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Abstract

Mobile social network (MSN) offers a new perspective on mobile ad hoc
communication since its routing principle is based on the human social
relations. Although social-based routing can improve routing efficiency con-
siderably, obtaining such social information is difficult to be achieved. In
information-centric networking (ICN), content names reveal useful social infor-
mation among users. In addition, each node stores and caches the received
content to satisfy the forthcoming content requests in ICN due to in-network
caching. In this work, the proposed MSN routing relies on named data net-
working, which is a well-known ICN paradigm. By the communities, which
are detected based on users' interest preferences, an interest packet is delivered
to the content provider based on the interest similarities among mobile users.
Then, by communities, which are detected based on the nodes' encounter regu-
larities, a data packet is returned to the interest requester according to the social
relationships among mobile users. The content is cached at nodes according
to both social and interest communities. Experiments and performance evalua-
tions show that the proposed scheme has better message delivery ratio and lower
network overhead than the other existing ones.

1 INTRODUCTION

Mobile social network (MSN) attempts to exploit the social behaviors of users to forward time-insensitive data via the
wireless communication established among the mobile nodes. In such network, nodes seek opportunistic device-to-device
(D2D) data dissemination instead of uploading and downloading directly from the Internet to reduce the communication
cost, especially for the large volume data (eg, video).1 To this end, effective routing schemes in MSN have become an active
research area and attracted intensive attention up to now. However, in case of high mobility, connections may break and

Trans Emerging Tel Tech. 2019;30:e3554. wileyonlinelibrary.com/journal/ett © 2018 John Wiley & Sons, Ltd. 1 of 20
https://doi.org/10.1002/ett.3554

https://doi.org/10.1002/ett.3554
https://orcid.org/0000-0002-7275-9783
https://orcid.org/0000-0003-0884-6601


2 of 20 SHI ET AL.

the communication is disrupted until the new one is established.2 Although utilizing mobile users' social relationships
can help improve routing efficiency in MSN, exploiting their implied social regularities is a big challenge.3 Furthermore,
nodes with strong social positions (eg, high centrality) are frequently asked to forward packets by other nodes. However,
such nodes may easily become the bottleneck nodes, and thus, the efficiency of routing mechanisms is harmed. Moreover,
in traditional distributed MSN architectures, the destination node identifications (addresses) are always assumed to be
known when routing. In fact, mobile users often do not know which nodes can satisfy their requests when requesting
data, that is, their generated interest packets cannot be embedded with the destination node IDs, which is really a different
circumstance from the traditional architectures. Such issues motivate us to investigate a new method to explore the social
behaviors of users, eliminate the bottleneck nodes, and adapt to the scenario of unknown destination node identifications.

Information-centric networking (ICN) shifts the current host-oriented communication model toward the
information-centric one, and interest requester does not need to know which node can offer the requested contents
to them.4 It relies on location-independent naming, in-network caching, and name-based routing to effectively dis-
tribute content over the network. In named data networking (NDN), names are human friendly.4 Once the name-based
routing is implemented in MSN, the implied social information, for example, users' interests and preferences, can be
easily exploited by analyzing such human-friendly content names. Furthermore, since MSN works on the principle
of store-carry-forward mechanism,5 the requested data (content) can be responded by the nodes, which carry the cor-
responding data packet rather than just by the original content provider. Therefore, by caching content that will be
frequently requested in the future at nodes, the network traffic can be relieved, and thus, the bottleneck nodes can be
eliminated. For instance, one socially popular node holds some popular content, leading to its frequently being asked to
provide content for other nodes, which may make bottleneck nodes appeared and traffic congestion emerged. Instead,
with in-network caching, a node, which is closer to the interest requester than the original content provider, has one
copy of the popular content and can provide it conveniently. Such a mechanism can eliminate the bottleneck nodes and
further balance the network traffic load.

In sociology, a community is a clustering of entities that are closely linked to each other, by either direct linkage or
easily accessible entities that can act as intermediates. We bring community structures into MSN routing since it can ben-
efit routing efficiency significantly.6 At present, some existing algorithms7,8 based on the encounter history among nodes
have been employed to detect communities. With such communities, packets are delivered by being forwarded to nodes,
which have regular encounter histories to destination nodes. In ICN architecture, interest packets are delivered to nodes,
which can provide the requested contents, rather than to some specific nodes. Therefore, the previous community detec-
tion algorithms cannot work well for interest packets routing because the frequently encountered nodes do not certainly
represent that they hold the requested content. To this end, community detection that can work for the interest packet
routing should be considered in ICN-based MSN. Furthermore, even if in the same communities, different community
members also have relationships with different levels of closeness among them. Such different relationships may have a
significant influence on routing efficiency and thus should be taken into account carefully.

Based on the previous discussion, we design an information-centric routing in MSN based on community detection
(IRCD), and the main contributions are summarized as follows.

• One of the popular ICN paradigms, NDN,9 is leveraged for MSN routing. By analyzing the name-based content requests,
the user interest preferences are exploited, and we implement in-network caching in nodes so as to respond to the
forthcoming interest requesters.

• We propose an interest and social based community detection algorithm to provide suitable communities for interest
packets and data packets. The proposed encounter density metric is used to detect social communities. We classify
social community members into strong social friends and weak social friends, based on which, the data packet routing
is devised.

• Rather than the simple content categories, the specific content categories of the requested contents are used to define
the proposed content interest similarities for interest community detection. We classify interest community members
into direct interest friends and indirect interest friends, based on which, the interest packets routing is devised.

• In data packet routing, nodes cache contents in different caching time periods, which are defined based on the proposed
community member interests. The content is only cached at one social community member rather than redundantly
cached at every node.

