simulation Settings

We evaluate the system performance of the proposed GCO algorithm. As shown in Table 2, we
consider N MDs and M MECs in this system, where N and M are randomly selected from the in-
terval [15−70] and [1−3], respectively. The size of the input task data dn of each MD n is randomly
selected from the interval (0, 2]MB and the total number of required CPU cycles cn = dn ·wn ,
where wn is the workload requirements of task τn (wn ∈ [100, 500] cycles/bit). Similarly, the ex-
pected Time Tn of MD n also follows a uniform distribution with (0, 3]s. The minimum trans-
mission power pn is 100mWatts, and the maximum value is randomly selected from the inter-
val [1000, 3000]mWatts. The local computation capacity f loc

n of MD n is randomly selected from
the set {0.05, 0.1, 0.15, 0.2}GHz. We consider MEC S has a coverage range of 50m. The compu-
tational capacity C of MEC S is 1GHz. The bandwidth B = 10MHz and the background noise
power η0 = −100dBm. Based on the wireless interference model for urban cellular radio envi-
ronment, the channel gain Gn,m = dis

α
n,m , where disn,m is the distance between MD n and the

MEC m, and α = −4 is the path loss factor. Our experiments are performed on i5-6200U 2cores
CPU@2.3GHz2.4GHz platform.

5.2 Simulation Results

5.2.1 Convergence of Algorithm GCO. We first consider 50 MDs and one MEC system. The
remaining parameters are shown in Table 2.

Figure 2(a) and (b) illustrate the convergence process of transmission power for each MD by
executing our proposed GCO algorithm. With the number of iterations increasing, the transmis-
sion power of each MD is increasing, and then the curve reaches to a stable value. During the
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Fig. 2. Change of transmission power in the iterative process.

Table 3. Changes in Beneficial MDs during Each Round

of Changes in the Transmission Power of MDs

D2 D3 D10 D11 D12 D13 D15 D16 D17 D21 D22 D26 D27
1 1 0 0 0 0 1 0 1 0 1 0 1
0 0 1 1 1 1 0 1 1 1 1 1 1
0 0 1 1 1 0 1 1 0 1 0 1 0
0 0 1 1 1 1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 1 0 1 1 1 1
0 0 1 1 1 1 1 1 0 1 1 1 1

D29 D30 D31 D32 D34 D39 D40 D41 D43 D44 D47 D48
0 0 1 0 1 1 1 0 1 0 1 1
1 1 0 1 0 1 0 1 0 0 1 0
1 1 0 1 0 1 0 1 1 1 1 0
1 1 0 1 0 0 1 1 1 1 0 0
1 1 0 1 0 1 0 1 1 1 1 0
1 1 0 1 0 1 0 1 1 1 1 0

process of computing, some MDs will withdraw the resource competition if the transmission
power is higher than their accepted maximum value, i.e., pi > pi . Figure 2(b) is the transmission
power curve of MDs who don’t offload their tasks to MECs. Table 3 illustrates the detailed changes
in beneficial MDs during each round of changes in the transmission power of MDs. The beneficial
MD and the MD without executing his task on the MEC are represented by 1 and 0, respectively.
In addition, the specific change between 0 and 1 is marked in blue. Moreover, we can know that
the transmission power can be obtained after six iterations, which shows high efficiency of our
proposed algorithm.

Figure 3(a) and (b) are the curve of the number of MDs who obtain computing resources provided
by MEC and the bar graph of the average energy consumption during the iterative process, respec-
tively. At the beginning, each MD’s transmission power is set as the initial value, i.e., the minimum
value. The number of MDs with QoS served by the MEC with limited computing resources is 23,
and the average energy consumption is about 70. Each MD increases its transmission power to
compete for the computing resources of MEC, which causes the average energy consumption to
rise during the iteration, as shown in Figure 3(b). In Figure 3(a), after several rounds of mutual
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Fig. 3. The changes during the iterative process.

Fig. 4. The analysis of Algorithm 1.

negotiation between MDs, the number of MDs who can use the computing resources provided by
MEC gradually increases and reaches a stable value 29 as the number of iterations increases.

5.2.2 Performance Evaluation. We analyze the performance of Algorithm 1 from the perspec-
tives of the number of both while loops and computation overhead of every loop. The number of
MDs N is selected from the interval [15–70] with the increment of 5. The number of MECs M is
the element of {1, 2, 3}. For each N and M , we repeat the experiment 20 times. The experimental
results are shown in Figure 4(a) and (b).

Figure 4(a) and (b) shows the number of while loops and computation overhead of every loop
in Algorithm 1 as the number of MDs increases, respectively. With the number of MDs increas-
ing, green, orange, and gray bars represent the analysis of 1 MEC, 2 MECs, and 3 MECs systems,
respectively. Each group bar has further added the corresponding trend line. From Figure 4(a), for
each M MECs system, the number of while loops increase linearly as the scale of MDs increases.
Besides, for each N MDs, the greater the number of MECs M , the fewer number of the while loops.
From Figure 4(b), for each M MECs system, computation overhead of every loop increases in a
second polynomial. Fitting degrees between the bars and their trend lines are greater than 0.99.