The rest of this paper is organized as follows. Section 2 reviews related work and compares our work with them. Section 3
presents the system framework of the proposed routing scheme. Section 4 presents the proposed community detection
algorithm. Section 5 describes the devised interest packet routing and data packet routing. Section 6 reports simulations
and performance evaluations. Section 7 draws conclusions.
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2 RELATED WORK

For MSN routing, in the work of Bulut and Szymanski,10 a friendship-based routing scheme was presented, in which the
periodically differentiated friendship relations were used in forwarding messages. In the work of Chen et al,11 aiming to
develop a systematic understanding of MSN, social ties in human social networks were exploited to enhance coopera-
tive D2D communications. In the work of Xiao et al,12 a zero-knowledge multicopy routing algorithm was proposed for
homogeneous MSN, in which all mobile nodes shared all community homes. In the work of Pholpabu and Yang,13 by
considering the problem of dynamic routing in MSN and exploiting the social characteristics of mobile nodes, a social
contact probability assisted routing protocol was proposed. In the work of Pholpabu and Yang,14 a routing protocol for
MSN was proposed by exploiting the fact that people's daily lives had community preferences. In the work of Xiao et al,15

a distributed optimal community-aware opportunistic routing algorithm was proposed and a home-aware community
model was built, whereby the MSN was turned into a network, which only included communities. In the work of
Gupta et al,16 the planned mobilities of the nodes were partially known a priori. The optimal routes were computed using
the most reliable path principle, in which the negative logarithm of a node pair's adjacency probability was used as a link
weight metric.

However, the previous MSN routing mechanisms have two drawbacks. Firstly, they arbitrarily forwarded packets to
nodes with strong social positions, bringing hotspots to the network easily and thus degrading the network performance.
Secondly, all the users' social profiles were exploited from their encounter histories, which cannot accurately represent
users' interest properties and guarantee efficient packet delivery. In contrast, we devise the MSN routing scheme based
on NDN paradigm, resolving the hotspot problem by in-network caching and exploiting social profiles of the content
preference from the user-defined content names.

In the work of Pu et al,17 a social-aware NDN (sNDN) framework to achieve efficiently cooperative content retrieval was
proposed. The cooperative content retrieval was advocated, which was a novel and content-centric service paradigm via
D2D communications to reduce cellular traffic volume and to facilitate user wireless connectivity in mobile networks. In
the work of Nazir et al,18 people's predictable social patterns were exploited to improve the content delivery performance
and lower end-to-end delay in time-critical applications. In the work of Anastasiades et al,19 an information-centric rout-
ing protocol for mobile ad hoc networks was proposed. It was based on the implicit content discovery via broadcast and
dynamically created unicast links for efficient content retrieval. In the work of Kuang and Yu,20 an information-centric
architecture called content-scent–based architecture (CSAR) was proposed for mobile ad hoc networks. In CSAR, content
had its special content scent and could be found by tracing the scent, which is spread over the network.

For all the previous researches, which use information-centric network architecture, they neglect the inherent commu-
nity structures that exist among mobile social users.

In the work of Lu et al,21 the community-based content retrieval architecture was proposed, which was highly scal-
able in disruption-tolerant mobile information-centric networks. In the work of Xu et al,22 the routing scheme delivered
the mobile social content by using the selective agent and relay nodes. However, they both considered that a node just
forwarded packet based on one kind of community whenever forwarding interest packets or data packets. Such consid-
eration brings unsuitable routing guidance and makes low routing efficiency because the two kinds of packets should be
based on different communities with different clustering factors.

3 SYSTEM FRAMEWORK

The framework of IRCD is shown in Figure 1. The IRCD has the following two modules: social-interest community detec-
tion (SICD) and routing decision (RD). In SICD, there are social community detection and interest community detection.
In RD, there are interest packet routing (IR) and data packet routing (DR). Specifically, in IR, there are intracommunity
forwarding and intercommunity forwarding. When an interest packet is received by a node, based on the interest com-
munities detected by SICD, the node checks whether it belongs to the destination interest community according to the
requested content category. If yes, the interest packet is forwarded by the intracommunity forwarding in IR; otherwise,
it is forwarded by the intercommunity forwarding in IR. In DR, there are in-network caching, intracommunity forward-
ing and intercommunity forwarding. When a data packet is received by a node, the carried content is cached based on
the interest communities and social communities to fulfill the forthcoming interest packets. Then, based on the social
communities detected by SICD, if the interest requester is in the same social community as the node, the data packet is
forwarded by the intracommunity forwarding in DR; otherwise, it is forwarded by the intercommunity forwarding in DR.
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FIGURE 1 Information-centric routing based on community detection system framework

FIGURE 2 Information-centric routing based on community detection scenario and workflow

The workflow of IRCD is shown in Figure 2. Firstly, based on SICD, mobile devices held by users (called nodes) are
arranged into interest communities (nodes F1, F2, and P) and social communities (nodes F3 and R). When the interest
requester R generates an interest packet, R forwards it to F2 by the intercommunity forwarding in IR since R does not
belong to the interest community of the requested content category. If F2 caches the requested content, then it generates
a data packet and returns it back to R; otherwise, F2 forwards the request to P by the intracommunity forwarding in IR
since F2 belongs to the interest community of the requested content category. Assume that P is the content provider, it
generates the data packet to be returned to R. Next, P forwards this data packet to F3 by the intercommunity forwarding
in DR, and then F3 does the in-network caching locally. F3 forwards the data packet to R by intracommunity forwarding
in DR finally.

4 COMMUNITY DETECTION ALGORITHM

We build communities based on the local social information that is maintained by each node. Social relationships among
nodes influence their encounters. Furthermore, if two nodes have a strong social relationship, they can encounter each
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other with higher probability than the others, which is determined by human beings' social nature. Meanwhile, content
preference of a node represents his interest. If two nodes have high-interest similarity, they prefer to share content
resources with each other.

In the proposed IRCD, interest packets are forwarded to nodes, which have a high-interest similarity with the content
provider, whereas data packets are forwarded to nodes, which have high social relationship with the interest requester.
We first detect social communities based on the proposed encounter densities among nodes and then detect interest
communities based on interest similarities among nodes.

4.1 Encounter density
Two nodes encountering each other regularly in history indicate that they keep a good social relationship. The regularity
can be reflected in several ways, for example, encounter times and encounter duration.1 In history encounter time, if two
nodes encounter each other with many encounter times and long encounter duration, they can encounter each other
with a high possibility in the future. We use the encounter density to measure such property.

Suppose that there are m mobile nodes in the network topology and Ri is an arbitrary node, 1 ≤ i ≤ m.

Definition 1 (Unit period and encounter element).
The history time duration h is divided into some unit periods. The encounter element represents whether two nodes
have encountered each other in the corresponding unit period. If nodes Ri and Rj encounter each other in one unit
period 𝜉, the corresponding encounter element is set to be 1; otherwise, it is set to be 0. Let geo

i𝑗 represent the encounter
element between Ri and Rj within the oth unit period, and we have

geo
i𝑗 =

{
1,Ri encoutners R𝑗 in time [(o − 1)𝜉, o𝜉)
0, otherwise

(1)

Then, in h, the number of a unit periods np is
np = h

𝜉
. (2)

Definition 2 (Encounter density).
Encounter density of two nodes is defined as the number of their nonzero encounter elements divided by np. Let ne
represent the number of nonzero encounter elements and edi j represent the encounter density between Ri and Rj, and
we have

edi𝑗 =
ne
np

. (3)

4.2 Content interest
Content names in NDN are composed of multiple components arranged in a hierarchy, and an interest request includes
several components. Therefore, a user's historical requests can reflect his interest preferences of content.23 Users have
different preferences on different kinds of contents, for example, some of them are interested in sports, whereas some
of them are interested in movies, that is, they are interested in different content categories. Furthermore, although two
users are interested in the same content category, for example, they are both interested in sports, they may be interested
in different specific subcategories, for example, one is interested in basketball and another is in dancing.

We classify the content names into several categories, and the naming scheme is based on such categories. For example,
in Figure 3, content names are classified into sport, music, travel, game, reading, and movie, and each classification is
further classified into several classifications. For example, sport is classified into dancing, basketball, football, swimming,
and ping pong. If a user interests in one content category, his generated interest request includes the components of
this category with high probability. For example, Bob interests in football, then his interest request includes components
“football” and “sports” with high probability. Inspired by this, we calculate the interest preferences of users based on the
subcategories (name components) in their historical interest requests.

Let CC represent the set of all content categories that users are interested in, and CC has z elements. Furthermore, for
each content category, there are n specific subcategories.
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FIGURE 3 Naming scheme

Definition 3 (Content interest matrix).
Content interest matrix is a z × n matrix, in which the element on the tth row and the uth column is the number of
the history requested times for the uth specific subcategory in the tth content category of node. Let Mi represent the
content interest matrix of Ri, mi

tu represent its element on tth row and the uth column, and we have

mi
tu = rti

tu, (4)

where rttu is the requested times for the uth subcategory in the tth content category of Ri. When Ri requests a content
that belongs to the uth subcategory in the tth content category, we have

rti
tu ← rti

tu + 1. (5)

Let Mg
i represent the gth row in Mi, and we have

Mg
i = A × Mi, (6)

where A is 1 × z matrix, of which each element al(1 ≤ al ≤ z) is defined as follows:

al =

{
1, l = g

0, l ≠ g.
(7)

Definition 4 (Content interest).
Content interest on content category g of node Ri is the sum of its requested times of all subcategories of g. Mathemat-
ically, it is the sum of all elements in gth row in Mg

i . Let cigi represent the content interest of Ri on content category g,
and we have

cigi =
n∑

k=1
mgk

i , (8)

where mgk
i is the element of kth column in Mg

i .
Manhattan distance is a metric in which the distance between two points is the sum of the absolute differences of

their coordinates.24 We define interest similarity based on Manhattan distance as follows. Let isgi𝑗 represent the interest
similarity of Ri and Rj on category g, and we have

isgi𝑗 =
2
𝜋

arctan 10
n∑

k=1

|||mgk
i − mgk

𝑗

|||
, (9)

where we use 2∕𝜋 · arctan(x) to normalize the interest similarity.

4.3 Social-interest community detection
When Ri encounters Rj, it calculates edi j according to (3). We use a preset threshold 𝜔 to decide whether Ri and Rj have a
regular encounter history.
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Definition 5 (Strong-tie friend).
If edi j is higher than 𝜔, Rj is the strong-tie friend of Ri. Let STi represent the set of strong-tie friends of Ri, and we have

STi = {R𝑗|edi𝑗 > 𝜔}. (10)

Definition 6 (Common friends).
If Rc is both strong-tie friend of Ri and Rj, Rc is the common friend of Ri and Rj. Let CFi j represent the set of common
friends of Ri and Rj, and we have

CFi𝑗 = ST𝑗

⋂
STi. (11)

Let nci j represent the number of common friends between Ri and Rj, and we have

nci𝑗 = |CFi𝑗|. (12)

We use a preset threshold 𝛿 to decide whether Ri and Rj have many common friends.