Then, we analyze the performance of the GCO algorithm, which is evaluated from two respects:
the number of convergence and the computation overhead of every convergence. Like Figure 4,
three colors represent 1 MEC, 2 MECs, and 3 MECs, respectively. From Figure 5(a), the general
trend of every curve for each M MECs system increases and reaches a stable value. In addition,
even if the number of MDs is 55, the average number of convergence time is very small, just 9.1. In
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Fig. 5. The analysis of Algorithm GCO.

Figure 5(b), as the scale of MDs increases, the computation overhead curve of eachM MECs system
increases in a polynomial. The dashed line is the trend line of the corresponding computation
overhead curve of every convergence, which is a third-order polynomial. Fitting degrees of the
trend lines and the corresponding dashed curve are more than 0.99. Besides, with the number
of MDs N increasing, the difference between each M MECs system regarding the computation
overhead of every convergence is increasing.

5.2.3 Comparisons with RPCO and DCOA. We compare our GCO algorithm to other algorithms
(RPCO and DCOA [4]) to show our high efficiency and feasibility. We briefly introduce the Ran-
dom Power Computation Offloading (RPCO) algorithm and Distributed Computation Offloading
Algorithm (DCOA).

RPCO: The transmission power of each MD is randomly selected from the interval [100 −
3000]mWatts. Other relevant conditions and parameters are the same as in Table 2. MEC S se-
lects the offloading strategy by optimizing the number of tasks with delay deadline. We scale the
number of MD from [15−55] with the increase of 5. We compare our GCO algorithm and RPCO
from the number of MDs selected by MEC S.

DCOA: It is assumed that MEC satisfies the deadline requirements of each offloaded MD. The
CPU computational capability f m

n of MD n is randomly assigned from the set {0.5, 0.8, 1.0}GHz
to account for the heterogenous computing capability of mobile devices. Each MD optimizes his
objective function Zn (an ,a−n ) by selecting the appropriate channel, where Zn is the system-wide
computation overhead and an is the selected channel of MD n. Besides, the transmission rates of
MDs in the same channel affect each other.

Figure 6 is the comparison between our GCO algorithm and RPCO on the number of selected
MDs. For eachN value, we do many times of experiments and get the average value. As the number
of MDs increases, the overall trend in these four-type bars is rising. Compared with the RPCO
algorithm, the number of beneficial MDs of three systems (1 MEC, 2 MECs, and 3 MECs) improves
4%−17%, 11%−40%, and 11%−56%, respectively. As the number of MDs increases, the greater the
number of MECs, the more the number of beneficial MDs increases. From Figure 6, we can see that
our GCO algorithm selects more MDs under the same limited-resource of MECs, which shows the
superiority and feasibility of our GCO algorithm.

We compare the number of changing strategies between MECs and MDs with Algorithm DCOA,
which is shown Figure 7(a). As the strategies of MDs change, the computation resource allocation
strategy of MECs in Algorithm 1 will change correspondingly. We use the number of changing
strategies (MECs, MDs) to represent the total changing number between MECs and MDs, which
is the same as “decision slots” in Ref. [4]. Note that the system in the DCOA algorithm considers
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Fig. 6. Comparison of the number of selected MDs.

Fig. 7. Comparison between GCO and DCOA.

five channels, so we choose two MECs and three MECs system in our GCO algorithm to compare.
From Figure 7(a), we can know that the trends of DCOA and GCO algorithms increase with the
number of MDs increasing. However, compared to DCOA, the number of iterations in our GCO
algorithm is reduced by at least 15%. Besides, according to Ref. [4], we can know that the number
of MDs is 25 when the iteration time of calculating the computation overhead is 38. Therefore, we
compare the GCO and DCOA algorithm with the computation overhead when the number of MDs
is 25. Experiment results in Figure 7(b) show that the overall computation overhead is reduced by
at least 50%.

6 CONCLUSIONS

Our study focuses on the task offloading problem of one MEC and multiple MDs with delay dead-
lines. From the perspective of MEC S, we propose a greedy algorithm to optimize the number of
served MDs with delay deadline. We analyze the energy consumption of all tasks executed on MEC
S based on the non-cooperative game theoretical method. We prove the existence of Nash equilib-
rium solution and propose GCO algorithm to solve it. Besides, the convergence of the algorithm
is also analyzed. Extensive simulated experiments results and the comparison experiments with
the RPCO solution validate and show the feasibility of our proposed method. In future work, we
will consider the multiple MDs mobility and the task migration in a real-time multiple edge com-
puting system based on our existing work to explore the impact of task migration on the latency
performance of multiple MECs.
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