Definition 7 (Weak-tie friend).
If nci j is higher than 𝛿, Rj is the weak-tie friend of Ri. Let WTi represent the set of weak-tie friends of Ri, and we have

WTi = {R𝑗|nci𝑗 > 𝛿}. (13)

Definition 8 (Social community).
If Rj is a strong-tie friend or a weak-tie friend of Ri, then Rj is in the social community of Ri. Let SoCi represent the
social community of Ri, and we have

SoCi = STi
⋃

WTi. (14)

When Ri encounters Rj, if Rj ∈ SoCi, then for each content category g (g ∈ CC), it calculates each isgi𝑗 according
to (9). We use a preset threshold 𝜃 to decide whether Ri and Rj have similar interest preference.

Definition 9 (Direct interest friend).
If isgi𝑗 is higher than 𝜃 and Rj ∈ STi, Rj is the direct interest friend of Ri on content category g. Let DTg

i represent the
set of direct interest friends of Ri on g, and we have

DTg
i =

{
R𝑗
|||isgi𝑗 > 𝜃

}
. (15)

If Rj is added into DTg
i , the specific content subcategories on g held by Rj are also recorded by Ri.

Definition 10 (Indirect interest friend and bridge node).
When Ri ∈ STj, and ∀ Rq ∈ STj, q ≠ i, if isgiq > 𝜃, then Rq is the indirect interest friend of Ri on content category g,
and Rj is the corresponding bridge node for Ri and Rq on g. Let ITg

i represent the set of indirect interest friends of Ri
on g, and we have

ITg
i =

{
Rq

|||Rq,Ri ∈ ST𝑗

⋀
isgiq > 𝜃

}
. (16)

If Rq is added into ITg
i , the content subcategories on g held by Rq are also recorded by Ri.

Definition 11 (Category community).
If Rj is a direct interest friend or an indirect interest friend of Ri on content category g, then Rj is in the category
community of Ri on g. Let InCg

i represent the category community of Ri on g, and we have

InCg
i = DTg

i

⋃
ITg

i . (17)
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Definition 12 (Interest community).
The interest community of Ri consists of all the category communities of Ri. Let InCi represent the interest community
of Ri and 𝜙 represent null set, respectively, and we have

InCi =
{

InCg
i
|||g ∈ CC

⋀
InCg

i ≠ 𝜙

}
. (18)

In summary, the proposed SICD is shown in Algorithm 1. Lines 1-16 decide whether the encounter node belongs
to the interest community. Lines 17-26 decide whether the encounter node belongs to the social community.

5 ROUTING DECISION

5.1 Interest packet routing
5.1.1 Intracommunity forwarding in IR
When Ri receives an interest packet iP, of which the requested content c belongs to the specific subcategory s of the
content category g, that is, c ∈ s, Ri first checks whether it has c. If it has, iP is delivered; otherwise, Ri checks whether
its interest community members have c. If at least one member Rj has, Ri does the intracommunity forwarding in IR. Let
CAj represent the set of the cached content of Rj. Specifically, if at least one direct interest friend of Ri on g has c, that is,

R𝑗 ∈ DTg
i

⋀
∃c ∈ CA𝑗 , (19)
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then all direct interest friends satisfying (19) are stored in set D. Suppose that Re is an encounter node of Ri. If

Re ∈ D, (20)

then Ri forwards iP to Re.
If there are no direct interest friends of Ri that has c but at least one of its indirect interest friend has it, that is,

Rq ∈ ITg
i

⋀
∃s ∈ CAq, (21)

then all the bridge nodes of the indirect interest friends of Ri satisfying (21) are stored in set I. If

Re ∈ I, (22)

then Ri forwards iP to Re. Specially, if there are more than one bridge nodes, the one that has the highest ed with Ri will
be selected.

5.1.2 Intercommunity forwarding in IR
If no interest community member of Ri has content belonging to s, Ri does intercommunity forwarding in IR. When Ri
encounters Rj, it compares its content interest on content category g with Rj. If

cig
𝑗
> cigi , (23)

then Ri forwards iP to Rj. It is because that Rj has the higher content interest on category g and has higher probability to
encounter the node that has the similar interest, that is, Rj is more likely to find content provider for iP than Ri.

In summary, the proposed IR is shown in Algorithm 2.

5.2 Data packet routing
5.2.1 In-network caching
Due to the limited storage space, it is hard for the nodes to cache all the received contents. When Ri receives a data packet
dP, of which carried content belongs to the specific subcategory s of content category g, Ri checks whether its social
community members have content belonging to s. If at least one social community member has, in-network caching is no
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more needed because the future requests for the content belonging to s can be satisfied by the social community member;
otherwise, if no social community member has, Ri does the in-network caching for the received content.

Definition 13 (Community interest).
Community interest on content category g of Ri is the sum of content interests on g of its interest community members
on g. Suppose there are w community members in InCi. Let migi represent the community interest on content category
g of Ri, and we have

migi =
w∑

k=1
cigk . (24)

For each cached content c, Ri calculates the caching time period for c. Suppose Tc
i is the caching time period of c by

Ri, and we have

Tc
i = T0 · migi , (25)

where T0 is the unit caching time period.

If the caching time period of one content has expired, the content is deleted. When caching a new content, if the cache
space is full, the content with the least history requested times by others is deleted.

To verify the efficiency of the proposed caching policy (PCP), we propose the following theorem.

Theorem 1. The PCP can achieve the highest response probability for content requests.
The related proof is shown in Appendix.

5.2.2 Intracommunity forwarding in DR
In ICN architecture, data packets are routed along the reverse path of the corresponding interest packets. However, it does
not work in MSN because nodes move frequently and their connections are not always maintained. Therefore, we equip
the interest requesters with interest packets to guarantee the data packet delivery even though the topology is changing
due to node movement.

When the content provider receives an iP, it generates a data packet dP and equips dP with the corresponding interest
requester. When Ri receives a data packet dP, of which destination node is Rr, it first checks whether it is Rr. If yes, then
dP is delivered; otherwise, it checks whether Rr exists in the social community of Ri. If so, Ri does the intracommunity
forwarding in IR. Specifically, if Rr is a strong-tie friend of Ri, that is,

Rr ∈ STi, (26)

then Ri waits to forward dP to Rr until they encounter because they already have a very strong relationship to make them
encounter.

If Rr is a weak-tie friend of Ri, that is,

Rr ∈ WTi, (27)

then the common friend that has the highest social relationship with Rr, which is denoted as Rh, is selected as the
forwarding node, and we have

∀Rc ∈ CFir, edcr ≤ edhr. (28)

Then, Ri waits to forward dP to Rh until they encounter, and Rh delivers dP to Rr finally.

5.2.3 Intercommunity forwarding in DR
If Rr does not exist in the social community of Ri, Ri does intercommunity forwarding in DR. When Ri encounters Rj, Ri
compares edjr with edir. If

ed𝑗r > edir, (29)

then Ri forwards dP to Rj because Rj has higher social relationship with Rr and is more likely to encounter Rr than Ri.
In summary, the proposed DR is shown in Algorithm 3.



SHI ET AL. 11 of 20

6 SIMULATIONS AND PERFORMANCE EVALUATION

6.1 Simulation setup

6.1.1 Simulator and traces
In this paper, since IRCD is basically an MSN routing scheme, we use opportunistic network environment (ONE)25 to
do performance evaluations over two traces. One is the Cambridge trace, which reflects good community structures,26

and the other is the synthetic trace.21 In Cambridge trace, the experimental data were gathered by the Haggle project, in
which the iMotes were distributed to 36 students from the University of Cambridge Computer Laboratory and the data set
covers 11 days. The synthetic trace consisted of 120 nodes, which were partitioned into two communities. One community
consisted of 50 nodes, and the other community consisted of 70 nodes, of which 20 nodes frequently move between the
two communities.

Since IRCD is an NDN-based routing scheme, we leverage NDN in the proposed framework as follows. A content
request is encapsulated into an interest packet, which is represented by the requested content name. By leveraging the his-
tory requested content names of nodes, their same interest preferences can be analyzed and be used to detect communities.
The returned contents are cached by the relaying nodes and used to respond to the forthcoming requests.

To implement and integrate the proposed framework with ONE, we mainly do the following works. Firstly, in the
original ONE, there is only one type of packet with the determined destination (the node ID). However, there are two
types of packets in the proposed framework, and the interest packet is addressed by the requested content name. Secondly,
in the original ONE, the node has no caching ability and also has no cache space. Therefore, we enhance each node with
cache and leverage the PCP to manage the cache. Finally, we add the community detection module to ONE.
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6.1.2 Benchmarks
We select two routing mechanisms as benchmarks and compare them with IRCD. One benchmark is from the work of
Lu et al21 called social-tie–based content retrieval among communities (STCRC). It allows users to request the content
toward the higher social level nodes, which are more popular in the network. If the interest cannot be resolved in the inter-
est requester's community, it will be forwarded to other communities for the content query. After the interest is matched
by one of the content digests, the search process forwards the request to the next hop that has a higher possibility to
reach the content provider based on the encounter history of the nodes. Finally, the requested content will be forwarded
back from the content provider to the original interest requester. The other benchmark is from the work of Pu et al17

called sNDN. The sNDN introduces friendship circle by grouping a user with his close friends of high physical proximity
and content similarity. It constructs NDN routing tables based on friendship circle encounter frequency to navigate con-
tent requests among friendship circles. It leverages social properties in friendship circle to search for the final target as
intrafriendship circle routing.

We compare the proposed IRCD with sNDN17 and STCRC21 for the following reasons. Among all the schemes men-
tioned in the related works,10-22 some works17-22 are routing schemes based on ICN paradigm, whereas others are not. We
cannot compare IRCD with other works10-16 because they have totally different packet formats from the ICN based rout-
ing schemes (eg, the interest packet in ICN-based routing scheme does not have destination address). Therefore, we do
not select any scheme from the other works10-16 as the benchmark. Among related works,17-22 Lu et al21 and Xu et al22 con-
sider community structures among mobile users, whereas other works17-20 do not. Thus, we divide these related works17-22

into two groups, that is, other works17-20 and the works of Lu et al21 and Xu et al22 and select benchmarks from these two
groups, respectively. In the former group, the work of Nazir et al18 has no data routing policy, then it cannot become our
benchmark. Besides, the works of Anastasiades et al19 and Kuang and Yu20 are flood-based routing schemes without social
metrics considered, whereas IRCD is socially inspired. Therefore, they are also not suitable to become our benchmark.
The work of Pu et al17 is a social relationship-based routing scheme with interest routing and data routing devised, mak-
ing it the most suitable benchmark in this group. In the latter group, since there are content servers in the network model
of Xu et al,22 which is different from the fully distributed network model in our proposed network model, we select the
work of Lu et al21 with nodes fully distributed as the benchmark.

Furthermore, in IRCD, we equip the in-network caching for responding to the forthcoming interest packets. However,
in STCRC and sNDN, such in-network caching scheme is not embedded. In order to fairly compare the forwarding deci-
sions of the previous three schemes, we equip in-network caching for the two chosen benchmarks. Since the proposed
in-network caching that IRCD equipped is based on the detected social communities and interest communities, we cannot
directly equip the same in-network caching method to STCRC and sNDN because they do not detect such communities.
Hence, we add first-in–first-out (FIFO) as the caching replacement policy for STCRC (and get the so-called STCRC-F) and
sNDN (and get the so-called sNDN-F), and equip FIFO for IRCD to replace the proposed in-network caching scheme (and
get the so-called IRCD-F). Here, the principle of FIFO is as follows. When the cache space is full, the earliest cached con-
tent is deleted. As a consequence, we totally have six mechanisms simulated, ie, IRCD, STCRC, sNDN, IRCD-F, STCRC-F,
and sNDN-F.

6.1.3 Comparison metrics and parameter settings
When comparing performance among the previous six routing mechanisms, we use packet delivery ratio (PDR), Average
HoP (AHP), Average DeLay (ADL), and Network OverHead (NOH) as the comparison metrics. Specifically, PDR is the
ratio of the number of all delivered packets to the number of all issued packets; AHP is the ratio of the traversed hops of
all delivered packets to the number of these delivered packets; ADL is the ratio of the experienced delay of all delivered
packets to the number of these delivered packets; NOH is the ratio of the forwarded times of all issued packets to the
number of all delivered packets. Their major meanings and the main simulation parameters are summarized in Table 1.

In our experiment, every node in the network acts both as the consumer and the provider. Therefore, in Cambridge
trace, there are 36 consumers as well as 36 providers, and in the synthetic trace, there are 120 consumers as well as 120
providers. Moreover, according to the real request generation pattern of users,27 in our simulation, all the users' request
arrival numbers in a unite time are subject to the Poisson distribution. Specifically, the probability of request generation
in a minute is 0.08. Therefore, the parameter of the Poisson distribution in Cambridge 𝜆 is set to be 3, and 𝜆 is set to be 10
in the synthetic. Besides, the user's request generation pattern for different contents follows the power-law distribution,
where the exponent 𝛼 is set to be 2.5. Simulation results are averaged over 30 independent runs and reported with the
95% confidence intervals.
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TABLE 1 Comparison metrics and simulation parameter settings

Parameter Setting

PDR Packet successful delivery ratio of all issued packets
AHP Average traversed hops of all delivered packets
ADL Average experienced delay of all delivered packets
NOH Average forwarded times that all the delivered packets spend
𝜉: Unit period for encounter density 10 minutes
𝜔: Threshold for strong-tie friend 0.5
𝛿: Threshold for weak-tie friend 4(Cambridge); 10 (synthetic)
𝜃: Threshold for similar interest preference 0.6 (Cambridge); 0.8 (synthetic)
𝜆: Parameter in the Poisson distribution 3 (Cambridge); 10 (synthetic)
𝛼: Exponent in the power-law distribution 2.5
Transmission range (synthetic) 10 m
Node speed (synthetic) [7,8]km/h
The size of a content block 5 M
Simulation times 30
Transmission speed 2 Mbps
Content cache space 50 M
Number of nodes/subcategories 36 (Cambridge); 120 (synthetic)
Number of providers/consumers 36 (Cambridge); 120 (synthetic)
Parameter in the Poisson distribution 3 (Cambridge); 10 (synthetic)

Abbreviations: ADL, Average DeLay; AHP, Average HoP; NOH, Network OverHead; PDR, packet delivery ratio.

In MSN, each node is limited within its wireless propagation range. When two nodes are within the propagating range
of each other, they can exchange packets. Besides, the content is cached along the path. The specific setting method of
𝜉, 𝜃, 𝜔, and 𝛿 are as follows.

• When configuring 𝜉, we set 𝜃=1, 𝜔=1, and 𝛿 = 10 000. Next, we test PDR under different values of 𝜉 and observe
that PDR increases when 𝜉 gets shorter. This is because that the small value of 𝜉 brings high division granularity
for the historical encounter events and makes the accurate prediction for the future encounters. However, when 𝜉 is
shorter than 10 minutes, PDR keeps almost the same performance. Such phenomenon indicates that it is unnecessary to
consider extremely high division granularity. Therefore, we set 𝜉 to be 10 minutes. For 𝜉, when it is set to be 60 minutes,
PDR has the worst performance with 0.0989 in Cambridge trace (72.3% worse than the best result) and 0.1827 (62.2%
worse than the best result) in the synthetic trace, respectively.

• With the determined 𝜉, when configuring 𝜃, we set 𝜉=10 minutes, 𝜔=1, and 𝛿 = 1000. Next, we test PDR under differ-
ent values of 𝜃, and observe that when 𝜃=0.6 in Cambridge trace and 𝜃=0.8 in the synthetic trace, respectively, PDR has
the best performance. Therefore, we set 𝜃=0.6 in Cambridge trace and 𝜃=0.8 in the synthetic trace, respectively. For
𝜃, when it is set to be 0, PDR has the worst performance with 0.2931 (60.3% worse than the best result) in Cambridge
trace and 0.3619 (56.6% worse than the best result) in the synthetic trace, respectively.

• Similarly, when configuring𝜔, we set 𝜉=10 minutes, 𝛿 = 1000, 𝜃=0.6, and 𝜃=0.8 for Cambridge trace and the synthetic
trace, respectively. We test PDR under different values of 𝜔, and observe that when 𝜔=0.5, both two traces have the
best PDR. Therefore, we set 𝜔=0.5. For 𝜔, when it is set to be 0, PDR has the worst performance with 0.5682 (29.5%
worse than the best result) in Cambridge trace and 0.6954 (24.4% worse than the best result) in the synthetic trace,
respectively.

• When configuring 𝛿, we set 𝜉=10 minutes,𝜔=0.5, 𝜃=0.6, and 𝜃=0.8 for Cambridge trace and the synthetic trace, respec-
tively. We test PDR under different values of 𝛿, and observe that when 𝛿=4 and 10 in the two traces, respectively, PDR
shows the best performance. Therefore, we set 𝛿=4 in the Cambridge trace and 𝛿=10 in the synthetic trace. For 𝛿, when
it is set to be 0, PDR has the worst performance with 0.6154 (28.1% worse than the best result) in Cambridge trace and
0.7468 (23.6% worse than the best result) in the synthetic trace, respectively.

Then, we test the influence of some main parameters as follows. Figure 4 shows the PDR and ADL of different speeds
of users in the synthetic trace, from which we can observe that when the speed increases, the performances get better at
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FIGURE 5 Impact of different numbers of providers and requesters A, PDR vs. provider number; B, ADL vs. provider number; C, PDR vs.
requester number; D, ADL vs. requester number. ADL, Average DeLay; PDR, packet delivery ratio

first but then get worse. It is because that the slow speed (slower than 5) leads to the inadequate encounters among users,
which reduce the packet forwarding and thus influence the performance. However, when the speed continues to increase
(faster than 12), the probability of interruption of the link between two neighbors increases and the packet transmission
cannot be finished on time, which also influence the performance.

Figure 5 shows the performances of different number of content providers and requesters in Cambridge trace, in which
five content subcategories and two cache situations of each node, ie, no cache space and four cache spaces, are consid-
ered. We implement five providers when varying the number of requesters and 35 requesters when varying the number
of providers. From Figures 5A and B, we can observe that when the number of requesters increases, the performances
get worse if nodes have no cache space. It is because that more requesters generate more requests, which result in more
requests that cannot be responded and decrease the response ratio. However, the performances get better if nodes have
cache spaces. It is because that benefiting from the in-network caching, more requests bring more content categories
cached by the nodes, which can improve the response efficiency for the requests. For the varying number of providers,
from Figures 5C and D, we can observe that when the number of producers increases, the performances get better obvi-
ously if nodes have no cache space. It is because that more providers bring more abundant cached content in the network
and thus improve the interest request response efficiency. However, when nodes have cache spaces, the performances get
better slightly since the requesters can already guarantee the sufficient content categories cached by the nodes.

Figure 6 shows the performances of different number of cache spaces and content subcategories in Cambridge trace.
We can observe that when the cache space increases, the performances get better since more cache space can improve
the response ratio and speed for the requests. However, if the cache space continues to increase, the performances are not
improved continually because the number of cached content of each node reaches the upper limit. It is worth mentioning
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that the upper limit is less than the cache space since the PCP does not cache the redundant content in one social com-
munity. Moreover, when the number of content subcategories decreases, the performances get better and the steady state
happens with less cache space. It is because that the requests can be responded more and faster with fewer content subcat-
egories, and the number of cached content of each node reaches the upper limit earlier with the increasing cache spaces.

6.2 Comparisons with benchmarks
The PDR for IRCD, STCRC, sNDN, IRCD-F, STCRC-F, and sNDN-F under different packet time to live (TTL) over the
Cambridge trace and the synthetic trace are reported in Figure 7. For IRCD, STCRC, and sNDN, we observe that IRCD has
the highest PDR. The reason is as follows. IRCD caches contents at nodes and thus can respond to the content requests
with high satisfied ratio within limited TTL of packets, whereas STCRC and sNDN do not consider in-network caching for
contents. Furthermore, IRCD detects communities for interest packets routing based on the interest similarities among
mobile users, while detects communities for data packets routing based on the historical encounter information among
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nodes. These communities accurate the routing process for different kinds of packets and thus improve PDR. In contrast,
STCRC just uses one single kind of community to route both interest and data packets, and thus may make packets be
routed by the misleading communities, while sNDN routes data packets based on the centralities. In addition, STCRC
uses communities among nodes to forward packets, whereas sNDN only leverages friend circles. Since communities in
STCRC are detected among the network-wide nodes, STCRC has the higher PDR than sNDN, which forwards packets
based on the friend circles that are only formed among the encountered nodes.

When comparing IRCD-F, STCRC-F, and sNDN-F, we observe that the relationships among them are similar to those
among IRCD, STCRC, and sNDN. Hence, the packets forwarding without in-network caching are proved to be effective
for IRCD on PDR, and the same conclusions can be observed in AHP, ADL, and NOH. Moreover, when comparing IRCD
and IRCD-F, we observe that IRCD has higher PDR than IRCD-F. The proposed in-network caching scheme keeps the
contents that are requested by interest community members frequently and deletes the redundant contents in the same
social community. Therefore, the cached contents are distributed in the network reasonable to respond to the forthcoming
interest requests with high PDR (similar to AHP, ADL, and NOH). When comparing STCRC and STCRC-F, we observe that
STCRC-F has higher PDR than STCRC because the in-network caching helps improve the routing efficiency of STCRC-F
(similar to AHP, ADL, and NOH). It is also the same for sNDN.

The AHP for IRCD, STCRC, sNDN, IRCD-F, STCRC-F, and sNDN-F under different TTL over Cambridge trace and the
synthetic trace are shown in Figure 8. For IRCD, STCRC, and sNDN, we observe that IRCD has the lowest AHP, followed
by sNDN and STCRC. Benefiting from the in-network caching, IRCD keeps AHP between one to two. For STCRC, it has
a drawback that it needs to forward interest packets to the nodes with high centralities in the community to know which
node has the content. If no one in the community has the requested content, the interest packet should be forwarded to the
border node and further to be forwarded to other community. Such principles make STCRC has worse AHP than sNDN.

The ADL for IRCD, STCRC, sNDN, IRCD-F, STCRC-F, and sNDN-F under different TTL over the Cambridge trace and
the synthetic trace are shown in Figure 9. For IRCD, STCRC, and sNDN, we observe that IRCD has the lowest ADL,
followed by sNDN and STCRC. For IRCD, its routing mechanism works based on the communities, thus can accelerate
packet delivery. Moreover, IRCD detects interest communities firstly when routing interest packets and detects social
communities firstly when routing data packets. The appropriate communities for the different packets also quicken the
deliveries of interest packets and data packets. However, sNDN only forms friend circles by the socially close encounter
nodes. The friend circles do not effectively utilize clustering properties among nodes, and thus slow down the packet
delivery. Although STCRC is also based on communities among nodes, for the same reason in AHP, the unreasonable
forwarding of STCRC makes packets delay worse than IRCD and sNDN.
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The NOH for IRCD, STCRC, sNDN, IRCD-F, STCRC-F, and sNDN-F under different TTL over the Cambridge trace
and the synthetic trace are shown in Figure 10. For IRCD, STCRC, and sNDN, we observe that IRCD has the lowest
NOH, followed by sNDN and STCRC. Since the in-network caching and accurate community-based forwarding reduce
the useless forwarding of packets, IRCD has the lowest NOH. For STCRC, packets have experienced forwarding process
with a big number of hops, that is, firstly, the cluster head in the local community; then the border node and the cluster
head in another community; and finally, the content provider. Such a process makes the packet cannot be easily delivered
when its TTL expires. Therefore, such many times of packets forwarding not contributed to the final delivery. Although
STCRC has higher PDR than sNDN, such many forwarding times lead STCRC to have higher NOH than sNDN.
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7 CONCLUSIONS

We have proposed an information-centric routing scheme in MSN. Although social-based routing is beneficial to effec-
tively deliver packets to the destinations in the mobile environment, it is not easy to exploit such social information.
We have described an interest community aware forwarding scheme to forward interest packets, in which the interest
information is mined from the content requests attached to mobile users' interest packets. When returning data packets to
the interest requesters, a social community aware forwarding scheme is devised to forward data packets, and the content
that is requested with a high possibility in the future is cached to reduce response time.

In the future, we will equip IRCD with mobile users' cell phones to verify its efficiency in satisfying daily content
requests of users. Moreover, to avoid the privacy disclosure of users, the routing mechanism should prevent user privacy
not to be obtained by malicious users. It needs to maintain the good performance of routing and, at the same time, make
the user's private information not disclosed to others.
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APPENDIX

THEOREM 1 PROOF

Proof of Theorem 1. Before verifying the theorem, we do the following assumptions at first:

• Each node has the limited cache space and can only cache y contents at most.
• Each node receives different contents with different constant probability.
• If a node has higher received requested probability for a content, it receives more requests for this content.

Suppose that the average time interval of received requests by Ri is Iv, and that Ri receives a content c with probability
Pc

i , Pc
i ≠ 0. Let Ivc

i represent the average time interval of the received requests by Ri for c, and we have

Ivc
i =

Iv
Pc

i
. (A1)

Let RtT
i,c represent the received requested times for c by Ri in time T, and we have

RtT
i,c =

T · Pc
i

Iv
. (A2)

Suppose that Ri generates requests with a uniform time internal iv, and requests c with probability pc
i . Let rtT

i,c
represent the generated request times by Ri for c in T, and we have

rtT
i,c =

T · pc
i

iv
. (A3)

https://en.wikipedia.org/wiki/Taxicab_geometry
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When Ri receives c at T, according to Equations (25), (24), (8), and (4), we can calculate the caching time period
for c by Ri as follows.

Tc
i = T0 ·

w∑
k=1

cigk

= T0 ·
w∑

k=1

n∑
𝑗=1

rtT
k,cg𝑗

= T0 ·
w∑

k=1

n∑
𝑗=1

T · pcg𝑗
k

iv
.

(A4)

To respond the same request for c, Tc
i should be longer than Ivc

i . Let x represent the value of Tc
i divided by Ivc

i , and
we have

x =
T0 ·

∑w
k=1

∑n
𝑗=1

T·p
cg𝑗
k

iv
Iv
Pc

i

=
T · Pc

i

Iv
·

w∑
k=1

n∑
𝑗=1

T0 · pcg𝑗
k

iv

= RtT
i,c ·

w∑
k=1

n∑
𝑗=1

rtT0
k,cg𝑗

.

(A5)

Suppose that Ri at least has received a request for c once in T, and at least one of its interest community members
have requested for the content, which belongs to the category of c once in T0, that is,

RtT
i,c ≥ 1 (A6)

w∑
k=1

r∑
𝑗=1

rtT0
k,cg𝑗

≥ 1. (A7)

Thus, x ≥ 1, that is,
Tc

i ≥ Ivc
i . (A8)

As a result, Tc
i is long enough to respond to the same request for c.

However, according to the replacement policy of PCP, when the cache space of Ri is full, the content which has the
least historical requested times by others is deleted. Therefore, to guarantee c can be cached for the full Tc

i , we should
analyze the condition for its full time being cached.

We sort the received requested probabilities for different contents of Ri in descending order. Let P𝑦−th
i represent the

yth probability. If Pc
i is not less than P𝑦−th

i , then there are at most y − 1 contents that have higher requested probabilities
than c. According to the third assumption, we can infer that there are at most y − 1 contents have higher historical
requested times than c, that is, at most y − 1 contents will be cached by Ri after c. Therefore, c can be cached for the
full Tc

i , and Ri can respond to the request for c. As a result, the effective cache condition of PCP is

Pc
i ≥ P𝑦−th

i , (A9)

which means that Ri can respond to the content requests with received requested probabilities and is not less than
P𝑦−th

i . Let rpPCP represent the response probability for a request of PCP, and we have

rpPCP =
𝑦∑

q=1
Pq−th

i . (A10)

Since the highest response probability for any request by y contents are the sum of the top y requested probabilities
of all the contents, let rpMAX represent such highest response probability, and we have

rpMAX =
𝑦∑

q=1
Pq−th

i . (A11)

According to (A10) and (A11), we can observe that rpPCP = rpMAX, PCP can achieve the highest response probability
for content requests.

This proof is completed.
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